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TRANSITION MEAN VALUES OF SHIFTED CONVOLUTION SUMS

IAN PETROW

Abstract. Let f be a classical holomorphic cusp form for SL2(Z) of weight k which is a normalized eigen-
function for the Hecke algebra, and let λ(n) be its eigenvalues. In this paper we study “shifted convolution
sums”

∑
n
λ(n)λ(n + h) after averaging over many shifts h and obtain asymptotic estimates. The result is

somewhat surprising: one encounters a transition region depending on the ratio of the square of the length

of the average over h to the length of the shifted convolution sum. The phenomenon is similar to that
encountered by Conrey, Farmer and Soundararajan in their 2000 paper [1] on transition mean values of
the Jacobi symbol, and the connection of both results to Eisenstein series and multiple Dirichlet series is
discussed.

Let f be a classical holomorphic Hecke eigencuspform for SL2(Z) of weight k ∈ 2Z, k > 0. It admits a
Fourier expansion of the form

f(z) =
∑

n≥1

n
k−1

2 λf (n)e(nz),

where the λf (n) are the Hecke eigenvalues of f , normalized so that λf (1) = 1, and we use the standard
notation e(z) := e2πiz . In this paper, we study “shifted convolution sums”, i.e. sums of the form

∑

n

λf (n)λf (n+ h).

These sums have many applications in analytic number theory. They often arise in subconvexity results for
GL1 and GL2 L-functions, see Sarnak [14], or Lecture 4 of Michel in [13], and moreover, they are crucial
to Soundararajan and Holowinsky’s resolution of the quantum unique ergodicity conjecture for classical
holomorphic modular forms, see [9]. In this paper we obtain asymptotic estimates for shifted convolution
sums after averaging over many shifts h, i.e. we study sums of the form

(1)
∑

h≍Y

∑

n≍X

λf (n)λf (n+ h),

where the notation n ≍ X indicates a sum over n of length X with a for-now-unspecified smoothing.
We show that when X and Y grow large in such a manner that Y 2/X → ∞, the double sum (1) has

an asymptotic formula with well controlled error terms, and we obtain nontrivial asymptotic upper bounds
when Y 2/X → 0. However, the most interesting case of our result is the transition phase between these
two situations, that is, when X and Y go to infinity and Y 2/X = c, a fixed constant. In this situation, the
asymptotic we prove depends delicately on the constant c. One perspective is to interpret the sum (1) as
varying on the open first quadrant of the (X,Y 2)-plane. Asymptotic estimates as X and Y 2 go to infinity
are a description of the singularity at infinity in this quarter-plane. In this paper we find that the asymptotic
behavior varies continuously on a blowup of the point at infinity in the quarter-(X,Y 2)-plane. Our results
for shifted convolution sums are very similar to the interesting results of Conrey, Farmer and Soundararajan
on transition mean values of the Jacobi symbol [1]. They study the sum

S(X,Y ) :=
∑

m≤X
m odd

∑

n≤Y
n odd

(m

n

)

,

and similarly find asymptotic formulae when one of either X or Y grow much faster than the other, and a
transition region when X/Y is a fixed constant, in which the asymptotic varies continuously on a blowup.
The sums (1) and S(X,Y ) at first look dissimilar. Note however that the problem of determining the
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asymptotic behavior of (1) is equivalent to determining asymptotic behavior in the sum

∑

n≍X

(

∑

m≍Y

λf (n+m)

)2

,

which puts (1) and S(X,Y ) on equal footing, and makes apparent why the transition region is at Y 2/X = c.
Moreover, we will see later that these two examples rest on the same ideas and have many common features.
First, however, we state precisely a corollary of the Main Theorem (found in section 4) of this paper. The
Main Theorem is very similar to the corollary, but allows a choice of cut-off functions.

We define the function cf on the positive real numbers

cf (α) :=
π

3
2

2
α
∑

n≥1

λf (n)
2Wk

(

π2nα
)

,

with

Wk(x) :=
1

2πi

∫

(1+a)

Γ(s+ k − 1)Γ
(

s− 1
2

)

Γ(2− s) x−s ds

for any fixed a > 0.

Corollary 1. If 1 ≤ Y ≤ X then

∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)

(

n(n+ h)

X2

)

k−1

2

e−
n+h
X =

(

cf

(

Y 2

X

)

− Γ(k)L(1, sym2f)

2ζ(2)

)

X +Ok

(

X
1
2 Y

1
3
(1+θ)

)

where cf (α) defined above is a smooth function on the positive real numbers which

• as α→∞ decays faster than any polynomial

• as α→ 0 is

=
Γ(k)L(1, sym2f)

2ζ(2)
+ Ek(α),

where Ek(α) = ok

(

α
1
2

)

unconditionally, and Ek(α) = Ok,ε

(

α
3
4
−ε
)

for any ε > 0 assuming the

Riemann hypothesis for the classical Riemann zeta function.

and where θ = 0 or = 7
64 depending on whether one assumes the generalized Ramanujan conjecture for Maass

forms of SL2(Z) or not.

As a benchmark, the best point-wise estimates for shifted convolution sums on SL2(Z) give

(2)
∑

n≍X

λf (n)λf (n+ h)≪ε X
1
2
+ε,

see Sarnak [14]. In Corollary 1, observe that if Y 2 is large compared to X we have that

∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)

(

n(n+ h)

X2

)
k−1

2

e−
n+h
X ∼ −Γ(k)L(1, sym2f)

2ζ(2)
X

and if Y 2 is small compared to X then

∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)

(

n(n+ h)

X2

)

k−1

2

e−
n+h
X = ok

(

X
1
2Y
)

+Ok

(

X
1
2Y

1
3
(1+θ)

)

,

or an even better bound if we assume the Riemann Hypothesis. In the transition region when Y 2 is a
constant multiple of X , the asymptotic growth is controlled by the function cf (α).

