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The quantum random energy model provides a mean-field description of the equilibrium spin glass
transition. We show that it further exhibits a many-body localization–delocalization (MBLD) transition
when viewed as a closed quantum system. The mean-field structure of the model allows an analytically
tractable description of the MBLD transition using the forward-scattering approximation and replica
techniques. The predictions are in good agreement with the numerics. The MBLD transition lies at energy
density significantly above the equilibrium spin glass transition, indicating that the closed system dynamics
freezes well outside of the traditional glass phase. We also observe that the structure of the eigenstates at the
MBLD critical point changes continuously with the energy density, raising the possibility of a family of
critical theories for the MBLD transition.
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Introduction.—Equilibrium statistical mechanics applied
to closed dynamical systems relies on the assumption of
ergodicity. Until recently it was believed that even weak
interaction between the elementary constituents of matter
guarantees ergodicity. A notable counterexample was
provided by the seminal work [1] where the authors showed
that, for systems with quenched disorder, Anderson locali-
zation of noninteracting particles [2] can persist in the
presence of (sufficiently weak) interactions leading pre-
cisely to the failure of ergodicity. The recent development
of well-isolated experimental quantum many-body systems
has spurred a great deal of numerical and theoretical work
suggesting that many-body localization (MBL) is, indeed, a
robust, universal phenomenon: it exists in any spatial
dimension, for both bosons and fermions, and for generic
short-range interactions [3–22]. The MBL phase is char-
acterized by the complete absence of transport (e.g., of
particle, spin, and energy) and by the permanence of the
memory of the initial state in local observables for all time.
In this respect, the MBL phase may be viewed as the
quintessential quantum glass.
By changing the control parameters such as energy,

strength of interactions, or disorder, a MBL system can
transit into a delocalized phase, where transport is restored
and the predictions of equilibrium statistical mechanics
hold. In particular, the eigenstates satisfy the eigenstate
thermalization hypothesis (ETH) [23–25], exhibiting ther-
mal behavior for local observables. If the many-body
localization–delocalization (MBLD) transition is obtained
by changing just the energy of the state, all other param-
eters remaining the same, the critical energy density

separating the two phases is also referred to, borrowing
terminology from the theory of Anderson localization, as a
many-body mobility edge. When one passes from the
microcanonical to the canonical statistical description,
the mobility edge defines a critical temperature TMBL.
As MBL systems exhibit glassy dynamics, it is natural to

ask whether the statistical models familiar from the theory
of spin glasses [26] actually exhibit MBLD transitions
when endowed with quantum dynamics, and, in particular,
if one of the various mean-field models of spin glass may
provide an analytically tractable understanding of the
MBLD transition. In this Letter, we show that this is true
by studying the classical random energy model [27]
subjected to a transverse field Γ. Using a mixture of
numerical and analytical techniques, we find a MBLD
transition that does not coincide with the glass transition,
which was studied in previous works [28] (see also
Ref. [29]). Rather, the transition temperature lies strictly
above the previously studied replica-symmetry breaking
“equilibrium” phase transition, dividing the (classical)
paramagnetic phase into a paramagnet that is many-body
localized and an ergodic one as seen in Fig. 1.
To map out the MBLD transition as a function of energy

density and transverse field we first obtain the spectrum and
many-body eigenstates of the Hamiltonian by numerical
exact diagonalization. We use as diagnostics of the MBL
phase both the spectral statistics and the dynamics of local
observables [30] and we find that they agree quantitatively
in detecting two distinct phases: an ergodic and a MBL
phase, sharply separated by a mobility edge (we see no
evidence of a nonergodic delocalized phase [31]). Focusing
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on the critical region, we find that the properties of the
critical level statistics appear to vary continuously with
energy density (see Fig. 2). This raises the intriguing
possibility of a continuous family of dynamical critical
theories describing the MBLD transition in this model.
Analytical calculations are done in the forward-scattering
approximation, by studying the statistical properties of the
wave functions [32–39]. In particular we are able to see a
transition from a MBL phase to a phase where resonances
proliferate. This is the MBLD transition. The analytical and
numerical results are in very good agreement and can even
estimate finite-size corrections for the critical transverse
field based on the analytical calculations.
The Letter is organized as follows. We begin by

