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Abstract  3	
 4	

In their daily decisions, humans and animals are often confronted with the conflicting choice of 5	

opting either for a rewarding familiar option (i.e., exploitation) or of opting for a novel, uncertain option 6	

that may, however, yield a better reward in the near future (i.e., exploration). Despite extensive research, 7	

the cognitive mechanisms that subtend the manner in which humans solve this exploration-exploitation 8	

dilemma are still poorly understood. In this study, we challenge the popular assumption that exploitation 9	

is a global default strategy that must be suppressed by means of cognitive control mechanisms so as to 10	

enable exploratory strategies. To do so, we asked participants to engage in a challenging working-11	

memory task while performing repeated choices in a gambling task. Results showed that manipulating 12	

cognitive control resources exclusively hindered participants’ ability to explore the environment in a 13	

directed, intentional manner. Moreover, under certain scenarios, adopting exploitative strategies was also 14	

dependent on the availability of cognitive control resources. Additional analyses using a recent 15	

computational model of information integration suggests that increasing cognitive load specifically 16	

interferes with the ability to combine reward and information in order to inform choices. Our results shed 17	

light on the cognitive mechanisms that underpin the resolution of the dilemma, and provide a formal 18	

foundation through which to explore pathologies of goal-directed behavior. 19	

 20	

keywords: exploration-exploitation dilemma, informative value, reinforcement learning, cognitive 21	

control, adaptive behaviors 22	

 23	

 24	

 25	

 26	



Running	head:	cognitive	control	and	information	integration	in	the	dilemma	

	 2	

 27	

 28	

Introduction  29	

Understanding the exploration-exploitation dilemma is widely taken to be one of the main 30	

challenges in the domain of adaptive control and behavior (Cohen, McClure, & Yu, 2007). The dilemma 31	

refers to the fact that when facing a choice, one may either choose to stick with what we know (familiar 32	

rewarding outcomes) or engage in the risky exploration of unknown regions of the decision space. To 33	

better picture this phenomenon, imagine that it is a nice day in your city. You are walking around 34	

downtown in search of a pleasant place to eat. A good strategy would be to choose your favorite 35	

restaurant, because the likelihood that you will find it satisfying is very high. However, new dining rooms 36	

have recently opened in town. Do you select the restaurant that you know you will enjoy, or do you select 37	

another restaurant you have never tried before, potentially finding either a new favorite, or profound 38	

disappointment? Thus, the exploration-exploitation trade-off is a dilemma precisely because it involves 39	

addressing a challenging conflict between maximizing reward and maximizing information. Solving it is 40	

necessary in order to flexibly adapt to environments that are often both uncertain and dynamic. Because 41	

all cognitive agents have to somehow address this challenge, the exploitation-exploration is ubiquitous 42	

and has relevance for many organisms and for many types of decisions. 43	

Although extensive research on the exploration-exploitation dilemma has been conducted over 44	

the last decades in different scientific domains (e.g., artificial intelligence, animal foraging and 45	

neuroscience), a complete understanding of the underlying mechanisms involved in the resolution of the 46	

dilemma is still lacking. In the most popular framework (Daw, O'Doherty, Dayan, Seymour, & Dolan, 47	

2006; Cohen et al., 2007), the dilemma is considered as a dual-process where exploitation is a default 48	

strategy, and it appears to dominate choice behavior because of its association with stronger reward 49	

histories. Following this framework, modifying behavior in an adaptive manner through exploration thus 50	

requires overriding the exploitative strategies that tend to dominate the decision process by its stronger 51	
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association with rewards. To overcome this dominance, behavioral/cognitive control processes might play 52	

a central role (i.e., inhibition) in enabling the switch to exploratory strategies (Daw et al., 2006; Cohen et 53	

al., 2007). Cognitive control is the ability to coordinate sensory information and actions so as to align 54	

them to internal states or intentions (Koechlin, Ody, & Kouneiher, 2003), and is required when the 55	

mapping between sensory inputs and actions is rapidly changing or weakly established relative to other 56	

existing stimulus-response associations (Miller & Cohen, 2001). Top-down control mechanisms could 57	

therefore be the core process that underpins exploratory behavior by enabling the continuous monitoring 58	

of the need for behavioral adjustments and by implementing new goal-directed behaviors (Daw et al., 59	

2006; Cohen et al., 2007). The “behavioral control” framework was introduced to explain activity in 60	

prefrontal regions (i.e., frontopolar cortex), known to be involved in cognitive control (Mars, Sallet, 61	

Rushworth, & Yeung, 2011) during exploratory decisions (Daw et al., 2006). Subsequent evidence has 62	

confirmed the core involvement of higher cognitive-control functions in exploration (Badre, Doll, Long, 63	

& Frank, 2012; Cavanagh, Figueroa, Cohen, & Frank, 2012; Frank, Doll, Oas-Terpstra, & Moreno, 64	

2009).  65	

To understand precisely how cognitive control is related to choice behavior in the exploration-66	

exploitation dilemma, it is important to note that, under the above framework, exploitation specifically 67	

refers to “choosing the option that maximizes a (reward) prediction”. Exploration, on the other hand, is an 68	

umbrella term that encompasses different type of strategies, essentially random and directed exploration 69	

(Wilson, Geana, White, Ludvig, & Cohen, 2014). The concept of random exploration derives from 70	

reinforcement learning (RL) theory (Sutton & Barto, 1998), wherein exploration is merely the product of 71	

noise in the response-generation process. Under this scenario, a decision-maker who learns to maximize a 72	

numerical reward signal may nevertheless make choices associated with lower reward values 73	

(exploration) due to a noisy response. In contrast, the concept of directed exploration derives from 74	

optimal decision-making theories, which take exploration to be an explicit, goal-directed strategy (Gittins 75	