Now we describe the work of Conrey, Farmer and Soundararajan. Their result is

Theorem (Conrey, Farmer and Soundararajan). Uniformly for all large X and Y , we have

S(X,Y ) =
2

π2
C

(

Y

X

)

X
3
2 +O

(

(XY
7
16 + Y X

7
16 ) logXY

)

,
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where for α ≥ 0 we define

C(α) =
√
α+

1

2π

∞
∑

k=1

1

k2

∫ α

0

√
y

(

1− cos

(

2πk2

y

)

+ sin

(

2πk2

y

))

dy.

An alternate expression for C(α) is

C(α) = α+ α
3
2
2

π

∞
∑

k=1

1

k2

∫ 1
α

0

√
y sin

(

πk2

2y

)

dy.

From the first expression, one finds that after integrating by parts that

C(α) =
√
α+

π

18
α

3
2 +O

(

α
5
2

)

as α→ 0. The second expression gives the limiting behavior

C(α) = α+O
(

α−1
)

as α→∞.
We make some brief remarks on notation: in this paper we use an integral with a subscript in parentheses

∫

(c) to denote the contour integral in the complex plane with positive orientation along the line Re(s) = c,

and use the standard notations≪x, ox(·) and Ox(·), where the subscript denotes that the implied constants
depend on the parameter x and are otherwise absolute. We have made an effort to be explicit about the
dependence of our error terms on the various parameters involved in this paper.

Finally, we would like to thank the number theory community at Stanford for the stimulating academic
environment, in particular, Robert Rhoades, Xiannan Li, Bob Hough, David Sher, Akshay Venkatesh and
above all, Kannan Soundararajan, discussions with whom influenced the final form of this paper.

1. Connections between the results via Eisenstein and Multiple Dirichlet Series

There are many parallels between our work and that of Conrey, Farmer and Soundararajan, and moreover
both results can be interpreted as averages of Fourier coefficients of Eisenstein series. We first mention some
interesting similarities.

In both our work and that of Conrey, Farmer and Soundararajan, the result when one parameter grows
more rapidly than the other can be deduced by evaluating the long sum first and then making trivial estimates
on the short sum. Indeed, if Y 2 is very small compared to X , Sarnak’s solution to the shifted convolution
problem (2) yields

∑

h≤Y

∑

n≤X

λf (n)λf (n+ h)≪k,ε X
1
2
+εY.

In the case of the Jacobi symbol, one can use the Polya-Vinogradov inequality to show that

∑

n≤X
n odd

( n

m

)

=

{

X
2

ϕ(m)
m +Oε (X

ε) if m = �

O
(

m
1
2 logm

)

if m 6= �

from which it follows that

S(X,Y ) =
∑

m≤Y
m=odd �

(

X

2

ϕ(m)

m
+Oε (X

ε)

)

+O
(

Y
3
2 log Y

)

=
2

π2
XY

1
2 +Oε

(

Y
3
2 log Y + Y

1
2Xε +X log Y

)

,

and similarly if the roles of n,m are reversed, see [1]. The case of shifted convolution sums when Y 2 is much
larger than X follows even more simply. Indeed, we have that

∑

n≤X

λf (n)≪f X
1
3 .
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See for example, [6]. Then we find

∑

h≤X

∑

n≤X−h

λf (n)λf (n+ h) = −L(1, sym
2f)

2ζ(2)
X +Of

(

X
2
3

)

by squaring and considering the off-diagonal terms. Observe that these easily-derived estimates correspond
to the limiting behavior of the transition regions in either of the more general theorems stated above.

At the transition phase (i.e. on the blowup) the asymptotic behavior in both theorems depends crucially on
the automorphic nature of the modular form f or the Jacobi symbol. Conrey, Farmer and Soundararajan’s
proof is based on the Poisson summation formula, see section 3 of their paper [1], which is the essential
ingredient in proving the functional equations of the Dirichlet L-functions L(s, χ), i.e. GL1 automorphy.
Likewise, one might consider Lemma 1 of section 3 of this paper to be the essential step which brings out
the behavior of shifted convolution sums on the blowup. The crucial step in the proof of Lemma 1 is the
application of the functional equation of the L-function L(s, f × f), which follows from the automorphy of
f .

The Theorem proved by Conrey, Farmer and Soundararajan has one very surprising feature which is
not apparent in our work. The function C(α) appearing in their result is once continuously differentiable
everywhere, but it is twice differentiable at αQ if and only if α = 2p/q with p and q both odd, see section
6 of their paper. It is necessary that the sum S(X,Y ) has a sharp cut-off for C(α) to have such strange
differentiability properties. In our work, we do not prove an asymptotic result for a sharp cut-off, but we do
have some flexibility in our choice of cut off functions. In section 3, we see that the asymptotic we obtain
on the blowup has a main term which depends on the particular shape of the cut-off function we choose.
This is unusual in analytic number theory. It remains possible that averages of shifted convolution sums
in the shift aspect when considered with a sharp cut-off also have strange differentiability properties at the
transition region.

The most essential connection, however, is that both theorems arise from averages of Fourier coefficients
of Eisenstein series, and the transition regions can be understood by studying the resulting multiple Dirichlet
series. We first discuss the case of characters. We have that

S(X,Y ) =
1

(2πi)2

∫

(c)

∫

(c)

Z(s, w)
Xs

s

Y w

w
ds dw

where c > 1 and

Z(s, w) :=
∑

m,n≥1
m,n odd

(

m
n

)

nsmw
.

