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The random energy model (REM) provides a solvable mean-field description of the equilibrium spin-glass
transition. Its quantum sibling (the QREM), obtained by adding a transverse field to the REM, has similar
properties and shows a spin-glass phase for sufficiently small transverse field and temperature. In a recent
work, some of us have shown that the QREM further exhibits a many-body localization-delocalization (MBLD)
transition when viewed as a closed quantum system, evolving according to the quantum dynamics. This phase
encloses the familiar equilibrium spin-glass phase. In this paper, we study in detail the MBLD transition within
the forward-scattering approximation and replica techniques. The predictions for the transition line are in good
agreement with the exact diagonalization numerics. We also observe that the structure of the eigenstates at the
MBLD critical point changes continuously with the energy density, raising the possibility of a family of critical
theories for the MBLD transition.
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I. INTRODUCTION

Experiments on few-atom systems show striking contradic-
tions with the extension of classical laws to arbitrarily small
distances and energies. Quantum mechanics has proven to be
a successful theory for the dynamics of these microscopic
systems. Further developments make clear that quantum
effects are also important for macroscopic systems, although
typically at low temperature or high density.

On the other hand, at sufficiently high temperature or
low density, the semiclassical principle appears to state that
quantum and classical dynamics yield the same results for
most measurable quantities. It is then interesting to examine the
cases in which this reconciliation does not occur. Disordered
systems make a particularly interesting playground. Noninter-
acting particles in a disordered potential can exhibit Anderson
localization [1]: the gas’ diffusion coefficient(s) are completely
suppressed, even in a regime where the classical dynamics
remains diffusive. This difference is so spectacular that in low
dimensions the dynamics at all energy scales supported by the
system is localized. Here, the classical description is never, not
even qualitatively, accurate.

Whether Anderson localization survives the introduction
of interactions between particles or not has been a subject of
debate since the beginning of the field [2,3]. Yet, in the last
decade, the work generated by the seminal paper of Basko,
Aleiner, and Altshuler [4] on interacting, disordered systems
has shed considerable light on the issue [5–7].

It is now clear that a sufficiently small interaction is for
many purposes irrelevant (one exception being entanglement
[8,9]). The system behaves as if the single-particle occupation
numbers are “perturbatively dressed” into the interacting phase
[10–14]. Excitations in the “many-body localized” (MBL)
regime are localized, transport is suppressed, and the dynamics

*Corresponding author: clb37@uw.edu

is not thermalizing. For some spin chains, researchers have
even been able to pinpoint a transition between an MBL
region and an ergodic region [7,15–19]. The properties of
this transition are not well understood. A few elementary
constraints have been imposed [20,21] and similarities with
infinite randomness fixed points have been found in one-
dimensional studies [7,22,23]. Like the Anderson transition,
this is not a usual thermodynamic phase transition but rather a
dynamical phase transition. There is no local order parameter
in terms of which to write a Landau-Ginzburg free energy
density. The transition itself is the breakdown of the hypothesis
under which one derives the statistical description from the
underlying microscopic equations of motion. Consequently,
this transition can be observed even at infinite temperature.

An even more recent line of research studies how ergodicity
breaking in the quantum dynamics compares to that of more
canonical (classical and quantum) glassy phases. Since MBL
is easily observed in spin chains with quenched disorder (and
also a phase more akin to configurational glasses has been
conjectured [24–27]), it is natural to look for MBL in spin
glasses.

With this in mind, some of us have recently looked [28] at
a quantum version of Derrida’s random energy model (REM)
[29], which is a simplified model of mean-field spin glass.
The quantum model’s equilibrium phase diagram has been
studied before [30] and a glassy phase was identified at low
temperature and small transverse magnetic field.1

In Ref. [28] it was found that the quantum dynamics
is ergodic for high temperatures and large transverse field,
but ergodicity breaks down upon lowering the temperature

1A similar phase diagram is found in more realistic, still mean-field
quantum spin glasses [52]. This should be generic for a large family of
models, including combinatorial optimization problems in quantum
annealers [33].
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and the transverse field. The ergodicity-broken phase, which
we identify as the MBL phase, encompasses the glassy
region. Therefore, the quantum dynamics becomes nonergodic
before the glassy phase sets in, disentangling the concept of
ergodicity breaking from that of replica symmetry breaking
in these quantum models. A qualitatively similar observation
was recently made by studying Rokhsar-Kivelson–type wave
functions derived from the REM [31]. However, on further
thought, what is really surprising is that there is an ergodic
phase for the simple transverse-field quantum dynamics: an
exponentially small fraction of states are at finite temperature
and, thus, since spin configurations are uncorrelated with their
energies, the transverse field couples finite-temperature states
to ones with an O(N ) energy difference. One might expect
every finite-temperature state to be dynamically frozen, yet
that is incorrect. This observation is relevant for the science
of quantum annealers, for which the MBL phase could be a
significant stumbling stone [32,33].

In this paper, we analyze in much more detail the MBL
phase of the QREM and the transition between the ergodic
and MBL phases. We also study in detail the application of the
forward-scattering approximation (FSA) in the MBL phase.
We find that the localized phase is consistently distinct from
the ergodic phase in its level-spacing statistics, observables,
and eigenstate structure. Naive perturbation theory cannot
accurately characterize the MBL phase, but by carefully han-
dling near degeneracies in the FSA, we quantitatively describe
both the localized eigenstates and the phase boundary within
perturbation theory. We accomplish this using a combination
of simple approximations, numerics, and a replica treatment
of the forward-scattering wave functions.

The QREM is the first model in which a many-body
mobility edge was clearly observed in the numerics accompa-
nied by an analytical prediction within the forward-scattering
approximation. It is an ideal test bed to discuss the properties
of the mobility edge. One of the things that we observe
numerically is that the critical statistics of the eigenvalues
changes continuously along the mobility edge. This could
very well be a finite-size effect, but note the analogy with the
critical properties of mean-field spin glasses [34,35], which
also change continuously with lowering the temperature.

As a final remark, we notice that on lowering the transverse
field the mobility edge shifts to higher temperatures. Fur-
thermore, a mobility edge opens up even for an infinitesimal
transverse field, in contrast to the situation in one-dimensional
systems, where the MBL phase at infinite temperature is stable
up to a finite value of the interaction. This is most probably a
special feature of the infinite dimensionality of the QREM.

We have organized this paper as follows: Section II summa-
rizes our physical picture of the QREM’s isolated dynamics, as
compared to the existing equilibrium description. Section III
gives the necessary details on our exact-diagonalization proce-
dure and results. Section IV briefly describes the shortcomings
of blindly applying perturbation theory to the QREM and
motivates Sec. V, in which we examine the perturbation
theory more systematically and successfully. Section VI
briefly shows the extent to which similar analytic techniques
give information on the complementary limit of large trans-
verse field. Finally, Sec. VII summarizes and concludes the
paper.

II. PHENOMENA

The quantum random energy model (QREM) for N spin- 1
2 ’s

is defined by

H = H0
({

σ̂ z
i

}) − �

N∑
i=1

σ̂ x
i . (1)

Here, � is the transverse field, and H0({σ̂ z
i }) is a random

operator diagonal in the {σ̂ z
i } basis, with the diagonal entries

identically and independently distributed according to

P (E0) = 1√
πN

e− E2
0

N . (2)

With this normalization, the spectrum of H0 is with high
probability contained in [−N

√
ln 2, + N

√
ln 2]. We note

that throughout the paper, capitalized E represents extensive
energy and ε = E/N the corresponding energy density.

