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Moments of L′(1/2) in the Family of Quadratic Twists

Ian Petrow

Abstract

We prove the asymptotic formulae for several moments of derivatives of GL(2) L-functions over
quadratic twists. The family of L-functions we consider has root number fixed to −1 and odd orthogonal
symmetry. Assuming GRH we prove the asymptotic formulae for (1) the second moment with one
secondary term, (2) the moment of two distinct modular forms f and g and (3) the first moment with
controlled weight and level dependence. We also include some immediate corollaries to elliptic curves via
the modularity theorem and the work of Gross and Zagier.

The values of L-functions L(s, f) at certain special half-integral points are of central importance in number
theory, c.f. the Birch and Swinnerton-Dyer conjecture. Analytic methods have been used successfully to
study the behavior of these special values in some family of objects, but much remains unknown. In this
paper we study the central values of derivatives of L-functions of holomorphic GL(2) modular forms in the
family of quadratic twists. The mean value of this family has been studied successfully in the past by several
authors, notably Bump, Friedberg and Hoffstein [2], Murty and Murty [16], Iwaniec [10] and Munshi [14],
[15].

When f⊗χd has even functional equation an asymptotic formula for the second moment of L(1/2, f⊗χd)
was computed assuming the generalized Riemann hypothesis (GRH) by Soundararajan and Young [21]. Here,
we apply their techniques to several moment problems of comparable difficulty when the sign of the functional
equation is −1 and the derivative L′(1/2, f ⊗ χd) is the correct object of study. The family of quadratic
twists with root number +1 as considered by Soundararajan and Young has even orthogonal symmetry in
the sense of random matrix theory, while the family we consider has root number −1 and odd orthogonal
symmetry. Surprisingly, we find that stronger results are possible in the odd case: the analogues of theorems
2 and 3 of are out of reach when the root number of f ⊗χd is 1 and one studies the L-functions themselves.
As in Soundararajan and Young, our work is conditional on GRH, but we only use this hypothesis to obtain
a useful upper bound to the corresponding un-differentiated moment problem, see conjectures 1 and 2. The
deduction of the necessary upper bounds from GRH is due to Soundararajan [20]. We restrict our attention
to holomorphic forms in this paper, but our results should carry over to Maass forms with only minor
modifications to the proofs.

Before stating our results, let us fix some notation and recall some standard facts which can be found in
chapter 14 of [11]. We consider the space of cuspidal holomorphic modular forms of even weight κ on the
congruence subgroup Γ0(N) with trivial central character. Such forms have a Fourier expansion of the form

f(z) =
∑

n≥1

λf (n)n
(κ−1)/2 exp(2πiz).

We fix a basis of newforms which are eigenfunctions of the Hecke operators and have λf (1) = 1. From now
on, we assume all forms f which we work with are elements of this basis. The Hecke eigenvalues of f are
all real (by the adjointness formula and multiplicity one principle), and hence f is self-dual. We study the
family of twists of f by quadratic characters. Let d be a fundamental discriminant relatively prime to N ,
and let χd(·) =

(
d
·
)
denote the primitive quadratic character of conductor |d|. Then f ⊗χd is a newform on

Γ0(N |d|2) and the twisted L-function is defined for Re(s) > 1 by

L(s, f ⊗ χd) :=
∑

n≥1

λf (n)

ns
χd(n) =

∏

p∤Nd

(
1− λf (p)χd(p)

ps
+

1

p2s

)−1∏

p|N

(
1− λf (p)χd(p)

ps

)−1

.
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The completed L-function is defined by

Λ(s, f ⊗ χd) :=

(
|d|

√
N

2π

)s

Γ

(
s+

κ− 1

2

)
L(s, f ⊗ χd).

It has the functional equation

Λ(s, f ⊗ χd) = iκηχd(−N)Λ(1− s, f ⊗ χd),

where η is given by the eigenvalue of the Fricke involution, which is independent of d and always ±1.
We denote the root number by w(f ⊗ χd) := iκηχd(−N). Note that if d is a fundamental discriminant,
then χd(−1) = ±1 depending as whether d is positive or negative. In this paper we work with positive
discriminants so that χd(−N) = χd(N), but we could just as easily formulate our results with negative
discriminants.

We are interested here in the derivative of the L-function, which also has a Dirichlet series convergent in
a right half-plane:

L′(s, f ⊗ χd) = −
∞∑

n=1

λf (n)χd(n) logn

ns
.

It also has a functional equation

Λ′(s, f ⊗ χd) = −iκηχd(−N)Λ′(1− s, f ⊗ χd)

with sign opposite to that of L(s, f ⊗ χd). When w(f ⊗ χd) = −1, one has that L(1/2, f ⊗ χd) = 0 and
L′(1/2, f ⊗ χd) is the more appropriate object for study.

I would like to acknowledge the support of the number theory community at Stanford, and I would
especially like to thank Professor Soundararajan for many fruitful discussions.

1 Statement of Main Results

In the results of this section we assume the generalized Riemann hypothesis (GRH) for the zeta function,
the family of quadratic twists of f and g and the symmetric square of f and g. See also the comments
immediately before and after conjectures 1 and 2, below. We use the notations (d,�) = 1 or D to denote
the sets of square-free integers or fundamental discriminants, respectively. Let F : R≥0 → R≥0 be a fixed
smooth function with compact support closely resembling the indicator function of the interval [0, 1], and

let F̃ (s) =
∫∞
0

F (x)xs−1 dx denote its Mellin transform. We formulate our results for the subset of D of
integers which are 4 times a 2 mod 4 squarefree integer, but could have just as well picked out the other
congruence classes which together constitute D. The subscripts on the symbols O and ≪ indicate that the
implied constants depend only on those parameters.

Theorem 1. Assume GRH, and let F (·) be a smooth approximation to the indicator function of [0, 1] with
compact support. For any normalized cuspidal Hecke newform f with trivial central character, odd level N
and even weight κ we have

∑

(d,2N�)=1
w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)
2F (8d/X) =

X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

3
log3 X + C2(f) log

2 X

)

+Oκ,N,ε

(
X(logX)1+ε

)
.

In the above

C2(f) =
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)
+

d
duZ

∗(u, 0)|u=0

Z∗(0, 0)
+

F̃ ′(1)

F̃ (1)
,

2



γ is Euler’s constant, and Z∗(u, v) is a holomorphic function defined by (2) and (3) for Re(u),Re(v) >
−1/4+ ε given by a sum of two absolutely convergent Euler products and is uniformly bounded in u, v where
it converges. Moreover, Z∗(0, 0) = 0 if and only if the root number w(f) = 1 and N is square, in which case
the moment vanishes identically.

By the celebrated theorem of Gross and Zagier [6], theorem 1 also gives the variance of canonical heights
of Heegner points on an elliptic curve associated with f . Note that the analogue of theorem 1 without the
derivative is the main result of Soundararajan and Young [21]. In this paper, we compute the main terms
in a slightly different manner than do Soundararajan and Young, and applying our technique to the second
moment without derivatives improves the error term there to ≪κ,ε X(logX)1/2+ε. Nonetheless, shifted
moments are still crucial to the theorem of Soundararajan and Young, whereas they are not necessary here.

The next theorem is a moment for two distinct modular forms f and g. Theorem 2 is particularly
interesting because the asymptotic formula for the analogous moment without derivatives is completely out
of reach by current techniques.

Theorem 2. Assume GRH, and let F (·) be a smooth approximation to the indicator function of [0, 1] with
compact support. For any two distinct normalized cuspidal Hecke newforms f and g with trivial central
characters, odd levels N1 and N2, and even weights κ1 and κ2 we have

∑

(d,2N1N2�)=1
w(f⊗χ8d)=−1
w(g⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X) = C(f, g)X log2 X +Of,g,ε

(
X(logX)1+ε

)
.

In the above

C(f, g) =
1

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1),

where Z∗(u, v) is a holomorphic function defined by (8) and (9) in Re(u),Re(v) ≥ −1/4 + ε, depending on
f and g, given by a sum of four absolutely convergent Euler products and uniformly bounded in u, v where
it converges. Moreover, Z∗(0, 0) = 0 if and only if either the root number w(f) = 1 and N1 is square or the
root number w(g) = 1 and N2 is square. In either of these two cases the moment vanishes identically.

Lastly, theorem 3 below is a first moment in the twist aspect with controlled dependence on both the
weight κ and level N . Again, the analogue of theorem 3 without the derivative is completely out of reach,
but would have interesting corollaries, see [13].

