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Dan Bruce, Héctor D. Menéndez, and David Clark

University College London, UK

Abstract. Automated test generation to cover all branches within a
program is a hard task. We present Dorylus, a test suite generation
tool that uses ant colony optimisation, guided by coverage. Dorylus
constructs a continuous domain over which it conducts independent,
multiple objective search that employs a lightweight, dynamic, path-
based input dependency analysis. We compare Dorylus with EvoSuite
with respect to both coverage and speed using two corpora. The first
benchmark contains string based programs, where our results demonstrate
that Dorylus improves over EvoSuite on branch coverage and is 50% faster
on average. The second benchmark consists of 936 Java programs from
SF110 and suggests Dorylus generalises well as it achieves 79% coverage
on average whereas the best performing of three EvoSuite algorithms
reaches 89%.

Keywords: Search-based testing · Automated test case generation · Ant
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1 Introduction

Testing software can be a long and arduous task for developers. It can take
up much of the development budget for what may feel like relatively little
output. However, it is crucial for checking the correctness and reliability of
programs. Automated test generation aims to reduce the burden on the developer
by providing test suites that, according to some criterion, effectively test the
program. An important part of creating tests for programs is ensuring that much
of the program is exercised by the test suite. This has led to the common goal of
coverage amongst manual test developers and automation tools alike [6].

Common goals for automatic test generation tools based on coverage are:
prioritisation of branches in the generation process [6], infeasibility [2] and
traversing branches that depend on complex conditions such as those based on
sub-regions of strings. To deal with these problems we present Dorylus. Dorylus
is a search-based optimisation tool capable of generating test data for Java
programs. The goal of Dorylus is branch coverage for which it requires only
the binary files of the software under test. It uses a two phase search-based
optimisation algorithm which prioritises targets to maximise potential coverage.
It then solves each target as a separate search problem. Rather than focusing on
one target at a time, the target being solved changes continually according to its
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probability of selection. This reduces wasting time on infeasible targets, whilst
also allowing prerequisite branches to be covered early in the process. Moreover,
only targets immediately reachable from current coverage are considered at any
time, creating a dynamic vector of targets.

The contribution of this paper is the Dorylus tool. For any given target the
search space of the problem is reduced through a novel lightweight path-based
input dependency analysis. This combined with the construction of a probability
distribution over numeric inputs and leveraging Levenshtein distance to define
distances for string operations, allows rapid convergence on correct inputs. Unlike
other techniques, Dorylus considers paths and aims to propagate many unique
paths through the program to reach the targets. This path diversity unlocks rare
probability predicates, due to many of them being only feasible from a specific
rare probability state of the program.

A proof-of-concept qualitative analysis has been performed, comparing Dory-
lus with EvoSuite to demonstrate its suitability for the problem of test generation.
Both tools are tested on 12 programs, 10 of which are taken from the literature,
one of these is further modified and one program constructed from interesting
code constructs [1]. The results show that on all programs Dorylus at least
matched EvoSuite which, on average, covered 95.1% compared with Dorylus’
97.7%. Furthermore, Dorylus was twice as fast on average, reaching maximal
coverage in 20.3 seconds whereas EvoSuite took 41.8 seconds on average. To test
the generalisability of Dorylus, both tools are tested on 936 programs from the
SF110 benchmark. For this corpus Dorylus was compared with three algorithms
in EvoSuite; whole test suite (WTS), many objective sorting algorithm (MOSA)
and many independent objectives (MIO). The results suggest that Dorylus’ tech-
niques generalise well as it reaches 79% branch coverage on the corpus, compared
with that of EvoSuite who achieves 89%, 86% and 88% with WTS, MOSA and
MIO respectively.