A. Equilibrium phase diagram

Goldschmidt [30] determined the canonical phase diagram
of the QREM by using the Suzuki-Trotter expansion and
replica trick [36]. This same technique has been applied to
many other mean-field quantum spin-glass models [37,38].
The results we give here are taken from Goldschmidt’s paper,
in which detailed derivations are found as well. See also Jörg
et al. [39] for a simple perturbative derivation of some parts of
the phase diagram.

The QREM has three equilibrium phases:
(i) REM paramagnet. The free energy density is

fREM = −T ln 2 − 1

4T
. (3)

This is equal to the free energy density of the classical REM
at temperature above

Tc ≡ 1

2
√

ln 2
. (4)

All thermodynamic quantities are identical to the zero-field
REM, in particular the energy density ε = − 1

2T
and the

entropy density s = ln 2 − ε2.
(ii) Quantum paramagnet. The free energy density is

fQ = −T ln 2 − T ln

(
cosh

�

T

)
. (5)

Note that this is the free energy density for noninteracting
spins in a field �. The REM term in the Hamiltonian
does not influence the equilibrium physics of this phase.
Thermodynamic properties such as the energy, entropy, and
magnetization density are given by the standard formulas.

(iii) Spin glass. The free energy density is simply

fSG = −
√

ln 2, (6)

identical to the classical REM. The system is frozen in its
ground state at ε0 = −√

ln 2, where there are O(1) states and
thus s = 0.

The transition lines between these phases are located where
the free energies are equal. The boundary between the REM
paramagnet and the spin glass is as in the classical model: the
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FIG. 1. The phase diagram of the QREM, in the �-ε plane (top)
and the �-T plane (bottom). The red shaded region contains localized
eigenstates and the blue shaded region contains ergodic eigenstates.
The green shaded regions indicate the numerically observed boundary
region: dark green circles from exact diagonalization (Sec. III), and
light green diamonds from the numerical FSA (Sec. V C). The black
dashed lines are the conjectured limiting boundaries of εc = ±�,
the green dashed lines are the analytic estimate of εc within the
single-resonance approximation (Sec. V B), and (bottom only) the
blue dashed lines indicate the thermodynamic phase boundaries as
predicted by canonical calculations [30].

system is paramagnetic for T > Tc and frozen in the spin-glass
phase for T < Tc [Tc given by Eq. (4)]. The system undergoes
a first-order transition to the quantum paramagnet when �

increases past �c, where �c is defined for T > Tc by fREM =
fQ and for T < Tc by fSG = fQ. The blue dashed lines of
Fig. 1(b) mark these boundaries. In particular, note that �c at
T = 0 is the field strength at which the ground-state energy
of the quantum paramagnet matches the ground state of the
classical REM.

The essence of the canonical phase diagram is that the
system makes a first-order transition between “REM” physics
and “quantum paramagnet” physics. REM physics results from
an otherwise structureless system freezing into an intensive
number of configurations at nonzero temperature. Quantum
paramagnet physics is that of noninteracting spins in a
magnetic field. The QREM does not compromise between
these two regimes. It exhibits only one or the other, at least
thermodynamically.
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FIG. 2. Probability density function for the eigenstate single-spin
magnetization (y axis), for small bins over a range of energy densities
(x axis). Each vertical slice is a separate probability distribution.
These distributions are at � = 0.20 and N = 14, with energy density
windows δε = 0.02.

B. Dynamical phase diagram

When treated as an isolated system, the QREM has two
dynamical phases:

(1) Ergodic phase. Eigenstates satisfy the eigenstate ther-
malization hypothesis (ETH) [40,41]: expectation values of
local observables agree with the microcanonical ensemble,
which, here, is paramagnetic. Thus, 〈σ̂ z

i 〉 = 0 for all spins i.
Fluctuations in σ z

i are large but decay exponentially in time.
In addition, these eigenstates are delocalized in the following
sense: one can map a configuration of N spin- 1

2 ’s to a corner
of an N -dimensional hypercube by considering σ z

i = 1 (−1)
as the top (bottom) face of the cube’s ith dimension. The
QREM Hamiltonian is then an Anderson model on the corners
of this hypercube, with the spin configurations being “lattice
sites.” Ergodic eigenstates are delocalized over these sites.
The probability overlap between two ergodic states decays
exponentially with their energy difference, as observed in the
Anderson model [42].

(2) Many-body localized phase. Eigenstates are weakly
dressed single configurations of spins. Thus, 〈σ̂ z

i 〉 = ±1.
Fluctuations within an eigenstate are small (and decrease with
system size), but fluctuations between eigenstates over energy
and realization of disorder are order 1. These eigenstates are
Anderson localized on the hypercube. The probability overlap
between a pair of eigenstates decays as ω−2, where ω is the
energy difference of the two states. This is well described by
first-order perturbation theory.

A major focus of this work is to quantitatively locate
and characterize the boundary between these phases in the
�-ε plane (ε is eigenstate energy density). We define order
parameters with well-defined localized and ergodic limits for
each characteristic described above. See Figs. 2 and 3 for
examples and Sec. III for details. Since the states at +ε are
statistically equivalent to those at −ε, the phase boundary
must be symmetric about ε = 0. We focus on the negative-ε
portion, denoted εc(�). Numerical evidence and perturbation
theory each give constraints on εc(�). We show these, overlaid
on our conjectured phase diagram, in Fig. 1.

Our numerical results indicate a transition between two
phases and provide a lower bound for εc(�). The dark green

024202-3



BALDWIN, LAUMANN, PAL, AND SCARDICCHIO PHYSICAL REVIEW B 93, 024202 (2016)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

ε

0

20

40

60

80

t

0.0

0.2

0.4

0.6

0.8

1.0

[<
σ

z 1
(t

)σ
z 1
(0

)
>

C
]

FIG. 3. Eigenstate autocorrelation function 〈σ z
1 (t)σ z

1 (0)〉C [see
Eq. (13)] as a function of time (vertical axis) and eigenstate energy
density (horizontal axis). The vertical dashed lines indicate the
location of the MBLD transition as determined by the QREM’s
spectral statistics. These results are taken at � = 0.20 and N = 13
with energy bins δε = 0.02.

markers and shading in Fig. 1 indicate where order parame-
ters computed via exact diagonalization (Sec. III) transition
between the two limits. Similarly, the light green markers
and shading are the corresponding regions from a numerical
perturbation series in � (Sec. V C). The transitions sharpen as
N increases, and a finite-size scaling analysis indicates that
they become sharp in the thermodynamic limit. The energy
density around which the transitions sharpen is consistent
within numerical error amongst all order parameters. Thus,
we identify this energy density, once properly extrapolated to
infinite N , as εc(�). It is difficult to make the extrapolation
from accessible system sizes, and we observe a slight finite-
size drift in the transition towards smaller |ε| as N increases.
For this reason, the marked points in Fig. 1 are actually lower
bounds for εc(�).

Expanding the eigenstates perturbatively in � sets upper
bounds. A rough analytical treatment of the perturbation series
sets a clear upper bound for εc(�) at −�/e (Sec. V A).
Proceeding more carefully but still analytically (Sec. V B),
we obtain the green dashed curve in Fig. 1. This curve is still
only an upper bound on εc, but it behaves as −� at small �.

εc(�) lies between the green markers and the green dashed
curve in Fig. 1. In addition, we conjecture that the bound
εc � −� as � → 0 is tight, and conjecture that

εc(�) = −� (7)

for finite � as well. This is the black dashed line in Fig. 1. Jörg
et al. observed [39] that the QREM ground state undergoes
a quantum phase transition between the REM ground state
and | → · · · →〉 at � = −ε0 [ε0 given by Eq. (4)]. Our
conjecture for εc(�) implies that the dynamical phase boundary
is consistent with this result. It is consistent with all of our
numerical and analytical bounds as well.