presenting the evidence for the MBL phase and the
MBLD transition based on the numerical results, following
which we introduce the forward scattering approximation
and discuss its analytical consequences in relation to the
numerics (additional details in the Supplemental Material
[40]). We conclude with a summary of the main results.
Thermodynamics.—The quantum random energy model

(QREM) is defined by the following Hamiltonian on N
Ising spins:

H ¼ Eðfσ̂zigÞ − Γ
XN

i¼1

σ̂xi ; ð1Þ

where the first “classical REM" term is a random operator,
diagonal in the σz basis, while Γ is a transverse field. The

2N diagonal energies EðfσzgÞ are independent identically
distributed. Gaussian random variables with distribution

PðEÞ ¼ 1ffiffiffiffiffiffiffi
πN

p e−ðE2=NÞ: ð2Þ

Although typical energies E from this distribution are of
order Oð ffiffiffiffi

N
p Þ, the full collection of 2N independent

energies produces an extensive spectrum. For instance,
the ground state energy density of the classical REM is
E0=N ¼ ϵ0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þp

with probability 1 (as N → ∞).
The thermal phase diagram at Γ ¼ 0 follows immediately
from the disorder averaged entropy function
sðϵÞ ¼ logð2Þ − ϵ2, as shown originally in Refs. [27,41].
The high temperature phase at T > Tc ¼ 1=2

ffiffiffiffiffiffiffiffiffiffi
log 2

p
has

the equilibrium properties of a classical paramagnet: no
order exists and exponentially many states contribute to the
partition function democratically. At Tc a first order phase
transition occurs into a “frozen” phase where an Oð1Þ
number of states around the ground state dominate the
partition function and the free energy density f ¼ ε0 is a
constant.
On increasing Γ, naive perturbation theory suggests that

the energy density of all eigenstates is unchanged.
Consequently, as is argued in Ref. [29], the free energy
density is also unperturbed and the two classical phases
extend to finite Γ with a horizontal phase boundary. For
sufficiently large Γ, however, the ground state is that of the

FIG. 1 (color online). (a) The canonical phase diagram of the
QREM in Γ-T plane. Dashed lines correspond to first order
thermodynamic transitions due to the crossing of free energies
found in the replica treatment. Solid line corresponds to the
MBLD transition at TMBL ¼ 1=2Γ. Red (blue) shaded region is
localized (ergodic). (b) The microcanonical phase diagram in the
Γ-ϵ plane. Shaded regions correspond to support of many-body
spectrum. Blue dots are an estimate of the transition from finite-
size crossing points of ½r� at fixed Γ.

FIG. 2 (color online). (a) Critical value of level spacing ratio rc
as a function of ϵc parametrizing the phase boundary. rc is
estimated from the N-independent crossing point of ½r� as shown
in the inset. Inset: finite-size crossovers of mean level gap ratio ½r�
as a function of energy density ϵ at fixed transverse field Γ ¼ 0.25
at sizesN ¼ 8; 10; 12; 14. (b) Finite-size crossovers of mean level
gap ratio ½r� as a function of rescaled transverse field Γ

ffiffiffiffi
N

p
logN

at zero energy. The solid vertical line gives the finite-size estimate
of Γc from Eq. (6). The horizontal dashed line at ½r� ¼ 0.38 (0.53)
indicates the expected value for Poisson (GOE) level statistics.
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transverse field term jQPMi ¼ j → � � � →i. Comparing the
energy density −Γ of this state to ϵ0 identifies a first order
zero temperature quantum phase transition at Γc ¼

ffiffiffiffiffiffiffiffiffiffi
log 2

p
into the quantum paramagnet. A more detailed treatment
[28] shows that this first order transition extends to infinite
temperature, as does the quantum paramagnetic phase. The
full thermodynamic phase diagram of the QREM is shown
in Fig. 1; the different thermodynamic phases are separated
by dashed blue lines.
Quantum dynamics.—In this section we show how the