Theorem 3. Assume GRH, and let F (·) be a smooth approximation to the indicator function of [0, 1] with
compact support. For any A > 0 and any normalized cuspidal Hecke newform f with trivial central character,
odd level N and even weight κ we have

∑

(d,2N�)=1
w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)F (8d/X) = C3(f)X

(
log

Xκ
√
N

2π
+ 2

L′(1, sym2f)

L(1, sym2f)
+

Z∗′

(0)

Z∗(0)

)

+OA,ε

(
X(logXκN)1/4+ε +

X13/17(κN)4/17

(logXκN)A

)
,

In the above

C3(f) =
F̃ (1)

2π2
L(1, sym2f)Z∗(0)

and Z∗(u) is a holomorphic function defined by (13) and (17) as a sum of two absolutely convergent Euler
products for Re(u) > −1/4 + ε. Moreover, Z∗(0) = 0 if and only if the root number w(f) = 1 and N is a
square. If so, then the moment vanishes identically, and if not

Z∗(0) ≫ log logN

(logN)1/2
,

uniformly in κ.
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Thus our methods break convexity in the dependence on κ and N in the error term by an arbitrary
power of log. Using GRH once again, we obtain non-vanishing results. By applying the technique from [11]
theorem 5.17 we have that

L′(1, sym2f)

L(1, sym2f)
+

Z∗′

(0)

Z∗(0)
≪ log log κN.

These terms therefore may be subsumed into the error term in theorem 3. In the same vein, by theorem
5.19 of [11] one has the bound

L(1, sym2f) ≫ (log log κN)−1.

From these estimates and theorem 3 the following corollary is obtained.

Corollary 1. Assume GRH. If the root number of f is 1 then assume also that the level of f is not an integer
square. For any A > 0 there exists an odd squarefree d relatively prime to N with d ≪A κN/(logκN)A for
which

w(f ⊗ χ8d) = −1 and L′(1/2, f ⊗ χ8d) > 0.

If E/Q is an elliptic curve given by the Weierstauss equation y2 = f(x), we may define the twisted elliptic
curve Ed/Q by the equation dy2 = f(x). By the work of Gross and Zagier [6] and the modularity theorem
[1] we have the following corollary.

Corollary 2. Assume GRH. Let E/Q be an elliptic curve of odd conductor N . If the root number of E
is 1, then assume also that the conductor N is not an integer square. For every A > 0 there exist odd
squarefree d relatively prime to N with d ≪A N/(logN)A for which the curve E8d/Q has root number −1
and Mordell-Weil rank exactly 1.

One expects the convexity bound here to be a non-vanishing twist of size d ≪ε (κN)1+ε, see e.g. Hoffstein
and Kontorovich [9]. Our non-vanishing corollaries on GRH are, in fact, quite weak. As previously remarked
by many authors, the method of moments is an inefficient way to produce non-vanishing theorems. If one
is willing to assume GRH, the methods of Iwaniec, Luo and Sarnak [12], Özlük and Snyder [17], [18] or
Heath-Brown [8] adapted to small nonvanishing twists should yield better results. We postpone carrying out
this line of research to a future paper, and moreover, we believe that the theorems 1, 2 and 3 have interest
independent of the corollaries.

We do not use the full strength of GRH in theorems 1, 2 or 3. In fact, in the case of the first two all we
need is the following conjecture.

Conjecture 1. Let ε > 0, and t be a real number with |t| ≤ X and 1/2 ≤ σ ≤ 1/2 + 1/ logX. Then

∑

d∈D
(d,N)=1
|d|≤X

|L(σ + it, f ⊗ χd)|2 ≪κ,N,ε X(logX)1+ε.

Theorem 3 on the other hand is true if we assume than N is odd squarefree and conjecture 2 in place of
GRH.

Conjecture 2. Let ε > 0, and t be a real number with |t| ≤ X and 1/2 ≤ σ ≤ 1/2 + 1/ logX. Then

∑

d∈D
(d,N)=1
|d|≤X

|L(σ + it, f ⊗ χd)| ≪ε X(logXκN)1/4+ε.

The work of Soundararajan [20] shows that conjecture 1 follows from the GRH for the Riemann zeta
function, the family of quadratic twists of f and the symmetric square of f . By keeping track of the
dependence on κ and N in Soundararajan’s proof, one finds that the GRH for quadratic twists of f , the
Riemann zeta function, and the symmetric square of f implies conjecture 2. Unconditionally, all that is
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known towards conjectures 1 and 2 is a bound of the form ≪f,ε (X(1 + |t|))1+ε due to Heath-Brown’s
quadratic large sieve [7]. It seems that obtaining the results of this paper unconditionally should not be
completely out of reach, but nonetheless, doing so requires additional ideas.

Let us briefly describe the main difficulties in proving the above theorems, some previous attacks on these
difficulties, and the new input in our work which allows us to overcome them.

Take for example theorem 1. After applying the approximate functional equation and pulling the sum
over d inside one encounters a sum of the form

∑

d

χd(n1n2)F

(
d

U

)

for some cut-off function F , where χd is the quadratic character modulo d. One wants to apply Poisson
summation to this sum, but the length of the sum U ≈ X is comparable to the square root of the conductor√
n1n2, so the dual sum that one obtains is of the same shape as the original. This is the familiar “deadlock”

situation described, for example, in the paper of Munshi [14], or by multiple Dirichlet series, for example
in [4]. This deadlock has been broken in some ways before. Soundararajan and Young find that the second
moment of L(1/2, f ⊗ χd) is transformed by Poisson summation to the dual problem of finding an estimate
of the integral over shifts it1 and it2 of the same moment. They exploit this transformation using GRH to
obtain upper bounds on shifted moments to prove their theorem. Munshi observes in the paper [14] that
taking derivatives amplifies the main term of moments but does not affect the error term. He uses this fact
to unconditionally obtain an asymptotic formula for the first moment of higher derivatives Λ(ℓ)(1/2, f ⊗χd)
with ℓ ≥ 8 weighted by the number of representations of d as a sum of two squares (a situation with conductor
of similar length to ours). Munshi also solves a similar problem in [15] obtaining an asymptotic for the first
derivative in the special case that f corresponds to a CM elliptic curve.

In our paper, we observe that taking a derivative concentrates the mass of L′(1/2, f ⊗χd) in the terms of
the approximate functional equation with small n. When we truncate U ≤ X/(logX)100 we gain something
from Poisson summation, and treat the tail separately. The idea behind bounding the tail is that

L′(1/2, f ⊗ χd) ≈
∑

n≤|d|

λf (n)χd(n) log
|d|
n

n1/2
,

so that when |d|/(log |d|)100 ≤ n ≤ |d| we have that the 0 ≤ log |d|/n ≪ log log |d| are quite small. These
terms look essentially like the series for L(1/2, f ⊗ χd), the moments of which are smaller than moments of
the derivative. We are then able to use Soundararajan’s upper bounds assuming GRH [20] to bound the tail.
The idea is that the dual sum of a moment of L′(1/2, f ⊗ χd) looks like a moment of the un-differentiated
L(1/2, f ⊗ χd), which we exploit to obtain our results.

2 Approximate Functional Equation

We begin with a lemma which will be used in all three theorems.

Lemma 1 (Approximate functional equation). Let f be a λf (1) = 1 normalized cuspidal newform on Γ0(N)
with trivial central character and root number w(f) = iκη. Let Z > 0 be an arbitrary real number parameter.
Define the cut-off function

WZ(x) :=
1

2πi

∫

(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2πx

Z
√
N

)−u
1− u logZ

u2
du.

Then

∑

n≥1

λf (n)χd(n)

n1/2
WZ

(
n

|d|

)
−iκηχd(−N)

∑

n≥1

λf (n)χd(n)

n1/2
WZ−1

(
n

|d|

)
=

{
L′(1/2, f ⊗ χd) if w(f ⊗ χd) = −1

0 if w(f ⊗ χd) = 1.
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Proof. We follow Iwaniec and Kowalski [11] Section 5.2. Take

I(Z, f, s) :=
1

2πi

∫

(3)

Λ(s+ u, f ⊗ χd)Z
u 1− u logZ

u2
du

= Λ′(s, f ⊗ χd) +
1

2πi

∫

(−3)

Λ(s+ u, f ⊗ χd)Z
u 1− u logZ

u2
du,

so that by a change of variables and an application of the functional equation we have

I(Z, f, s) = Λ′(s, f ⊗ χd) + iκηχd(−N)I(Z−1, f, 1− s).

If the root number w(f ⊗ χd) = −1, we take s = 1/2 to find

L′(1/2, f ⊗ χd) =
∑

n≥1

λf (n)χd(n)

n1/2
WZ

(
n

|d|

)
+ χd(−N)

∑

n≥1

λf (n)χd(n)

n1/2
WZ−1

(
n

|d|

)
,

as in the statement of the lemma. On the other hand, if the root number of f⊗χd is 1, then Λ′(1/2, f⊗χd) = 0,
hence

I(Z, f, 1/2)− iκηχd(−N)I(Z−1, f, 1/2) = 0.

Thus the lemma holds for both cases of root number of f ⊗ χd.

In the proof of theorems 1 and 2 we will use Z = 1 so that the approximate functional equation takes a
particularly simple form. Let N be the level of f . In the proof of theorem 3 we take Z = N1/2 to compensate
for the asymmetry in estimates in level aspect introduced from averaging over root numbers. Note that the
only difference in the approximate functional equation for L′(1/2, f⊗χd) as opposed to that of L(1/2, f⊗χd)
is the sign of the root number, and the denominator of the integrand of W (x), which becomes u2 instead
of u. Therefore, many of the calculations necessary for our results are identical to those in the paper of
Soundararajan and Young [21].