The critical eigenstates, i.e., those with ε = εc(�), have
order-parameter values intermediate between the localized
and ergodic limits. We are able to fit the dimensionless order
parameters to a finite-size scaling ansatz y = yc + f [N

1
ν̃ (ε −

εc)] (y is the order parameter). The critical exponent

ν̃ = 0.4(1), independent of �. The critical amplitudes yc,
though, do depend on �. This could be due to finite-size
effects, but if not, the critical eigenstates are described by a
line of fixed points.

Finally, it is interesting to compare the QREM’s many-body
mobility edge to that of a transition between ensembles
of random matrix theory (RMT). In particular, the random
symmetric matrix Ĥ = Â + vĜ, where Â is a diagonal random
matrix whose elements are i.i.d. random variables of order
1 and Ĝ is a Gaussian random matrix, has been studied
extensively as a model for the crossover from Poisson to
Gaussian orthogonal ensemble (GOE) statistics. The extent to
which Ĥ exhibits Poisson versus GOE statistics is determined
by the ratio of Â’s mean level spacing, denoted s, to the typical
off-diagonal matrix elements. If Â has eigenvalues distributed
uniformly over a fixed interval, s ∼ 1/D for matrix dimension
D and thus the scale on which Ĥ ’s level statistics transition
from Poisson to GOE is v ∼ 1/D.

We, however, are interested in when Â’s eigenvalues are
distributed according to Eq. (2). The mean level spacing s is
well defined locally, but it depends on the local energy density
ε. In particular,

s(ε) ∼
√

Ne−N(ln 2−ε2). (8)

By setting v ∼ s(ε), we see a smooth interpolation from
Poisson to GOE statistics at the energy density ε. Yet, for
this choice of scaling for v, all other energy densities flow
exponentially fast towards one of the limiting statistics as N

increases. The phase boundary is horizontal in the v-ε plane.
This is in marked contrast to the QREM, where we find a
nontrivial εc(�). The locality of the transverse field in Eq. (1)
thus plays an important role in the physics of this transition.

III. EXACT DIAGONALIZATION

The most direct way to study the QREM is through
exact diagonalization. We generate between 200 and 20 000
realizations of the Hamiltonian in Eq. (1) for system sizes
ranging from N = 8 to 14 and � ranging from 0.10 to 0.40.
We obtain the entire spectrum and complete set of eigenstates
through full exact diagonalization. The eigenstates are then
binned according to energy density so as to study how average
properties depend on energy.

We use three types of averages, often simultaneously.
Quantum-mechanical averages within single eigenstates are
denoted by angular brackets 〈· · · 〉, averages among eigenstates
of a single sample within an energy density window are
denoted by a bar . . ., and averages between realizations of dis-
order are denoted by square brackets [. . . ]. Unless noted other-
wise, every quantity that we describe in this section is averaged
both within an energy density window and over disorder.

A. Spectral statistics

The most straightforward numerical approach to the
localization-delocalization transition is to study the statistical
properties of the spectra. Each spectrum can be split into two
regions: Wigner-Dyson statistics dominate the distribution of
energy levels for E close to 0, whereas Poisson statistics
dominate for E far from 0. From a random-matrix-theory
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perspective, Wigner-Dyson statistics govern the spectra of
matrices in which every element is an independent random
variable (strictly speaking, the Wigner-Dyson distribution
gives the probability of level spacings in GOE-distributed
matrices). Poisson statistics, on the other hand, describe the
energy gaps when the eigenvalues themselves are independent
and uniformly distributed. As is commonly done, we identify
Wigner-Dyson statistics with delocalized eigenstates and
Poisson statistics with localized eigenstates. We find that the
transition between these two is sharp in the thermodynamic
limit. Thus, we identify the large-|E| region as a localized
phase and the small-|E| region as a delocalized phase.

To be more quantitative, we use three measures of the
energy gap distribution. First, we calculate the level spacing
ratio [5]. We define

rn ≡ min

{
En+1 − En

En − En−1
,
En − En−1

En+1 − En

}
(9)

and consider the average [r]. [r] represents the degree of level
repulsion in the system: there is less variation in the separation
between energy levels, and thus a larger [r], when those levels
repel each other. The Poisson distribution, which corresponds
to independent energy levels, has [r] ≈ 0.39. Compare this
to the Wigner-Dyson distribution, for which level repulsion is
significant and [r] ≈ 0.53. The values of [r] that we obtain
from (1) lie between these two limits and tell us the strength
of level repulsion at the target energies. We in turn interpret
this as the degree of delocalization.

In addition to [r], we determine the cumulative distribution
function (CDF) of level spacings s. We characterize the CDF
by two quantities used in the literature [43]: I1 ≡ P (s <

0.473[s]), i.e., the fraction of spacings that are less than
(roughly) half the mean, and I2 ≡ P (s > 2.002[s]), i.e., the
fraction that are greater than twice the mean. Both these values
are much smaller in the Wigner-Dyson distribution than in
the Poisson distribution since level repulsion suppresses the
appearance both of packed and isolated eigenvalues. Thus, I1

and I2, like [r], quantify the degree of level repulsion, I1 by
examining the frequency of small gaps and I2 by examining
the frequency of large gaps. We present each as a deviation
from Wigner-Dyson statistics relative to that of the Poisson
distribution, i.e., we report

J1 ≡ I1 − I
(WD)
1

I
(P)
1 − I

(WD)
1

(10)

and

J2 ≡ I2 − I
(WD)
2

I
(P)
2 − I

(WD)
2

, (11)

where the superscript (WD) refers to Wigner-Dyson statistics
and the superscript (P) refers to Poisson statistics.

Figure 4 shows [r], J1, and J2 at various N as a function
of energy density ε (at � = 0.20, a representative field
strength), successfully collapsed using the scaling form y =
yc + f [N

1
ν̃ (ε − εc)]. From these we obtain εc and ν̃, which

are shown as functions of � in Figs. 5(a) and 5(b). Except
for at � = 0.10, all three statistics predict a common εc and
� independent ν̃. Figure 5(c) shows the corresponding level
statistic values at εc, which we obtain from the collapsed
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FIG. 4. Properties of the QREM (probabilistic) spectrum. All data
are at � = 0.20, and N = 8 (blue) to 14 (red). Eigenstates are binned
within energy density windows of size 0.02. These curves have been
collapsed using the scaling form y = yc + f [N

1
ν̃ (ε − εc)]. (a) The

disorder-averaged level spacing ratio. εc = −0.34(2), ν̃ = 0.39(9),
and rc = 0.44(1). (b) The deviation of the frequency of smaller-
than-average energy gaps from GOE statistics. εc = −0.33(2), ν̃ =
0.41(9), and J1c = 0.73(1). (c) The deviation of the frequency of
larger-than-average energy gaps from GOE statistics. εc = −0.34(2),
ν̃ = 0.46(9), and J2c = 0.80(1).

curves. The statistics become more Wigner-Dyson-like as �

increases. It is in this sense that the character of the transition
depends on �.