This is perhaps the first example of a multiple Dirichlet series, and information about the analytic proper-
ties of Z(s, w) would determine the asymptotic behavior of S(X,Y ). Goldfeld and Hoffstein in [4] derive
the analytic properties of Z(s, w), which crucially follow from studying weight 1

2 Eisenstein series for the
congruence subgroup Γ0(4). More precisely, they study the modified multiple Dirichlet series

Z+(s, w) =
∑

m≥1
m squarefree

L(s, χm)

mw
,

where

χm(n) :=

{

(

m
n

)

m ≡ 1 (mod 4)
(

4m
n

)

m ≡ 2, 3 (mod 4)

and find that it has poles along w = 1 and w = 3
2 − s. In fact, if E 1

2
(z, s) is the weight 1

2 Eisenstein series

at the cusp 0 (see Goldfeld and Hoffstein for details), it has the Fourier expansion

E 1
2
(z, s) =

∑

m≥1

am(s, y)e(nx)

where

am(s, y) =
L(2s, χm)(1− χm(2)2−2s)

ζ(4s)(1 − 2−4s)

ys

4s
Km(s, y)

4



is essentially L(2s, χm) times a K-Bessel function. One finds that

∑

m≤Y
m odd

1

2πi

∫

( 1
2
)

am (s, 1/X) ds

evaluates to a double mellin inverse of Z(s, w) with some additional factors. Ignoring covergence issues, or
after sufficient smoothing, one can see how the transition region arises directly from Z(s, w). For simplicity,
we work with Z+(s, w). We have

∑

m≤Y
m squarefree

∑

n≤X

χm(n) =
1

(2πi)2

∫

(c)

∫

(c)

Z+(s, w)
Xs

s

Y w

w
ds dw

=
1

2πi

∫

(c)

c(w)X
Y w

w
+ c∗+(w)

X
3
2

(32 − w)w

(

Y

X

)w

dw

+
1

(2πi)2

∫

(c)

∫

( 3
2
−Re(w)−ε)

Z+(s, w)
Xs

s

Y w

w
ds dw

where c(w) and c∗+(w) are the meromorphic functions arising in Theorem 1 of [4]. They have poles at w = 1
2 ,

with resw= 1
2
c(w) = − resw= 1

2
c∗+(w) because of the intersection of the two singular divisors at (s, w) = (12 , 1).

Hence, if Y/X → ∞, the terms involving c(w) and c∗+(w) cancel, and if Y/X → 0, the term involving c(w)

becomes a main term, and the one involving c∗+(w) becomes an error term of size O(Y
3
2 ). If Y/X remains

constant, the term involving c∗+(w) gives the behavior on the blow-up.
Our result on the following pages can be seen to arise from an identical situation. Sums of the form (1)

are essentially an average of Fourier coefficients of |f |2. Our method to treat these sums is to take a spectral
expansion into Eisenstein series and Maass cusp forms, so one is led to compute a sum similar to

∑

m≤Y

1

2πi

∫

( 1
2
)

bm (s, 1/X) ds,

where

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s =
∑

n

bn(s, y)e(nx)

is the standard weight 0 real analytic Eisenstein series. The integral along Re(s) = 1
2 here arises from

averaging over the continuous spectrum in our decomposition. In this context, the analouge of Z(s, w) is

∑

h

∑

ab=h

(a

b

)s− 1
2 1

hw
= ζ

(

w − s+ 1

2

)

ζ

(

w + s− 1

2

)

.

While not a multiple Dirichlet series, it is still a zeta function in two variables and has singular divisors at
w = s+ 1

2 and w = 3
2 − s, the intersection of which gives rise to a transition behavior exactly as discussed

above. This will be carried out in explicit detail in the remainder of the paper.
Finally, one should note the connection between Riemann’s nondifferentiable function and theta functions

on the real axis, see the interesting paper of Duistermaat [2].

2. Preliminaries

Our main approach to the Main Theorem is to take the Petersson inner product of yk|f |2 against an
incomplete Poincaré series Ph(·|ψ). This approach was first introduced by Selberg [15], and has been suc-
cessfully used by many other authors to study shifted convolution sums in the past (for an overview, see
[13]). Throughout this paper we set Γ = SL2(Z), and let H denote the upper half plane with its hyperbolic
metric. We work in the Hilbert space L2(Γ\H) of square integrable measurable functions with the Petersson
inner product

〈u, v〉 =
∫

Γ\H

u(z)v(z)dµz.

5



The symmetric operator

∆ = −y2
(

∂2

∂x2
+

∂2

∂y2

)

acts on the subspace of smooth functions and moreover has a unique self-adjoint extension to all L2(Γ\H),
see Iwaniec [11] chapter 4. Given a classical holomorphic normalized cuspidal eigenform f of weight k, set

F (z) := y
k
2 f(z). We have that |F | ∈ L2(Γ\H), but on the other hand it is no longer holomorphic. Let ψ(y)

be an infinitely differentiable compactly supported function on R>0, and let Γ∞ denote the stabilizer in Γ
of the cusp at infinity. Then we define the incomplete Poincaré series

Ph(z|ψ) :=
∑

γ∈Γ∞\Γ

e(hγz)ψ (Im(γz)) ,

which is a smooth and bounded function on Γ\H. By unfolding the inner product

〈FPh(·|ψ), F 〉 =
∫

Γ\H

yk|f(z)|2Ph(z|ψ) dµz

on the Poincaré series, we find that

〈FPh(·|ψ), F 〉 =
∞
∑

n=1

λf (n)λf (n+ h)(n(n+ h))
k−1

2

∫ ∞

0

ψ(y)e−4π(n+h)yyk−2 dy,

i.e. this inner product is a smoothed shifted convolution sum with cut-off function given in terms of an
integral transform (similar to the Laplace transform) of ψ. The behavior of ψ(y) as y tends to 0 is crucial
to control the length of the shifted convolution sum. In connection with the previous section, it should be
noted that if ψ were a delta function, then taking the inner product against Ph(z|ψ) is equivalent to taking
the h-th Fourier coefficient.