2 Dorylus

Dorylus’ aim is branch coverage. In order to achieve its goal Dorylus needs
two pieces of information from the program that it obtains by instrumenting it.
Firstly, the basic blocks that were executed in a given execution, and secondly
the values of the operands and the operator at each predicate. This information
will guide Dorylus’ search aiming for maximum coverage. With the operator’s
information from a given predicate, Dorylus uses branch distance, as defined
by Korel [10], to calculate how far the given test inputs are from executing
the unseen branch on the other side of the predicate. Branch distance specifies
how far a given predicate is from switching outcomes. For example, given a
conditional statement containing the expression a == 100, if the outcome is false
then the branch distance is 100− a. Korel defined such distances for all boolean
operations on numeric operands. Branch distance is used for all Java primitives
as they are numeric. For string comparisons, Levenshtein distance is used to
defined a measure for all core Java boolean string comparison functions. This
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indicates the number of characters which must be changed (inserted, swapped
or deleted) in order to change the outcome of the predicate. Furthermore, as
Dorylus operates on bytecode any complex boolean expressions are broken down
into atomic components so need not be considered.

Uncovered branches become targets for Dorylus and this list is dynamically
updated. A predicate can be observed as the guard of two branches, each labelled
as ls → ld where ls is the block containing the predicate and ld is the destination
block. Targets are defined as those branches where ls is covered by the test suite
but ld is not. Therefore, as coverage changes the set of targets to be tackled
is updated. When the program is executed, a trace of executed branches and
the operands and operators of all executed predicates is given as output. The
predicate information can be used to measure branch distance at a given location
in the trace. When a test case’s trace includes a previously unseen branch, it is
added to the test suite.

Once the program is instrumented, some initial inputs are generated uniformly
at random and ran on the instrumented program. The traces of these executions
define the initial coverage and therefore provide Dorylus with a set of initial
targets. Each target is a separate optimisation problem, where the fitness function
is branch distance. It is important, however, that even though each search problem
is separate, information should be shared between them. Therefore, all test cases
that are generated are shared with all targets for which they pass through the
guarding predicate. At each target, a novel lightweight dynamic path-based input
dependency analysis is carried out to reduce the search space. This analysis
identifies parts of the inputs whose mutation affects the outcome of the predicate,
thereby drastically reducing the search space of inputs. This must be done on a
path basis as depending on the path taken to the guard, different inputs may be
included in the variables used in the predicate statement. For primitive numerical
types we apply a search process called Ant Colony Optimisation for continuous
domains (ACOR) [16]. It creates a probability distribution for each input at each
target given the path taken to the guard. This is constructed by maintaining an
archive of best performing test cases at each target, diversified by mandating
that unique paths must be maintained and may not be removed. ACOR controls
the proximity to the target via Gaussian kernels [16]. When creating a new test
case, the kernel is sampled to generate new primitive values. For String input
values, rather than attempt to create a distribution, three mutations are defined
based on the Levenshtein distance: insert, swap and delete. A guide test case is
selected from the target’s archive and the string is mutated uniformly at random
a number of times according to the branch distance.

Dorylus not only works on simple programs requiring only primitives or
strings, but also on more complicated real-world programs. Given a Java class to
be tested, Dorylus identifies constructors and all public methods which can be
called and labels them as entry points. It looks at the inputs for each method, and
uses refection for those containing objects to find the object’s constructor and its
required inputs. This cycle is repeated until all objects have been deconstructed
to primitive and string inputs and a sequence of method calls to instantiate an
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object of the required type. Initial test cases call a constructor followed by a
public method covering all combinations. During the search process, if for a target
it appears that there are no inputs affecting the outcome, then the methods of
any objects formed by the inputs are searched over. This process identifies state
changing methods, such as setter methods, and then searches for the required
input values. If it still appears that there are no inputs that affect the target, the
process backtracks to previous targets. The aim being to find new paths to the
guard predicate which can pass through the guard. When a test case is added
to the test suite, the methods it calls and their inputs are sent to each target.
Every target then adds a call to the method containing the target to the end of
the sequence. This builds up complex sequences of method calls to explore all
possible states of the program.

