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Highlights: 

 

 RFE-SVMs predict future outcome of CIS patients with conservative accuracy 
estimates between 64.9% and 88.1% 

 Recursive feature selection improves classification performance compared to using 
all information 

 Relevant features include regional WM lesion load and GM density, as well as the 
type of CIS onset. 

 Cross-validation introduces positive bias on accuracy estimate  
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Abstract 

Machine learning classification is an attractive approach to automatically differentiate 

patients from healthy subjects, and predict future disease outcomes. A clinically isolated 

syndrome (CIS) is often the first presentation of multiple sclerosis (MS), but it is difficult at 

onset to predict who will have a second relapse and hence convert to clinically definite MS. 

In this study, we thus aimed to distinguish CIS converters from non-converters at onset of a 

CIS, using recursive feature elimination and weight averaging with support vector machines. 

We also sought to assess the influence of cohort size and cross-validation methods on the 

accuracy estimate of the classification. 

We retrospectively collected 400 patients with CIS from six European MAGNIMS MS 

centres. Patients underwent brain MRI at onset of a CIS according to local standard-of-care 

protocols. The diagnosis of clinically definite MS at one-year follow-up was the standard 

against which the accuracy of the model was tested. For each patient, we derived MRI-based 

features, such as grey matter probability, white matter lesion load, cortical thickness, and 

volume of specific cortical and white matter regions. Features with little contribution to the 

classification model were removed iteratively through an interleaved sample bootstrapping 

and feature averaging approach. Classification of CIS outcome at one-year follow-up was 

performed with 2-fold, 5-fold, 10-fold and leave-one-out cross-validation for each centre 

cohort independently and in all patients together.  

The estimated classification accuracy across centres ranged from 64.9% to 88.1% using 2-

fold cross-validation and from 73% to 92.9% using leave-one-out cross-validation. The 

classification accuracy estimate was higher in single-centre, smaller data sets than in 

combinations of data sets, being the lowest when all patients were merged together.  

Regional MRI features such as WM lesions, grey matter probability in the thalamus and the 

precuneus or cortical thickness in the cuneus and inferior temporal gyrus predicted the 

                  



occurrence of a second relapse in patients at onset of a CIS using support vector machines. 

The increased accuracy estimate of the classification achieved with smaller and single-centre 

samples may indicate a model bias (overfitting) when data points were limited, but also more 

homogeneous. We provide an overview of classifier performance from a range of cross-

validation schemes to give insight into the variability across schemes. The proposed recursive 

feature elimination approach with weight averaging can be used both in single- and multi-

centre data sets in order to bridge the gap between group-level comparisons and making 

predictions for individual patients.  

 

Keywords: 

Multiple sclerosis 

Machine learning classification 
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1 Introduction 
 

Multiple sclerosis (MS) is a disease of the central nervous system that is characterised by 

neuroinflammation, demyelination and neurodegeneration. The first clinical episode of MS is 

referred to as a clinically isolated syndrome (CIS). A majority of CIS patients (>80%) will 

eventually develop a second episode over a course of 20 years
1
, which then defines clinically 

definite MS (CDMS). A shorter time to conversion from CIS to CDMS is associated with a 

faster disease progression and higher disability subsequently
1
. The number of lesions on the 

MRI scan at onset of CIS is a clinically highly relevant prognostic factor for the development 

of CDMS and disability
2
. 

 

Machine learning offers tools for learning how to distinguish two or more groups based on 

their features and subsequently assign new, previously unseen, cases to one of the groups. 

The idea of supervised learning is to identify common characteristics in the individual groups 

(i.e., patients with a known diagnosis or clinical outcome) that can be generalised to a larger 

population. This supervised classification has become increasingly popular in neuroimaging 

over the last decade with a few applications also in MS
3–5

. However, only few studies have 

been performed on the prediction of conversion to CDMS in CIS patients
5–7

, and these have 

often been limited to one centre
5,6

.  

 

A common issue is the selection of relevant features to perform a classification. Some studies 

in MS and Alzheimer’s disease have used voxelwise grey-matter (GM) probability
4,8

, which 

works well when patient groups can be distinguished based on their extent of (regional) brain 

atrophy. Other studies used hand-picked features that potentially provide predictive 

information
5,7

. In a previous single-centre study
5
, we showed that support vector machine-

based classification predicted clinical outcome in CIS patients with an accuracy score of 

                  



71.4% using leave-one-out cross validation. We found that a specific subset of features, 

mostly related to MS lesions, performed better than individual or all available features. 

However, as we note in 
5
 leave-one-out cross-validation may overestimate classification 

performance on unseen test data.  

 

Here, we aimed to identify CIS patients developing CDMS within the first year of their 

symptoms, using data collected in six European centres. We introduce a recursive feature 

elimination scheme, based on weight averaging with support vector machines, in a large set 

of imaging measures, including GM probability, cortical thickness, T2 white matter lesion 

load, and volume of specific GM and white matter (WM) regions. These features can be 

easily and robustly extracted from MRI scans, and we investigated whether our model 

automatically identified informative features with respect to the classification task. We 

examined the influence of the cross-validation partitioning on the estimated classification 

accuracy by using 2-fold, 5-fold, 10-fold and leave-one-out cross-validation on all data sets to 

provide an overview of the bias introduced by the different schemes. The model was run in 

each centre’s cohort independently and then in combinations of data sets, including all patient 

data together in order compare different levels of heterogeneity in the data. 