QREM exhibits a MBLD transition consistent with the
curve ϵ ¼ �Γ in the microcanonical ensemble. Namely,
the eigenstates with energy density jϵj > Γ are MBL, while
if jϵj < Γ they appear to satisfy the ETH.
First, we provide a heuristic explanation of this behavior.

In the large Γ limit, where the spins are either aligned or
antialigned with the transverse field, the spectrum separates
into highly degenerate bands. The random energy term
behaves as a perturbative random matrix in each of these
bands giving rise to Gaussian orthogonal ensemble (GOE)
level statistics. Thus, the quantum paramagnet is always
thermal and the eigenstates satisfy the ETH; numerics
shows that all the eigenstates within the energy window�Γ
are dominated by this extended behavior even on the
classical side of the first order thermodynamic transition
between the quantum and classical paramagnets. We will
return to the analytic treatment, which leads to the same
conclusion.
Approaching from the delocalized side, and going from

the microcanonical to the canonical ensemble allows us to
define a critical temperature TMBL ¼ 1=2Γ, corresponding
to the energy density ϵ ¼ �Γ inside the classical para-
magnetic phase. That is, the system fails to thermalize
throughout the low energy density regime (shaded red), and
equilibrium statistical mechanics fails at temperatures well
above the canonical spin glass transition Tc.
Numerically, we adduce several pieces of evidence in

support of the conjecture that this curve corresponds to the
MBLD transition. These include transitions in the many-
body level statistics (Fig. 2) and the presence of frozen local
observables (Fig. 3). All of these have been calculated
within full exact diagonalization of systems with sizes
N ¼ 8; 10; 12; 14withNs ≈ 104–102 samples per Γ and per
system size. The statistics of gaps between many-body
energies provide perhaps the simplest diagnostic. We
expect the delocalized phase to exhibit level repulsion
following GOE random matrix theory while the MBL
phase should exhibit Poisson statistics [3]. These two
regimes may be distinguished by using the level-spacing
ratio rαn ¼ min fδαn; δαnþ1g=max fδαn; δαnþ1g, where δαn ¼
Eα
n − Eα

n−1 is the nth gap between adjacent energy levels
in a given sample α. Taking the average over disorder and
within narrow energy windows defines the mean level
statistic ½r�, which is ≃0.39 for Poisson statistics or ≃0.53
for GOE statistics.

The inset of Fig. 2(a) shows a typical example of the
finite-size crossover of ½r� as a function of ϵ at Γ ¼ 0.25.
The crossing point gives the critical energy density at which
the eigenstates become delocalized, and it is the extracted
values of these critical energies that are plotted in the
phase diagram of Fig. 1(b). At ϵ ¼ 0 (infinite temperature),
the ½r� curves for different N as a function of Γ do not cross
[Fig. 2(b)]. Rather, the jump from Poisson to GOE level
statistics becomes steeper and moves to smaller Γ values as
N infinite temperature eigenstates are delocalized for
arbitrarily small Γ in the thermodynamic limit but that
the finite size flow of ΓMBLðNÞ is slow, in quantitative
agreement with analytic estimates below. Finally, we note
the continuous variation of the critical value of the crossing
point rc along the critical boundary [Fig. 2(a)]. This
variation suggests there may be a continuum of critical
theories on the mobility edge.
The mean-field nature of the QREM complicates the

study of local observables. The random energy function
EðfσzgÞ is highly nonlocal; indeed, typical spin configu-
rations differing by Oð1Þ spin flips are Oð ffiffiffiffi