B. Local eigenstate observables

The magnetization of single spins in each phase clearly
distinguishes the two. Since a delocalized eigenstate has
〈σ̂ z

1 〉 = 0 and a localized eigenstate has 〈σ̂ z
1 〉 = ±1, we

consider |〈σ̂ z
1 〉|. Figure 6 shows the values as a function of

ε. We see clear finite-size flow towards 0 in the delocalized
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FIG. 5. Finite-size scaling parameters for the level spacing
statistics as a function of �. The shaded bands indicate the range of
parameter values over which the data collapse well. Red corresponds
to [r], green corresponds to J1, and blue corresponds to J2. (a) The
critical energy density, overlaid on a portion of the phase diagram of
Fig. 1. (b) The critical exponent ν̃. (c) The value of the level spacing
statistics at criticality. We plot ([r] − r (WD))/(r (P) − r (WD)) and denote
it by J[r], in analogy with J1 and J2.

phase and towards 1 in the localized phase. The crossover
region’s location is consistent with the spectral statistics.

The limit [|〈σ̂ z
1 〉|] → 1 in the localized phase violates the

ETH. We further demonstrate that the localized eigenstates
fail to thermalize by studying how 〈σ̂ z

1 〉 fluctuates from state
to state within a sample. More precisely, we define

δ
〈
σ̂ z

1

〉(n) ≡ 〈n + 1|σ̂ z
1 |n + 1〉 − 〈n|σ̂ z

1 |n〉. (12)

Figure 7 shows the distribution of δ〈σ̂ z
1 〉(n), for all n within

an energy density window, as a function of ε. In the localized
phase, the distributions have weight at ±2. The total weight
at ±2 is as much as at 0, signifying that 〈σ̂ z

1 〉 is as likely to
switch sign from one eigenstate to the next as it is to not. In the
delocalized phase, the entire weight is centered around 0. This

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

ε

0.0

0.2

0.4

0.6

0.8

1.0

[ |<
σ

z 1
>

|]

FIG. 6. The disorder-averaged magnitude of the eigenstate
single-spin magnetization, as determined via exact diagonalization,
as a function of the eigenstate energy density. These results are taken
at � = 0.20, from N = 8 (blue) to N = 14 (red). Eigenstates are
binned in energy density windows of size 0.02. The background
shading corresponds to the predicted phase at that energy density: red
is localized, blue is delocalized, and green is the transition region as
determined by the QREM’s spectral statistics.

is further evidence that each individual delocalized eigenstate
is thermal.

C. Connected autocorrelations

The operators {σ̂ z
i } evolve over time as a result of the trans-

verse field, so correlations in time are important characteristics
of the two phases. We quantify this by studying the connected
autocorrelation function〈

σ̂ z
1 (t)σ̂ z

1 (0)
〉(n)
C

≡ 〈n|σ̂ z
1 (t)σ̂ z

1 (0)|n〉
−〈n|σ̂ z

1 (t)|n〉〈n|σ̂ z
1 (0)|n〉. (13)

This quantity is computed exactly from the full exact diago-
nalization, up to tmax = 90 in steps of 0.5. See Fig. 3 for the

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
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δ
<

σ
z 1

>

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8
P

(δ
<

σ
z 1

>
)

FIG. 7. Probability density function for the difference between
single-spin magnetizations of spectrally adjacent eigenstates (y axis),
over a range of energy densities (x axis). Each vertical slice is a
separate probability distribution. These distributions are at � = 0.20
and N = 14. We used energy density windows of 0.02 for each
distribution.
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/
( a

+
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)

FIG. 8. The decay time of the eigenstate connected autocorrela-
tion function [〈σ z

1 (t)σ z
1 (0)〉

C
], as a function of energy density. These

results are taken at � = 0.20, N = 8 (blue) to N = 13 (red). The
binning in energy density is 	ε = 0.025. (a) The unscaled decay
times. The vertical dashed line marks the critical energy density as
determined by the QREM’s spectral statistics. (b) Collapsed curves
(omitting N = 8), using the form τ = (a + bN )f [N

1
ν̃ (ε − εc)]. εc =

−0.32(2), ν̃ = 0.40(7), a = −2.9(1) × 102, and b = 38(2).

results. [〈σ̂ z
1 (t)σ̂ z

1 (0)〉
C

] is sufficiently close to 0 at all times in
the localized phase that it is hard to extract a meaningful decay.
This is consistent with the localized eigenstates being weakly
dressed single configurations of spins with magnetization
proportional to 1 − 1

N2 .

In the delocalized phase, [〈σ̂ z
1 (t)σ̂ z

1 (0)〉
C

] is initially close
to 1 and decays exponentially to 0. The decay becomes slower
as ε nears the transition. We fit the long-time behavior of
ln [〈σ z

1 (t)σ z
1 (0)〉

C
] to a straight line and extract the slope. From

this we study how the decay time τ depends on ε (see Fig. 8). At
ε ≈ 0, the decay time saturates exponentially with N to a finite
value (not shown). As ε → εc, τ increases monotonically. Very
close to εc, τ is diverging with system size. We obtain good
scaling collapse with the form τ = (a + bN )f [N

1
ν̃ (ε − εc)].

This form captures τ ’s linear dependence on N near the
transition. We again find that εc and ν̃ agree with the spectral
statistics.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

ε
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−4
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−2
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0

[ln
(I

P
R

)]

FIG. 9. The disorder-averaged order of magnitude of the eigen-
state IPR from exact diagonalization, divided by system size. These
results are taken at � = 0.20 for sizes N = 8 (blue) to N = 14
(red). Eigenstates are binned in energy density windows of size
δε = 0.02. The background shading corresponds to the predicted
phase at that energy density: red is localized, blue is delocalized,
and green is the transition region as determined by the spectral
statistics [r].

D. Eigenstate structure

As mentioned in Sec. II B, configurations of N spin- 1
2 ’s map

to the corners of an N -dimensional hypercube. The {σ̂ z
i } basis

is then the “coordinate” basis, and we consider diagnostics
from Anderson localization [42]. These have already been
used in the MBL context [15,44], particularly the inverse
participation ratio (IPR), defined as

Y2 ≡
∑
{σ z

i }

∣∣〈{σ z
i

}∣∣ψ 〉∣∣4
. (14)

The IPR quantifies how many sites of the hypercube |ψ〉 is
distributed over. Y2 = 1 corresponds to |ψ〉 concentrated on
a single site and Y2 = 2−N corresponds to |ψ〉 with equal
weight on all sites. Figure 9 shows [ln Y2], a measure of Y2’s
typical order of magnitude. [ln Y2] flows towards 0 with system
size in the localized phase, signifying that the eigenstates are
concentrated onto single sites. [ln Y2] decreases linearly with
N in the delocalized phase, signifying that the eigenstates
extend over Hamming distances of order N . As with [|〈σ̂ z

1 〉|],
there is a well-defined crossover region consistent with the
spectral statistics.

We also compute the eigenstate correlation function
I (E,ω), defined as

I (E,ω) =
∑
m,n

δE,Em
δE+ω,En

∑
{σ z

i }

∣∣ψm

({
σ z

i

})∣∣2∣∣ψn

({
σ z

i

})∣∣2
,

(15)

where the sum over m and n is over eigenstates. This quantity
measures the overlap between eigenstates’ probabilities as
a function of their location in the spectrum and energy
separation. I (E,ω) is known as the two-particle spectral
function in the context of finite-dimensional lattices [45].
There, I (E,ω) decays exponentially with ω for E and E + ω

both in the delocalized phase. The scale on which I (E,ω)
decays is the Thouless energy ω0 = D/L2 (D is the diffusion
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FIG. 10. Semi-log plot of probability overlaps between eigen-
states separated by energy ω, in the delocalized phase (ε = −0.10,
� = 0.40) for N = 8 (blue) to N = 14 (red). These data have been
averaged over states within an energy window δε = 0.05 centered
on ε = −0.10, and averaged over samples. The lines have been
shifted vertically to illustrate their dependence on N . Although
the slopes of the lines depend slightly on N , the rough value
is −0.50.

coefficient and L is the linear system size). Figure 10 shows
the same behavior in the QREM’s delocalized phase. The
characteristic scale is independent of N , which is reasonable
since our fully connected model has an effective “linear size”
of 1. [I (E,ω)] also decays exponentially with N , for the same
reason that Y2 does. In the localized phase, I (E,ω) decays as
2−Nω−2. We justify this in Sec. IV, where we apply first-order
perturbation theory to this model. The results in Fig. 11 agree
remarkably well with Eq. (23).