& Jones, 1974). In directed exploration, an animal ‘directs’ exploration toward uncertain options, thus 76	
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increasing its understanding of the surrounding environment through gaining new information. Thus, the 77	

absence of information is the main driving factor in this subtype of exploration behavior.  78	

Whether humans use information to direct their exploratory behaviors has been a matter of 79	

intense discussion over the last decade, and a number of findings have suggested that this was not the case 80	

(Daw et al., 2006; Payzan-LeNestour & Bossaerts, 2011). However, this view has been challenged 81	

recently in studies using alternative paradigms which controlled for the availability of information in the 82	

environment, suggesting that humans may adopt both random and directed exploration (Wilson et al., 83	

2014) the hidden mechanisms of which relate to the integration of reward and information into choice 84	

values (Cogliati Dezza, Yu, Cleeremans, & Alexander, 2017). Although based on a common exploratory 85	

drive, the two exploratory strategies showed different neural substrates (Warren et al., 2017; Zajkowski, 86	

Kossut, & Wilson, 2017), different age-related development (Somerville et al., 2017), and they react 87	

differently to changes in reward contingencies (Cogliati Dezza et al., 2017). Thus, the dilemma does not 88	

seem to be a unitary binary process but instead a class of problems spanning different scales (Cohen et al., 89	

2007). Following this recent perspective, the dilemma is represented as a continuum (Mehlhorn et al., 90	

2015) where many behaviors fall in the extremes (e.g., choosing the highest valuable option or the most 91	

uncertainty option) whereas others might fall somewhere in between (choosing a moderately valuable 92	

option associated with some uncertainty). Behavior at these intermediate points on the continuum is less 93	

amenable to interpretation, and controlled behavioral paradigms are required (Wilson et al., 2014). 94	

Different cognitive mechanisms may therefore underlie the resolution of the dilemma, and the ability of a 95	

decision-maker to deploy different exploratory strategies may depend on the availability of sufficient 96	

cognitive control resources (Otto, Knox, Markman, & Love, 2014). However, a new framework that 97	

attempts to integrate these new advances in understanding the exploration-exploitation dilemma and its 98	

underlying cognitive mechanisms is still lacking. 99	

Motivated by the behavioral control hypothesis of exploratory behavior and by recent 100	

understanding over the resolution of the exploration-exploitation dilemma in humans, we consider 101	

whether cognitive control processes might modulate the resolution of the exploration-exploitation 102	
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dilemma using a mixture of exploratory strategies (i.e., random and directed exploration). We 103	

investigated this hypothesis using a variant of bandit tasks that has previously been used to disentangle 104	

both random and directed exploratory strategies (Wilson et al., 2014; Cogliati Dezza et al., 2017). Bandit 105	

tasks are a family of RL problems where, on each trial, participants must choose among a set of slot 106	

machines (or “bandits”) with the goal of maximizing the total reward over a sequence of trials (Robbins, 107	

1952). This new version of the bandit task used a two-phase gambling task where, on each game, 108	

participants were initially instructed as to which options to choose (forced-choice task), after which they 109	

were free to choose between options (free-choice task) so as to maximize their final gain. By adding a 110	

forced-choice task on the top of the standard bandit task, the information participants had about the 111	

payoffs of each option was controlled, thereby enabling the identification of the two exploratory strategies 112	

in the first free-choice trial of each game (Wilson et al., 2014). In the current study, we additionally 113	

manipulated cognitive control resources by asking participants to engage in a challenging working 114	

memory task (Konstantinou & Lavie, 2013) while performing the sequential decision-making task. Under 115	

the behavioral control hypothesis, depletion of cognitive control resources should lead to a more 116	

pronounced expression of processes that operate independently of control such as exploitation, while 117	

behaviors that require control - such as exploration - should be attenuated. In order to investigate the 118	

effect of cognitive load manipulation on the learning and decision-making components of the dilemma, 119	

we developed a computational model that is capable of capturing participants’ behavior on the new 120	

version of the bandit task by associating a value with information on top of the standard reward-based 121	

reinforcement learning formulation (Cogliati Dezza et al., 2017). Applying a computational model in this 122	

context will help in understanding the underlined mechanisms affected by cognitive control manipulation 123	

which might be not accessible with a “pure” behavioral analysis 124	

 125	

Methods 126	

 127	

Participants 128	
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Twenty-five young adults participated in this study (20 women; aged 18 - 24 years, mean age = 129	

19.6). Based on a previous study (Cogliati Dezza et al., 2017), a power analysis suggested a sample size 130	

of N=24, power = 0.999. Participants were students at the Faculty of Psychology (Université libre de 131	

Bruxelles) and received credits for their participation to the study. The entire group belonged to the 132	

Belgian French-speaking community. The experiment was approved by Faculty of Psychology Ethics 133	

Committee, and was conducted according to the principles of the Declaration of Helsinki. Informed 134	

consent was obtained from all participants prior to the experiment.  135	

Procedure 136	

Bandit task 137	

To investigate the effect of cognitive control on the exploration-exploitation dilemma, we asked 138	

participants to perform 128 independent games of a new version of the multi-armed bandit task (Figure 1) 139	

that has already been shown to elicit both random and directed exploratory strategies (Cogliati Dezza et 140	

al., 2017; Wilson et al., 2014). As in standard bandit tasks, in this version, participants chose among 141	

options with the goal of maximizing the total reward over a sequence of trials. When selected, each option 142	

provides a reward (generated from a hidden distribution) that informs participants about the desirability of 143	

each alternative. Contrary to standard bandit tasks, on each game participants performed a forced-choice 144	

task followed by a free-choice task (Wilson et al., 2014; Figure 1a). During the forced-choice task, 145	

participants were only allowed to select options that had been pre-selected by the computer (Figure 1c), 146	

whereas during the free-choice task participants were able to make their own choices in view of 147	

maximizing their final score (i.e., the amount of points earned throughout the game) (Figure 1d). Contrary 148	

to the first version of this paradigm (Wilson et al., 2014), information regarding the points earned 149	

following a choice did not remain visible following a feedback in order to allow learning to influence 150	

participants’ choices (Cogliati Dezza et al., 2017; Zajkowski et al., 2017). Each game was composed of 6 151	

consecutive forced-choice trials and from 1 to 6 free-choice trials (Figure 1a). The number of free-choice 152	
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trials was manipulated so that participants were unable to predict the length of the free-choice task 153	