N
p Þ distant in

energies. The transverse field term, on the other hand, is
made up of a sum of local operators. Therefore, the model
retains a notion of locality as reflected in the commutators:

j½H; σzi �j ¼ Γ ∼Oð1Þ; j½H; σxi �j ∼OðNÞ: ð3Þ

Thus, we expect on-site σz magnetization to behave as a
local observable while σx does not. In an ergodic phase
satisfying the ETH, local observables evaluated in eigen-
states of the Hamiltonian are smooth functions of the
energy density Mn ¼ hnjσz0jni ≈MðϵnÞ so that the differ-
ence in expectation values between two adjacent

FIG. 3 (color online). (a) Density plot of PðδMnÞ as a function
of energy density ϵ at Γ ≈ 0.28. Vertical line cuts are histograms
across disorder and within narrow energy density windows.
(b) Finite-size crossover of variance of δMn as a function of
energy density.
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eigenstates, δMn ¼ Mn −Mn−1 ≈M0ðϵnÞe−NsðϵnÞ, decays
exponentially with N where sðϵnÞ is the entropy density
of the states in the microcanonical energy shell. In the MBL
regime, on the contrary, the magnetization varies by Oð1Þ
between adjacent eigenstates.
These features are reflected clearly in the “spider

diagram” of Fig. 3(a), whose intensity shows the histogram
of magnetization jumps PðδMnÞ as a function of energy
density ϵ at size N ¼ 14, Γ ¼ 0.28. Near zero energy
density (infinite temperature), the body of the spider
reflects the peak near zero of PðδMnÞ in the ergodic phase
while the legs reflect the glassy freezing of Mn ≈�1 in
adjacent MBL eigenstates. The variance of the distribution
of δMn shows finite-size scaling behavior, which can also
be used to estimate the critical energy density [Fig. 3(b)]. In
the ergodic phase ½ðδMnÞ2�c → 0 while in the localized
phase it tends to 2 as shown in Fig. 3(b). The crossing, after
finite-size scaling is performed can be used to locate the
MBLD transition. The location of the MBLD transition
detected by ½r� and ½ðδMnÞ2� agree within error bars.
Perturbation theory and the structure of the wave

functions.—For small Γ, it is useful to think of the
Hamiltonian (1) as defining a single-particle Anderson
localization problem on the N-dimensional hypercube
defined by the σz basis states. In this picture, the
EðfσzgÞ term is a random chemical potential on the vertices
of the hypercube while the transverse field hops between
adjacent vertices. The localization problem on the hyper-
cube shares certain facets with that of a Bethe lattice with a
high branching number, but the hypercube possesses many
short loops, which are absent in the Bethe lattice. In the
MBL phase, the eigenstates remain close to an unperturbed
σz configuration (its localization center), while the MBLD
transition is signaled by the proliferation of resonances
at a large Hamming distance from the localization
center [36,37].
To leading order in Γ, the amplitude for a wave function

concentrated on a spin configuration a at Γ ¼ 0 to reach spin
configuration b at distance n-spin flips away is given by

ψb ≃ Γn
X

p∈Πn

Y

i∈p

1

Ea − Ei
; ð4Þ

where p runs over the n! shortest paths Πn from a to b.
These span a small hypercube of diameter n, which contains
all the sites in between a and b. The forward scattering
approximation [32–36,38,39] consists in taking this leading
order expression to define the amplitude at any given site b,
thus neglecting higher order corrections from longer
(loopy) paths.
Consider the case of a finite temperature initial state in

which Ea ¼ −ϵN, ϵ > 0. In this case, the M ¼ P
n
j¼1ðNj Þ

vertices within a distance n of a have energy in the range
�E� ¼ ffiffiffiffi

N
p ffiffiffiffiffiffiffiffiffi

lnM
p

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p
≪ Nϵ and thus the weights

on all sites are typically of order wi ¼ ðΓ=NϵÞ þOðN−2Þ.

