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Abstract

Surgical simulation is an increasingly important element of surgical education. Using
simulation can be a means to address some of the significant challenges in developing
surgical skills with limited time and resources. The photo-realistic fidelity of simulations
is a key feature that can improve the experience and transfer ratio of trainees. In this
paper, we demonstrate how we can enhance the visual fidelity of existing surgical sim-
ulation by performing style transfer of multi-class labels from real surgical video onto
synthetic content. We demonstrate our approach on simulations of cataract surgery using
real data labels from an existing public dataset. Our results highlight the feasibility of
the approach and also the powerful possibility to extend this technique to incorporate
additional temporal constraints and to different applications.

1 Introduction
Surgical skills are traditionally learned by trainees using the apprenticeship model, through
observation, mentoring and gradually practicing on patients [18]. As the complexity of
operations, devices and operating rooms has increased with modern imaging and robotics
technology, more effective and efficient training systems are necessary. Surgical simulation
offers a potential solution to training needs and can be used to good effect in a low-stress en-
vironment without risking the patients’ safety. To be effective, simulation should be realistic
both in visual fidelity and in functional and behavioral features of anatomical structures.

In addition to offering new methods for surgical training, digital simulation tools can
also be used to offer new capabilities like procedural rehearsal that can be used for in situ
practice [14]. Combined with patient or procedure specific information of anatomical models
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from tomographic scans, platforms for rehearsal could be used to ease the challenges of very
difficult cases or to ensure optimal performance. To enable this capability, realism is critical
and merging information from pre-built simulation environments together with information,
such as video, from the site during surgery, can be an approach to achieving high realism [9].

While significantly improved with modern graphics techniques, the photo-realistic fi-
delity of virtual simulations in surgery is still limited. This is a hurdle to the overall life-like
experience for the trainees . Tissue and surgical lighting modelling, and accurate representa-
tion of various layers for different anatomical structures can be particularly challenging and
computationally expensive to generate. In this paper, we adopt a different, novel approach
towards enhancing the visual fidelity of surgical simulations by performing label-to-label
style transfer from real surgical video onto synthetic content. We demonstrate the feasibility
of this method on simulated content of cataract surgery using real semantic segmentation
labels from an existing public dataset [2] (https://cataracts.grand-challenge.org/).

1.1 Contributions

To our knowledge this is the first time that style transfer has been used within the surgical
simulation application domain. In recent years, surgical simulation has focused primarily on
improving the realism of deformable tissue-instrument interactions through biomechanical
modelling using finite-element techniques [1]. Our approach can be used in conjunction
with deformable models to improve the photorealistic properties of simulation and can also
be used to refine the visual appearance of existing systems.

Beyond the application domain interest and novelty of the presented work, our paper
reports two algorithmic contributions: (1) we generalize Whitening and Coloring Transform
(WCT) by adding style decomposition, allowing the creation of "style models" from mul-
tiple style images; and (2) we introduce label-to-label style transfer, allowing region-based
style transfer from style to content images, which our algorithm handles inherently with
robustness to missing labels.

Additionally, we pave the way towards unlimited training data for Deep Convolutional
Neural Networks (CNN) by exploiting the ability to automatically generate segmentation
masks from surgical simulations. Already proven [22], our approach will further boost the
transferability by making the images more realistic.

2 Related work
Over the last years a recent trend has appeared trying to make 3D simulations more realistic,
from the 3D computer graphics point of view. The trend is being driven by the appearance of
studies suggesting that some of the core skills the surgeons should have, should be learned
prior to entering the OR [18], which resulted in growing VR simulations and works trying
to make it more realistic. Approaches range from making wet surfaces more realistic [12]
to creating intra-operative enhanced simulations [9], while at the same time recent studies
[14, 20] validated this kind of simulation as useful pre-operative educational tools.