(Cogliati Dezza et al., 2017) and to adjust their choices accordingly (Wilson et al., 2014).  154	

 In this version, options were represented as decks of cards and were placed on the left (blue deck), 155	

right (green deck) and central (red deck) side of the computer screen (Figure 1b). The use of three options 156	

allows us to discern between the strategic use of random and directed exploration (Cogliati Dezza et al., 157	

2017) without manipulating the prior knowledge participants had about horizon (i.e., the total number of 158	

trials participants will experience in a game), as in previous versions (Wilson et al., 2014; Krueger, 2017). 159	

In particular, if choice probabilities for the two non-exploitative options are equal, then exploratory 160	

behavior is entirely driven by random exploration. On the contrary, if the choice probability is different 161	

from chance, then choices are partially driven by directed exploration. Participants indicated their choices 162	

using the buttons ‘c’, ‘v’ and ‘b’ of the computer keyboard (Figure 1b). After each choice, the card was 163	

turned to reveal the points earned by the participant for selecting that deck. Participants could obtain 164	

between 1 and 100 points on each trial, and the number of points earned for selecting a deck was sampled 165	

from a truncated Gaussian distribution with standard deviation of 8 points (the standard deviation was 166	

equal for the 3 decks). The generative mean of each deck was set to 30 and 50 points and adjusted by +/- 0, 167	

4, 12, & 20 points to avoid the possibility that participants might be able to distinguish the generative mean 168	

for a deck after a single observation (i.e., the generative means ranged from 10 to 70 points). As in our 169	

previous study (Cogliati Dezza et al., 2017), the 3 decks of cards had the same generative means in 50% of 170	

the games (equal reward condition) and different means in the rest of the games (unequal reward 171	

condition); the intent of the different reward conditions in our previous study was to examine the influence 172	

of reward context on exploration and exploitation. Although not the primary focus of this study, reward 173	

context effects reported in our previous study were also observed here (p < 10-3) replicating our previous 174	

work. However, in the present study, the effect of reward context was not modulated by the cognitive 175	

control manipulation. For this reason, the results concerning reward context will be not discussed any 176	

further. The means of the generative Gaussian function were stable within a game and varied between 177	

games. Participants were informed that the decks of cards did not change during the same game, but were 178	
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replaced by new decks at the beginning of each game. However, they were not informed of the reward 179	

manipulation and the underlying generative distribution we adopted.  180	

As in previous versions of this paradigm, during the forced-choice task we manipulated the 181	

information about the decks of cards acquired by participants (i.e., the number of times each deck of cards 182	

was played). On each game, participants were forced to either choose each deck 2 times (equal information 183	

condition), or to choose one deck 4 times, another 2 times, and never for the remaining deck (unequal 184	

information condition). The information manipulation guarantees the orthogonalization of reward and 185	

information thus allowing the distinction of random and directed exploration in the first free-choice trial of 186	

each game (Wilson et al., 2014). In 50% of the games, participants played with the equal information 187	

condition. The order of card selection was randomized in both information conditions, as well as the 188	

appearance of equal and unequal information condition. 189	

Cognitive control manipulation 190	

Cognitive control resources were manipulated by asking participants to carry out a concurrent 191	

working-memory task during the free-choice task. Specifically, we adopted Konstantinou and Lavie’s 192	

procedure (Konstantinou & Lavie, 2013), which has been shown to selectively interfere with cognitive 193	

control processes (Baddeley, Emslie, Kolodny, & Duncan, 1998; D'Esposito, Postle, Ballard, & Lease, 194	

1999). Prior to the beginning of the free-choice task, a sequence of 9 digits appeared on the screen (Figure 195	

1e). Participants were asked to memorize and retain the sequence until the end of the game. After each 196	

free-choice trial, a single memory probe digit was presented at fixation until a response was given. The 197	

probe was equally likely to be any of the first 8 digits of the memory set. The participants’ task was to 198	

report the digit following the probe in the memory sample (e.g., if the memory set was ‘123456789’ and 199	

the probe was ‘3’, the correct response would be ‘4’). The probe was displayed on the screen and 200	

participants pressed the key corresponding to the selected digit.  201	

In order to investigate the role of cognitive control resources on the exploration-exploitation 202	

dilemma, participants were exposed to two different conditions: High Load vs. Low Load. In the High 203	

Load condition, the digits were presented in random order (e.g., ‘371586249’) for 2000 ms, and a new 204	
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sequence was generated on each game. In the Low Load condition, the digits were presented in fixed 205	

numerical order (i.e., ‘123456789’) for 500 ms. Participants performed the two conditions on two 206	

different days, with order randomized and counterbalanced (half of participants performed the High Load 207	

condition on the first day and the Low Load condition the second day, and vice-versa). Performance on 208	

the memory task was adopted as an inclusion criterion for the statistical analysis (see Results Section). 209	

Due to technical problems, two participants failed to complete the entire 128 games in either the High 210	