  

                  



2 Methods 

 

2.1 Data 

This is a retrospective study performed on data obtained by six European centres, which are 

members of the MAGNIMS (Magnetic Resonance Imaging in Multiple Sclerosis, 

www.magnims.eu) network (Barcelona/Spain (B), Copenhagen/Denmark (C), Graz/Austria 

(G), London/UK (L), Milan/Italy (M) and Siena/Italy (S)). The total number of CIS patients 

included was 400, and 91 (22.8%) of them converted from CIS to CDMS within one year. All 

baseline scans were performed within 14 weeks (SD 7 weeks) of CIS onset. We do not have 

information on treatment in this retrospective cohort. A more detailed overview of patient 

characteristics is given in Table 1.  

 

This project was approved locally by the ethics committees and patient consent was obtained 

prior to data collection. 

 

The inclusion criteria were as follows: (1) Patients with a CIS were examined within three 

months from symptoms onset; (2) T1-weighted MRI sequences of the brain were obtained at 

onset of a CIS, using standard-of-care local protocols; (3) Demographic (age, sex) and 

clinical information (e.g. type of CIS) at baseline and the presence/absence of a second 

relapse at one year follow-up was available; (4) presence of T2-hyperintense WM brain 

lesions as outlined in each centre on PD/T2-weighted or FLAIR MRI by experienced 

researchers, resulting in binary lesion masks.  

 

[Table 1] 

 

                  



2.2 Image processing 

Due to the heterogeneity of the MRI data, we used derived measures such as GM probability 

or cortical thickness (CT) which we believe to be more robust to multi-centre variation 

compared to direct intensity information. To calculate the features used in the classification 

experiments, a comprehensive image processing pipeline was created as follows. 

1. Bias field correction: all MRI scans were initially corrected for bias field 

inhomogeneities using the N4 algorithm
9
. 

2. Lesion filling: WM lesions can have intensities similar to GM on T1-weighted MRI, 

which can cause problems in registration and segmentation. To reduce this effect, we 

used a patch-based approach
10

 to fill the lesion voxels with intensities similar to their 

neighbourhood. 

3. Registration: lesion masks were created from PD/T2- or FLAIR-weighted images 

whereas most other image processing is performed in T1 space. Therefore, the PD/T2 

or FLAIR MRI scans were affinely registered to T1 space using reg_aladin from the 

NiftyReg toolbox
11

. Lesion masks were subsequently resampled using the obtained 

transformation parameters. 

4. Brain parcellation: we performed a fine-grained brain parcellation of all T1 scans 

using the GIF (geodesic information flows) algorithm
12

. This tool segments the brain 

into 143 ROIs based on the Neuromorphometrics atlas
13

, of which most are cortical 

areas as shown in Figure 1.  

5. Merging hemispheres: Measurements from the left and right hemisphere are highly 

correlated, which is undesirable for machine learning analyses
14

. Therefore, 

corresponding contralateral ROI values were averaged in order to reduce the noise in 

the data and reduce collinearity of features. (Please note that we show some results 

                  



with unmerged contralateral features in the supplementary material section 

‘Unmerged Hemispheres’.) 

6. Grouping: ROIs were merged into nine larger areas according to their anatomical 

location. Most of these areas correspond to the anatomical brain lobes, and, therefore 

we refer to all of them as ’lobes’ in the context of this study. These ’lobes’ were 

limbic, insular, frontal, parietal, temporal, occipital, cerebellum, GM and WM. Deep 

grey matter is defined as thalamus, hippocampus, nucleus accumbens, amygdala, 

caudate nucleus, pallidum, putamen and basal ganglia. 

7. Segmentation: In addition to the 143 ROIs, the GIF algorithm also provides a 

probabilistic segmentation of GM and WM, as well as binary masks of brain tissue 

and intracranial volume. 

8. Cortical thickness: this was calculated using DiReCT, a registration-based 

algorithm
15

. It has been shown to have the same degree of reproducibility as the more 

commonly used Freesurfer method
16

 but is faster once WM and GM probability maps 

are available.  

9. ROI masking. We used the ROIs from steps 4 and 6 to calculate local information 

from GM probability maps, CT maps and lesion masks. 

[Figure 1] 

2.3 Feature definitions 

Following the image processing, an extensive list of features has been defined on 

different ROI scales as follows. 

1. Global features: these features describe whole-brain measures such as overall GM 

volume, WM volume and brain volume as a percentage of the intracranial volume. In 

addition, we added demographic and clinical measures such as age, sex, CIS type and 

EDSS. 

                  



2. ROI features: these features refer to the brain parcellations obtained from GIF (see 

section 2.2, point 4). Each ROI from the brain parcellation was used to mask each 

patient’s GM probability map, CT map, lesion segmentation and T1 scan (to estimate 

the volume). We excluded ROIs describing ventricles, skull and background because 

they are not expected to be discriminative.  

3. Lobe features: we merged ROIs based on their anatomical location into larger 

coherent regions, which mostly correspond to brain lobes as described above.  

 

Eventually, we concatenated the global features, the ROI features for GM probability, CT, 

and volume, as well as the lobe features for GM probability, CT, volume and lesion load. 

ROI lesion load was not used because we only included WM lesions, which are found mostly 

in only two very large ROIs (WM in left and right hemisphere). Due to mis-registration of 

subjects, features such as ‘WM lesion load - dGM’ can occur and should be interpreted as 

WM lesion load on the border of deep GM structures. 