Let uj be a complete orthonormal system of cusp forms which are eigenfunctions of the Laplace operator
and all Hecke operators. Because we are only working in level 1, we need not worry about old forms or the
Hecke operators whose index divides the level. Define the real analytic Eisenstein series by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s

for Re(s) > 1, and in general by analytic continuation. For each s 6= 0, 1, the Eisenstein series are also
eigenfunctions for the Laplace operator and all the Hecke operators. We have then that

∞
∑

j=1

〈Ph(·|ψ), uj〉uj(z) +
1

4π

∫ ∞

−∞

〈Ph(·|ψ), E(·, 1/2 + it)〉E(z, 1/2 + it) dt

converges to Ph(z|ψ) in the norm topology on L2(Γ\H), see Theorems 4.7 and 7.3 in [11]. Then we have
that

(3) 〈FPh(·|ψ), F 〉 =
∞
∑

j=1

〈Ph(·|ψ), uj〉〈Fuj , F 〉+
1

4π

∫ ∞

−∞

〈Ph(·|ψ), E(·, 1/2 + it)〉〈FE(·, 1/2 + it), F 〉 dt,

and we will see later that the convergence is absolute and uniform in h.
If u ∈ L2 (Γ\H) and ∆u = λu with λ = s(1− s), then u(z) has a Fourier expansion given in terms of the

K-Bessel function Kν(z), which is an exponentially decaying solution to the differential equation

z2f ′′ + zf ′ −
(

z2 + ν2
)

f = 0.

We will primarily be interested in the K-Bessel function for purely imaginary ν, and note some useful
properties of these functions: first, that Kν(z) is real for real z, second, that as Im(ν) → ∞ in a fixed
vertical strip, Kν(z) is decaying exponentially, and last, that for ν = it, with t ∈ R, Kit(z) has a branch cut,
which we take to be along the negative real axis in the z-plane. As z → 0, we have that

|Kit(z)| ∼ π
∣

∣

∣

∣

sin(t log z/2)

Γ(1 + it) sinh(πt)

∣

∣

∣

∣

so long as one avoids the branch cut.
6



3. Proof of Theorem

We now proceed to the proof of the Main Theorem of the paper by summing the right side of (3) over h.
Pointwise, the largest term comes from the discrete spectrum (see [14]), however, on average, the continuous
spectrum dominates. We start with the continuous spectrum contribution to (3).

3.1. Eisenstein Series. The Eisenstein series E(z, s) has a Fourier expansion given by

E(z, s) = ϕ(0, s) +
∑

n6=0

ϕ(n, s)Ws(nz),

where

Ws(z) = 2y
1
2Ks− 1

2
(2πy)e(x).

If n = 0 and s 6= 1
2 then

ϕ(0, s) = ys +
ξ(2s− 1)

ξ(2s)
y1−s,

and if n 6= 0, the n-th Fourier coefficient of E(z, s) is given by

ϕ(n, s) = ξ(2s)−1|n|−1/2
∑

ab=|n|

(a

b

)s−1/2

,

where ξ(s) = π−s/2Γ(s/2)ζ(s) denotes the completed Riemann zeta function which has the functional equa-
tion ξ(s) = ξ(1− s). If s = 1

2 + it, we find by unfolding the Poincaré series that the inner product

〈Ph(·|ψ), E(·, 1/2 + it)〉 = 2

ξ(2s− 1)

∑

ab=h

(a

b

)s− 1
2

∫ ∞

0

ψ(y)

y3/2
e−2πhyKs− 1

2
(2πhy) dy

where we have used that ξ(2s) = ξ(2s) = ξ(2− 2s) = ξ(2s− 1). We can also unfold the second inner product
on the Eisenstein series. Following Iwaniec [10] chapter 13, set

L(s, f × f) := ζ(s)L(s, sym2f) = ζ(2s)L(s, f ⊗ f) = ζ(2s)
∑

n≥1

λf (n)
2

ns
,

where the last equality is valid only for Re(s) > 1. This L-function admits the functional equation

Λ(s, f × f) = Λ(1− s, f × f),
where

Λ(s, f × f) = L∞(s, f × f)L(s, f × f)
with

L∞(s, f × f) := (2π)−2sΓ(s)Γ(s+ k − 1).

By unfolding when Re(s) > 1, and in general after analytic continuation,

〈FE(·, s), F 〉 = Λ(s, f × f)
(4π)k−1ξ(2s)

.

Going back to the spectral expansion (3) and pulling these two inner products together, we have that the
Eisenstein series contribution to 〈FPh(·|ψ), F 〉 is

Ef,h(ψ) :=
1

(4π)k−1

1

2πi

∫

( 1
2
)

Λ(s, f × f)
ξ(2s)ξ(2s− 1)

∑

ab=h

(a

b

)s− 1
2

∫ ∞

0

ψ(y)

y3/2
e−2πhyKs− 1

2
(2πhy) dy ds.

The completed L and zeta functions have the same number of gamma factors in the numerator and denom-
inator, and Bessel function decays rapidly as | Im(s)| → ∞, so the contour integral converges rapidly. It is
interesting to note that the s integral only makes sense because ξ(s)−1 has no poles and at most polynomial
growth on the Re(s) = 1 line, i.e. due to the prime number theorem. Indeed, one sees that the contour
is constrained between the poles in the critical strips of the two ξ(s)−1 functions appearing here. Due to
the mysterious nature of the residues at these poles, shifting contours seems to be a futile approach to
understanding the asymptotic size of Ef,h(ψ).
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Introducing a sum over h clears this obstruction. We have to compute

(4)
∑

h≤Y

Ef,h(ψ) =
1

(4π)k−1

∫ ∞

0

ψ(y)

y
3
2

1

2πi

∫

( 1
2
)

Λ(s, f × f)
ξ(2s)ξ(2s− 1)

∑

h≤Y

∑

ab=h

(a

b

)s− 1
2

e−2πyhKs− 1
2
(2πyh) ds dy,

and can evaluate the sum over h by standard techniques. We have by adapting Theorem 12.4 from [17] (due
to Van Der Corput) that

∑

h≤x

∑

ab=h

(a

b

)s− 1
2

= ζ(2s)
xs+

1
2

s+ 1
2

+ ζ(2 − 2s)
x−s+ 3

2

−s+ 3
2

+Os,ε

(

x
27
82

+|Re(s)− 1
2
|+ε
)

,

where the implied constants depend at most polynomially on |s|. It should be noted that the error term
here is not the best currently known, however, it is sufficiently small as to not contribute to the final result
of this paper. By partial summation,

∑

h≤Y

∑

ab=h

(a

b

)s− 1
2

e−2πyhKs− 1
2
(2πyh)

= ζ(2s)

∫ Y

0

us−
1
2 e−2πyuKs− 1

2
(2πyu) du+ ζ(2− 2s)

∫ Y

0

u
1
2
−se−2πyuKs− 1

2
(2πyu) du

+ Os,ε

(

e−2πyYKs− 1
2
(2πyY )Y

27
82

+|Re(s)− 1
2
|+ε
)

.