Load or the Low Load condition, but their data were included anyway since only a few games were 211	

lacking (one participant played 124 games of High Load condition and the other 123 of the Low Load 212	

condition) and removing those participants did not affect the main results.  213	

 214	

--------------------- 215	
Insert Figure 1 216	

--------------------- 217	

 218	

Computational models 219	

To investigate the hidden mechanisms involved in the resolution of the exploration and 220	

exploitation dilemma under cognitive load, we adopted a previously implemented version of a 221	

reinforcement learning model that learns reward values on each trial and incorporates a mechanism 222	

reflecting the knowledge gained about each deck during previous experience - the gamma-knowledge 223	

Reinforcement Learning model (gkRL). The gkRL model is able to reproduce participants’ behavior on 224	

the above behavioral paradigm (Cogliati Dezza et al., 2017). Specifically, compared to a standard 225	

reinforcement learning model is able to reproduce participants’ directed exploratory strategies in 226	

scenarios where options are not sampled at the same rate.  227	

 228	
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On each trial, a simple d learning rule (Rescorla & Wagner, 1972) is used to compute the 229	

expected reward value 𝑄 𝑐  for each deck of cards c (= Left, Central or Right), using the following 230	

equation: 231	

𝑄#$%,' 𝑐 = 	𝑄#,' 𝑐 + 𝛼	×	𝛿#,'  (1) 232	

where 𝑄#,' 𝑐 	 is the expected reward value for trial t and game j. 	𝛿#,' = 	𝑅#,'	(𝑐) − 𝑄#,' 𝑐 	is the 233	

prediction error, which quantifies the discrepancy between the predicted outcome and the actual outcome 234	

obtained at trial t and game j. The expected reward 𝑄#,' 𝑐  is updated using the above rule only if an 235	

outcome from the deck c is observed, otherwise 𝑄#$%,' 𝑐 = 𝑄#,' 𝑐 . Considering participants were told 236	

that each game was independent from the others, 𝑄2 is initialized at the beginning of each game 237	

(Khamassi, Enel, Dominey, & Procyk, 2013) and set to the global estimate of 𝑄 (~ 40 points) (Cogliati 238	

Dezza et al., 2017).  239	

Additionally, gkRL tracks information gained from each deck based on how often it is selected, 240	

as follows:  241	

𝐼#,' 𝑐 = 𝑖#,' 𝑐
#

%

5

	 242	

where, 𝑖#,' 𝑐 = 0, 𝑐ℎ𝑜𝑖𝑐𝑒 ≠ 𝑐
1, 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑐    (2) 243	

𝐼#,' 𝑐 , is the amount of information associated with the deck c at trial t and game j. 𝐼#,' 𝑐 , is computed 244	

by including an exponential term g that defines the degree of non-linearity in the amount of observations 245	

obtained from options after each observation. g is constrained to be > 0. Each time deck c is selected, 246	

𝑖#,' 𝑐  takes value of 1, and 0 otherwise. On each trial, the new value of 𝑖#,' 𝑐  is summed to the previous 247	

𝑖#<%,%:' 𝑐  values and the resulting value is raised to g, resulting in 𝐼#,' 𝑐 . For example, after six trials of 248	

the forced choice task, if one option has never been selected, 𝐼#,' 𝑐 	has value zero; whereas in the case 249	

that one option is selected 4 times, 𝐼#,' 𝑐  has the value 4^g. The parameter g adds non-linearity to the 250	

information term (Cogliati Dezza et al., 2017), the intuition being that additional samples do not 251	
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contribute equally to the amount of information a subject has about an option (e.g., sampling an option 252	

you have never observed is far more informative than sampling an option you have observed 100 times 253	

previously).  254	

Before selecting the appropriate option, gkRL subtracts the information gained 𝐼#,' 𝑐 	from the 255	

expected reward value 𝑄#,' 𝑐 : 256	

𝑉#,' 𝑐 = 	𝑄#,' 𝑐 − 𝐼#,' 𝑐 ∗ 	𝜔 (3) 257	

𝑉#,' 𝑐 	is the final value associated with deck c. Here, information accumulated during the past trials 258	

scales values 𝑉#,' 𝑐 	so that increasing the number of observations of one option decreases its final value. 259	

In other words, when one option is over-selected, 𝐼#,' 𝑐  becomes larger resulting in lower 𝑉#,' 𝑐 . On the 260	

contrary, if one option is never-selected 𝐼#,' 𝑐  is zero, and 𝑉#,' 𝑐 = 𝑄#$%,' 𝑐 . 𝜔 is the information 261	

weight and determines the degree by which the model integrates information into choice values. In order 262	

to generate choice probabilities based on expected reward values, the model uses a softmax choice 263	

function (Daw et al., 2006; Humphries, Khamassi, & Gurney, 2012; Wilson & Niv, 2011). The softmax 264	

rule is expressed as: 265	

𝑃(𝑐/𝑉#,' 𝑐D ) 	=
EFG	(H×IJ,K L )
EFG	(M EFGH×IJ,K(LM))

  (4) 266	

where 𝛽 is the inverse temperature that determines the degree to which choices are directed toward the 267	

highest rewarded option. With higher 𝛽, the model mainly selects options associated with higher choice 268	

value, whereas with lower 𝛽, the model’s choices are more random. 269	

The gkRL model can be informative concerning the effect of cognitive load on the dilemma in 2 270	

ways. First, it can help to distinguish whether cognitive load effects on exploration are driven by 271	

information computation (𝜔 and g), or whether they are instead driven by changes in choice variability 272	