 

This concatenation of all features led to a vector with 213 or 214 entries for each of the 400 

subjects depending on the centre. All features were included in the initial models and were 

subject to the recursive feature elimination approach. 

 

Due to differences in scanning protocols and MRI resolutions, there were centre-specific 

offsets for some features. Therefore, the feature matrix for each centre was feature-wise 

transformed to z-scores in order to improve comparability and SVM performance
17

. The 

transformation centres the data to zero mean with unit variance following  

        ̅   ⁄  

                  



where    is the normalised vector,  ̅ the mean value of feature vector  , and    the feature’s 

standard deviation. 

 

2.4 Classification model 

One aim of the classification was to identify CIS patients who will convert to CDMS based 

on the previously described features, which were derived from baseline data. The classifier 

used for this study was a linear SVM, with which we employ a novel iterative feature 

selection process. 

The SVM algorithm assigns a weight to each feature and this weight vector defines the 

hyperplane (i.e. the multi-dimensional extension of lines and planes) separating the two 

classes. One interpretation of these weights is as measures of feature strength for informing 

group membership
4,8

. One common problem, however, is instability of this weight vector 

across different samples, even from the same data set. While the weights of some features 

remain relatively similar, some can vary substantially, even alternating between positive and 

negative signs (i.e. pointing to different classes for the same problem). Such behaviour 

indicates overfitting to features that offer little or no classification information.  

Here, we propose an algorithm to select only informative features and avoid such overfitting. 

The algorithm runs an SVM on 1000 bootstrap samples of patients and averages the resulting 

weight vectors to define a mean weight vector descriptive of the whole cohort. By doing this, 

the weights with alternating signs average to values close to zero, while stable features 

maintain higher absolute values. The 20% of all included features with average weights 

closest to zero are subsequently removed and the process is repeated iteratively until the 

estimated classification accuracy (mean across bootstraps) does not improve further. The 

choice of 20% maintains accuracy while minimising computation time: smaller percentages 

increase computation time for the same result due to smaller step sizes, while larger 

                  



percentages may remove relevant features in early iterations due to the larger step size. 

Additional example results for percentages of 15% and 25% can be found in the 

Supplementary Material section ‘Variation of feature removal parameters’. 

 

2.5 Class imbalance and patient sampling 

Imbalanced class sizes tend to bias the SVM classifier performance towards the majority 

class. To avoid this, we used down-sampling (also known as undersampling), which is a 

common approach to avoid class imbalance
18

. An equal number of subjects to the size of the 

minority class was selected at random from the majority class. In our study, the minority 

group was represented by the converters, and the majority class by the non-converters. This 

approach can potentially introduce a sampling bias, meaning that the random sample is not 

representative of the whole class. We mitigate this problem by repeating the process 1000 

times with different majority class samples so the whole cohort will be represented overall. 

The main measure of classifier performance in this study was accuracy, which is the 

proportion of correctly classified cases (i.e., converters and non-converters) relative to the 

total cohort size. The 95% confidence interval with respect to the 1000 repetitions was 

reported. Additionally, the mean sensitivity and specificity of the classifier (where converters 

are defined as positive samples and non-converters as negative) were also reported. 

2.6 Cross-validation 

Cross-validation is an important tool in machine learning for testing generalisability of a 

classifier. In k-fold CV, the data is split into k parts so that k-1 parts are used for training and 

one part for testing. A separate classifier is trained on each of the k training sets and 

evaluated on the corresponding test set. Typically average performance metrics over all k 

folds are reported together with range of variation
19

. 10-fold CV is sometimes suggested as a 

compromise between bias and training sample size
20

. 

                  



It is important to note, however, that the accuracy estimates arising from the different CV 

approaches are only indications of classifier performance with different levels of bias from 

training set size and classifier correlations
21

. The real accuracy can only be estimated with 

two sufficiently large independent data sets for training and testing. We refer to the cross-

validation results as accuracy estimates throughout this manuscript for this reason. 

In this study, we performed a variety of experiments to show the effect of sample size and 

cross-validation partitioning in the proposed classification pipeline using multi-centre data. 

Our goal was to show a) that the classifier is able to identify relevant features to differentiate 

the two groups, b) the effect of data set size and composition, and c) variability in accuracy 

estimates arising from the choice of cross-validation scheme. To do this, we used data from 

six individual centres with varying number of patients (see Table 1) as well as multi-centre 

combinations of these six centres, including a combination of all patients together. In order to 

explore how the classifier performance changes with varying cross-validation schemes, we 

ran 2-fold, 5-fold, 10-fold and LOO cross-validation on all data sets where it was possible 

(i.e. centres Copenhagen and Milan had less than 10 converters so that a stratified 10-fold CV 

was not feasible). Similarly, we ensured centre stratification for the multi-centre experiments 

so that the settings involving centre C or M could not use 10-fold CV.  

Our multi-centre experiments focus on the combinations with more heterogeneous imaging 

protocols (B, L, M and S) but we also explore the combination of all centres together. An 

overview of all experiments is given in Supplemental table 1. 