3 Experimental Setup

EvoSuite is a state-of-the-art test generation tool for Java programs [6]. Its aim is
to generate unit tests to cover as much of a program as possible, using a genetic
algorithm. EvoSuites search-based approach has featured many improvements
over the years with techniques such as dynamic symbolic execution, hybrid search
and testability transformations [8]. Furthermore, it has been the winner of a
number of test case generation tool competitions [12].

This evaluation tests Dorylus and EvoSuite on a number of programs, and in
all instances both were given 2 minutes to achieve as much coverage as possible.
All experiments were carried out 10 times. The choice of 2 minutes is a tradeoff
between coverage and time spent, which has been identified and used in a number
of previous studies [7, 15]. Three different algorithms within EvoSuite were used;
whole test suite (WTS) [6], Multiple Objective Sorting Algorithm (MOSA) [14]
and Many Independent Objective (MIO) [2]. In all cases EvoSuite’s only coverage
criterion was branch coverage, as this is the only criterion included in Dorylus.
All other setting of EvoSuite were left to their default values.

There are two corpora on which the tools have been compared. The first
corpus consists of 12 programs which demonstrate constructs and programming
styles using string inputs. This was selected due to Dorylus being specialised
on primitive and string inputs. Furthermore, 10 of these programs have been
used widely in the literature to test tools aiming to generate strings that must
conform to some constraints, in order to reach parts of the program [1]. Some of
the programs exhibit features which can be hard to handle for automated tools.
Two programs have been added to the corpus in order to further test the tools.
The first addition is to collapse multiple string inputs into a single input which
is the split in the program. The other was made by combining different features
of the programs to create a hard to cover program. Table I shows the complete
list of all programs in the first corpus.

The second corpus was selected from the SF1101 benchmark. SF110 contains
110 Java projects from SourceForge, the first 100 were selected to be statistically

1 http://www.evosuite.org/experimental-data/sf110/
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representative, the final 10 were the 10 most popular Java projects on SourceForge
at the time [7]. SF110 consists of 23,886 programs, of this Dorylus can handle
8,398, of which 1,000 were chosen uniformly at random to judge the performance
of Dorylus and test how well it generalises. If any of the 10 repetitions of a
program failed due to a crash in one of the tools, we reran it up to three times.
If after these reruns there were still repetitions which had failed, the program
was removed from the corpus. Of the 1000 selected programs there were 64 that
caused such issues and were therefore removed, leaving a final corpus of 936
classes with an average of 7.6 branches.

4 Results

Table I presents the first corpus on which the tools where tested, along with each
tools average time and coverage for each program. Dorylus can be seen to be
competitive on coverage with EvoSuite, matching coverage on all programs and
improving coverage on two. EvoSuite covers an average of 95.1% reaching 100%
on all but three programs, whereas Dorylus achieves 100% on all but one program,
with an average of 97.7% branch coverage. The programs on which EvoSuite fails
to reach 100% coverage are those which require optimisation of sub-regions of
inputs. For example, FileSuffix takes two string input parameters, the first being
the type of file and the second a file name. The file extension is then taken to
be the substring after the last period in the file name. The program then checks
the extension against the file type. Coverage of this program is conditional upon
being able to generate an input with at least one period, and being able to find
the correct substring to be placed after this period (the extension). The correct
extension is dependent upon first providing a valid file type, and then matching
the given extension with the one defined in the program. Dorylus covers the
entire program in under 10 seconds on average, whereas EvoSuite only reaches
100% coverage on one of the ten repetitions, on average only covering 84.8%.
TestProgram is similarly conditional on substring optimisation in addition to
having a branch that is only feasible when a certain path is taken through the
program. On this class, EvoSuite consistently reached 84.6% coverage and no
higher, never covering the branch that required a specific path to be followed.
This program emphasises the need for path diversity.