(𝛽). Second, if changes are driven by alterations in information computation, the model can help to 273	

distinguish whether these are driven by changes in information integration (𝜔) or by changes in the way 274	

information availability decays with time (g).  275	



Running	head:	cognitive	control	and	information	integration	in	the	dilemma	

	 12	

 276	

Model fitting and model comparison 277	

To estimate the model’s parameters a, b, and w, g, we collected trial-by-trial participants’ choices 278	

in both High and Low Load condition (Table 1, Table2). During the fitting procedure, the objective 279	

function - the negative log likelihood - log	(𝑃' 𝑐 )
'R%ST
'R% 	- for each participant under both load 280	

conditions was computed and then minimized using MATLAB and Statistics Toolbox Release 2015b 281	

function fminsearchbnd (which is exactly as fminsearch but does not search outside the fixed boundaries). 282	

The boundaries adopted were as follows: a ]0,1[, b ]0, 10], w [-300, 300],  g ]0, 12]. To increase the 283	

likelihood of finding a global rather than a local optimum, fminsearchbnd was iterated with 15 randomly 284	

chosen starting points. The fitting procedure was validated by running a recovery analysis: the gkRL 285	

model was simulated on the task using the retrieved parameter estimates to generate synthetic behavioral 286	

data and then the fitting procedure was applied to the synthetic data in order to check whether previously 287	

estimated parameters were indeed recovered (r2 > 0.4). Likewise, we checked the model comparison 288	

outcome by computing a confusion matrix and checking whether data generated from a model was indeed 289	

best explained by that model.   290	

 291	

Statistical analysis 292	

Statistical analysis was performed using RStudio (https://www.rstudio.com/), functions and 293	

packages adopted are reported in the results section. To determine whether and how manipulating 294	

cognitive control affected participants’ decision strategies, we conducted repeated measure ANOVA 295	

analyses. When violations of parametric tests were indicated, non-parametric tests were performed. P-296	

values of < 0.05 were considered significant. 297	

 298	

Results 299	
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In this section, we first report the results concerning the cognitive load manipulation we adopted 300	

and its effects on participants’ performance. Subsequently, we examine the interaction between cognitive 301	

load manipulation and decision strategies. Lastly, we investigate the possible hidden mechanisms affected 302	

by manipulating cognitive/behavioral control mechanisms. 303	

Working memory Task 304	

First, we explored the effect of the cognitive load manipulation on memory accuracy. To do so, 305	

trial-by-trial correct memory responses were collected. A Wilcoxon Signed Rank Test on the average 306	

value of subjects' overall correct memory responses revealed a significant difference between High Load 307	

(M = 0.494, SD = 0.12) and Low Load (M = 0.986, SD = 0.012), p < 10-8, r = .874, indicating that, as 308	

expected, increasing memory load affected participants’ performance on the working memory task 309	

(Figure 2a). Because it can be assumed that participants who scored at chance level on memory 310	

performance were not reliably engaged in the memory task, accuracy on the memory task was used as an 311	

inclusion criterion for further statistical analysis. A one-sample T-test on correct memory responses 312	

revealed a significant difference between the High Load condition and chance level (12.5 %), t(24) = 313	

15.29, p < 10-14, d = 4.33, suggesting that participants on averaged were actively engaged in the working-314	

memory task. Additionally, we investigated whether each participant performed above chance-level by 315	

applying a one-sample sign test on participants’ correct memory responses in the High Load condition. 316	

Results revealed that each participant scored above chance level p < 10-6. Following this result every 317	

participant was included in the subsequent analysis.  318	

Cognitive load manipulation 319	

To check whether the cognitive load manipulation affected cognitive control processes by 320	

increasing dual-task interference, we measured choice reaction times (RTs) during the free choice-task of 321	

both High and Low Load condition (Figure 2b). A paired T-test on RTs revealed slower reaction times 322	

during High Load condition (M = 1005 ms, SD = 468 ms) compared to Low Load condition (M = 483 323	

ms, SD = 145 ms), t(24) = 6.19, p < 10-6, d = 1.24, suggesting that less cognitive control resources were 324	

available to participants during the High Load manipulation.  325	
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 326	

--------------------- 327	
Insert Figure 2 328	

--------------------- 329	

 330	

Performance  331	

We also examined whether the cognitive load manipulation affected the way participants 332	

performed the gambling task. Here, performance refers to the ability to play strategically during the task 333	

in order to maximize the total gain. To do so, we computed the probability of choosing the deck with the 334	

highest average of points obtained in the previous trials (overall performance) during the entire free-335	

choice task under all reward conditions in both High Load and Low Load conditions. A Wilcoxon Signed 336	

Rank Test on the average values of overall performance revealed a decrease in the High Load condition 337	

(M = 0.586, SD = 0.109) compared to the Low Load condition (M = 0.617, SD = 0.098), Z = 2.08 p = 338	

.036, r = .417, suggesting that loading cognitive control resources made it more difficult for participants 339	

to retrieve previously learned information and act strategically. However, in both conditions all 340	

participants scored above chance level set at 33%. A Wilcoxon Signed Rank Test on the average value of 341	

participants' overall performance revealed a significant difference between choosing the deck associated 342	

with the highest average points during the High Load condition and chance level, p < 10-7, and between 343	

choosing the deck associated with the highest averaged points during the Low Load condition and chance 344	

level, p < 10-7, indicating that participants played strategically during both load conditions. 345	

Cognitive control and decision strategies  346	

To investigate whether cognitive control plays a role in the resolution of the exploration-347	

exploitation dilemma, we first measured decision strategies when participants selected options unequally 348	

during the forced-choice task (unequal information condition) in both the High and the Low Load 349	

conditions (Figure 3a). We conducted the analysis on the first free-choice trial, being the only trial where 350	

a clear distinction between random and directed exploration can be obtained (Wilson et al., 2014). Trials 351	

were classified as “directed exploratory” when participants chose the option that had never been sampled 352	
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during forced-choice trials, as “exploitative” when participants chose the experienced deck with the 353	

highest average of points (regardless of the number of times that deck had been selected during the 354	

forced-choice task) and as “random exploratory” when the classification did not meet the previous 355	

criteria. The sum of the 3 strategies defined the total choice probability equal 1 (choice probability= 356	

probability to exploit + probability to random explore + probability to directed explore =1). We 357	

conducted a 2 (condition: High Load, Low Load) by 3 (strategies: exploitation, random exploration, 358	

directed exploration) non-parametric ANOVA. The test allows the use of two-way repeated measure 359	