0.3 0.4 0.5 0.6 0.7 0.8 0.9

log ω

−2.0

−1.5

−1.0

−0.5
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0.5

1.0

1.5

lo
g

(2
N

[I
(E
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N

Γ
2

)

FIG. 11. Log-log plot of probability overlaps between eigenstates
separated by energy ω, in the localized phase (ε = −0.20, � = 0.10)
for N = 8 (blue) to N = 14 (red). These data have been averaged over
states within an energy window δε = 0.05 centered on ε = −0.20,
and averaged over samples. The lines have been shifted vertically to
illustrate their dependence on N . The lines all have slopes of −2, and
are well described by perturbation theory [see Eq. (23)].

IV. NAIVE PERTURBATION THEORY

The QREM eigenstates differ drastically across a well-
defined boundary. The spectral statistics and eigenstate prop-
erties characterize and distinguish the two phases. However,
the numerical results by themselves are somewhat opaque and
limited to finite sizes. We get a more transparent picture of the
MBLD transition by considering the perturbative structure.
Section V systematically investigates the perturbative-in-�
expansion of the eigenstates. Here, we study the first-order
corrections heuristically and compare to the exact diagonal-
ization results for the localized phase.

To first order in �, each QREM eigenstate has probability
amplitude 1 on its initial site of the hypercube (with unper-
turbed energy E0) and probability amplitude − �

E0−Ej
on the

j th adjacent corner. All other sites have probability amplitude
0. For the IPR and 〈σ z

1 〉 of such an eigenstate, we obtain

IPR =
1 + ∑N

j=1
�4

(E0−Ej )4(
1 + ∑N

j=1
�2

(E0−Ej )2

)2 , (16)

〈
σ z

1

〉 = 1 − 2�2

(E0 − E1)2
. (17)

We now study the distributions of Eqs. (16) and (17) over
samples, treating E0 as a fixed parameter of order N . With
probability 1 (in the thermodynamic limit), the N random
variables Ej are all O(

√
N ) and we expand 1

E0−Ej
in powers

of Ej

E0
. This is not strictly allowed because, although its typical

values are small, the moments of − �
E0−Ej

diverge. For now,
we assume that the typical values of Eqs. (16) and (17) will be
satisfactory estimates and so assume that all Ej 	 E0.

To determine the disorder averages, we need only keep the
first term that is even in all Ej . To determine the disorder
variances, we in addition require the first term odd in Ej .
Carrying this out,

IPR ≈ 1 − 2�2

Nε2
0

− 4�2

N2ε3
0

N∑
j=1

εj , (18)

〈
σ z

1

〉 ≈ 1 − 2�2

N2ε2
0

− 4�2

N2ε3
0

ε1, (19)

where ε0 ≡ E0/N , εj ≡ Ej/N . All Ej have variance N/2, so
all εj have variance 1/(2N ) and

∑N
j=1 εj has variance 1

2 . Thus,

[IPR] = 1 − 2�2

Nε2
0

,

Var(IPR) = 8�4

N4ε6
0

,

(20)

[〈
σ z

1

〉] = 1 − 2�2

N2ε2
0

,

Var
(〈
σ z

1

〉) = 8�4

N5ε6
0

.

(21)

In addition, note that [ln(IPR)] = [IPR] − 1 at this order.
We also estimate I (E0,ω) in this manner. Suppose that two

eigenstates have energies E0 and E0 + ω. In order for their
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wave functions to overlap at first order in �, their zeroth-order
eigenstates must be on adjacent corners of the hypercube. This
occurs in a fraction N/2N of the samples. When the eigenstates
do overlap at first order,

I (E0,ω) = 2
�2

ω2
. (22)

Thus,

[I (E,ω)] = 2N�2

2Nω2
. (23)

These are simple estimates, and we can generalize them to
higher orders. However, most turn out to be incompatible with
our exact diagonalization results, even in how they scale with
N and ε0. The one exception is [I (E0,ω)], for which Eq. (23) is
very accurate in the well-localized region. We expect that the
overall discrepancy is due to our limited range of system sizes.
In particular, we have expanded in Ej

E0
, which is O(N−1/2) in

typical samples. Yet, even for our largest system (N = 14),
N−1/2 > 1

4 . Similarly, the exponentially small number of
“atypical” samples is not that small. Equation (23) successfully
describes [I (E0,ω)] because there is no need to control
the random variables Ej at first order since by definition
E0 − Ej must be equal to ω. When we remove complications
arising from the randomness in Ej , the leading-order estimates
become highly accurate, but sadly we cannot do this for any
but [I (E0,ω)].

With our limited systems sizes we must turn to more sophis-
ticated approximation schemes to understand the localization-
delocalization transition. We have two goals in doing so:
to quantitatively predict the critical energy density εc in a
procedure more efficient than exact diagonalization, and to
understand how the structure of localized eigenstates changes
as ε approaches εc. The forward-scattering approximation
accomplishes both.

V. FORWARD-SCATTERING ANALYSIS

The forward-scattering approximation (FSA) treats the
transverse field perturbatively and keeps only the leading-order
contribution to the wave-function amplitude at each site (see
[46,47] for recent applications of the method to the Anderson
problem). We approach this approximation from the hypercube
perspective. The E({σ̂ z

i }) term in the Hamiltonian is a random
onsite potential and the � term allows hopping between
adjacent sites. Without loss of generality, our unperturbed state
has all σ z

i = −1. Denote it by | − · · · −〉, with unperturbed
energy E0. The perturbed state is denoted |ψ〉 with energy
E0 + 	. From time-independent perturbation theory,

|ψ〉 = | − · · · −〉 + P

E0 − E
({

σ̂ z
i

})
(

−�

N∑
i=1

σ̂ x
i − 	

)
|ψ〉,

(24)
where P ≡ I − | − · · · −〉〈− · · · − |. The leading-order con-
tributions to 〈{σ̂ z

i }|ψ〉 are the “directed” paths from | − · · · −〉
to |{σ̂ z

i }〉, i.e.,

〈{
σ̂ z

i

}∣∣ψ 〉 ≡ ψ
({

σ̂ z
i

}) =
∑

p

l({σ̂ z
i })∏

i=1

�

E0 − E(pi)
, (25)

where the sum is over the l({σ̂ z
i })! directed paths from the

initial site to the site {σ̂ z
i } and E(pi) is the unperturbed

energy of the ith site along a given path p. We treat E0 as a
tunable parameter. All E(pi) are random variables distributed
according to Eq. (2).

Equation (25) is the forward-scattering approximation to
the eigenstates of the REM in a transverse field. We use
it to investigate signatures of delocalization. As long as the
perturbation theory is valid, i.e., all ψ({σ̂ z

i }) 	 1, localization
persists. Strictly speaking, the appearance of order 1 ψ({σ̂ z

i }),
which we refer to as “resonances,” does not mean that the
exact eigenstates are delocalized, only that Eq. (25) cannot
describe them. Regardless, we take the energy density at which
resonances proliferate in the perturbed wave function as a
strong lower bound for εc.