In terms of performance, EvoSuite is far quicker on the simpler programs
without nested conditional statements and with many literals present for seeding,
for example, in the case of DateParse. As programs get more complex, Dorylus’
performance overtakes that of EvoSuite. On the corpus, EvoSuite reaches max-
imum coverage in a mean time of 41.8 seconds with a median of 14.5 seconds,
compared with Dorylus’ mean time of 20.3 seconds and median of 7.3 seconds. As
100% coverage is not attained in three instances for EvoSuite there are three cases
of reaching the maximum time of 120 seconds, Dorylus only reaches the timeout
once. An interesting program to mention is DateParse1V, which is DateParse
modified so that instead of two string inputs there is only one. This input is then
split so that the first three characters become the original input two, and the
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Program Branches EvoSuite WTS Dorylus
Time(s) Coverage Time(s) Coverage

Calc 12 1.1 100% 6.5 100%
Cookie 13 16.6 100% 3.7 100%
Costfuns 20 1.5 100% 3.9 100%
DateParse 39 1.1 100% 31.7 100%
FileSuffix 23 119.6 84.8% 9.6 100%
NotyPevar 8 2.4 100% 1.6 100%
Ordered4 29 37.8 100% 2.1 100%
Pat 39 120 72% 120 72%
Text2Txt 23 10.5 100% 8.0 100%
Title 43 12.4 100% 11.3 100%
DateParse1V 39 58.6 100% 39.4 100%
TestProgram 13 120 84.6% 5.7 100%

Mean 25 41.8 95.1% 20.3 97.7%
Median 23 14.5 100% 7.3 100%

Table 1. Results on the first corpus for both EvoSuite and Dorylus. It shows the mean
time and coverage for each tool over 10 repetitions on each program.

remaining characters the original input one. The control flow of the program is
left unaffected by this change. Despite a small change to the representation, the
time taken for EvoSuite to cover the program jumps from 1.1 seconds up to 58.6
seconds. Whereas Dorylus only increases from 31.7 to 39.4 seconds. DateParse1V
demonstrates that Dorylus can be more resilient to representation changes than
EvoSuite and is quicker to handle substring optimisation.

In the second corpus there are 936 real-world Java classes upon which the tools
were tested, the results for which can be seen in Table II. All three algorithms
within EvoSuite performed similarly, with WTS reaching 89.5%, MOSA 85.7%
and MIO 87.6%. Dorylus reached 79.1% in 30.2 seconds on average. This suggests
that the techniques used in Dorylus generalise well, given that EvoSuite is a
mature state-of-the-art tool. Interesting to note is the number of programs on
which each algorithm achieved higher coverage than the other three. Dorylus
outperforms all EvoSuite configurations on 29 programs, suggesting that there is
a set of programs on which its techniques are more effective.

However, many of the classes within SF110 are small, with many having no
branches at all. As such results for the largest 100 classes of the 936 are also
presented. These classes, are substantial with an average of 42 branches and
minimum and maximum of 24 and 273 branches respectively. Coverage was much
lower, Dorylus reaches 31.29% coverage and EvoSuite 54.56%. However, it can be
seen that Dorylus is much quicker on these larger programs. This suggests that
it is either failing or stopping the search process early and as such future work
will include more randomness in the search in order to continue to improve given
more time. As can be seen in Table II, there are nine classes of the largest 100 on
which Dorylus achieves higher coverage than EvoSuite, implying that Dorylus’
technique could be used to complement EvoSuite in specific circumstances.
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Possible threats to validity include the different implementations of the tools.
As previously mentioned, all three algorithms in EvoSuite achieve similar results.
It would be worth investigating an implementation of Dorylus in EvoSuite to get
a better comparison with less confounding factors.

Classes Branches Algorithm Coverage (%) Time(s) Best

All 936 7.6 WTS 89.47 32.6 58
MOSA 85.66 29.4 44
MIO 87.58 36.2 19
Dorylus 79.12 30.2 29

Largest 100 42.4 WTS 54.56 101.9 16
MOSA 54.28 98.49 27
MIO 51.85 112.1 4
Dorylus 31.29 75.67 9

Table 2. Results on the second corpus for WTS, MOSA, MIO and Dorylus. It shows
mean time, coverage and the number of programs where each tool gets the higher
coverage than all other approaches.