Note that the two integrals appearing in the displayed equation are interchanged under the transformation
s ←→ 1 − s, by symmetry of the the Bessel function. The contour integral over s in

∑

Ef,h(ψ) is also
symmetric under s ←→ 1 − s so that these two integrals are identical in the overall sum, and we need only
work one of them out. The first integral can be evaluated explicitly, and the answer will be in terms of
hypergeometric functions. The confluent hypergeometric function that will appear below is defined by the
power series

1F1(a, b, z) =

∞
∑

n=0

a(n)zn

b(n)n!

where

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

is called either the ‘rising factorial’ or ‘Pochhammer symbol’. The theory of hypergeometric functions is
developed in detail in [3]. It is entire on C separately in each variable except for simple poles at b =
0,−1,−2, . . . by the absolute and uniform convergence of the defining series, hence it is meromorphic on C3.
We have that the residues at these poles are given by

res
b=−n

1F1(a, b, z) =
Γ(a+ n+ 1)(−1)n

Γ(a)Γ(n+ 2)Γ(n+ 1)
zn+1

1F1(a+ n+ 1, n+ 2, z),

see Gradshteyn and Ryzhik [5], 9.214.
We have the formulae

Kν(z) =
π

2

iνJ−ν(iz)− i−νJν(iz)

sinπν
,

e−zΓ
(

s+ 1
2

)

(

iz
2

)s− 1
2

Js− 1
2
(iz) = 1F1(s, 2s,−2z),

d

dz
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z),

and
d

dz

(

zb−1
1F1(a, b, z)

)

= (b − 1)zb−2
1F1(a, b− 1, z),

where Jν(x) is the J-Bessel function, the second formula can be found in [5], 9.215 #3 and the last two
formulae can be found in [3] section 2.1.2. From these it follows that

∫ Y

0

us−
1
2 e−2πyuKs− 1

2
(2πyu) du =

1

4(πy)
1
2 s

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s)) ,

8



where

Af = Af (y, s) = (πy)−sΓ(1/2 + s)

Bf = Bf (y, Y, s) = (πy)−sΓ(1/2 + s)1F1(−s, 1− 2s,−4πyY )
and

Cf = Cf (y, Y, s) = (πyY 2)sΓ(1/2− s)1F1(s, 1 + 2s,−4πyY ).
The ζ(2s) from the evaluation of the sum over h cancels against the ζ(2s) in the denominator of (4),

eliminating its poles. Given that Af + Bf + Cf is holomorphic in s past the Re(s) = 0 line, we are free to
pass the contour to the left. Picking up a residue at s = 0 we get

∑

h≤Y

Ef,h(ψ) = − Γ(k)

(4π)k
L(1, sym2f)

2ζ(2)

∫ ∞

0

ψ(y)

y2
dy

+
1

(4π)k−
1
2

∫ ∞

0

ψ(y)

y2
1

2πi

∫

(−a)

Λ(s, f × f)
ξ(2s− 1)

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s))

π−sΓ(s+ 1)
ds dy

+ Ok,ε

(

Y
27
82

+ε

∫ ∞

0

|ψ(y)|
y

3
2

dy

)

,

where 0 < a < 1
2 , and we have again made use of the prime number theorem in estimating the error term.

The integrals over y converge at ∞, so the asymptotic size of
∑

Ef,h(ψ) depends only on the behavior of
ψ(y) for small y. We now make some estimates assuming that y is small. The remaining contour integral

1

2πi

∫

(−a)

Λ(s, f × f)
ξ(2s− 1)

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s))

π−sΓ(s+ 1)
ds

is a sum of three terms coming from Af , Bf and Cf . The term coming from Af is ≪k y
1
2 as y → 0.

The hypergeometric function appearing in Bf is bounded above and below by universal constants in the

half-plane Re(s) < 0 and when 0 ≤ yY ≤ 4π, thus term coming from Bf is also≪ y
1
2 , uniformly in Y . Thus

it remains to inspect the term coming from Cf . Explicitly, let

Cf,1(y, Y ) :=
1

2πi

∫

(−a)

Λ(s, f × f)
ξ(2s− 1)

Cf (y, Y, s)

π−sΓ(s+ 1)
ds

=
1

2πi

∫

(−a)

Λ(s, f × f)
ξ(2s− 1)

Γ
(

1
2 − s

)

Γ(s+ 1)
1F1(s, 1 + 2s,−4πyY )

(

π2yY 2
)s
ds.

Thus
∑

h≤Y

Ef,h(ψ) = − Γ(k)

(4π)k
L(1, sym2f)

2ζ(2)

∫ ∞

0

ψ(y)

y2
dy +

1

(4π)k−
1
2

∫ ∞

0

ψ(y)

y2
Cf,1(y, Y ) dy

+ Ok,ε

(

Y
27
82

+ε

∫ ∞

0

|ψ(y)|
y

3
2

dy

)

.

In the transition region, Cf,1(y, Y ) is the crucial term.

Lemma 1. Suppose that y, Y ∈ R>0 with Y becoming large and y becoming small. Then

Cf,1(y, Y ) =
1

2
√
π
cf
(

4πyY 2
)

+Ok

(

y
1
2

)

,

where

cf (α) ==
π

3
2

2
α
∑

n≥1

λf (n)
2Wk(π

2nα),

and

Wk(x) =
1

2πi

∫

(1+a)

Γ(s+ k − 1)Γ(s− 1
2 )

Γ(2− s) x−s ds

for any fixed a > 0.