3 Proof of Theorem 1

We prove theorem 1 by splitting the sums in the approximate functional equation (lemma 1), and using
proposition 1 below to compute the main terms.

Proof of Theorem 1. Let F be a smooth, nonnegative, compactly supported function on R>0, and recall
the definition of W (x) = W1(x) from the approximate functional equation (lemma 1). For a parameter
U ≤ X/(logX)100 define the truncated sum

AU (1/2, f ⊗ χ8d) := (1− iκηχd(−N))

∞∑

n=1

λf (n)χ8d(n)√
n

W
( n
U

)
,

and define the tail BU (1/2, f⊗χ8d) by setting L′(1/2, f⊗χ8d) = AU (1/2, f⊗χ8d)+BU(1/2, f⊗χ8d). Define
the sums

IU (f) :=
∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)AU (1/2, f ⊗ χ8d)F (8d/X)

IIU (f) :=
∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)
2F (8d/X)

IIIU (f) :=
∑

(d,2N�)=1

BU (1/2, f ⊗ χ8d)
2F (8d/X).
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so that we have the decomposition
∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)
2F (8d/X) = 2IU (f)− IIU (f) + IIIU (f).

Using the below proposition 1 we will be able to give asymptotic formulae for IU (f) and IIU (f), and us-
ing conjecture 1 we will obtain an upper bound on IIIU (f) smaller than the main terms. Applying this
decomposition in Soundararajan and Young’s work improves the error term there to O

(
X(logX)1/2+ε

)
.

For N ′ = 1 or N , and h(x, y, z) some smooth cut-off function let

S(N ′, h) :=
∑

(d,2N�)=1

∞∑

n1=1

∞∑

n2=1

λf (n1)λf (n2)√
n1n2

χ8d(N
′n1n2)h(d, n1, n2).

Proposition 1. Assume GRH or conjecture 1. Let X,U1, U2 large, U1U2 ≤ X2, and N odd. Let h(x, y, z)
be a smooth function on R3

>0, with compact support in x, having all partial derivatives extending continuously
to the boundary, satisfying

xiyjzkh(i,j,k)(x, y, z) ≪i,j,k

(
1 +

x

X

)−100
(
log

U1

y

)(
1 +

y

U1

)−100 (
log

U2

z

)(
1 +

z

U2

)−100

.

Set h1(y, z) =
∫∞
0 h(xX, y, z) dx. Then

S(N ′, h) =
4X

π2

∑

(n1n2,2)=1
N ′n1n2=�

λf (n1)λf (n2)√
n1n2

∏

p|Nn1n2

p

p+ 1
h1(n1, n2) +Oκ,N

(
(U1U2)

1/4X1/2(logX)11
)
.

This proposition and its proof are nearly identical to the main proposition from the paper of Soundarara-
jan and Young [21] (see proposition 3.1 and the remarks in §5 of that paper) except for minor details of
generalizing from full level to arbitrary level N , so we omit the proof. The main idea is to use Poisson
summation (see lemma 3) to evaluate the sum over discriminants d, and conjecture 1 to bound the dual sum
thereby obtained.

We now proceed to the computation of IU (f) and IIU (f). Let h(x, y, z) = F (8x/X)W (y/U)W (z/8x). In
the notation of proposition 1 we have by the approximate functional equation that

IU (f) = 2S(1, h)− 2iκηS(N, h).

For notational ease, set G(u) := Γ(κ/2+ u)Γ(κ/2)−1(
√
N/2π)u which, recall, appears in the function W (x).

Let F̃ (v) =
∫∞
0 F (x)xv−1 dx denote the Mellin transform and set

ZN ′(u, v) =
∑

(n1n2,2)=1
N ′n1n2=�

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

∏

p|Nn1n2

p

p+ 1
.

Applying proposition 1 and Mellin inversion, we find that

IU (f) =
X

π2

1

(2πi)2

∫

(1)

∫

(1)

G(u)G(v)

u2v2
UuXvF̃ (1 + v) (ZN (u, v)− iκηZ1(u, v)) du dv +Oκ,N (X). (1)

We compute for either N ′ = 1 or N that ZN ′(u, v) has the Euler product

ZN ′(u, v) =
∏

p∤2N

(
1 +

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

1

p1+2u

)−1(
1− λf (p)

p1/2+v
+

1

p1+2v

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1(
1 +

λf (p)

p1/2+v
+

1

p1+2v

)−1

− 1

])
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×
∏

p|N

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u

)−1(
1− λf (p)

p1/2+v

)−1

+ (−1)ordp(N
′) 1

2

(
1 +

λf (p)

p1/2+u

)−1(
1 +

λf (p)

p1/2+v

)−1
]
. (2)

Hence we have that

ZN ′(u, v) = ζ(1 + u+ v)L(1 + 2u, sym2f)L(1 + u+ v, sym2f)L(1 + 2v, sym2f)Z∗
N ′(u, v),

where Z∗
N (u, v) and Z∗

1 (u, v) are given by some absolutely convergent Euler products and are uniformly
bounded in the region Re(u),Re(v) ≥ −1/4 + ε in u, v, κ and N . Set Z(u, v) := ZN (u, v)− iκηZ1(u, v) and

Z∗(u, v) := Z∗
N(u, v)− iκηZ∗

1 (u, v). (3)

A careful inspection of (3) and (2), using positivity of (1 ± λf (p)p
−1/2)−1 shows that Z∗(0, 0) = 0 if and

only if ε(f) = 1 and N is a square.
We now compute by shifting contours of (1). Start the lines of integration at Re(u) = Re(v) = 1/10,

and begin the computation with shifting the v integration to the Re(v) = −1/5 line. We encounter poles
at v = 0 and v = −u. The remaining double integral on the lines Re(v) = −1/5 and Re(u) = 1/10 is
≪κ,N,ε X−1/10+ε, and the contribution from the simple pole at v = −u is ≪κ,N 1. The main term comes
from double pole at v = 0, giving

IU =
X

π2
F̃ (1)

1

2πi

∫

(1/10)

G(u)

u2
UuZ(u, 0)

(
logX +G′(0) +

F̃ ′(1)

F̃ (1)
+

d
dvZ(u, v)|v=0

Z(u, 0)

)
du+Oκ,N (X).

Now Z(u, 0) has a single pole and d
dvZ(u, v)|v=0 has a double pole. Combine these with u2 in the denominator,

and we encounter a triple and quadruple pole. The residue of the triple pole of

G(u)

u2
UuZ(u, 0)

at u = 0 is given by

L(1, sym2f)3Z∗(0, 0)

(
1

2
log2 U +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)
+

d
duZ

∗(u, 0)|u=0

Z∗(0, 0)

]
logU +Oκ,N (1)

)
.

The residue of the quadruple pole of
G(u)

u2
Uu d

dv
Z(u, v)|v=0

at u = 0 is given by

−L(1, sym2f)Z∗(0, 0)

(
1

6
log3 U +

1

2

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π

]
log2 U +Oκ,N (logU)

)
.

By shifting the line of integration to Re(u) = −1/5, we find that the the remaining integral is ≪κ,N,ε

X−1/5+ε, hence collecting the above terms coming from residues, we find that

IU (f) =
X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

2
logX(logU)2 − 1

6
log3 U +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)

+
d
duZ

∗(u, 0)|u=0

Z∗(0, 0)

]
logX logU +

1

2

F̃ ′(1)

F̃ (1)
(logU)2 +Oκ,N (logX)

)
.

The sum IIU (f) is computed similarly, but with a different choice of h(x, y, z). As above, the main term
comes from the intersection of the two polar divisors u = 0 and v = 0. One finds

IIU (f) =
X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

3
log3 U +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)

+
d
duZ

∗(u, 0)|u=0

Z∗(0, 0)

]
log2 U +Oκ,N (logU)

)
.
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We now give an upper bound for the sum IIIU (f) which, recall, involves BU . We have

BU (1/2, 8d) = (1− iκηχ8d(N))
1

2πi

∫

(2)

G(s)

s
L(1/2 + s, f ⊗ χ8d)

(
(8d)s − Us

s

)
ds.

Recall that L(1/2+s, f⊗χ8d) has root number −1 and vanishes at s = 0, therefore the integrand is actually
entire and we move the line of integration to the Re(s) = 1/ logX line. On this line

∣∣∣∣
(8d)s − Us

s

∣∣∣∣≪ log (8d/U) ,

uniformly in s, thus

BU (1/2, 8d) ≪ | log 8d/U |
∫ ∞

−∞

∣∣∣G
(

1
logX + it

)∣∣∣
∣∣∣ 1
logX + it

∣∣∣

∣∣∣∣L
(
1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣ dt.

Inserting this in IIIU (f) we have that

IIIU (f) ≪ (logX/U)2
∫ ∞

−∞

∫ ∞

−∞

∣∣∣G
(

1
logX + it1

)
G
(

1
logX + it2

)∣∣∣
∣∣∣
(

1
logX + it1

)(
1

logX + it2

)∣∣∣

×
∑

(d,2N�)=1
0<8d≤X

∣∣∣∣L
(
1

2
+

1

logX
+ it1, f ⊗ χ8d

)
L

(
1

2
+

1

logX
+ it2, f ⊗ χ8d

)∣∣∣∣ dt1 dt2.
(4)

Use Cauchy-Schwarz to split the sum over d above in two, so that it suffices to bound

∫ ∞

−∞

∣∣∣G
(

1
logX + it

)∣∣∣
∣∣∣
(

1
logX + it

)∣∣∣




∑

(d,2N�)=1
0<8d≤X

∣∣∣∣L
(
1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣
2




1/2

dt.

We have that

∫ ∞

−∞

∣∣∣G
(

1
logX + it

)∣∣∣
1

2

∣∣∣ 1
logX + it

∣∣∣
dt ≪ log logX,

and ∣∣∣∣G
(

1

logX
+ it

)∣∣∣∣
∑

(d,2N�)=1
0<8d≤X

∣∣∣∣L
(
1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣
2

≪f,ε X (logX)
1+ε

uniformly in t by conjecture 1 and the sharp cut-off in |G(1/ logX + it)| for large t. Bringing these estimates
together we find that

IIIU (f) ≪κ,N,ε X(logX)1+ε(logX/U)2.

Note that in contrast to the work of Soundararajan and Young, shifted moments are not necessary to prove
our theorem.

Finally, set U = X/(logX)100. Note that

(
logX − 2

3
logU

)
log2 U =

1

3
log3 X +Oε((logX)1+ε),

9



so that pulling together our evaluations of IU (f), IIU (f) and IIIU (f) we find

∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)
2F (8d/X) =

X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

3
log3 X +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
N

2π
+ γ

+3
L′(1, sym2f)

L(1, sym2f)
+

d
duZ

∗(u, 0)|u=0

Z∗(0, 0)
+

F̃ ′(1)

F̃ (1)

]
log2 X +Oκ,N,ε(X(logX)1+ε)

)
.

4 Proof of Theorem 2

We turn to the moment for two different forms f and g of levels N1 and N2 respectively. Set N = N1N2.
The proof of theorem 2 is a slight variation on the proof of theorem 1.

Proof of theorem 2. Assume GRH or conjecture 1, and that U ≤ X/(logX)100. We split the sum L′(1/2, f⊗
χ8d) = AU (1/2, f ⊗ χ8d) + BU (1/2, f ⊗ χ8d), where AU (1/2, f ⊗ χ8d) and BU (1/2, f ⊗ χ8d) are defined at
the outset of Section 3. Take the decomposition

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d) = L′(1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d) +AU (1/2, f ⊗ χ8d)L

′(1/2, g ⊗ χ8d)

−AU (1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d) + BU (1/2, f ⊗ χ8d)BU (1/2, g ⊗ χ8d).

(5)

Summing over (d, 2N�) = 1, we have the 4 sums which we denote by

IU (f, g) :=
∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d)F (8d/X),

IU (g, f) :=
∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X),

IIU (f, g) :=
∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d)F (8d/X),

and
IIIU (f, g) :=

∑

(d,2N�)=1

BU (1/2, f ⊗ χ8d)BU (1/2, g ⊗ χ8d)F (8d/X),

so that
∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X) = IU (f, g) + IU (g, f)− IIU (f, g) + IIIU (f, g).

We can compute precise asymptotic estimates for IU (f, g), IU (g, f) and IIU (f, g), meanwhile IIIU (f, g) can
be reduced by Cauchy-Schwarz to the sum IIIU (f) from the proof of theorem 1. Hence

IIIU (f, g) ≪κ,N,ε X(logX)1+ε.

We next state the proposition which allows us to compute the sums IU (f, g), IU (g, f) and IIU (f, g). Let
N ′ be one of the four choices N ′ = 1, N1, N2, or N . Define

Sf,g(N
′, h) :=

∑

(d,2N�)=1

∞∑

n1=1

∞∑

n2=1

λf (n1)λg(n2)√
n1n2

χ8d(N
′n1n2)h(d, n1, n2).

10



Proposition 2. Assume GRH or conjecture 1. Let X,U1, U2 large, U1U2 ≤ X2, and N = N1N2 odd. Let
h(x, y, z) be a smooth function on R3

>0, with compact support in x, having all partial derivatives extending
continuously to the boundary, satisfying

xiyjzkh(i,j,k)(x, y, z) ≪i,j,k

(
1 +

x

X

)−100
(
log

U1

y

)(
1 +

y

U1

)−100 (
log

U2

z

)(
1 +

z

U2

)−100

.

Set h1(y, z) =
∫∞
0 h(xX, y, z) dx. Then

Sf,g(N
′, h) =

4X

π2

∑

(n1n2,2)=1
N ′n1n2=�

λf (n1)λg(n2)√
n1n2

∏

p|Nn1n2

p

p+ 1
h1(n1, n2) +Of,g

(
(U1U2)

1/4X1/2(logX)11
)
.

Proposition 2 is a slight variation on proposition 1, so we omit the proof. The reader should take note of
the remarks following proposition 1, as they apply just as well to proposition 2.

Now we proceed to use this proposition to evaluate IU (f, g), IU (g, f) and IIU (f, g). Take for example the
case IU (f, g), for which we set h(d, n1, n2) = F (8d/X)W (n1/U)W (n2/8d). By the approximate functional
equation (lemma 1) with Z = 1 we have that

∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)AU (1/2, g ⊗ χd)F (8d/X)

= Sf,g(1, h)− iκ1ηfSf,g(N1, h)− iκ2ηgSf,g(N2, h) + iκ1+κ2ηfηgSf,g(N, h).

(6)

Likewise, IU (g, f) and IIU (f, g) are evaluated the same way with h(d, n1, n2) = F (8d/X)W (n1/8d)W (n2/U)
and h(d, n1, n2) = F (8d/X)W (n1/U)W (n2/U), respectively.

Next, we evaluate the main terms of the various Sf,g in (6) by contour integration. We set Gf (u) :=
Γ(κ1/2 + u)Γ(κ1/2)

−1(
√
N1/2π)

u to be the Mellin transform of W1(x), and similarly for Gg. For N ′ =
1, N1, N2 or N define the Dirichlet series ZN ′(u, v) by

ZN ′(u, v) :=
∑

(n1n2,2)=1
N ′n1n2=�

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

∏

p|Nn1n2

p

p+ 1
.

One has therefore that

Sf,g(N
′, h) =

X

2π2

1

(2πi)2

∫

(1)

∫

(1)

Gg(u)Gf (v)

u2v2
UuXvF̃ (1 + v)ZN ′(u, v) du dv +Oκ,N(X). (7)

Let χ0,Ni be the trivial Dirichlet character mod Ni for i = 1, 2, that is to say,

χ0,Ni(p) =

{
1 if p ∤ Ni

0 if p | Ni.

Then the Euler product for ZN ′(u, v) is given by

ZN ′(u, v) =
∏

p∤2N

(
1 +

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

1

p1+2u

)−1(
1− λg(p)

p1/2+v
+

1

p1+2v

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1(
1 +

λg(p)

p1/2+v
+

1

p1+2v

)−1

− 1

])

×
∏

p|N

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

χ0,N1
(p)

p1+2u

)−1(
1− λg(p)

p1/2+v
+

χ0,N2
(p)

p1+2v

)−1

+(−1)ordp(N
′) 1

2

(
1 +

λf (p)

p1/2+u
+

χ0,N1
(p)

p1+2u

)−1(
1 +

λg(p)

p1/2+v
+

χ0,N2
(p)

p1+2v

)−1
]
.

(8)
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If αf (p) and βf (p) are the local roots of f with αf (p) + βf (p) = λf (p), then we define for Re(s) > 1

L(s, f ⊗ g) =
∏

p

(
1− αf (p)αg(p)

ps

)−1(
1− αf (p)βg(p)

ps

)−1(
1− βf (p)αg(p)

ps

)−1(
1− βf (p)βg(p)

ps

)−1

,

and for Re(s) ≤ 1 by analytic continuation. Then in any of the four cases N ′ = 1, N1, N2, or N, we have
that

ZN ′(u, v) = L(1 + u+ v, f ⊗ g)L(1 + 2u, sym2f)L(1 + 2v, sym2g)Z∗
N ′(u, v),

where Z∗
N ′(u, v) is given by some absolutely convergent Euler product which is uniformly bounded in the

region Re(u),Re(v) ≥ −1/4 + ε. Set Z(u, v) = Z1(u, v)− iκ1ηfZN1
(u, v)− iκ2ηgZN2

(u, v) + ZN (u, v), and

Z∗(u, v) = Z∗
1 (u, v)− iκ1ηfZ

∗
N1

(u, v)− iκ2ηgZ
∗
N2

(u, v) + iκ1+κ2ηfηgZ
∗
N (u, v). (9)

A careful inspection of (9) and (8) using positivity of (1±λf (p)p
−1/2)−1 shows that Z∗(0, 0) = 0 if and only

if either root number w(f) or w(g) = 1, and the corresponding N1 or N2 is a square.
With this information about ZN ′(u, v), one shifts contours of (7) as in the proof of theorem 1 to compute

the various Sf,g. We find that

IU (f, g) =
∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d)F (8d/X)

=
X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) logX logU +Of,g(X logX),

and similarly for IU (g, f). We also compute

IIU (f, g) =
∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)AU (1/2, g ⊗ χ8d)

=
X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) log2 U +Of,g(X logU).