ANOVA in a non-parametric setting using aligned rank transformation (e.g., ART package in R; Conover 360	

& Iman, 1981). Results showed an effect of strategy F(2,120) = 44.83, p < 10-15 , partial eta-squared = 361	

0.428, and a condition X strategy interaction F(2,120) = 5.87, p = .004, partial eta-squared = 0.089 (Figure 362	

3a). The effect of condition did not reach the significant threshold, p = .974. Post-hoc comparisons 363	

showed an increase in random exploration in the High load condition (M = 0.202, SD = 0.123) compared 364	

to the Low Load condition (M = 0.13, SD = 0.09), p = .006; a decrease in directed exploration in the High 365	

Load condition (M = 0.338 , SD = 0.177) compared to the Low Load condition (M = 0.473, SD = 0.198), 366	

p = .0012; and an increase in exploitation in the High Load condition (M = 0.459, SD = 0.149) compared 367	

to the Low Load condition (M = 0.397, SD = 0.151), p = .031.  368	

The above analysis appears to suggest that the effect of cognitive load manipulation affected 369	

directed and random exploration in an opposite fashion: directed exploration decreased, whereas random 370	

exploration increased under High Load compared to Low Load condition. However, in the unequal 371	

information condition, trials labelled as random exploration correspond to the deck of cards that is 372	

sampled either twice or 4 times during the forced-choice task. Therefore, in this condition trials labelled 373	

as random exploration might be confounded with information-based processing (i.e., when subjects select 374	

the option observed twice during the forced-choice task). In order to gain insight into this issue we 375	

conducted two additional analyses: 1) In the unequal information condition we repeated the above 2X3 376	

ANOVA, but only for trials where random exploratory trials where those associated with the deck of 377	

cards sampled 4 times during the forced-choice task; 2) we investigated participants’ behavior in the 378	
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equal information condition where random exploration was not confounded with the number of 379	

observations of each option (being the outcomes of the 3 options equally experienced; Wilson et al., 380	

2014). In the first analysis, we labelled trials as exploitative when the option was associated with highest 381	

reward and selected twice during the forced-choice task, random-exploratory when the option was 382	

associated with lowest reward and selected 4 times during the forced-choice task and directed exploratory 383	

as previously described. Next, we conducted a 2 (condition: High Load, Low Load) by 3 (strategies: 384	

exploitation(2seen), random exploration(4seeen), directed exploration) non-parametric ANOVA. Results 385	

showed an effect of strategy F(2,120) = 79.8, p < 10-15 , partial eta-squared = 0.57, and a condition X 386	

strategy interaction F(2,120) = 7.48, p < 10-3, partial eta-squared = 0.111, whereas the effect of condition 387	

was not significant , p = .137. Post-hoc comparison revealed an increase in random exploration in the 388	

High Load condition (M = 0.119, SD = 0.073) compared to Low Load (M = 0.08, SD = 0.053), p = .025, 389	

whereas exploitation did not differ. Results concerning directed exploration are already reported in the 390	

previous paragraph. In the second analysis, we investigated the effect of cognitive load manipulation on 391	

decision strategies when participants were forced to equally select options (equal information condition; 392	

Figure 3b). We classified choices as “exploitative” when participants chose the experienced deck with the 393	

highest average of points and “random explorative” otherwise. A 2 (condition: High-load, Low-load) by 2 394	

(strategy: exploitation, random exploration) non-parametric ANOVA on participants’ choices showed an 395	

effect of strategy F(1,45) = 64.06, p < 10 -10, partial eta-squared = 0.587, and a condition X strategy 396	

interaction F(1,45) = 5.9, p = .019, partial eta-squared = 0.116. Post-hoc comparisons revealed an increase 397	

in random exploration in the High Load condition (M = 0.366, SD = 0.155) compared to the Low Load 398	

condition (M = 0.273, SD = 0.129), p = .0009; and a decrease in exploitation in the High Load condition 399	

(M = 0.633, SD = 0.155) compared to the Low Load condition (M = 0.725, SD = 0.129), p = .001. Taken 400	

together, these analyses confirm that cognitive control manipulation affected the two exploratory 401	

strategies in a different fashion. 402	

 403	

--------------------- 404	
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Insert Figure 3 405	
--------------------- 406	

 407	

Subsequently, we investigated whether the above results could have been driven by an ineffective 408	

High Load manipulation in trials where participants incorrectly performed the working-memory task. To 409	

do so, we compared RTs from correct and incorrect memory trials during the High Load condition. If the 410	

behavioral pattern observed above was driven by an ineffective load manipulation during incorrect 411	

memory trials, participants should have shown differences in their RTs as a function of memory accuracy. 412	

We computed participants’ RTs during correct and incorrect memory trials and compared the average 413	

values. A Wilcoxon Signed Rank Test on choice RTs showed no differences between correct (M = 1023 414	

ms, SD = 562 ms) and incorrect memory trials (M = 993 ms, SD = 423 ms) in all free-choice trials, Z 415	

=0.04, p = .979, r =.008, and a marginal difference in the first free-choice trials (correct: M = 2036.8 ms, 416	