Therefore, these amplitudes sum coherently over the n!
paths leading to the given vertex b giving ψb ≃ n!ðΓ=NϵÞn.
This approximation neglects the small denominators,
which, for n ¼ OðNÞ, start to appear, so we expect it to
provide an underestimate of the probability of having a
resonance ψb ∼ 1. Nonetheless, we already find that for
n > n� ¼ Neϵ=Γ, the wave function at site b is ∼1.
Requiring that the wave function be small throughout the

hypercube (n� ¼ N), we find ΓMBL ≤ eϵ. A more careful
treatment of the probability of resonance at the (nþ 1)th
step, given that the first n steps are nonresonant [36] (see
the Supplemental Material [40]), gives a better estimate of
the critical field. For

Γ ≤ ΓMBL ≃ ϵþ
ffiffiffi
2

p
ϵ2 þ 4

3
ϵ3 þ � � � ð5Þ

the corresponding eigenstate will be many-body localized.
Within this perturbative argument, the first resonance arises
at distance n� ¼ Nð ffiffiffi

2
p

ϵ − 2ϵ2=3þ � � �Þ. Thus, as ϵ → 0
(infinite temperature) the first resonance approaches the
initial site a so that we need to treat the case of infinite
temperature more carefully.
Starting from an infinite temperature spin configuration

a (ϵ ¼ 0), the typical denominators are of order
ffiffiffiffi
N

p
, and

can become very small. The sum over paths from a to bwill
be dominated by only a small number of paths and
constructive interference is not important. Bounding the
probability of a rare resonance after n → N steps provides a
finite-size estimate of the maximal strength of the trans-
verse field ΓMBL for which the wave functions are localized
(see the Supplemental Material [40]). For largeN, one finds

ΓMBL ≃ ffiffiffi
π

p
=2e

ffiffiffiffi
N

p
lnðeNÞ; ð6Þ

which tends to zero when N → ∞. The scaling is in good
agreement with the finite size flow of the numerics in
Fig. 2(b).
Perturbation theory also suggests that the nature of the

MBL eigenstates, including those at criticality, varies
strongly with ϵ. For ϵ > 0, the resonances occur every n� ∼
N

ffiffiffi
2

p
ϵ hops. The critical states are therefore isotropic for

large patches until a resonance is encountered. The overlap
between neighboring energy eigenstates is large and as an
effect of this we expect rc to increase as we move away
from the center of the spectrum, in qualitative agreement
with Fig. 2(a). A systematic study of this quantity and the
form of Chalker’s scaling [42] at criticality is left for future
work. In the opposite limit, as ϵ → 0, close resonances
proliferate, the wave functions are extremely irregular, and
the critical statistics approach the Poisson value (similarly
to the Bethe lattice Anderson model [39,43]). Also this is
seen in Fig. 2(a). A similar structure of MBL wave
functions is observed in other systems [44,45].
The statistical properties of the wave functions can also

be studied using the replica method, which provides
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complementary understanding [26,35,46]. Leaving the
details to the Supplementary Material [40], we find that
the ϵ ¼ 0, infinite temperature situation is in a one-step
replica-symmetry breaking phase with a critical value of the
field ΓMBL whose scaling is consistent with the direct
analysis of Eq. (6).
Conclusions—We have presented evidence, both

numerical and analytical, for a MBLD transition to occur
in the QREM independent of the equilibrium glass tran-
sition observed in the thermodynamics [28,29]. The QREM
provides an analytically tractable mean-field type model for
the MBLD transition. Its local magnetization and level
statistics behave in accordance with the expectations of
MBL and ETH phenomenology. The wave functions and
level spacing statistics at criticality change their properties
as the energy density changes along the MBLD phase
boundary, suggesting the existence of a continuous family
of critical theories.
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