 

  

                  



3 Results  

We performed SVM classification to predict the occurrence of a second clinical episode in 

patients with a CIS suggestive of MS using a large cohort of 400 patients studied in a multi-

centre setting and used an iterative RFE feature selection approach that removed the least 

contributing 20% of features at each iteration. There were differences in estimated 

classification accuracy between the individual, centre-specific, data sets as well as between 

the different cross-validation schemes (Tables 2-5). As expected
20

, the classification accuracy 

score was higher when using higher fold cross-validations than when using lower fold 

methods, and was the highest with the leave-one-out method. In particular, the mean 

accuracy estimates ranged from 64.9% to 88.1% across individual centres when using a 2-

fold cross-validation, and from 73% to 92.9% when using a leave-one-out scheme. The 

classification accuracy estimate was higher with smaller data sets than with larger data sets, 

which might indicate overfitting or a spurious selection bias. Multi-centre data sets lead to the 

lowest accuracy estimates, which is likely due to the heterogeneity in the data. When 

combining all centres’ data to only one multi-centre data set, we obtained accuracy estimates 

between 64.8% for 2-fold cross-validation and 70.8% for the leave-one-out method.  

 

3.1 Recursive feature elimination 

The proposed recursive feature elimination approach led to an initial increase in accuracy 

score from early iterations of the procedure, when features not relevant to the classification 

task were removed. However, the predictive power of model reduced in later iterations, once 

relevant features were eliminated and a low number of features were left in the model (Figure 

2). The trajectory of accuracy estimates was similar across all cross-validation schemes and 

data sets. This behaviour is illustrated in the Figure 2 for the whole multi-centre data set.  

                  



[Figure 2] 

3.2 Cross-validation 

The accuracy estimates were very similar for all cross-validation schemes when using all 

features (Figure 2). With a reduction of features, however, the difference in accuracy 

estimates among the cross-validation approaches increased (Figure 2). While the difference 

between 2-fold and leave-one-out method is only 2% when using all features, it rose to 9.2% 

when using the selected feature sets, that maximised the accuracy estimates. An overview of 

the performance estimates for all data sets and all cross-validation schemes is given in Figure 

3 and Tables 2, 3, 4 and 5.  

[Figure 3 and 4, Tables 2-5] 

3.3 Class size 

The data sets from the individual centres differed in size and ranged from 24 CIS patients 

with 6 converters in the Copenhagen data set, to 175 patients with 34 converters in the 

Barcelona cohort (Table 1). In total, there were 400 patients of which 91 converted to CDMS 

within one year of follow-up (see top of Figure 4). Because SVMs are susceptible to class 

imbalance and tend to introduce a bias towards the majority class, we down-sampled the 

majority class (i.e. the non-converters) to match the size of the minority class. 

The accuracy estimates increased with decreasing class size (see bottom of Figure 4). In 

single-centre data sets, a size of 34 patients per group leads to an accuracy estimate of 64.9% 

using 2-fold cross-validation and 73.0% using leave-one-out scheme, while the smallest class 

size of 6 led to an accuracy estimate of 88.1% and 91.9% for 2-fold and leave-one-out 

validation, respectively (Figure 4). In multi-centre data sets, there was a small increase from 

64.8% with 91 patients per class to 66.9% with 64 patients when using 2-fold cross-

validation. Similarly, the accuracy estimate was 70.8% with 91 patients and 73.3% with 64 

patients when using the leave-one-out method (Figure 4).  

                  



 

3.4 Most relevant features 

The recursive feature elimination algorithm selected features from all domains, but the exact 

composition of feature sets at peak accuracy score differed slightly between the data sets. 

When using all data with a conservative 2-fold cross-validation the following features had the 

highest absolute weights at peak accuracy: (i) White matter lesion load in the whole brain, 

WM, deep GM, and the frontal, temporal and limbic lobes, (ii) GM probability features in the 

cerebellum, deep GM regions (such as the thalamus), and across the cortex, especially in the 

occipital and temporal lobes; (iii) CT of the occipital, frontal and temporal lobes; (iv) Whole 

brain volume and volumes of the limbic lobe, middle temporal gyrus and supramarginal 

gyrus. The type of CIS was selected as the only non-imaging feature relevant to the 

classification. 

An illustration of the non-lesional imaging features is given in Figure 5. A complete list of 

selected features, as well as all candidate features, for this experiment is given in the 

Supplementary Material. The final feature sets were not identical between experiments but 

we observed large overlap suggesting consistency and inherently meaningful feature 

selection. 

[Figure 5] 

 

  

                  



4 Discussion 

Our proposed recursive feature elimination approach and weight averaging, with support 

vector machines, classifies the progression from CIS to CDMS. The estimated accuracy for 

this task ranged between 64.8% and 70.8% over the cross-validation schemes in a multi-

centre setting including all patient data, and between 64.9% and 92.9% in single-centre data 

sets. However, there were large differences between the individual centres, and between the 

applied cross-validation schemes. In a previous study we used a small set of 12 ‘hand-picked’ 

features associated with MS progression in order to predict the conversion from CIS to 

CDMS with an accuracy estimate of 71.4% when using support vector machines and LOO-

CV 
5
. However, it remained unclear if the initially selected features and cross-validation 

setting were optimal, and the experiments were performed on a single-centre data set. Here, 

we have extended this approach to show that a) there were differences between centres and 

data set sizes, b) features can be selected in a more automated way and c) that the cross-

validation scheme had a strong influence on the outcome. 