Finally, setting U = X/(logX)100 we obtain

∑

(d,2N�)=1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X)

=
X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) log2 X +Of,g,ε

(
X(logX)1+ε

)
.

5 Proof of Theorem 3

In this section, we apply the techniques of the previous two sections to the first moment of L′(1/2, f ⊗ χ8d)
over twists, keeping careful track of the dependence on both the weight κ and the level N .

Proof of Theorem 3. We prove the theorem by splitting the sum into a main part and tail, and use the
asymmetric approximate functional equation (lemma 1) with Z = N1/2. Assume GRH or conjecture 2, and

that both κN ≤ X and U ≤ X/(logXκN)
17

4
(A+6) for A > 0 fixed. Define the main part

AU (1/2, f ⊗ χ8d) =
∑

n≥1

λf (n)χ8d(n)

n1/2
WZ

( n
U

)
− iκηχ8d(N)

∑

n≥1

λf (n)χ8d(n)

n1/2
WZ−1

( n
U

)
,

12



and the tail BU (1/2, f⊗χ8d) = L′(1/2, f⊗χ8d)−AU (1/2, f⊗χ8d) as in Section 3. Following Soundararajan
and Young again, we give the analogue of propositions 1 and 2 for the first moment. Let N ′ = 1 or N , and
for h(x, y) a smooth function on R2

>0 set

T (N ′, h) :=
∑

(d,2N�)=1

∞∑

n=1

λf (n)√
n

χ8d(N
′n)h(d, n).

We will use the following proposition with z equal to either Z = N1/2 when N ′ = 1, or Z−1 = N−1/2 when
N ′ = N .

Proposition 3. Assume GRH or conjecture 2. Let z > 0 be a parameter (c.f. the asymmetric approximate
functional equation), and let X and U be large. Suppose that N is odd, and that Uκ

√
Nz ≤ X2. Let h(x, y)

be a smooth function on R2
>0 which is compactly supported in x, having all partial derivatives extending

continuously to the boundary, and satisfying the partial derivative bounds

xiyjh(i,j)(x, y) ≪i,j

(
1 +

x

X

)−100
(
log

UκN

y

)(
1 +

y

Uκ
√
Nz

)−100

.

Then, setting h1(y) :=
∫∞
0 h(xX, y) dx, we have

T (1, h) =
4X

π2

∑

(n,2)=1
n=�

λf (n)√
n

∏

p|Nn

p

p+ 1
h1(n) +O

(
X9/17(Uκ

√
Nz)4/17(logXκN)6

)
,

T (N, h) =
4X

π2

∑

(n,2)=1
Nn=�

λf (n)√
n

∏

p|Nn

p

p+ 1
h1(n) +O

(
X1/2(UκN3/2z)1/4(logXκN)6

)
.

Proposition 3 is sufficiently different from proposition 3.1 of Soundararajan and Young that we give a
detailed proof in Section 6.

Let hL(x, y) := F (8x/X)WN1/2(y/U) and hS(x, y) := F (8x/X)WN−1/2(y/U) for “long” and “short”,
respectively. Recall for fundamental discriminants d > 0 that χd(−N) = χd(N), so that we have in the
notation of proposition 3 that the main part of the moment is

∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)F (8d/X) = T (1, hL)− iκηT (N, hS).

Recalling that Uκ
√
Nz ≤ X2 and taking z = N1/2 or N−1/2 in proposition 3 we have that

∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)F (8d/X) =
X

2π2
F̃ (1)

∑

(n,2)=1
n=�

λf (n)

n1/2

∏

p|Nn

p

p+ 1
WN1/2

( n
U

)

+
X

2π2
F̃ (1)

∑

(n,2)=1
Nn=�

λf (n)

n1/2

∏

p|Nn

p

p+ 1
WN−1/2

( n
U

)
+OA

(
X13/17(κN)4/17

(logXκN)A

)
.

(10)

For N ′ = 1 or N define the Dirichlet series

ZN ′(u) :=
∑

(n,2)=1
N ′n=�

λf (n)

n1/2+u

∏

p|Nn

p

p+ 1
.
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We compute from the definition of WZ(x) that

X

2π
F̃ (1)

∑

(n,2)=1
n=�

λf (n)√
n

∏

p|Nn

p

p+ 1
WN1/2

( n
U

)
=

X

2π2
F̃ (1)

1

2πi

∫

(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

UN

)−u

Z1(u)
1− 1

2u logN

u2
du,

(11)
and in the same way that

X

2π
F̃ (1)

∑

(n,2)=1
Nn=�

λf (n)√
n

∏

p|Nn

p

p+ 1
WN−1/2

( n
U

)
=

X

2π2
F̃ (1)

1

2πi

∫

(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

U

)−u

ZN(u)
1 + 1

2u logN

u2
du.

(12)
The Dirichlet series ZN ′(u) also has an Euler product

ZN ′(u) =
∏

p∤2N

1 +
p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

1

p1+2u

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1

− 1

]

×
∏

p|N

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u

)−1

+ (−1)ordp(N
′) 1

2

(
1 +

λf (p)

p1/2+u

)−1
]
.

(13)

We have then that
ZN ′(u) = L(1 + 2u, sym2f)Z∗

N ′(u),

where Z∗
N ′(u) is given by some absolutely convergent Euler product in the region Re(u) > −1/4. Moreover,

inspecting the above Euler product, we see that

1

log logN
≪ Z∗

1 (0) ≪ log logN

and
N−(1/2+ε) ≪ε Z

∗
N(0) ≪ log logN,

uniformly in κ.
With this information about ZN ′(u), we shift the contours in (11) and (12) to Re(u) = −4/17, and pick

up the residue from the double pole at u = 0. The double pole in (11) or (12) contributes

X

2π2
F̃ (1)L(1, sym2f)Z∗

N ′(0)

(
log

Uκ
√
N

2π
+

Z ′
N ′(0)

ZN ′(0)
+O(κ−1)

)
.

We must also bound the integrals

X

2π2
F̃ (1)

1

2πi

∫

(−4/17)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

UN

)−u

L(1 + 2u, sym2f)Z∗
1 (u)

1− 1
2u logN

u2
du (14)

and
X

2π2
F̃ (1)

1

2πi

∫

(−4/17)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

U

)−u

L(1 + 2u, sym2f)Z∗
N(u)

1 + 1
2u logN

u2
du. (15)

These two are treated a little differently. Let us begin with the simpler case of (14). We have the convexity
bound

L(9/17 + it, sym2f) ≪ (κ2N2(1 + |t|)4)4/17(log κN)2. (16)

by estimating with the approximate functional equation of the symmetric square L-function, and the Deligne
bound [3] for its coefficients (see for example, equation (5.22) of [11]). Hence, the integral (14) is

≪A X13/17(κN)4/17/(logXκN)A.

14



The integral (15) is a little more delicate, and we need to use the decay of Z∗
N(u) with respect to N . When

Re(u) > −1/4, we have that

Z∗
N (u) =

∏

p∤N

(
1 +O(p−(2+4u))

) ∏

p|N
ordp(N) odd

λf (p)

p1/2+u

(
1 +O(p−(1+2u))

) ∏

p|N
ordp(N) even

(
1 +O(p−(1+2u))

)
,

so that

Z∗
N(u) ≪




∏

ordp(N) odd

p




−1/2−Re(u)

(logN)2.

Assuming e.g. that N is squarefree, this shows that for fixed Re(u) ZN(u) decays as a function of N .
If one is willing to assume Lindelöf, it is unnecessary to use the decay of Z∗

N (u) with respect to N , and
hence the restriction to squarefree N may be omitted. Using this along with the convexity bound (16) for
L(1 + 2u, sym2f), we find that (15) is

≪A X13/17κ4/17N7/34/(logXκN)A ≪A X13/17(κN)4/17/(logXκN)A,

so that these integrals are subsumed into the error term in the theorem.
Now set

Z∗(u) = Z∗
1 (u)− iκηZ∗

N (u) (17)

so that we have from (10) that

∑

(d,2N�)=1

AU (1/2, f ⊗ χ8d)F (8d/X) =
X

2π2
F̃ (1)L(1, sym2f)Z∗(0)

(
log

Uκ
√
N

2π
+ 2

L′(1, sym2f)

L(1, sym2f)
+

Z∗′(0)

Z∗(0)

)

+OA

(
X13/17(κN)4/17

(logXκN)A

)
.