9



Proof. We apply the functional equation for the L-function to find that

Cf,1(y, Y ) = π2yY 2 1

2πi

∫

(1+a)

L(s, f × f)
ζ(2s)

Γ(s+ k − 1)Γ(s− 1
2 )

Γ(2− s) 1F1(1− s, 3− 2s,−4πyY )
(

4π3yY 2
)−s

ds.

From the definition one finds that 1F1(1 − s, 3 − 2s, u) = 1 + Os(u), which we use to eliminate the hy-
pergeometric function from the above expression. We proceed in two slightly different ways depending on
whether yY 2 becomes large or becomes small. If yY 2 remains bounded, either approach is acceptable. First,
assume that yY 2 is becoming small. In this case, choose a = 1

4 , and observe that the s-dependence in the

hypergeometric function is uniformly bounded along the line Re(s) = 5
4 . Together with the rapid decay of

the integrand of Cf,1(y, Y ), this gives us that
∣

∣

∣

∣

Cf,1(y, Y )− 1

2
√
π
cf
(

4πyY 2
)

∣

∣

∣

∣

≪k y
1
2 (yY 2)

1
4 .

If yY 2 becomes large shift the line of integration to the right, past the pole of the hypergeometric function
at s = 3

2 to a = 3
4 . The contribution to Cf,1(y, Y ) coming from this residue is ≪k y

1
2 , uniformly in Y , and

the s-dependence in the hypergeometric function is uniformly bounded along the line Re(s) = 7
4 . We find in

this case that
∣

∣

∣

∣

Cf,1(y, Y )− 1

2
√
π
cf
(

4πyY 2
)

∣

∣

∣

∣

≪k y
1
2

(

1 + (yY 2)−
1
4

)

.

In either case, we obtain the error term stated in the Lemma.
�

Lemma 2. The function cf (α) defined above is C∞(R>0). As α→∞ it decays faster than any polynomial,

and as α→ 0

cf (α) =
Γ(k)L(1, sym2f)

2ζ(2)
+ Ek(α)

where Ek(α) = ok

(

α
1
2

)

unconditionally, and Ek(α) = Ok,ε

(

α
3
4
−ε
)

for any ε > 0 assuming the Riemann

hypothesis for the classical Riemann zeta function.

Proof. The Wk(x) defined above is C∞(R) and its integrand has no poles to the right, thus Wk(x) is rapidly
decaying as x → +∞. After differentiating the series for cf (α) in the second line of Lemma 1 arbitrarily

many times, the resulting series for c
(n)
f (α) converges absolutely for any α > 0, so cf ∈ C∞(R>0). The rapid

decay of cf (α) follows from that of Wk(x). By shifting the line of integration in the definition of cf (α) to
the left, we investigate the behavior of cf (α) near α = 0. The main term comes from the residue of the pole
of L(s, f × f) at s = 1, and the error term is estimated by pushing the contour just past the Re(s) = 1

2 line,

or to the Re(s) = 1
4 + ε line if one assumes the Riemann hypothesis. �

Thus we have

Proposition 1. For Ef,h(ψ) and cf (α) as defined above, we have that

∑

h≤Y

Ef,h(ψ) =
1

(4π)k

∫ ∞

0

(

cf
(

4πyY 2
)

− Γ(k)L(1, sym2f)

2ζ(2)

)

ψ(y)

y2
dy +Ok,ε

(

Y
27
82

+ε

∫ ∞

0

ψ(y)

y
3
2

dy

)

.

The term involving 27
82 is smaller than the remainder terms coming from Maass forms, as we will see in

the next section.

3.2. Maass Forms. The discrete spectrum of ∆ is spanned by Maass cusp forms. The Hecke algebra acting
on L2(Γ\H) is defined to be the algebra generated by the commuting self-adjoint bounded operators Tn,
where for u ∈ L2(Γ\H), define Tn by

(Tnu)(z) :=
1√
n

∑

ad=n

∑

b (mod d)

u

(

az + b

d

)

.
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These operators commute with ∆ as well, so in fact our basis of Maass forms can be taken to be eigenfunctions
of the Hecke algebra as well, and we denote the Hecke eigenvalues of the Maass form uj by λuj

(n). A Maass

form of Laplace eigenvalue λj = sj(1− sj) = 1
4 + t2j is cuspidal, so it has a Fourier expansion of the form

uj(z) =
∑

n6=0

auj
(n)Wsj (nz),

where

Wsj (z) = 2y
1
2Kitj (2πy)e(x).

For Γ = SL2(Z), it was known to Selberg in the early 50s that the smallest Laplace eigenvalue λ1 is
> 1

4 , hence tj ∈ R. For a proof of this fact, see [7], chapter 11. Computationally, it has been verified that
t1 = 9.53369526 . . ., see for example [8]. To apply the spectral theorem we must assume the normalization
||uj ||2L2 = 1, in which case the Fourier coefficient and Hecke eigenvalue are related by

auj
(n) =

(

coshπtj
2|n|L(1, sym2uj)

)
1
2

λuj
(n),

where the symmetric square L-function appearing here is defined

L(s, sym2uj) =
∏

p

(

1− αuj
(p)2

ps

)−1(

1− αuj
(p)βuj

(p)

ps

)−1(

1− βuj
(p)2

ps

)−1

.

The Hecke eigenvalues conform to the bound |λuj
(n)| ≤ d(n)nθ, where the generalized Ramanujan conjecture

implies that θ = 0 is admissible, and the best known unconditional bound is due to Kim and Sarnak [12],
which gives θ = 7

64 .
We call the Maass form contribution to (3)

Mf,h(ψ) :=

∞
∑

j=1

〈Ph(·|ψ), uj〉〈Fuj , F 〉.