SD = 1831.6 ms; incorrect: M = 2116.3 ms, SD = 1425.2 ms), Z= -1.95, p = .051, r = -.39. However, this 417	

marginal difference was in the direction of higher RTs for incorrect trials as participants were taking more 418	

time to retrieve incorrectly memorized sequence. Overall, these results suggest that even if participants 419	

were not correctly performing the memory task, they were still in a “loaded state” during the High Load 420	

condition suggesting that the observed effects on the decision strategies were a direct consequence of 421	

lowering cognitive control resources. 422	

Randomness vs. information integration under cognitive load 423	

Our previous analysis showed that manipulating cognitive control resources affected how 424	

participants balanced the exploration-exploitation dilemma, exploring more randomly overall during high 425	

working memory load conditions. In this section, we asked whether this effect was due to an increase in 426	

the randomness in participants’ choices, or whether this effect was due to alterations in reward and 427	

information processing that subtend the resolution of the dilemma through directed exploration (Cogliati 428	

Dezza et al., 2017). To better investigate the mechanisms affected by the load manipulation, we fit the 429	

gkRL model to all participants’ first free choices during both the High and Low Load condition to obtain 430	
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the estimates of the values of the following parameters: learning rate a , inverse of the temperature b, the 431	

non-linear parameter g and the information parameter w (Table 1). We then compared the estimated 432	

parameters for the High Load condition with the parameters of the Low Load condition to investigate the 433	

effect of the cognitive control manipulation. As expected, because the learning processes during the 434	

forced-choice task were not affected, a Wilcoxon Signed Rank Test on the learning rate a showed no 435	

difference between the Low Load condition (M = 0.426, SD = 0.249) and the High Load condition (M = 436	

0.456, SD = 0.3), Z= - 0.4171, p = .691, r = - .083. Furthermore, a Wilcoxon Signed Rank Test on the 437	

inverse temperature parameter b showed no difference between the Low Load (M = 0.606, SD = 1.383) 438	

and the High Load condition (M = 0.865, SD = 1.8), Z = 0.094, p = .937, r = .019. Additionally, a 439	

Wilcoxon Signed Rank Test on the parameter g showed no difference between the Low Load condition 440	

(M = 1.66, SD = 3.44) and the High Load condition (M = 1.44, SD = 2.62), Z= -0.444, p = .672, r = - 441	

.089. On the contrary, the information parameter w showed a decrease in the High Load (M = - 2.81, SD 442	

= 51.76) compared to the Low Load condition (M = 4.82, SD = 9.89), Z= -2.058, p = .039, r = -.412, 443	

suggesting that the increase in random exploration was due to an inability to integrate the learned 444	

information into a choice value, rather than an increase in the randomness of participants’ choices or by 445	

alteration in how information is decay with time (Figure 4a).  446	

Furthermore, we fitted the model to all free-choice trials so as to have a more comprehensive 447	

view over the underlying process as well as to obtain a better estimate of the parameter values due to the 448	

higher number of data points (Table 2). As before, a Wilcoxon Signed Rank Test showed no difference 449	

between the Low Load and the High Load conditions, neither for the inverse temperature parameter b (M 450	

= 0.344, SD = 0.737; M = 0.424, SD = 0.81), Z = 0.202, p = .853, r = .04, nor for the g  parameter (M = 451	

2.247, SD = 3.201; M = 2.771, SD = 3.448), Z= -0.336, p = .751, r = -.067. Again, a Wilcoxon Signed 452	

Rank Test on the information parameter w did reveal a decrease in information integration from Low 453	

Load (M = 5.19, SD = 9) to High Load (M = -1.993, SD = 9.3), Z = -3.35, p = .0003, r = -.67. However, 454	

the same test applied to the learning rate a revealed a decrease in the speed of integration of new reward 455	
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information from Low Load (M = 0.495, SD = 0.198) to High Load (M = 0.312, SD = 0.186), Z = 3.108, 456	

p = .001, r = -.621 (Figure 4b). The effect on learning rate in this analysis is explained by the fact that we 457	

considered all free-choice trials during which participants were performing the memory task while 458	

repeatedly selecting options. As a consequence, the ability to integrate new reward information 459	

(expressed by the learning rate) was also affected.  460	

As an additional check, we fit the gkRL model exclusively on the free-choices trials where 461	

memory responses were correct in both Low and High Load conditions. Wilcoxon Signed Rank Tests 462	

confirmed our previous results: no differences in parameter b ,  Z = -0.525, p = .615, r = -.105, and 463	

parameter g between Low and High Load condition, Z = -1.0, p = .325, r = -.202, whereas a higher a was 464	

observed in the Low Load condition (M = 0.493, SD = 0.229) compared to the High Load condition (M = 465	

0.321, SD = 0.248), Z = 2.516, p = 0.001, r = .503. A higher information parameter w was also obtained 466	

in the Low Load condition (M = 6.02, SD = 8.9) compared to the High Load condition (M = -0.827, SD = 467	

7.63), Z = 3.4, p = .0002, r = .686 (Figure 4c). 468	

                                                                       --------------------- 469	

Insert Figure 4 470	
--------------------- 471	

Cognitive control and information integration 472	

Following the above results, cognitive load seems to affect participants’ ability to integrate 473	

learned information into choice values in order to solve exploration-exploitation problems. As a further 474	

investigation, we asked whether a standard reinforcement learning (sRL) model that learned reward 475	

values following equation (1) and entered directly in equation (4) without any integration of information, 476	

could better explain this ‘inability’ in integrating information during cognitive control manipulation. To 477	

do so, we compared fits of both the gkRL model and sRL model. During the fitting procedure, we 478	

computed negative-log likelihoods of both models and their model evidence (or the log model evidence - 479	

the probability of obtaining the observed data given a particular model). We adopted an approximation to 480	

the (log) model evidence, namely the Bayesian Information Criterion (BIC; (Schwarz, 1978)). We 481	
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conducted a frequentist analysis with BIC values of the two models (fitted to the first free-choice trials) 482	

entered into a t test. Results showed that during the Low Load condition the gkRL model (BICgkRL = 184) 483	

best represented participants’ data compared to sRL (BICsRL = 203), t(24)= -3.034, p = .005, d = 0.455, 484	

replicating our previous findings on reward and information integration during this new version of the 485	

bandit task (Cogliati Dezza et al., 2017). However, in the High Load condition neither the gkRL model 486	