4.1 Recursive feature elimination 

The classifier did not perform well when all 214 features were used for classification, but 

performance improved subsequently with each iteration until a locally optimal number of 

features was reached. Once the classifier started removing features crucial to the 

classification, the accuracy score dropped again. This is in line with previous studies where a 

certain subset of features performed better than single features or all features together
5
. The 

interleaved weight averaging across bootstraps to remove redundant features for removal is a 

novel and viable option to identify relevant markers of disease progression. 

                  



4.2 Class size 

The accuracy estimate was generally higher in data sets with fewer samples, so that the 

highest accuracy score was achieved in the smallest centre’s cohort and the lowest accuracy 

score in the largest cohort. This could be explained by the fact that small samples represent 

less disease variability and are therefore easier for a classifier to learn but also by cross-

validation bias exacerbated by the small sample size. In addition to this, it is more likely to 

observe spurious correlations between small data sets and large features sets. It must be 

noted, however, that this lack of variability led to an overfitted model that works well for the 

data set in question, but cannot be generalised to a larger population. The overfitting found in 

the smaller single-centre data sets was not observed in the multi-centre setting due to an 

increase in sample size, and therefore also variability.  

4.3 Cross-validation scheme 

It is well-known that the choice of cross-validation method has an influence on the estimated 

classification accuracy, so we report statistics from multiple schemes in order to mitigate 

potential bias arising from correlation between classifiers
20

. However, many studies use the 

leave-one-out scheme arguing that it is more suitable for small data sets because more data 

can be used for training and that it mimics clinical practice where one can learn from large 

data sets and then apply the findings to new individual cases
4,22

. Here, we performed a direct 

comparison of different cross-validation schemes on multiple data sets and showed clearly 

that there was a difference of up to 20% in estimated classification accuracy between 2-fold 

and leave-one-out cross-validation. Even though this difference is somewhat artificially high 

in our experiments, the effect is consistent between data sets and suggests that estimates from 

experiments with a high number of folds are more inflated than those with a lower number of 

folds.  

                  



The choice of cross-validation partitioning also has a direct effect on the portion of data that 

is used for training, such that in 10-fold cross-validation 90% of the data is used for training, 

but only 50% is used in a 2-fold method. A smaller amount of training data leads to a worse 

and less generalisable model, which is something that may have happened also in our 

experiments. The pattern of accuracy score change was similar between cross-validation 

schemes in all data sets independent of size, suggesting that we were observing a fold-size 

effect rather than a training-size effect – even in data sets with a larger absolute number of 

subjects per class the differences between the cross-validation schemes are striking. For 

future studies, we suggest to compare two or more cross-validation schemes to estimate 

potential biases when it is not possible to use completely distinct data sets for training and 

testing.  

4.4 Most relevant features 

The classification in the multicentre setting using all data seems to be strongly driven by the 

presence of white matter lesions in the whole brain, WM, deep GM, and the frontal, temporal 

and limbic lobes (see complete list in the supplementary materials). Current literature 

supports these findings as white matter lesion load in different regions is predictive of disease 

progression in MS
23–25

. Additionally, important features were those related to GM probability 

and cortical measures. These findings extend previous studies that reported that surrogate 

measures of atrophy, such as GM probability derived in deep GM regions like the thalamus 

predict cognitive impairment
26

 and clinical disability in MS
27

. Similarly, GM probability of 

the occipital lobe, but also in other parts of the cortex, was associated with the rate of 

progression to CDMS in CIS
28

. Specific cortical ROIs associated with CT and regional 

volumes – being additional surrogate measures of atrophy – were also selected
28

. The type of 

CIS was selected as the only non-imaging feature, which is in line with group-level analyses 

that showed that a CIS with involvement of the optic nerve (i.e., optic-neuritis) has a better 

                  



prognosis compared to initial lesions in the spinal cord
1,29

. Overall, the features selected by 

our proposed approach are well supported by existing literature where the same or similar 

types of biomarkers have been associated with disease progression in MS. This study, 

however, allows for combining these features to make predictions of future clinical outcome 

in individual subjects. 

 

4.5 Limitations 
 

For this study, we aimed to use a broad range of features that can be derived from structural 

MRI scans. However, the classification performance could be improved by information from 

advanced MRI techniques, such as magnetisation transfer imaging (MTR)
30

 or double or 

phase-shifted inversion recovery (DIR/PSIR)
31

, which have been shown to express damage 

outside of WM lesions and GM lesions respectively. Similarly, a large range of non-imaging 

markers such as genetic
32

 or environmental factors
33

 could potentially be very informative in 

such a study where individual subjects’ prognoses are being made. Furthermore, a 

comparative study using healthy controls and patients with MS with the same features would 

be desirable. Here, however, we analysed data retrospectively and did not have any of this 

extra information available. Future work which includes prospective, harmonised imaging 

protocols, demographic, environmental and genetic factors, and all the other variables that 

define MS at an individual level, may improve the prediction accuracy of the classifier. 

 

Furthermore, the features included in this retrospective study were by no means a complete 

set of all possible features that can be derived from MRI scans. Other machine learning 

studies included information, such as lesion size and shape, for prediction of CIS 

conversion
7
, which was not done here because we limited this study to measures that are 

more easily obtainable through standard pipelines. 

                  



 

The recursive feature elimination approach is a powerful method to identify relevant features, 

but it does not guarantee the globally optimal solution, as described in previous studies
5
. This 

issue is increased here due to the step size of 20% of all available features, which are 

removed at each iteration. It is possible that a different step size would have led to higher 

accuracy score values, but a too high percentage would make it more likely to accidentally 

remove relevant features, whereas a too low percentage would increase computation time and 

might introduce a significant multiple comparisons problem. There is no strong difference in 

accuracy estimates when the step size was varied between 15% and 25%, so that 20% was 

selected as a compromise between computation time and potential loss of valuable features 

(see also Supplementary Material). 