Although the FSA is an approximation, as it stands,
Eq. (25) must still be evaluated numerically. We do so in
the following, but first consider further approximations.
In Sec. V A, we make quick estimates as to where the
perturbation series breaks down. We refine these estimates
in Sec. V B. In Sec. V C, we evaluate Eq. (25) numerically.
Finally, in Sec. V D we briefly consider the replica treatment
of the FSA, which reproduces many of the results obtained
more directly in the previous sections.

A. Rough estimates

From Eq. (2), most configurations have energies of order√
N . Thus most terms in Eq. (25) are �

E0
to leading order in

N , and a rough estimate comes from replacing all terms with
�
E0

. Then,

ψ
({

σ̂ z
i

}) = l
({

σ̂ z
i

})
!

(
�

E0

)l({σ̂ z
i })

≈
(

l
({

σ̂ z
i

})
�

eE0

)l({σ̂ z
i })

.

(26)
As a function of l, ψ({σ̂ z

i }) first exceeds 1 at l = N , if at all.
We estimate εc by setting N�

eE0
= 1:

εc � −�

e
. (27)

We have written the estimate above as a bound on the
position of the transition curve because it clearly underesti-
mates the possibility of small-denominator resonances. Even
though most REM energies are of order

√
N , an exponentially

large number of states are still within any finite window near
E0. Such states contribute much more than �

E0
to Eq. (25).

Nevertheless, this estimate agrees with ED in predicting that
the transition lies at finite-energy density/temperature. It also
suggests that εc → 0 as � → 0. Localization persists up to
higher temperatures as the transverse field weakens.

This analysis is clearly invalid at ε0 = 0, where the weights
�

−E(pi )
are large for most sites. In this regime, the probability

distributions for path contributions [the terms
∏l({σ̂ z

i })
i=1

�
E0−E(pi )

in Eq. (25)] are long tailed. Thus, we expect the largest-
weighted path to dominate the sum over them. The “greedy
algorithm” estimates this largest-weighted path as follows:
most sites have REM energies of order

√
N , and the smallest

energy among m sites will be O(
√

N
m

). The smallest energy of
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sites neighboring the initial site is O(
√

N
N

), as the initial site
has N neighbors. The corresponding site has a neighbor at
distance 2 with energy O(

√
N

N−1 ), for whom the smallest energy

of neighboring sites at distance 3 is O(
√

N
N−2 ), etc., such that the

largest path is typically

ψ
({

σ̂ z
i

}) ∼ N�√
N

(N − 1)�√
N

· · · (N − l + 1)�√
N

. (28)

At large N ,

ψ
({

σ̂ z
i

}) ∼ (�
√

N )l . (29)

The wave-function amplitude decays exponentially with dis-
tance for � < �c, where

�c = 1√
N

. (30)

Any nonzero N -independent field causes the perturbation
series to break down. The crossover region goes as N−1/2,
and once � exceeds �c, the breakdown occurs immediately,
i.e., at l = O(1).

B. Single-resonance approximation

Consider the probability that a site at distance l produces
ψ({σ̂ z

i }) > 1, given that the closer sites all have energies
of order

√
N . This checks the consistency of the treatment

above, and we expect single sites to produce resonances in this
way because the distribution of �

E0−E(pi )
is long tailed. From

Eq. (26), all sites at a distance l − 1 have amplitude

ψl−1 = (l − 1)!

(
�

E0

)l−1

. (31)

Then, the site {σ̂ z
i } at distance l has amplitude

ψ
({

σ̂ z
i

}) = lψl−1

(
�

E0 − E
({

σ̂ z
i

})
)

= l!

(
�

E0

)l−1
(

�

E0 − E
({

σ̂ z
i

})
)

. (32)

The probability of |ψ({σ̂ z
i })| > 1 is

pl =
∫ E0(1+l! �l

El
0

)

E0(1−l! �l

El
0

)
dE

1√
πN

e− E2

N ≈ 2ε

(
l�

eE0

)l
√

N

π
e−Nε2

.

(33)
Since the E({σ̂ z

i }) are independent, the ψ({σ̂ z
i }) for all sites

at distance l are (under the current assumptions) independent,
and thus the probability of no resonances at distance l is

(1 − pl)
( N

l
) ≈ e−( N

l
)pl

≈ exp

[
−2ε

(
x�

eε

)Nx
√

N

π
e−Nε2

×
(

1

xx(1 − x)1−x

)N]
, (34)

where x ≡ l/N . In the large-N limit, this is exp(−keNf (x,ε))
with

f (x,ε) ≡ xln
x�

eε
− ε2 − xlnx − (1 − x)ln(1 − x) (35)

and k = O(
√

N ). There will not be resonances in the thermo-
dynamic limit and localization will persist if f (x,ε) < 0 for
all x ∈ [0,1]. f (x,ε) is maximized at xmax ≡ 1 − ε/� with a
value of

f (xmax,ε) = ln
�

eε
+ ε

�
− ε2. (36)

The zero of Eq. (36) is at εc. We find that

εc = −(� −
√

2�2 + O(�3)). (37)

The phase diagram in Fig. 1 displays this estimate as a function
of �. We get a much larger estimate than that in Eq. (27), yet
εc is still proportional to � as � → 0.

In addition to an estimate for the critical energy density, this
shows how suddenly and drastically the perturbation theory
breaks down. Suppose we had defined a resonant site to be
one whose amplitude exceeds c. Then, the probability of no
resonances at distance l would be exp(− k

c
eNf (x,ε)). The large-

N asymptotics only change if c grows/decays faster than eαN .
Thus, the resonances that appear at ε > εc are exponentially
large in system size, and all sites have exponentially small
amplitudes at ε < εc.

We similarly study the infinite-temperature case, where the
greedy algorithm estimated �c = N−1/2. As described above,
we cannot consider single sites being resonant but we can
consider single paths being resonant. A path p to a site at
distance l has amplitude

|A| =
l∏

i=1

�

|E(pi)| . (38)

To simplify notation, we write this as

ln|A| = lln
�

σ
+ Y, (39)

where

σ ≡
√

πN

2
, (40)

Y ≡
l∑

i=1

ln
σ

|E(pi)| . (41)

For Y � 1, Y is distributed as

P (Y ) = Y l−1

(l − 1)!
e−Y . (42)

Thus, |A| > 1, i.e., Y > Yc ≡ lln σ
�

, occurs with probability

pl =
∫ ∞

Yc

dY
Y l−1

(l − 1)!
e−Y = Y l−1

c

(l − 1)!
e−Yc

[
1 + O

(
Y−1

c

)]
.

(43)
We use this estimate to determine the probability that none
of the (N

l
) paths to sites at distance l give resonances. The

paths are not independent, but we assume that we can treat
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them independently in estimating whether |A| � 1 or |A| 	 1.
Then, the probability of no resonances at distance l is

(1 − pl)
( N

l
) ≈ e−( N

l
)pl . (44)

Consider the exponent (N

l
)pl ≡ cl , and in particular the ratio

cl+1

cl

= N − l

l + 1

(
1 + 1

l

)l
�

σ
ln

σ

�
. (45)

The right-hand side of Eq. (45) is decreasing as a function
of l. When it drops below 1, the exponents in Eq. (44) decrease
as l increases, i.e., resonances become less likely as we move
farther into the hypercube. In order to declare that resonances
are unlikely throughout the entire hypercube, we require that
c2
c1

< 1. This is only possible when � is such that

(N − 1)
�

σ
ln

σ

�
< 1. (46)

The critical � is, to leading order,

�c = σ

N lnN
=

√
π

2
√

N lnN
. (47)

�c decays to 0 faster than the greedy estimate in Eq. (30) by a
factor of lnN , but otherwise Eq. (47) confirms the qualitative
description. Perturbation theory inevitably breaks down in
the thermodynamic, high-temperature limit at any nonzero �.
We see the resonances immediately, i.e., at an O(1) order in
the expansion. This contrasts with the finite-temperature case,
where the perturbative description persists until finite � and
the resonances appear after O(N ) terms in the series.