By unfolding we have

〈Ph(·|ψ), uj〉 =
(

coshπtj
L(1, sym2uj)

)
1
2

λuj
(h)

∫ ∞

0

ψ(y)

y
3
2

e−2πhyKitj (2πhy) dy

so that

∑

h≤Y

Mf,h(ψ) =

∫ ∞

0

ψ(y)

y
3
2

∞
∑

j=1

(

coshπtj
L(1, sym2uj)

)
1
2

〈Fuj, F 〉
∑

h≤Y

λuj
(h)e−2πhyKitj (2πhy) dy

Lemma 3. The spectral sum

∞
∑

j=1

(

coshπtj
L(1, sym2uj)

)
1
2

〈Fuj , F 〉
∑

h≤Y

λuj
(h)e−2πhyKitj (2πhy)

appearing in
∑

Mf,h(ψ) converges absolutely.

Proof. There are three factors in the summand: that which involves coshπtj , the inner product, and the
sum over h. We show that the first of these two balance each other, and then show that the sum over h
decays rapidly in |tj |, uniformly in the other variables. To study |〈Fuj, F 〉| we will use a beautiful formula
of Watson [18], but follow a classical work-out of it from Soundararajan’s paper [16]. In that paper both f
and uj are normalized to have mass 1, but in this paper we take f to be Hecke normalized so that Watson’s
formula is

|〈Fuj, F 〉|2 =
1

8

(

Γ(k)

(4π)k
Vol (Γ\H)
ζ(2)

)2 Λ(12 , f × f × uj)
L∞(1, sym2f)2Λ(1, sym2uj)

,

where

Λ(s, f × f × uj) = L∞(s, f × f × uj)L(s, f × f × uj),
11



L∞(s, sym2f) = π− 3
2
sΓ

(

s+ 1

2

)

Γ

(

s+ k − 1

2

)

Γ

(

s+ k

2

)

,

Λ(s, sym2uj) = L∞(s, sym2uj)L(s, sym
2uj),

L∞(s, f × f × uj) = π−4s
∏

±

Γ

(

s+ k − 1± itj
2

)

Γ

(

s+ k ± itj
2

)

Γ

(

s+ 1± itj
2

)

Γ

(

s± itj
2

)

,

L∞(s, sym2uj) = π−3s/2Γ

(

s− 2it

2

)

Γ
(s

2

)

Γ

(

s+ 2it

2

)

and

L(s, f × f × uj) =
∏

p

(

1− αf (p)
2αuj

(p)

ps

)−1(

1− αuj
(p)

ps

)−2(

1− βf (p)
2αuj

(p)

ps

)−1

×
(

1− αf (p)
2βuj

(p)

ps

)−1(

1− βuj
(p)

ps

)−2(

1− βf (p)
2βuj

(p)

ps

)−1

.

The archimedian parts evaluate to

L∞(12 , f × f × uj)
L∞(1, sym2f)2L∞(1, sym2uj)

= 4π2 |Γ(k − 1
2 + itj)|2

Γ(k)2

after repeated application of the duplication formula. Using this, Watson’s formula simplifies to

(5) |〈Fuj , F 〉| =
√
2
|Γ(k − 1

2 + itj)|
(4π)k

(

L(12 , f × f × uj)
L(1, sym2uj)

)

1
2

for f Hecke normalized, and uj mass 1 normalized. By applying Stirling’s formula, we find that |Γ(k − 1
2 +

itj)|(coshπtj)
1
2 is polynomially bounded as |tj | → ∞. Together with standard convexity bounds in the |tj |

aspect for L(12 , f × f × uj), we find that
∣

∣

∣

∣

coshπtj
L(1, sym2uj)

∣

∣

∣

∣

1
2

|〈Fuj , F 〉|

is polynomially bounded as |tj | gets large.
Now we turn to the sum over h. We have by a “folklore” result written down by Hafner and Ivić [6] that

∑

h≤Y

λuj
(h)≪uj

Y
1
3
(1+θ)

where θ = 0 or = 7
64 as above, and where the implied constants depend at most polynomially on |tj |. As

on the Eisenstein series side, the conjectural truth is Ou,ε(Y
1
4
+ε), but this seems very difficult. By partial

summation
∑

h≤Y

λu(h)e
−2πhyKitj (2πhy)≪uj

e−2πyYKitj (2πyY )Y
1
3
(1+θ) +

∫ Y

1
2

u
1
3
(1+θ)

∣

∣

∣

∣

∂

∂u
e−2πyuKitj (2πyu)

∣

∣

∣

∣

du,

where the implied constants again depend at most polynomially on |tj |. We have that |Kit(u)| ∼ π | sin(t log u/2)|
|Γ(1+it) sinh(πt)|

for small u, thus after taking derivatives, changing variables, and using the power series expansion for the
lower incomplete gamma function, we have that

(6)
∑

h≤Y

λu(h)e
−2πhyKitj (2πhy) ≤ P (tj)e−

π
2
|tj |Y

1
3
(1+θ),

uniformly in y, where P (t) is a real-valued function on R that grows at most polynomially as |t| becomes
large. From these estimates together with Weyl’s law (see, e.g. Iwaniec [11])

∑

|tj|≤T

1 =
Vol (Γ\H)

4π
T 2 +Oε

(

(1 + T )1+ε
)

the Lemma follows. �

We apply trivial estimates along with (6) to obtain
12



Proposition 2. For Mf,h(ψ) defined above we have

∑

h≤Y

Mf,h(ψ)≪k Y
1
3
(1+θ)

∫ ∞

0

|ψ(y)|
y

3
2

dy.

The application of trivial bounds is justified by the absolute convergence given by Lemma 3.

4. The Main Theorem and its Corollaries

Drawing together the propositions from the two preceding sections, we obtain

Main Theorem. Let ψ be any measurable function on R>0 such that the incomplete Poincaré series

Ph(z|ψ) :=
∑

γ∈Γ∞\Γ

e(hγz)ψ(Im(γz))

is a smooth and bounded L2 function on Γ\H. Denote the shifted convolution sum

Sf (ψ, Y ) =
∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)(n(n+ h))
k−1

2

∫ ∞

0

ψ(y)e−4π(n+h)yyk−2 dy.