The study used retrospectively selected cross-sectional data that was used to derive regional 

measures such as regional GM probability, cortical thickness and normalised volume that can 

be considered surrogate measures for atrophy. Due to the lack of longitudinal MRI follow-up, 

however, it cannot be confirmed that atrophy is driving the models’ predictions because the 

differences in volume could also be due to normal physiological variability. Future work 

should investigate this in a large cohort with one or more radiological follow-ups. 

 

5 Conclusion 

 

We have presented a new approach for predicting the near-term conversion from CIS to 

CDMS within a one-year follow-up. The overview of accuracy estimates from different 

cross-validation settings revealed a strong influence of the selected scheme and its potential 

bias on the reported accuracy. Similarly, we showed that small data sets seemed to ‘over-

perform’, which indicates overfitting problems when classifiers did not have a sufficient 

                  



number of samples to learn and generalise from. Therefore, future neuroimaging studies 

using machine learning classification need to ensure that data sets are large enough for the 

classifier to pick up meaningful patterns, and to compare outcomes from multiple cross-

validation settings in order to obtain meaningful accuracy estimates.  

 

The proposed recursive feature elimination approach with weight averaging can be used both 

in single- and multi-centre data sets in order to bridge the gap between group-level 

comparisons and predicting outcomes for individual patients. It could also be used for 

automated biomarker selection in various applications as it is not limited to the types of 

features in this study but could in fact use any sort of information such as genetic or 

neuropsychological data. 

 

Acknowledgements 

 

This project received funding from the European Union’s Horizon 2020 Research and 

Innovation Program EuroPOND under grant agreement number 666992, and it was supported 

by the National Institute for Health Research University College London Hospitals 

Biomedical Research Centre. We thank all participating partners of the MAGNIMS study 

group for sharing their data with us. 

 

 

Declaration of interests 

The authors declare no potential conflicts of interest with respect to the research, authorship, 

or publication of this article. 

 

  

                  



References 

1.  Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 
2012;11(2):157-169. doi:10.1016/S1474-4422(11)70274-5 

2.  Tintore M, Rovira À, Río J, et al. Defining high, medium and low impact prognostic 
factors for developing multiple sclerosis. Brain. 2015;138(7):1863-1874. 
doi:10.1093/brain/awv105 

3.  Weygandt M, Hackmack K, Pfüller C, et al. MRI pattern recognition in multiple 
sclerosis normal-appearing brain areas. Kleinschnitz C, ed. PLoS One. 
2011;6(6):e21138. doi:10.1371/journal.pone.0021138 

4.  Bendfeldt K, Klöppel S, Nichols TE, et al. Multivariate pattern classification of gray 
matter pathology in multiple sclerosis. Neuroimage. 2012;60(1):400-408. 
doi:10.1016/j.neuroimage.2011.12.070 

5.  Wottschel V, Alexander DC, Kwok PP, et al. Predicting outcome in clinically isolated 
syndrome using machine learning. NeuroImage Clin. 2015;7:281-287. 
doi:10.1016/j.nicl.2014.11.021 

6.  Muthuraman M, Fleischer V, Kolber P, Luessi F, Zipp F, Groppa S. Structural Brain 
Network Characteristics Can Differentiate CIS from Early RRMS. Front Neurosci. 
2016;10:14. doi:10.3389/fnins.2016.00014 

7.  Bendfeldt K, Taschler B, Gaetano L, et al. MRI-based prediction of conversion from 
clinically isolated syndrome to clinically definite multiple sclerosis using SVM and 
lesion geometry. Brain Imaging Behav. August 2018:1-14. doi:10.1007/s11682-018-
9942-9 

8.  Klöppel S, Stonnington CM, Chu C, et al. Automatic classification of MR scans in 
Alzheimer’s disease. Brain. 2008;131(Pt 3):681-689. doi:10.1093/brain/awm319 

9.  Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans 
Med Imaging. 2010;29(6):1310-1320. doi:10.1109/TMI.2010.2046908 

10.  Prados F, Cardoso MJ, Kanber B, et al. A multi-time-point modality-agnostic patch-
based method for lesion filling in multiple sclerosis. Neuroimage. 2016;139:376-384. 
doi:10.1016/j.neuroimage.2016.06.053 

11.  Modat M, Ridgway GR, Taylor ZA, et al. Fast free-form deformation using graphics 
processing units. Comput Methods Programs Biomed. 2010;98(3):278-284. 
http://www.sciencedirect.com/science/article/pii/S0169260709002533. Accessed 
December 3, 2013. 

12.  Cardoso M, Wolz R, Modat M. Geodesic information flows. …  Image Comput  …. 
2012. http://link.springer.com/chapter/10.1007/978-3-642-33418-4_33. Accessed 
April 30, 2015. 