5 Related Work

There are many search-based methods that can be used for automated test
generation [11]. What these algorithms have in common is that they obtain
solutions guided by a fitness function [9]. The way in which these test cases are
created or how the search is guided is what distinguishes these methods from
one another. In the context of automated test generation the most prominent
search based method used is Genetic Algorithms [4]. A well-known example is
the work of Fraser et al. on EvoSuite [5]. EvoSuite produces unit tests for Java
programs using a genetic algorithm with some coverage metrics as the fitness
functions. It has been tested for both unit testing and system testing and has
achieved the highest score compared with state of the art tools for a number of
years [12]. Owing to its success a number of algorithms have been integrated into
the EvoSuite tool.

Firstly, the Many Objective Search Algorithm (MOSA) uses a multi-objective
approach, where every target is an objective [14]. Many test cases are compared
based on their performance across all objectives in order to obtain the best
performing test cases. In this approach, infeasible branches may cause wasted
effort, as targets that have a control dependency on an infeasible branch are
infeasible targets, and therefore not worth considering. This improvement was
implemented in Dynamic MOSA (DynaMOSA) where targets are updated to only
include those immediately reachable from currently covered branches. Dorylus
uses a similar design by updating targets dynamically [13]. In doing this, an
infeasible region in the control flow graph will only be represented as a single
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objective, the branch guarded by the infeasible predicate. This approach was
proved to be at least as good as the original algorithm [13]. DynaMOSA creates
many test cases which are scored according to their position in the Pareto front
of all objectives. Conversely, our work aims to prioritise targets in order to
speed up exploration of required ancestors before effort is spent on descendants.
It is possible for the Pareto front of DynaMOSA to be affected by infeasible
targets with very low branch distances, although they will have less impact on
performance than on MOSA. Unfortunately we were unable to compare with
DynaMOSA as it was not in the release of EvoSuite used in the experiments.

The existing tool most similar to Dorylus is Many Independent Objectives
(MIO), in which a population is maintained for each of the objectives [2, 3].
MIO was compared against random search, MOSA and whole test suite and
found to outperform all three [3]. The goal of MIO is to produce the highest
covering test suite in the allotted timeframe. It handles this goal starting with
the easiest to solve branches, which provide immediate coverage. This means
that where MIO punishes complex and difficult to solve targets, Dorylus puts
effort into attempting to solve them unless they are heuristically identified as
infeasible. Infeasible branches are implicitly ignored by MIO as it prioritises those
targets for whom better performing test cases are being found. Once a plateau is
reached for an infeasible branch no new test cases will be found. Dorylus aims to
get many paths through to the targets, thereby introducing path diversity. In
the case that current members of the archive are unable to affect change on a
predicate, Dorylus backtracks to the previous target in order to find new paths.
Backtracking can take many steps in order to find new rare probability paths,
which are needed to unlock specific regions of code. On the other hand, MIO has
a counter for each target which is incremented on every attempt to find a new
test case, and resets when a test case is added to the archive. Therefore, if the
correct path does not make it to the target, it will implicitly be seen as infeasible
and therefore given less attention.

6 Conclusion

We have put forward a new tool to generate input data to cover hard to reach
regions of code. It is a search-based method, founded on the ideas of Ant Colony
Optimisation, with novel heuristics to assist in unlocking difficult predicates.
The concept of a conditional statementś dependency on an input variable for a
specific path has proved in practice to work well and assist in speed and quality of
coverage. Our tool has been compared against EvoSuite, a highly successful test
case generation tool. We demonstrated that Dorylus can outperform EvoSuite
on programs with complex predicates and code structure. Furthermore, we have
shown Dorylus can handle a large number of real-world programs and provide good
coverage. Two steps for future work have been identified. Firstly, to incorporate
other coverage criterion to improve the effectiveness of the generated test suite.
The second step is to combine the approaches of Dorylus with those of EvoSuite
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to create a hybrid thereby improving EvoSuite’s effectiveness on the programs
which Dorylus beat it.
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