Then we have that

Sf (ψ, Y ) =
1

(4π)k

∫ ∞

0

(

cf
(

4πyY 2
)

− Γ(k)L(1, sym2f)

2ζ(2)

)

ψ(y)

y2
dy +Ok

(

Y
1
3
(1+θ)

∫ ∞

0

|ψ(y)|
y

3
2

dy

)

,

where cf (α) is the function defined in Lemma 1 and whose properties are given in Lemma 2, and θ = 0 or
7
64 depending on whether we assume the truth of the generalized Ramanujan conjecture or not.

It should be noted that the size of the exponent of Y in the error term here depends on the sharp cut-off
in h, and could be made smaller if we were to smooth that sum. Now we make some choices for ψ, and
record the results as corollaries. First, we give the result stated in the introduction.

Proof of Corollary 1. Let ψ be a smooth approximation to a point mass. Specifically, let ψ be smooth,
non-negative, supported on a set of radius X−4 about the point y = 1

4πX and have mass 1. Then for any
continuously differentiable function φ on R>0, we have

∣

∣

∣

∣

φ

(

1

4πX

)

−
∫ ∞

0

ψ(y)φ(y) dy

∣

∣

∣

∣

≪
∣

∣

∣

∣

φ′
(

1

4πX

)∣

∣

∣

∣

X−4,

where the implied constants are absolute. First, let φ(u) = uk−2e−4π(n+h)u, so that
∣

∣φ′
(

1
4πX

)∣

∣ ≪k (n +

h)X3−ke−
n+h
X , and thus we find that

∣

∣

∣

∣

∣

∣

Sf (ψ, Y )−
∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)
(n(n+ h))

k−1

2

Xk−2
e−

n+h
X

∣

∣

∣

∣

∣

∣

≪k,ε X
1+ε,

hence the difference between the left hand sides of the Main Theorem and Corollary 1 is ≪ε X
ε. Secondly,

let

φ(u) =

(

cf (4πuY
2)− Γ(k)L(1, sym2f)

2ζ(2)

)

1

u2
.

From the definition of cf (α) as a sum one sees that |c′f (α)| ≪f α
−1 as α → 0, so that

∣

∣φ′
(

1
4πX

)
∣

∣ ≪f X
3.

The error term can be treated similarly. Hence, the difference between the right hand side of the Main
Theorem and the right hand side of Corollary 1 is ≪f X

−2 with this choice of ψ. �

Let

Γ(s, x) =

∫ ∞

x

e−tts
dt

t

denote the incomplete gamma function.
13



Corollary 2. Let

Σf (X,Y ) :=
∑

h≤Y

∑

n≥1

λf (n)λf (n+ h)

(

1− h

n+ h

)

k−1

2 Γ(k − 1, (k − 1)n+h
X )

Γ(k − 1)

Then

Σf (X,Y ) = −L(1, sym
2f)

2ζ(2)
X +

Y 2

Γ(k − 1)

∫ ∞

(k−1) Y 2

X

cf (u)

u2
du+Ok

(

X
1
2Y

1
3
(1+θ)

)

,

where the integral appearing here either cancels the main term if Y 2

X approaches 0, or decays rapidly as a

function of Y 2

X if this parameter grows without bound.

Proof. Let 1>x denote the indicator function of the open set (x,∞) ⊂ R. In similar fashion to the previous
proof, let ψ(y) be a smooth approximation to

1

4πΓ(k − 1)
1> k−1

4πX
(y),

and compute the answer. �

The spectral theorem as used in this paper holds for L2 functions which are also C∞ and bounded,
however, it should also hold for a much wider class of functions, and thus our Main Theorem should in fact
hold for a much wider class of functions. In practice however, one may always obtain a corollary for a specific
choice of ψ by elementary arguments similar to the proof of Corollary 1, so we do not pursue the problem
of expanding the class of functions for which the Main Theorem holds.
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(1989), 375–382.
7. Dennis A. Hejhal, The Selberg trace formula for PSL(2,R), volume 2, Springer Lecture Notes in Mathematics, 1983.

8. , Eigenvalues of the Laplacian for PSL(2,Z): some new results and computational techniques, International Sym-
posium in Memory of Hua Loo-Keng, volume 1 (S. Gong et al., ed.), Springer, 1991.

9. Roman Holowinsky and Kannan Soundararajan, Mass equidistrobution for Hecke eigenforms, Annals of Mathematics 172

(2010), no. 2, 1517–1528.
10. Henryk Iwaniec, Topics in classical automorphic forms, American Mathematical Society Graduate Studies, 1997.
11. , Spectral methods in automorphic forms, American Mathematical Society Graduate Studies, 2002.
12. Henry Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, appendices by Henry Kim,

Dinakar Ramakrishnan and Peter Sarnak, Journal of the AMS 16 (2003), no. 1, 139–183.
13. Philippe Michel, Analytic number theory and families of automorphic L-functions, Automorphic Forms and Applications

(Freydoon Shahidi Peter Sarnak, ed.), IAS/Park City Mathematics Series, Volume 12, 2007.
14. Peter C. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, Journal of Functional Analysis

184 (2001), 419–453.
15. Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proceedings of Symposia on Pure Mathematics,

Volume VIII, 1965, pp. 1–15.
16. Kannan Soundararajan, Weak subconvexity for central values of L-functions, Annals of Mathematics 172 (2010), no. 2,

1469–1498.
17. E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, second edition, Oxford University

Press, 1986.
18. Tom Watson, Rankin triple products and quantum chaos., Ph.D. thesis, Princeton University, 2001.

14


	1. Connections between the results via Eisenstein and Multiple Dirichlet Series
	2. Preliminaries
	3. Proof of Theorem
	3.1. Eisenstein Series
	3.2. Maass Forms

	4. The Main Theorem and its Corollaries
	References