We have a description of when and how QREM eigenstates
become nonperturbative in �, but we have made some un-
controlled approximations. Order-1 wave-function amplitudes
need not be due solely to single-resonant sites or paths.
This then implies that the amplitudes are not independent of
each other. Following, we study the statistics of the wave
functions in Eq. (25) numerically, without any additional
approximations. We check not only the estimate for the critical
energy density, but also whether the nature of the eigenstates
agrees with the description above.

C. Numerical treatment

To quantify resonance proliferation, we generate ∼103–105

sets of REM energies and evaluate Eq. (25). First, we directly
compute what we attempted to estimate in Sec. V B: the
probability of a sample at fixed � and ε containing at least one
resonance. In addition, we calculate the sample-averaged IPR
and single-spin magnetization, for comparison with the exact
diagonalization. These statistics each provide an independent
measure of when resonances show up and how significant the
resonances are. See Fig. 12 for scaled results, and refer back
to Sec. III for definitions and notation.

To begin, we count the fraction P of samples that contain
a resonance at each value of � and ε. There is a crossover
from P ≈ 0 at large |ε| to P ≈ 1 at small |ε| [Fig. 12(a)]. This
crossover sharpens as N increases, consistent with a zero-
one law in the thermodynamic limit. We estimate the critical
εc by finite-size scaling with the form P = f [N

1
ν̃ (ε − εc)].

The curves collapse well, and εc is consistent with the exact
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FIG. 12. Eigenstate properties as determined within the forward-
scattering approximation, as a function of energy density. All data
are at � = 0.20, and N = 10 (blue) to 20 (red). These curves
have been collapsed using the scaling form y = f [N

1
ν̃ (ε − εc)].

The hatched regions in the bottom two plots are a reminder: the
FSA’s predictions for observables in the delocalized phase are not
meaningful. (a) The probability of a sample containing a resonance.
The critical parameters are εc = −0.32(1) and ν̃ = 0.75(6). (b) The
disorder-averaged IPR within the FSA. The critical parameters are
εc = −0.31(1) and ν̃ = 0.83(7). (c) The disorder-averaged single-
spin magnetization of the FSA wave functions. The critical parameters
are εc = −0.30(1) and ν̃ = 0.80(9).

diagonalization results. ν̃, however, is significantly larger than
ED predicts. The curve in Fig. 12(a) has ν̃ = 0.75(6).

We next compute the disorder-averaged IPR [Fig. 12(b)].
For ε < εc, [Y2] increases towards 1 as N increases. This is
consistent with localization and with the exact diagonalization
results. It also confirms that only a negligible fraction of
samples in this phase contain resonances. For ε > εc, however,
[Y2] is roughly independent of both ε and N , and stays at
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FIG. 13. A comparison of the disorder-averaged IPR obtained
from ED (dashed line) and from the FSA (solid line), at � = 0.20
and with N ranging from 8 (blue) to 14 (red). The background
shading indicates the phase at that energy density as determined by
the spectral statistics in ED: red is localized, blue is delocalized, and
green is the transition region. Note that the FSA results are a good
approximation in the localized region (ε < εc) but differ qualitatively
in the delocalized region (ε > εc). This is not surprising since the
FSA is not valid in this region.

[Y2] ≈ 0.4. This signifies resonances, and presumably
delocalization, although the signature is very different from
that of the exact eigenstates. The probability distributions for
the wave-function amplitudes are very long tailed. Thus, in a
given sample, a few amplitudes will be much larger than the
rest. In the localized phase, these largest amplitudes still do
not compare to those of the initial site. As ε approaches εc,
those large amplitudes approach 1 and [Y2] decreases. Once ε

passes εc, the initial site no longer contributes to the IPR and
[Y2] is set by the largest noninitial amplitudes. Increasing ε

(and N ) even further will make the wave-function amplitudes
larger, but it will not change that only a few sites dominate
the IPR. Hence, [Y2] is independent of both ε and N once the
perturbation theory breaks down.

Keep in mind that the FSA’s prediction for [Y2] in the
delocalized phase has no connection to the actual IPRs in
the QREM’s delocalized phase. The FSA is a perturbative
expansion, and all we learn from the initial site no longer
contributing to [Y2] is that we cannot trust any results from
the FSA in this region. Figure 13 plots the FSA’s disorder-
averaged IPR against the disorder-averaged IPR from exact
diagonalization. The two curves agree for all system sizes
when ε < εc. The deviations become significant at ε = εc,
though, and the curves bear no relation to each other for ε > εc.
The FSA successfully describes the structure of eigenstates in
the localized phase but not in the delocalized phase. Yet, even
though the FSA IPR is not accurate for much of the spectrum, a
scaling collapse gives critical parameters that agree with those
of the resonant-sample fraction P .

The magnetization of a single spin behaves analogously
[Fig. 12(c)]. Recall that we arbitrarily take the unperturbed
state to have all σ z

i = −1, and sites closer to the initial site have
more spins pointing down. Thus, [〈σ z

1 〉] is roughly constant at
−1 for large |ε|, and it starts to increase significantly once ε

passes εc. As before, the FSA and ED predictions for [〈σ z
1 〉]

agree in the localized phase but not in the delocalized phase.

The curves collapse onto each other quite well, with scaling
parameters that again agree with the others from the FSA.

D. Replica treatment

The statistical properties of the forward-scattering wave
functions can also be studied using the replica method, which
provides complementary understanding to the other numerical
and analytical approaches [36,48]. In this approach, we view
the amplitude ψ as the partition sum of a directed random
polymer p living on the hypercube with the long-tailed random
weights wi = �/(Ea − Ei). As these weights do not have any
finite moments, we expect the directed random polymer to
condense onto a small number of large weight paths [49]. This
also justifies our neglect of the sign of the weights wi as their
destructive interference is unimportant in this regime. The
replica approach is especially useful as it naturally regulates
the divergence of these moments.

Within the forward-scattering approximation, the wave-
function amplitude ψL at distance L is

ψL =
∑

p

∏
i∈p

wi, wi = �

|E0 − Ei | , (48)

where wi is the random weight of the piece of path going
through site i on path p.

The typical value of ψL is provided by averaging its
logarithm lnψ , which may be calculated using the formal
replica trick

lnψ = lim
n→0

ψn − 1

n
. (49)

Thus, we need to calculate

ψn =
∑

p1,...,pn

∏
i

w
ri (p1...pn)
i , (50)

where ri gives the number of times that the n paths cross
site i:

ri =
n∑

a=1

1[i ∈ pa]. (51)

a. Replica symmetric ansatz. The replica symmetric
ansatz consists of assuming that each of the n paths contributes
independently to the nth moment of ψ . That is, ri = 1 for each
of the nL sites visited by the paths and 0 otherwise. Thus,

ψn ≈
∑

p1...pn

∏
i∈p1...pn

wi = (L!wL)n (52)

= exp[nL(lnL − 1 + lnw)]. (53)

Thus, as n → 0, we find

lnψ = L(lnL − 1 + lnw). (54)

This is ill defined if w → ∞, which is clearly true for the
weights arising in the QREM. However, for E0 = Nε0, the
weight in the tail of w is parametrically suppressed by N . If
we simply replace w by its typical value �/Nε0, we find the
“typical weight RS” result

lnψ ≈ L(lnL − 1 + ln�/Nε0)

≈ Nl(lnl − 1 + ln�/ε0), (55)
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where L = lN . This indicates that the typical amplitude decays
exponentially with N at all points inside the hypercube for
� < eε0.