We propose a novel approach, different from 3D graphics, to improve the realism of a
rendered simulation video by transferring the style from real surgery footage. This is driven
by the recent works of Gatys et al. [7, 8], that push the artistic and textural transfer from
one image to another to a whole different new level. Neural style-transfer can be seen as a
combination of feature reconstruction and texture synthesis, as the goal is to reconstruct a
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Figure 1: Proposed generalized multi-style transfer pipeline. From left to right: (1) As in
WCT, the encoder-decoders are trained for image reconstruction. (2) The N target styles
are encoded offline, and a joint representation is computed using CP-decomposition. (3)
In inference, the precomputed styles Px are blent using a weight vector W . (4) Multi-scale
generalization of inference. Note that every GWCT module in (4) requires a W vector,
omitted for clarity.

whole new image with the content of an image A and the style of an alternative image B.
This is achieved by designing an optimization algorithm to iteratively improve a reconstruc-
tion, minimizing the Gram Matrix (i.e. correlation of deep features) of the style images and
the feature reconstruction error of the content images. This initial approach requires, how-
ever, to solve the optimization iteratively, which takes long to render a single image. Since
then, different approaches have been proposed to make it faster [15, 21] or look better [10],
including recent work in photo-realistic style transfers [17].

Our approach is more closely related to Universal Style Transfer (UST) [16], which
proposes a feed-forward neural network to stylize images. Different to other feed-forward
approaches [3, 6], UST does not require to learn a new CNN model or filters for every set
of styles in order to transfer the style to a target image; instead, a stacked encoder/decoder
architecture is trained solely for image reconstruction. Then, during inference of a content-
style pair, a WCT is applied after both images are encoded to transfer the style from one to
the other, and reconstruct only the modified image from the decoder.

We extend the work from UST by generalizing WCT. We add an intermediate step be-
tween whitening and coloring, which could be seen as style-construction. We aim to transfer
the style of a real cataract surgery to a simulation video, and to that end, the style of a single
image is not representative enough of the whole surgery. Our approach performs a high-
order decomposition of multiple-styles, and allows to linearly combine them by weighting
their representations. On top of this, we introduce label-to-label style transfer by manually
segmenting few images in the cataract challenge and using them to transfer anatomy style
correctly. This is done by exploiting the fact that simulation segmentation masks can be ex-
tracted automatically, by tracing back the texture to which each rendered pixel belongs [22],
and only few of the real cataract surgery have to be manually annotated. An overview of our
approach can be found in Figure 1.
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3 Proposed approach
We formulate the multi-class multi-style transfer as a generalization to the recent work
on UST [16], which proposes a novel feed-forward formulation based on sequential auto-
encoders to inject a given style into a content image by applying a WCT to the intermediate
feature representation. Our approach can further improve the alteration of the style blending
aspects of the algorithm.

3.1 Universal Style Transfer via WCT
The UST approach proposes to address the style transfer problem as an image reconstruction
process. Reconstruction is coupled with a deep-feature transformation to inject the style of
interest into a given content image. To that end, a symmetric encoder-decoder architecture
is built based on VGG-19 [19]. Five different encoders are extracted from the pretrained
VGG in ImageNet [4], extracting information from the network at different resolutions, con-
cretely after relu_x_1 (for x ∈ {1,2,3,4,5}). Similarly, five decoders, each symmetric to the
corresponding encoder, are trained to approximately reconstruct a given input image. The
decoders are trained using the pixel reconstruction and feature reconstruction losses [5, 11]:

L = ‖Iin− Iout‖2
2 +λ ‖Φin−Φout‖ (1)

where Iin is the input image, Iout is the reconstructed image and Φin (as an abbreviation
of Φ(Iin)) refers to the features generated by the respective VGG encoder for a given input.
After training the decoders to reconstruct a given image from the VGG feature representation
(i.e. find the reconstruction Φ(Iin)→ Iin), the decoders are fixed and training is no longer
needed. The style is transfered from one image to another by applying a transformation (e.g.
WCT as described in the next section) to the intermediate feature representation Φ(Iin) and
letting the decoder reconstruct the modified features.

3.1.1 Whitening and Coloring Transform

Given a pair of intermediate vectorized feature representations Φc ∈ RC×HsWs and Φs ∈
RC×HsWs , corresponding to a content Ic and style Is images respectively, the aim of WCT
is to transform Φc to approximate the covariance matrix of Φs. To achieve this, the first step
is to whiten representation of Φc:

Φw = EcD
− 1

2
c ET

c Φc , (2)

where Dc is a diagonal matrix with the eigenvalues and Ec the orthogonal matrix of eigen-
vectors of the covariance Σc = ΦcΦT

c ∈RC×C satisfying Σc = EcDcET
c . After whitening, the

features of Φc are decorrelated, which allows the coloring transform to inject the style into
the feature representation Φc:

Φcs = EsD
1
2
s ET

s Φw . (3)

Prior to whitening, the mean is subtracted from the features Φc and the mean of Φs is added
to Φcs after recoloring. Note that this makes the coloring transform just the inverse of
the whitening transform, by transforming Φwc into the covariance space of the style im-
age Σs = ΦsΦ

T
s = EsDsET

s . The target image is then reconstructed by blending the original
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content representation Φc and the resultant stylized representation Φcs with a blending coef-
ficient α:

Φwct = α Φcs +(1−α) Φc. (4)

The corresponding decoder will then reconstruct the stylized image from Φwct after. For a
given image, the stylization process is repeated five times (one per encoder-decoder pair).

3.2 Generalized WCT (GWCT)
Although multiple styles could be interpolated using the original WCT formulation, by gen-
erating multiple intermediate stylized representations {Φ1

wct , . . . ,Φ
n
wct} and again, blending

them with different coefficients, this would be equivalent to performing simple linear inter-
polation, which at the same time requires multiple stylized feature representations Φi

wct to
be computed. Having a set of N style images {I1

s , . . . , I
n
s }, we first propagate them through

the encoders to find their intermediate representations {Φ1
s , . . . ,Φ

n
s} and from them, their

respective feature-covariance matrices and stack them together ΣΣΣ = {Σ1
s , . . . ,Σ

n
s} ∈RN×C×C.

Then, the joint representation is built via tensor rank decomposition, also known as Canoni-
cal Polyadic decomposition (CP) [13]:

ΣΣΣ ≈ PPP = [[Z;Y ;X ]] =
R

∑
r=0

zzzr ◦ yyyr ◦ xxxr, (5)

where ◦ stands for the Kronecker product and the stacked covariance matrices ΣΣΣ can be
approximately decomposed into auxiliary matrices Z ∈RN×R, Y ∈RC×R and X ∈RC×R.

CP decomposition can be seen as a high-order low-rank approximation of the matrix ΣΣΣ

(analogous to 2D singular value decomposition (SVD), as used in the eigenvalue decompo-
sition in equations 3 and 4). The parameter R controls the rank-approximation to ΣΣΣ, with the
full matrix being reconstructed exactly when R = min(N×C,C×C). Different values of R
will approximate ΣΣΣ with different precision.

Once the low-rank decomposition is found (e.g. via the PARAFAC algorithm [13]), any
frontal slice Pi of PPP, which refer to approximations of Σi

s can be reconstructed as:

Σ
i
s ≈ Pi = Y D(i)XT where D(i) = diag(Zi) (6)

Here D(i) is a diagonal matrix with elements from the column i of Z. It can be seen that
this representation encodes most of the covariance information in the matrices Y and X , and
by keeping them constant and creating diagonal matrices D(i) from columns i of Z, with
i ∈ {1, . . . ,n}, original covariance matrices Σi

s can be recovered.
In order to transfer a style to a content image, during inference, the content image is

propagated through the encoders to generate Φw (as in Equation 2). Then, a covariance ma-
trix Σs

s is reconstructed from Equation 6. The reconstructed covariance Σw can then be used
to transfer the style, after eigen-value decomposition, following Equation 3 and Equation 4
and propagating it through the decoder to obtain the stylized result.

3.3 Multi-style transfer via GWCT
From Equation 6 it can be seen that columns of Z encode all the scaling and parameters
needed to reconstruct covariance matrices. We can then apply style blending directly in the
embedding space of Z and reconstruct a multi-style covariance matrix.
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(a) Content (b) Style (c) WCT [16]

(d) GWCT (R = 10) (e) GWCT (R = 50) (f) GWCT (R = adaptive)

Figure 2: GWCT as a generalization of WCT. Having the style model of N images (as shown
in section 3.2) with different low-rank approximations, one of the style covariances can be
approximately reconstructed (with precision proportional to the rank R). (a) content, (b)
style and (c) style transfer with WCT [16]. (d), (e) and (f) are low-rank approximations.

Consider a weight vector W ∈RN where W is `1 normalized, then a blended covariance
matrix can be reconstructed as:

Σw = Y D(w)XT where D(w) = diag(ZW ). (7)

Here D(w) is a diagonal matrix where the elements of the diagonal are the weighted product
of the columns in Z. When W is a uniform vector, all the styles are averaged and, contrary,
when W is one-hot encoded, a single original covariance matrix is reconstructed, and thus,
the original formulation of WCT is recovered. For any other `1-normed and real valued W ,
the styles are interpolated to create a new covariance matrix capturing all their features.