By carefully inspecting (13) and using that

∏

p|N

(
1 +

2√
p

)
≪ (logN)1/2

log logN

we find that Z∗(0) = 0 if and only if iκη := w(f) = 1 and N is a square and that if Z∗(0) 6= 0, it is
≫ log logN/(logN)1/2, uniformly in κ.

Now consider the tail ∑

(d,2N�)=1

BU (1/2, f ⊗ χ8d)F (8d/X).

Recall the notation G(u) = Γ(κ/2 + u)Γ(κ/2)−1(
√
N/2π)u from the definition of WZ(x), and that we have

set Z = N1/2. We have in similar fashion to the two preceding theorems that

BU (1/2, 8d) =
1

2πi

∫

(2)

G(s)

s
L(1/2+s, f⊗χ8d)

(8d)s − Us

s

(
Zs(1− s logZ)− iκηχ8d(N)Z−s(1 + s logZ)

)
ds.

The integrand is entire, and we may shift the contour to the line Re(s) = 1/ logXκN . On this line we have

(8d)s − Us

s

(
Zs(1− s logZ)− iκηχ8d(N)Z−s(1 + s logZ)

)
≪ logX/U

15



so that

∑

(d,2N�)=1

BU (1/2, 8d)F (8d/X) ≪ |logX/U |
∫ ∞

−∞

∣∣∣G
(

1
logXκN + it

)∣∣∣
∣∣∣ 1
logXκN + it

∣∣∣

×
∑

(d,2N�)=1
0<8d≤X

∣∣∣∣L
(
1

2
+

1

logXκN
+ it, f ⊗ χ8d

)∣∣∣∣ dt.

Set U = X/(logXκN)
17

4
(A+6). Using conjecture 2 when t is small and the cut-off in |G(1/ logXκN)+ it|1/2

when t is large we have

|G(1/ logXκN) + it|1/2
∑

(d,2N�)=1
0<8d≤X

∣∣∣∣L
(
1

2
+

1

logXκN
+ it, f ⊗ χ8d

)∣∣∣∣ dt ≪ X (logXκN)
1/4+ε

.

We also have the estimate

∫ ∞

−∞

∣∣∣G
(

1
logXκN + it

)∣∣∣
1

2

∣∣∣ 1
logXκN + it

∣∣∣
dt ≪ log logXκN,

so that pulling these estimates together we obtain

∑

(d,2N�)=1

BU (1/2, f ⊗ χ8d)F (8d/X) ≪ε,A X (logXκN)1/4+ε

hence the theorem.

6 Proof of Proposition 3

We treat the two cases N ′ = 1 and N ′ = N somewhat differently. In the case N ′ = 1, the dependence on N
in T (1, h) appears only in the relatively prime condition, which we may we treat solely by Möbuis inversion.
In the case of T (N, h), the dependence on N is carried through the average over quadratic characters, but
there is one less inversion to preform, making the calculation a bit simpler.

Proof. The condition (d, 2N�) = 1 has been introduced to the sum over twists to restrict 8d to lie in a large
subsequence of fundamental discriminants. However, this condition is awkward to work with and our first
task will be to remove it.

6.1 Preliminary simplifications, N ′
= 1 case

We start with the N ′ = 1 case. We use Möbius inversion to remove both the squarefree and relatively prime
to N conditions from the sum over d,

T (1, h) =
∑

(a1,2N)=1

µ(a1)
∑

a2|N
µ(a2)

∑

(d,2)=1

∑

(n,a)=1

λf (n)

n1/2
χ8da2

(n)h(da21a2, n).

Split the sums over a1 and a2 at Y1 and Y2 in to tail and main term. This splitting results in 4 truncated
sums:

T (1, h) = T1(1, h) + T21(1, h) + T22(1, h) + T23(1, h)

16



where we have defined

T1(1, h) :=
∑

(a1,2N)=1
a1≤Y1

µ(a1)
∑

a2|N
a2≤Y2

µ(a2)
∑

(d,2)=1

∑

(n,a1)=1

λf (n)

n1/2
χ8da2

(n)h(da21a2, n),

T21(1, h) :=
∑

(a1,2N)=1
a1≤Y1

µ(a1)
∑

a2|N
a2>Y2

µ(a2)
∑

(d,2)=1

∑

(n,a1)=1

λf (n)

n1/2
χ8da2

(n)h(da21a2, n),

T22(1, h) :=
∑

(a1,2N)=1
a1>Y1

µ(a1)
∑

a2|N
a2≤Y2

µ(a2)
∑

(d,2)=1

∑

(n,a1)=1

λf (n)

n1/2
χ8da2

(n)h(da21a2, n),

T23(1, h) :=
∑

(a1,2N)=1
a1>Y1

µ(a1)
∑

a2|N
a2>Y2

µ(a2)
∑

(d,2)=1

∑

(n,a1)=1

λf (n)

n1/2
χ8da2

(n)h(da21a2, n).

The main term will come from the most difficult sum T1(1, h). First, however, we estimate the other cases
T21(1, h), T22(1, h) and T23(1, h).

Lemma 2. Assume GRH or conjecture 2. We have the bounds

T21(1, h) ≪
X

Y2
(logXκN)5,

T22(1, h) ≪
X

Y1
(logXκN)5,

T23(1, h) ≪
X

Y1Y2
(logXκN)5.

Proof. Consider the case T21(1, h) and write d = b21b2ℓ with (ℓ, 2N�) = 1, (b1, N) = 1 and b2 | N . Group
the variables as c1 = a1b1 and c2 = a2b2 to obtain

T21(1, h) =
∑

(c1,2N)=1

∑

c2|N

∑

a1|c1
a1≤Y1

µ(a1)
∑

a2|c2
a2>Y2

µ(a2)
∑

(ℓ,2N�)=1

∑

(n,c1)=1

λf (n)

n1/2
χ8ℓc2(n)h(ℓc

2
1c2, n).

Let fc2 denote the newform given by the quadratic twist f ⊗ χc2 , which is of some level dividing N2. Set
ȟ(x, u) :=

∫∞
0 h(x, y)yu−1 dy, which by repeated partial integration can be estimated by

ȟ(x, u) ≪
(
1 +

x

X

)−100 (Uκ
√
Nz)Re(u)

|u|2(1 + |u|)10 .

We then have by Mellin inversion that T21(1, h) is

=
∑

(c1,2N)=1

∑

c2|N

∑

a1|c1
a1≤Y1

µ(a1)
∑

a2|c2
a2>Y2

µ(a2)
1

2πi

∫

(1/2+ε)

∑

(ℓ,2N�)=1

ȟ(ℓc21c2, u)Lc1(1/2 + u, fc2 ⊗ χ8ℓ) du,

where Lc1(1/2 + u, fc2 ⊗ χ8ℓ) is the function formed from the same Euler product as L(1/2 + u, fc2 ⊗ χ8ℓ),
but with those factors at primes dividing c1 omitted. We have that

|Lc1(1/2 + u, fc2 ⊗ χ8ℓ)| ≤ d(c1)|L(1/2 + u, fc2 ⊗ χ8ℓ)|,
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so that shifting the contour to the line Re(u) = 1/ logXκN, we have that T21(1, h) is

≪ (logXκN)2
∑

(c1,2N)=1

d(c1)
∑

c2|N

∑

a1|c1
a1≤Y1

∑

a2|c2
a2>Y2

∫ ∞

−∞

∑

(ℓ,2N�)=1

(
1 +

ℓc21c2
X

)−100

×|L(1/2 + 1/ logXκN + it, fc2 ⊗ χ8ℓ)|
(1 + |t|)10 dt.

Using conjecture 2 (i.e. GRH) we find that

T21(1, h) ≪ X(logXκN)3
∑

(c1,2N)=1

d(c1)

c21

∑

c2|N

1

c2

∑

a1|c1
a1≤Y1

∑

a2|c2
a2>Y2

≪ X(logXκN)5.

The cases T22(1, h) and T23(1, h) are treated similarly.

6.2 Averaging quadratic characters

We now turn to T1(1, h). We quote two very useful lemmas from [19]. The first is lemma 2.6 of [19], which
is the trace formula for quadratic characters.

Lemma 3 (Poisson Summation). Let F be a smooth function with compact support on the positive real
numbers, and suppose that n is an odd integer. Then

∑

(d,2)=1

(
d

n

)
F

(
d

Z

)
=

Z

2n

(
2

n

)∑

k∈Z

(−1)kGk(n)F̂

(
kZ

2n

)
,

where

Gk(n) =

(
1− i

2
+

(−1

n

)
1 + i

2

) ∑

a (mod n)

(a
n

)
e

(
ak

n

)
,

and

F̂ (y) =

∫ ∞

−∞
(cos(2πxy) + sin(2πxy))F (x) dx

is a Fourier-type transform of F .