13.  Klein A, Tourville J. 101 Labeled Brain Images and a Consistent Human Cortical 
Labeling Protocol. Front Neurosci. 2012;6:171. doi:10.3389/fnins.2012.00171 

14.  Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F. A 
review of microarray datasets and applied feature selection methods. Inf Sci (Ny). 
2014;282:111-135. doi:10.1016/J.INS.2014.05.042 

15.  Das SR, Avants BB, Grossman M, Gee JC. Registration based cortical thickness 
measurement. Neuroimage. 2009;45(3):867-879. 
doi:10.1016/j.neuroimage.2008.12.016 

16.  Tustison NJ, Cook PA, Klein A, et al. Large-scale evaluation of ANTs and FreeSurfer 

                  



cortical thickness measurements. Neuroimage. 2014;99:166-179. 
doi:10.1016/j.neuroimage.2014.05.044 

17.  Juszczak P, Tax DMJ, Duin RPW. Feature scaling in support vector data description. In: 
Proc. 8th Annu. Conf. Adv. School Comput. Imaging. ; 2005:95. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.2524. Accessed 
August 22, 2016. 

18.  Anand A, Pugalenthi G, Fogel GB, Suganthan PN. An approach for classification of 
highly imbalanced data using weighting and undersampling. Amino Acids. 
2010;39(5):1385-1391. doi:10.1007/s00726-010-0595-2 

19.  Geisser S. Predictive Inference. 
20.  Kohavi R. A Study of Cross-validation and Bootstrap for Accuracy Estimation and 

Model Selection. In: Proceedings of the 14th International Joint Conference on 
Artificial Intelligence - Volume 2. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc.; 1995:1137-1143. 
http://dl.acm.org/citation.cfm?id=1643031.1643047. 

21.  Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat 
Surv. 2010;4(0):40-79. doi:10.1214/09-SS054 

22.  Wottschel V, Ciccarelli O, Chard DT, Miller DH, Alexander DC. Prediction of Second 
Neurological Attack in Patients with Clinically Isolated Syndrome Using Support 
Vector Machines. In: 2013 International Workshop on Pattern Recognition in 
Neuroimaging. IEEE; 2013:82-85. doi:10.1109/PRNI.2013.30 

23.  Popescu V, Agosta F, Hulst HE, et al. Brain atrophy and lesion load predict long term 
disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(10):1082-1091. 
doi:10.1136/jnnp-2012-304094 

24.  Kearney H, Altmann DR, Samson RS, et al. Cervical cord lesion load is associated with 
disability independently from atrophy in MS. Neurology. 2015;84(4):367-373. 
doi:10.1212/WNL.0000000000001186 

25.  Filippi M. Magnetic resonance imaging findings predicting subsequent disease course 
in patients at presentation with clinically isolated syndromes suggestive of multiple 
sclerosis. Neurol Sci. 2001;22(8):S49-S51. doi:10.1007/s100720100033 

26.  Batista S, Zivadinov R, Hoogs M, et al. Basal ganglia, thalamus and neocortical atrophy 
predicting slowed cognitive processing in multiple sclerosis. J Neurol. 
2012;259(1):139-146. doi:10.1007/s00415-011-6147-1 

27.  Eshaghi A, Prados F, Brownlee WJ, et al. Deep gray matter volume loss drives 
disability worsening in multiple sclerosis. Ann Neurol. 2018;83(2):210-222. 
doi:10.1002/ana.25145 

28.  Calabrese M, Rinaldi F, Mattisi I, et al. The predictive value of gray matter atrophy in 
clinically isolated syndromes. Neurology. 2011;77(3):257-263. 
doi:10.1212/WNL.0b013e318220abd4 

29.  Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated 
syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, 
diagnosis, and prognosis. Lancet Neurol. 2005;4(5):281-288. doi:10.1016/S1474-
4422(05)70071-5 

30.  Audoin B, Zaaraoui W, Reuter F, et al. Atrophy mainly affects the limbic system and 
the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg 
Psychiatry. 2010;81(6):690-695. doi:10.1136/jnnp.2009.188748 

31.  Filippi M, Rocca MA, Calabrese M, et al. Intracortical lesions: Relevance for new MRI 

                  



diagnostic criteria for multiple sclerosis. Neurology. 2010;75(22):1988-1994. 
doi:10.1212/WNL.0b013e3181ff96f6 

32.  Kelly MA, Cavan DA, Penny MA, et al. The influence of HLA-DR and -DQ alleles on 
progression to multiple sclerosis following a clinically isolated syndrome. Hum 
Immunol. 1993;37(3):185-191. doi:10.1016/0198-8859(93)90184-3 

33.  Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268-
277. doi:10.1016/S1474-4422(08)70042-5 

 

  

                  



Tables 
 

Table 1: Patient demographic and clinical characteristics per each MAGNIMS centre. 

 Barcelona Copenhagen Graz London Milan Siena All 

No. of 

patients 

175 24 47 72 35 47 400 

Age [y] 31.9 

(16-50) 

36.6 

(24-54) 

33.8 

(21-50) 

34.2 

(19-49) 

29.5 

(20-43) 

32.3 

(20-54) 

32.7 

Sex 124F/51M 14F/10M 34F/13M 44F/28M 24F/11M 25F/22M 265F/ 

135M 

Median 

EDSS 

(range) 

2 (0-6) 3.75 (1-5) 1 (0-3.5) 1 (0-8) 2 (0-6) 1.5 (0-2) 2 (0-8) 

Median 

global 

lesion 

load 

(range) 

[mm
3
] 

1299  

(14-

25220) 

461 

(23-3270) 

82875 

(6630-

779726) 

849 

(29-

25581) 

1511 

(38-

19383) 

1868 

(77-

22796) 

1597 

(14-

779726) 

Convert

ers to 

CDMS 

at 1y 

follow-

up 

19.4% 25% 23.4% 30.6% 22.9% 21.3% 22.8% 

Type of 

CIS 

onset 

(brainst

em / 

optic 

nerve / 

spinal 

cord / 

other) 

52/45/48/3

0 

0/24/0/0 10/15/10

/12 

6/62/4/0 10/10/3/

12 

10/8/17/

12 

88/164/8

2/66 

 

 

  

                  



Table 2: Results for single centres using 2-fold cross-validation. 