As in the previous section, the reconstructed styled covariance from Equation 7 can be
used for style transfer to the content features, and propagate it through the decoders to gen-
erate the final stylized result.

3.4 Label-to-label style transfer via GWCT
In our particular application, style transfer from real surgery to simulated surgery, additional
information is needed to properly transfer the style. In order to be able to recreate realistic
simulations the style, both color and texture, have to be transferred from the source image
regions to the corresponding target image regions. Therefore, we define label-to-label style
transfer as multi-label style transfer within a single image. Consider the trivial case were
a content image and a style image are given, along with their corresponding segmentation
maps M where mi ∈ {1, . . . ,L} indicates the class of the pixel i. Label-to-label style transfer
could be written as a generalization of WCT, where the content and the style images are
processed through the network and after encoding them, individual covariances {Σ1, . . . ,ΣL}
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(a) Content (b) Style (c) Image-to-image (α = 0.6)

(d) Content mask (e) Style mask (f) L2L (α = 0.6, depth = 4)

Figure 3: Image-to-Image vs Label-to-Label (L2L) image stylization. (a) our simulation
image, (b) the style Cataract image and (c) shows a WCT image-to-image style transfer. (d)
and (e) represent content and style masks used to perform L2L stylization of (a) in (f).

(a) α = 0.6, depth = 4 (b) α = 1, depth = 4 (c) α = 0.6, depth = 5 (d) α = 1, depth = 5

Figure 4: Effect of different hyper-parameters in Label-to-label stylizitation, using the same
content/style images as in Figure 3

are built by masking all the pixels that belong to each class. In practice, however, we aim to
transfer the style to a video sequence and not all the images can contain all the same class
labels than a single style image. This is, in our example of Cataract Surgery, multiple tools
are used through the surgery and due to camera and tool movements, it is unlikely that a
single frame will contain enough information to reconstruct all the styles appropriately. Our
generalized WCT, however, can handle this situation inherently. As the style model can be
built from multiple images, if some label is missing in any image, other images in the style
set will compensate for it. The weight vector W that blends multiple styles into one is then
separated into per-class weight vectors W (i) with i ∈ {1, . . . ,L}. We then can encode W in
a way that balances class information per image W i =Ci

j/
∥∥C j

∥∥
1, where N is the number of

images used to create the style model, superscript indicate class label and subscript indicate
the image index. Ci

j then defines the number of pixels (count) of class i in the image j. This
weighting ensures that images with larger regions for a given class have more importance
when transferring the style of that particular class.

4 Experimental Results

4.1 GWCT as a low-rank WCT approximation

To validate the generalization of our approach over WCT, we conduct an experiment to prove
that the result of WCT stylization can be approximated by our method. We first select four
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Figure 5: GWCT for multi-style interpolation. Four corners contain four different real
cataract surgery images. The center 5× 5 grid of images correspond to the images of the
simulated eye in Figure 3 after interpolated style transfer.

different styles and use them to stylize an image using WCT. We then build three different
low-rank style models with them, with ranks R = 10, R = 50 and R = adaptive respectively,
as shown in section 3.2. R = adaptive refers to the style decomposed with rank equal to
the output channels of each encoder; this is, Encoder 1 outputs 64 channels and thus, uses
rank R = 64 to factorize the styles, similarly, Encoder 5 outputs 512 channels resulting in
a rank R = 512 style decomposition. After style decomposition, a low-rank approximation
of each of the original styles is built from Equation 5 and used to stylize the content image.
This process is shown in Figure 2 where the stylized image from WCT can be approximated
with precision proportional to the rank-factorization of the styles. When R = adaptive, as
explained above, our style transfer results and WCT are visually indistinguishable, proving
our generalized formulation. Furthermore, the original style covariance matrices can be re-
constructed exactly when R = min(NC,CC) [13]. Also, in all our experiments N�C, which
makes C a sensible balance between computational complexity and reconstruction error. In
all our experiments, unless stated otherwise, we choose R = adaptive. Here we should
note that, different to the WCT, our approach does not require to propagate the style images
through the network during inference and the style transforms are injected at the feature
level. Style decompositions can be precomputed offline, and the computational complexity
of transfering N or 1 style is exactly the same, reducing a lot the computational burden of
transfering style to a video.