This clearly overestimates the critical � for delocalization
as it neglects the possibility of small denominators and
the concomitant atypical resonances. Nonetheless, even at
this level it shows that delocalization should take place for
infinitesimal � at ε0 = 0. This estimate agrees precisely with
the rough estimate made directly in Sec. V A.

b. Replica symmetry-breaking ansatz. In the 1RSB ansatz,
the dominant configurations contributing to ψm consist of n/x

tightly bound groups of x paths each. Thus,

ψn ≈
⎛
⎝∑

p

∏
i∈p

wx
i

⎞
⎠

n/x

= exp[nf (x)], (56)

where

f (x) = L

x
(lnL − 1 + lnwx) (57)

is the 1RSB free energy function. In the n → 0 limit, the Parisi
parameter x is constrained to the interval [0,1] and the typical
amplitude is given by the optimization

lnψ = min
x∈[0,1]

f (x). (58)

The advantage of this approach is that it allows a direct
treatment of the long-tailed weight distribution p(w). Indeed,
for x < 1, the fractional moment wx is convergent:

wx =
∫

dE√
πN

e−E2/N

(
�

|E0 − E|
)x

=
(

�√
N/2

)x ∫
du√
2π

e−u2/2

|u0 − u|x

=
(

�√
N/2

)x

I (x,u0), (59)

where u0 = E0/
√

N/2. The small denominator in the di-
mensionless integral I (x,u0) is integrable for x < 1 and the
Gaussian cuts off the power-law behavior at large u. Thus,
for any fixed u0 and L, f (x) exhibits a positive divergence
as x → 0+ and another as x → 1−, so that the minimizer x∗
lies strictly within the interval (0,1) and all estimates are well
defined.

The 1RSB formalism is most useful at E0 = 0, where the
typical denominators are already quite small compared to the
finite-energy density case. For u0 = 0, I (x,0) reduces to a �

function:

I (x,0) = 2− x
2 �

(
1−x

2

)
√

π
, (60)

which exhibits the expected pole at x = 1.
As x → 0, f (x)/L diverges as (lnL − 1)/x while for x →

1, f (x)/L diverges with an L-independent logarithm. Thus,
the minimizer x∗ must approach 1 as L grows, so we may
simply replace I (x,0) by its expansion near x = 1 to linear
order. In this approximation, we find that the saddle point
of the replicated free energy arises at x∗ = 1 − 1

ln
√

2/πn
+ · · ·

as n → ∞, indicating condensation of the measure onto a
logarithmically diverging subset of the paths.

Solving for the resonance condition f = 0 at n = N , we
find the estimate

�c(ε = 0) =
√

π

2
√

N ln
√

2/πN
+ · · · (61)

for the critical value of the transverse field. We note that this
estimate agrees to leading order in 1/lnN with Eq. (47).

VI. LARGE-� LIMIT

Here, we describe the limit opposite to that of FSA, in which
the random operator E({σ̂ z

i }) of Eq. (1) is the perturbation. This
limit of � � 1 and the FSA limit of � 	 1 are separated by a
first-order thermodynamic transition, so we cannot extrapolate
the FSA to high fields and must begin at � → ∞.

To zeroth order in E({σ̂ z
i }), the eigenstates of the QREM

Hamiltonian are {σx
i } eigenstates with energies −M� (M =

−N,−N + 2, . . . ,N). The degeneracy of the −M� level is
( N

N+M
2

). In this basis, the REM term is dense, i.e.,

〈{
σ̂ x

i

}
a

∣∣E({
σ̂ z

i

})∣∣{σ̂ x
i

}
b

〉 = 1

2N

2N∑
j=1

(−1)α
(a,b)
j Ej , (62)

where a and b denote different {σx
i } eigenstates, j enumerates

the {σ z
i } eigenstates, and α

(a,b)
j is 0 or 1 depending on the

specific eigenstates in question. In words, every matrix element
of E({σ̂ z

i }) is the sum and/or difference of the REM energies,
divided by 2N from normalization. Thus, every matrix element
is a Gaussian random variable of variance 1

2N

N
2 . We treat

E({σ̂ z
i }) as a GOE-distributed random matrix in the {σx

i }
basis (this is only an approximation because the exact matrix
elements are not independent).

Under these conditions, the eigenstates within a subspace of
fixed total magnetization M , which were initially degenerate,
form a band according to Wigner’s semicircle law. This band
has a half-width of √

N

2N+1

√(
N

N+M
2

)
(63)

which in the large-N limit is(
N

2π (1 − m2)

)1/4

eN[ 1+m
4 ln(1+m)+ 1−m

4 ln(1−m)], (64)

where m ≡ M/N is the average magnetization per spin.
All bands with m �= 0 have widths much less than � for

large enough N . Thus, the magnetization of each is preserved.
Each single spin does lose its magnetization because the
eigenstates are statistically structureless within a band. Yet,
the only bands that hybridize are those with M 	 N .

Since the unperturbed energy densities are proportional
to m, the large-� situation is analogous to the small-�
situation: states at order-N energies (finite temperature) are
only weakly dressed by all others, while states at ε = 0 (infinite
temperature) hybridize immediately, i.e., regardless of how
weak the perturbation is. However, it is difficult to carry out
the large-� expansion to higher orders, and so we cannot see
the localization-delocalization transition from this side.
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VII. CONCLUSION

The quantum random energy model, although nonlocal, is a
useful test bed for localization. Exact diagonalization shows a
transition that appears to become sharp in the thermodynamic
limit. This transition is visible through multiple order parame-
ters. Furthermore, the forward-scattering approximation to the
perturbative-in-� wave function agrees with ED results in the
localized phase. Finite-size estimates of where perturbative
resonances proliferate agree with the observed transition in
ED as well.

Previous authors have explored replica-symmetry breaking
in the QREM’s canonical ensemble. Our results suggest that
this has little to do with the model’s dynamics. This would not
be all that surprising for a classical spin system since the classi-
cal Hamiltonian does not encode any dynamics. Yet, a quantum
spin’s dynamics is fully determined by the Hamiltonian, and
one would expect that its dynamics be compatible with its
canonical ensemble. The QREM demonstrates otherwise.

Our finite-size numerics are consistent with a dynamical
phase transition that is continuous. In particular, the autocor-
relation time of spins diverges as the transition is approached
from the delocalized phase. We can explain the variation of
critical amplitudes with � by a line of critical fixed points.
However, our numerical observations are limited to small
system sizes and the success of our scaling analysis may be
finite-size effects.

Regardless, we find finite-size scaling windows controlled
by the scaling combination Nδν̃ . Exact diagonalization shows
ν̃ ≈ 0.3–0.5 and the numerical forward-scattering approx-
imation shows a somewhat larger ν̃ ≈ 0.8. Our ν̃ should
compared with dν in d-dimensional disordered systems, which
would be expected to satisfy the Harris criterion dν � 2
[21,50,51]. The infinite-dimensional QREM need not and does
not satisfy the Harris criterion, but it is consistent with ob-
served ν in previous one-dimensional diagonalization studies
[16–18].
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