The Gauss-type sum Gk(n) has the following explicit evaluation from lemma 2.3 of [19]:

Lemma 4. If m and n are relatively prime odd integers, then Gk(mn) = Gk(m)Gk(n), and if pα is the
largest power of p dividing k (setting α = ∞ if k = 0), then

Gk(p
β) =





0 if β ≤ α is odd

φ(pβ) if β ≤ α is even

−pα if β = α+ 1 is even(
kp−α

p

)
pα

√
p if β = α+ 1 is odd

0 if β ≥ α+ 2.

Applying these lemmas to T1(1, h) we find that

T1(1, h) =
X

2

∑

(a1,2N)=1
a1≤Y1

µ(a1)

a21

∑

a2|N
a2≤Y2

µ(a2)

a2

∑

k∈Z

(−1)k
∑

(n,2a1)=1

λf (n)

n1/2
χa2

(n)
Gk(n)

n

×
∫ ∞

0

(sin+ cos)

(
2πkxX

2na21a2

)
h(xX, n) dx.

(18)

18



6.3 The main term

The main term of T1(1, h) is from the k = 0 term of (18), which we extract and analyze. Call the k = 0 term
T10(1, h), and observe from lemma 4 that G0(n) 6= 0 if and only if n is a square, in which case G0(n) = φ(n).
Setting h1(n) =

∫∞
0 h(xX, n) dx, we find

T10(1, h) =
X

2

∑

(a1,2N)=1
a1≤Y1

µ(a1)

a21

∑

a2|N
a2≤Y2

µ(a2)

a2

∑

(n,2a1a2)=1
n=�

λf (n)

n1/2

∏

p|n

(
1− 1

p

)
h1(n)

=
2X

3ζ(2)

∑

(n,2)=1
n=�

λf (n)

n1/2

∏

p|nN

p

p+ 1
h1(n) +O


X

(
1

Y1
+

1

Y2

) ∑

(n,2)=1
n=�

d(n)

n1/2
|h1(n)|


 ,

so that using the bounds on h in the statement of the proposition we have

T10(1, h) =
4X

π2

∑

(n,2)=1
n=�

λf (n)

n1/2

∏

p|nN

p

p+ 1
h1(n) +O

(
X

(
1

Y1
+

1

Y2

)
(logXκN)4

)
. (19)

6.4 Bounding the dual sum

We now proceed to the k 6= 0 terms of T1(1, h), which we call T3(1, h). Our first task is to express the
integral in (18) in terms of Mellin inverses.

Lemma 5. Let k 6= 0, X > 1 and let h(x, y) be as in the statement of the theorem. Define the transform

h̃(s, u) :=

∫ ∞

0

∫ ∞

0

h(x, y)xsyu
ds

s

du

u
.

Then we have

∫ ∞

0

(sin+ cos)

(
2πkxX

2na21a2

)
h(xX, n) dx =

1

X

1

(2πi)2

∫

(ε)

∫

(ε)

h̃(1− s, u)
1

nu

(
na21a2
π|k|

)s

×Γ(s) (cos+ sgn(k) sin)
(πs
2

)
ds du.

(20)

Moreover one has the bounds

h̃(s, u) ≪ (Uκ
√
N)Re(u)XRe(s)

|u|2(1 + |u|)98(1 + |s|)98 .

Proof. Use the formulae for the Mellin transforms of sin and cos and Mellin inversion. See Soundararajan
and Young [21], Section 3.3.

Inspecting lemma 4, we find that for odd n, Gk(n) = G4k(n), so that inserting the formula of lemma 5
in (18), one finds that

T3(1, h) =
1

2

∑

(a1,2N)=1
a1≤Y1

µ(a1)

a21

∑

a2|N
a2≤Y2

µ(a2)

a2

∑

k∈Z

(−1)k
∑

(n,2a1)=1

λf (n)

n1/2
χa2

(n)
G4k(n)

n

1

(2πi)2

∫

(ε)

∫

(ε)

h̃(1− s, u)

× 1

nu

(
na21a2
π|k|

)s

Γ(s) (cos+ sgn(k) sin)
(πs

2

)
ds du.
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Recall that we denote the set of fundamental discriminants by D. Now set 4k = k1k
2
2k3, where k1k3 ∈ D,

and (k1, N) = 1 but k3 | N . Define the function

Z1(α, γ, q1, q2, k1k3) :=

∞∑

k2=1

∑

(n,2q1)=1

λf (n)χq2 (n)

nα|k2|2γ
Gk1k2

2
k3
(n)

n
, (21)

and set
H(s) := Γ(s) (cos+ sgn(k) sin)

(πs
2

) (
1− 21−2s

)−1 ≪ |s|Re(s)−1/2. (22)

Splitting up 4k in this manner and after a change of variables one finds that

T3(1, h) =
1

2

∑

(a1,2N)=1
a1≤Y1

µ(a1)

a21

∑

a2|N
a2≤Y2

µ(a2)

a2

∑

k3∈D
k3|N

∑

k1∈D
(k1,N)=1

(−1)k1k3
1

(2πi)2

∫

(1/2+ε)

∫

(ε)

h̃(1− s, u+ s)

×
(

a21a2
π|k1k3|

)s

H(s)Z1(1/2 + u, s, a1, a2, k1k3) du ds.

(23)

To estimate T3(1, h) by contour shifting, we must analyze the Dirichlet series Z1.

Lemma 6. Let k1k3 be a fundamental discriminant, where k3 | N but (k1, N) = 1, and q1, q2 positive integers
where q2 | N and (q1, 2N) = 1. Denote by fk3q2 the newform defined by the quadratic twist f ⊗ χk3q2 , which
is of some level dividing N3. For the Dirichlet series defined by (21) one has

Z1(α, γ, q1, q2, k1k3) =
Lq1q2(1/2 + α, fk3q2 ⊗ χk1

)

Lq1q2(1 + 2α, sym2f)
Z∗
1 (α, γ, q1, q2, k1k3),

where subscripts denote the omission of Euler factors, and Z∗
1 is given by some Euler product absolutely

convergent in Re(α) ≥ 0 and Re(γ) ≥ 1/2 + ε and uniformly bounded in q1, q2, k1, k3, κ and N .

Proof. By lemma 4, the terms of the Dirichlet series defining Z are joint multiplicative in n and k2, so that
we may decompose Z as an Euler product. The generic Euler factor is given by

∑

k2,n≥0

λf (p
n)χq2(p)

n

pnα+2γk2

Gk1k3p2k2 (p
n)

pn
,

and we must check the several cases where p divides the various parameters N, q1, q2, k1, k3, or not. First,
we consider the generic case where p ∤ 2Nq1q2k1k3. By lemma 4, we find that the terms k2 ≥ 1 contribute
≪ p−(1+2ε), and the k2 = 0 terms are exactly

1 +
λf (p)χk3q2(p)χk1

(p)

p1/2+α
,

so that these Euler factors match those in the statement of the lemma. Next, consider the cases p | k1,
p ∤ 2Nq1q2k3, or p | k3, p ∤ 2q1q2k1. In either of these two cases we check that such an Euler factor is

1− λf (p
2)

p1+2α
+O(p−(1+2ε)),

which again matches the Euler factor in the lemma. If p | N , but p ∤ 2q1q2k1k3, then this Euler factor is

1 +
λf (p)χk3q2(p)χk1

(p)

p1/2+α
+O(p−(1+2ε)).

Observing that λf (p
2) = λf (p)

2 for primes dividing the level, the also matches the Euler factor from the
statement of the lemma. Finally, if p | q1q2, then all terms n ≥ 1 vanish, and the contribution of such an
Euler factor is 1 +O(p−(1+2ε)).
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We now return to (23), and split the sum over k1 at Uκ
√
NzY 2

1 Y
1/2
2 /X . For the small k1 terms, we

shift the lines of integration to Re(u) = −1/2 + 1/ logXκN and Re(s) = 3/4, and for the large k1 terms to
Re(u) = −1/2 + 1/ logXκN and Re(s) = 5/4. Recall that H(s) ≪ |s|Re(s)−1/2, and observe

|La1a2
(1/2 + α, fk3q2 ⊗ χk1

)| ≤ d(a1)d(a2)|L(1/2 + α, fk3q2 ⊗ χk1
)|.

Applying the result of Goldfeld, Hoffstein and Lieman [5], the small k1 terms are

≪ (logXκN)3(Uκ
√
Nz)1/4X1/4

∑

(a1,2N)=1
a1≤Y1

d(a1)√
a1

∑

a2|N
a2≤Y2

d(a2)

a
1/4
2

∑

k3∈D
k3|N

1

|k3|3/4
∫

(3/4)

∫

(−1/2+1/ logXκN)

×
∑

|k1|≤Uκ
√
NzY 2

1
Y

1/2
2

/X
k1∈D

(k1,N)=1

|L(1 + u, fk3a2
⊗ χk1

)|
|k1|3/4

ds du

(1 + |s|)98(1 + |u|)98 .