4.2 Label-to-label style transfer

We show the differences between image-to-image style transfer and our GWCT with multi-
label style transfer in Figure 3 and Figure 4. For these experiments different values of alpha
α ∈ {0.6,1}were used and of the maximum-depth of style encoding depth∈ {4,5} are com-
pared. Depth refers to the encoder depth in which the style is going to start transferring (as
per Figure 1). depth = 5, which means that the Encoder5/Decoder5 will be used to initially
stylize the image and it will go up to Encoder1/Decoder1. However, if depth is set to any-
thing smaller 1≤ depth≤ 5, for example 4, then the initial level will be Encoder4/Decoder4,
and pass through all of them until Encoder1/Decoder1. This means that different values of
depth will stylize the content image with different levels of abstraction. The higher the value,
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Figure 6: Style transfer from real Cataract surgery to video simulation.

the higher the abstraction.
It can be seen in Figure 3 and Figure 4 that, as previously mentioned, image-to-image

style transfer is not good enough to create more realistic-looking eyes. By transferring the
style from label-to-label, the style is transferred with much better visual results. Additionally
the difference between depth = 5 and depth = 4 shows that sharper details can be recon-
structed with a lower abstraction level. Images seem over-stylized with depth = 5. Having to
limit the depth of the style encoding to the fourth level could be seen as an indicator that the
style (or high-level texture information) is not entirely relevant, or that there is no enough
information to transfer the style correctly.

Label-to-label multi-style interpolation: We show the capabilities of our GWCT ap-
proach to transfer multiple styles to a given simulation images using different style blending
W parameters in Figure 5. Four real cataract surgery images are positioned in the figure
corners. The central 5× 5 grid contains the four different styles interpolated with different
weights W . This is, the four corners have weights W = onehot(i), so that each one is stylized
with the i-th image, for i ∈ {1,2,3,4}. The central image in the grid is stylized by averaging
all four styles W = [0.25,0.25,0.25,0.25] and every other cell has a W interpolated between
all the four eyes proportional to their distance to them. The computational complexity of
GWCT to transfer one or the four styles is exactly the same, as the only component that
differs from one to the other is D(w) computation.

For this experiment the content image was selected to be a simulation image, as in the
previous experiment, α = 0.6 was selected for all the multi-style transfers, styles were de-
composed with R = adaptive and depth = 4 as it did experimentally provide more realistic
transfers in this particular case. It can be seen that the simulated eyes in the corners accu-
rately recreate the different features of the real eye, particularly the iris, eyeball and the glare
in the iris. It is interesting to see how the different blending coefficients affect the multi-style
transfers, as the style transition is very smooth from one corner to another, highlighting the
robustness of our algorithm.

4.3 Making simulations more realistic
Finally, we prove our concept by transferring the style from a Cataract video to a real Video
simulation. To that end we manually annotated (as in previous sections) the anatomy and
the tools of 20 images from one of the Cataract Challenge. We have chosen only one of the
videos to make sure that the style is consistent in the source simulation. All the Cataract
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surgery images are used to build a style model that then is transferred to the simulation
video. Segmentation masks are omitted (due to lack of space). In order to achieve a more
realistic result, we made α a vector to be able to choose different α values for each of the
segmentation labels, using α = 0.8 for iris, cornea and skin, α = 0.5 for the eye ball and
α = 0.3 for the tools. Results are visible in Figure 6. Full stylized simulation video is
available in the supplementary material.

5 Conclusions
A novel method is proposed in this work to make surgical simulations more realistic, based
on style transfer. Our approach builds on top of WCT and adds tensor decomposition and
label-to-label style transfer to improve the style mapping from a reference surgical video to
each of the various anatomical parts of our simulation. We show that style transfer is a pow-
erful tool to improve the photo-realistic fidelity of simulations, and we pave the way towards
using these results to generate large amounts of training data from these simulations, reduc-
ing the necessity of tedious and time-consuming manually annotated datasets. We believe
our approach, and future work to come, could change how we create training datasets and
it could speed up the data collection, particularly in fields where access to real-life surgical
content is limited and difficult to capture.
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