 Accuracy (95% CI) 

[%] 

Sensitivity 

[%] 

Specificity [%] 

Individual data set 

Barcelona (B) 64.9 (64.5-65.3) 
 

63.7  66.1 

Copenhagen (C)  88.1 (87.4-88.8) 79.4 96.8 

Graz (G) 74.3 (73.7-75.0) 63.8 84.9 

London (L) 75.8 (75.3-76.3) 74.3 77.3 

Milan (M) 88.1 (87.5-88.7) 79.4 96.8 

Siena (S) 82.9 (82.3-83.4) 68.9 96.8 

Combinations of data sets (first letter of sites) 

BCGLMS 64.8 (64.6-65.1) 64.1 65.6 

BLMS 65.2 (64.9-65.4) 64.0 66.4 

BLM 66.9 (66.6-67.2) 66.4 67.4 

 

Table 3: Results for single centres using 5-fold cross-validation. 

 Accuracy (95% CI) 

[%] 

Sensitivity 

[%] 

Specificity [%] 

Individual data set 

Barcelona (B) 68.9 (68.5-69.3) 

 

66.9 70.9 

Copenhagen (C) 91.3 (90.8-91.8) 83.3 99.4 

Graz (G) 77.8 (77.3-78.4) 63.1 92.6 

London (L) 88.0 (87.7-88.3) 87.4 88.6 

Milan (M) 91.5 (91.1-91.9) 84.0 99.1 

Siena (S) 83.7 (83.2-84.2) 70.2 97.2 

Combinations of data sets (first letter of sites) 

BCGLMS 68.5 (68.3-68.7) 67.8 69.3 

BLMS 70.4 (70.1-70.6) 69.9 70.85 

BLM 69.8 (69.5-70.1) 69.7 69.9 

 

  

                  



Table 4: Results for single centres using 10-fold cross-validation (note that centres C and M 
had less than 10 converters and thus could not be used for 10-fold CV). 

 Accuracy (95% CI) 

[%] 

Sensitivity 

[%] 

Specificity [%] 

Individual data set 

Barcelona (B) 70.6 (70.2-71.0) 70.0 71.2 

Copenhagen (C) NA NA NA 

Graz (G) 79.1 (78.5-79.7) 67.9 90.3 

London (L) 90.6 (90.3-90.9) 88.9 92.2 

Milan (M) NA NA NA 

Siena (S) 85.5 (85.0-86.0) 73.0 98.1 

Combinations of data sets (first letter of sites) 

BCGLMS NA NA NA 

BLMS NA NA NA 

BLM NA NA NA 

 

 

Table 5: Results for single centres using leave-one-out cross-validation. 

 Accuracy (95% CI) 

[%] 

Sensitivity 

[%] 

Specificity [%] 

Individual data set 

Barcelona (B) 73.0 (72.6-73.3) 72.6 73.3 

Copenhagen (C) 92.9 (92.4-93.3) 86.0 99.7 

Graz (G) 82.8 (82.2-83.3) 71.2 94.2 

London (L) 91.3 (91.0-91.6) 91.6 91.0 

Milan (M) 92.0 (91.6-92.4) 84.4 99.6 

Siena (S) 87.2 (86.7-87.7) 75.8 98.6 

Combinations of data sets (first letter of sites) 

BCGLMS 70.8 (70.6-71.0) 70.3 71.3 

BLMS 73.3 (73.0-73.5) 73.2 73.3 

BLM 73.2 (72.9-73.4) 73.5 72.8 

 

  

                  



Figures 
 

 

Figure 1: Illustration of the Neuromorphometrics atlas used for brain parcellation in this 
study. 

 

 

Figure 2: Accuracy estimates achieved at different iterations of the recursive feature 
selection when using all centres’ data sets combined together (BCGLMS)). The accuracy 
estimates increase with the first steps of the RFE, and the accuracy estimates generally 
increase with the number of folds. The shaded areas indicate 95% confidence intervals over 
1000 bootstraps. 

 

                  



 
Figure 3: Accuracy estimates per centre or combination of centres for each cross-validation 
method. Corresponding values for confidence intervals, sensitivity and specificity can be 
found in tables 2-5. 

                  



 

 
Figure 4: Top: bar chart of the proportion of converters in the cohort. Bottom: estimated 
classification accuracy relative to the size of the minority class. There is a general increase of 
estimated accuracy with a decrease in sample size. The subscript M and S indicate multi-
centre and single-centre data sets respectively. 

  

                  



 

Figure 5: Location of features relevant to the prediction of CIS conversion at 1-year follow-
up. The colours represent A: GM probability (red), B:  regional volume sizes (blue) and C: 
cortical thickness (green) respectively. Please note that white matter lesion load across the 
whole brain was also selected but is not shown here for clarity. Type of CIS onset was 
selected as the only non-imaging feature. A full list of features can be found in the 
supplementary material. 
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