Using conjecture 2, i.e. GRH, we find that this is ≪ (Uκ
√
Nz)1/2Y1Y

1/8
2 (logXκN)6. Now consider the large

k1 terms. Similarly, their contribution is

≪ (logXκN)3
(Uκ

√
Nz)3/4

X1/4

∑

(a1,2N)=1
a1≤Y1

d(a1)
√
a1
∑

a2|N
a2≤Y2

d(a2)a
1/4
2

∑

k3∈D
k3|N

1

|k3|5/4
∫

(5/4)

∫

(−1/2+1/ logXκN)

×
∑

|k1|>Uκ
√
NzY 2

1
Y

1/2
2

/X
k1∈D

(k1,N)=1

|L(1 + u, fk3a2
⊗ χk1

)|
|k1|5/4

ds du

(1 + |s|)98(1 + |u|)98 .

Again, by conjecture 2, this is ≪ (Uκ
√
Nz)1/2Y1Y

1/8
2 (logXκN)6. Taking

Y1 = Y2 =
X8/17

(Uκ
√
Nz)4/17

,

we find that
T3(1, h) ≪ X9/17(Uκ

√
Nz)4/17 (logXκN)

6
,

and drawing all error terms together we obtain the proposition for N ′ = 1.

6.5 The N ′
= N case

The proof in the T (N, h) case follows the same outline as in the T (1, h) case, above. We need only Möbius
invert the squarefree condition and not the relatively prime to N condition, but we must keep careful track
of the dependence on N in the analogue of lemma 6. We sketch the argument, omitting those details which
are similar to those of T (1, h).

We begin by using Möbius inversion to remove the squarefree condition and split the resulting sum at Y .

T (N, h) =




∑

a≤Y
(a,2N)=1

+
∑

a>Y
(a,2N)=1


µ(a)

∑

(d,2N)=1

∑

(n,a)=1

λf (n)√
n

χ8d(Nn)h(da2, n)

=: T1(N, h) + T2(N, h).

By a slight modification of lemma 2, we find that

T2(N, h) ≪ X

Y
(logXκN)5,

21



and so we concentrate on T1(N, h). Applying Poisson summation (lemma 3), we have that

T1(N, h) =
X

2

∑

a≤Y
(a,2N)=1

µ(a)

a2

∑

k∈Z

(−1)k
∑

(n,2a)=1

λf (n)√
n

Gk(Nn)

Nn

∫ ∞

0

(cos+ sin)

(
2πkxX

2Nna2

)
h(xX, n) dx.

Now we pick out from T1(N
′, h) the main term, which is when k = 0, and call it T10(N, h). By pulling the

sum over a inside and computing as in Subsection 6.3, we find that

T10(N, h) =
4X

π2

∑

(n,2)=1
Nn=�

λf (n)√
n

∏

p|Nn

p

p+ 1
h1(n) +O

(
X

Y
(logXκN)

3

)
.

Now we turn to the k 6= 0 terms of T1(N, h) and call them T3(N, h). Define

ZN (α, γ, q, k1k3) :=
∞∑

k2=1

∑

(n,2q)=1

λf (n)

nα

(
N

|k2|2
)γ Gk1k2

2
k3
(Nn)

Nn
. (24)

Recall the definition of H(s) from (22) and apply the inversion formula (20) for the weight function, to find
the analogue of formula (23):

T3(N, h) =
1

2

∑

a≤Y
(a,2N)=1

µ(a)

a2

∑

k3∈D
k3|N

∑

k1∈D
(k1,N)=1

(−1)k1k3
1

(2πi)2

∫

(ε)

∫

(1/2+ε)

h̃(1− s, u+ s)

(
a2

π|k1k3|

)s

×H(s)ZN(1/2 + u, s, a, k1k3) ds du.

(25)

In order to use contour shifting, we analyze the Dirichlet series ZN , taking special care with the dependence
on N .

Lemma 7. Let k1k3 be a fundamental discriminant, where k3 | N but (k1, N) = 1, and q positive integer
relatively prime to 2N . Denote by fk3

the newform defined by the quadratic twist f ⊗ χk3
, which is of some

level dividing N2. For the Dirichlet series defined by (24) one has

ZN (α, γ, q, k1k3) =
LqN (1/2 + α, fk3

⊗ χk1
)

LqN (1 + 2α, sym2f)
Z∗
N (α, γ, q, k1k3),

where Z∗
N ≪ d(N)NRe(γ)−1/2, uniformly in q, κ, k1, k3,Re(γ) > 1/2 + ε, Re(α) ≥ 0.

Proof. From lemma 4 we see that the summand is within a constant of being jointly multiplicative in n, k2,
so that we may write an Euler product. We use the notation pr||N to mean that r is the largest power of p
dividing N . Then ZN is given by

∏

p∤2N

∑

k2,n≥0

λf (p
n)

pnα+2γk2

Gk1k3p2k2 (p
n)

pn

∏

pr ||N

∑

k2,n≥0

λf (p
n)

pnα+2γk2−rγ

Gk1k3p2k2 (p
r+n)

pr+n
. (26)

We must check all possible cases when p does or does not divide the parameters N, q, k1 and k3. Let us begin
with the generic p ∤ N . Suppose first that p ∤ 2qk1. We have that all of the terms where k2 ≥ 1 contribute
≪ p−(1+2ε), uniformly in all parameters. The k2 = 0 terms are exactly

1 + λf (p)χk1k3
(p)p−(1/2+α),

which matches the proposed Euler factor in the statement of the lemma up to a uniformly bounded factor.
Now we consider the terms with p ∤ 2q but p | k1. In this case, the Euler factor is given by

1− λf (p
2)

p1+2α
+O

(
1

p1+2ε

)
,
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which exactly matches the Euler factor in the statement of the lemma up to a uniformly bounded factor in
N, κ, k1. If p | 2q, then the Euler factor is 1 +O(p−(1+2ε)).

Now we turn to the terms where p | N . Inspecting lemma 4 we find four cases depending on whether p
divides N to even or odd order and whether p | k3 or not. When r is odd the second product of (26) is

∏

pr ||N
r odd
p∤k3

(
χk1k3

(p)pγ−1/2 +
λf (p)

pα+γ
+O(p−(1+ε))

) ∏

pr ||N
r odd
p|k3

(
−λf (p)

pα
pγ−1 +

λf (p)

pα+γ
+O(p−(1+2ε))

)
,

and when r is even this product is

∏

pr||N
r even
p∤k3

(
1 +

λf (p)χk1k3
(p)

pα+1/2
+O(p−(1+2ε))

) ∏

pr ||N
r even
p|k3

(
−p2γ−1 + 1− 1

p
− λf (p

2)

p2α+1
+O(p−(1+2ε))

)
.

If r is even then r ≥ 2, so we have that Z∗
N ≪ d(N)NRe(γ)−1/2.

Now we return to T3(N, h), and split the sum over k1 at UκN3/2zY 2/X . When |k1| ≤ UκN3/2zY 2/X ,
shift the lines of integration to Re(s) = 3/4 and Re(u) = −1/2 + 1/ logXκN , and for the tail k1, shift to
Re(s) = 5/4 and Re(u) = −1/2 + 1/ logXκN . We have that

ZN(1/2 + u, s, a, k1) ≪ |LaN (1 + u, fk3
⊗ χk1

)|(logXκN)2NRe(γ)−1/2

≪ (logXκN)3
∏

p|a

(
1 +

10√
p

)
|L(1 + u, fk3

⊗ χk1
)|NRe(γ)−1/2

unconditionally due to the work of Goldfeld, Hoffstein and Lieman [5]. We also have the estimate H(s) ≪
|s|Re(s)−1/2, so that the small k1 of T3(N, h) are

≪ (XUκ
√
Nz)1/4N1/4(logXκN)5

∑

a≤Y

1√
a

∏

p|a

(
1 +

10√
p

) ∑

k3∈D
k3|N

1

|k3|3/4
∫

(3/4)

∫

(−1/2+1/ logXκN)

×
∑

|k1|≤UκN3/2zY 2/X
k1∈D

(k1,N)=1

1

|k1|3/4
|L(1 + u, fk3

⊗ χk1
)| du ds

(1 + |s|)98(1 + |u|)98 .

We have that by conjecture 2 this is ≪ (UκN3/2z)1/2Y (logXκN)6. Similarly the tail k1 terms are

≪ (Uκ
√
Nz)3/4X−1/4N3/4(logXκN)5

∑

a≤Y

√
a
∏

p|a

(
1 +

10√
p

) ∑

k3∈D
k3|N

1

|k3|5/4
∫

(5/4)

∫

(−1/2+1/ logXκN)

×
∑

|k1|>UκN3/2zY 2/X
k1∈D

(k1,N)=1

1

|k1|5/4
|L(1 + u, fk3

⊗ χk1
)| du ds

(1 + |s|)98(1 + |u|)98 ,

which is ≪ (UκN3/2z)1/2Y (logXκN)6 as well by conjecture 2. Taking Y = X1/2/(UκN3/2)1/4, we find

T3(N, h) ≪ X1/2(UκN3/2z)1/4(logXκN)6.
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