(BICgkRL = 218) nor the sRL model (BICsRL = 214) better represented participants’ data, t(24)= 0.437, p = 487	

.666, d = -0.076. To better understand this point, we individually investigated the BIC values of each 488	

model (Figure 5). While in the Low Load condition the performance of the majority of participant was 489	

better explained by the gkRL model (Figure 5a), in the High Load condition approximately 60 % of 490	

participants were better represented by the sRL model (whereas the behavior of 20% were better 491	

explained by the gkRL model, and 20% were equally explained by both models, Figure 5b), confirming 492	

that during the High Load condition information processing was heavily compromised and that for the 493	

majority of subjects the computation of information was nullified. Furthermore, we extended the 494	

comparison of the two computational models to all free-choice trials to have an exhaustive understanding 495	

of the hidden processes. Contrary to our previous model comparison in the High Load condition, results 496	

showed that, when fit to all free-choice trials, the gkRL model (BICgkRL = 802) best represented 497	

participants’ data compared to sRL (BICsRL = 849), t(24)= -3.4, p = .002, d = 0.258 (we obtained the same 498	

result in the Low Load condition so the results are not reported here).  499	

A possible reason behind this apparently incoherent result could be related to the working 500	

memory process itself. The memory sequence was presented to participants at the beginning of the free-501	

choice task only: cognitive load may be reduced during later free-choice trials either as a consequence of 502	

inability to maintain the complete sequence over the course of the free-choice task (and thus freeing 503	

cognitive resources for making choices), or because cognitive demands related to maintaining the 504	

sequence are higher immediately following the presentation of the sequence. We therefore investigated 505	

participants’ behavior during all free-choice trials to better clarify this point. However, after the first free-506	

choice trial it is not possible to distinguish between random and directed exploration due to a confound 507	
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between reward and information (Wilson et al., 2014). For this reason, in order to investigate participants’ 508	

behavior during the all free-choice trials, we focused on information-based processes only. To do so, we 509	

computed the probability of selecting the least-seen deck (the option visited the least number of times in 510	

the previous trials), the most-seen deck (the option visited the most number of times in the previous trials) 511	

and the middle-seen deck (when previous criteria did not match) during both load conditions. When we 512	

investigated the behavior globally, the analysis gave similar results observed in the previous behavioral 513	

analysis (section Cognitive control and decision strategies), where the probability of selecting the least-514	

seen option was reduced during the High Load condition (M = 0.255,  SD = 0.099) compared to the Low 515	

Load condition (M = 0.304,  SD = 0.071, Z = -2.652, p = .006, r = -.53), whereas the most-seen showed 516	

the opposite pattern an increase in the High Load (M = 0.573,  SD = 0.121) compared to the Low Load 517	

condition (M = 0.531,  SD = 0.092), Z = 2.18, p = .028, r = .436 (the probability of choosing the middle 518	

seen option did not differ and so we will not consider this strategy any further- Figure 6a). However, 519	

investigating the trial-by-trial probability revealed a more exhaustive view. Indeed, the above result was 520	

true only for the first 3 free-choice trials (all p values < 10-2), whereas we did not observe differences in 521	

terms of the most-seen and least-seen options during the last 3 trials (all p > 0.05) (Figure 6b). These 522	

results suggest that the effect of cognitive load was greatest during the first free-choice trials and vanished 523	

during the last trials suggesting that the reason behind the better performance of gKRL compared to sRL 524	

in explaining all participants’ free choices was due to a decrease in cognitive load in the last trials of each 525	

game. Considering that the above analyses focused on information only, it is possible that additional 526	

factors may inform choice behavior in free choice trials. To examine this, we also computed switch/stay 527	

probabilities for free choice trials. Switch/stay behavior changed in the High Load (Mswitch = 0.416 SDswitch 528	

= 0.165; Mstay = 0.584 SDstay = 0.165) compared to Low Load Condition (Mswitch = 0.476 SDswitch = 0.118; 529	

Mstay = 0.533 SDstay = 0.118), both p = .042. However, differences in switch/stay behavior were most 530	

apparent on the first free-choice trial – subjects tended to switch choices, but did so more often in the low-531	

load condition (Figure 7). Results showed that in the last trials of each game stay (switch) probability did 532	
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not change between High Load and Low Load condition (all p > 0.05) confirming that a decrease in 533	

cognitive load occurred in the last trials of each game. 534	

                                                                       --------------------- 535	

Insert Figure 5 536	
--------------------- 537	

--------------------- 538	
Insert Figure 6 539	

--------------------- 540	

--------------------- 541	
Insert Figure 7 542	

--------------------- 543	

From the model to behavior 544	

The above results demonstrate that the gkRL model better accounts for our behavioral data 545	

relative to sRL. In order to demonstrate that the gkRL model parameters are behaviorally-relevant, we 546	

correlated the differences observed between the two load conditions in the information integration 547	

parameter w with the differences in exploitation in the unequal information condition. If the model 548	

captures behavioral dynamics, we should expect increased differences between the estimate of parameter 549	

w  in the two load conditions as well as increased differences in exploitation between the two load 550	

conditions. We observed a positive correlation between the difference in w and the difference in 551	

exploitation (Pearson correlation r(23)= .413, p = .039) suggesting that reduction of the integration of new 552	

information was associated with increased exploitative behaviors. Additionally, simulations of the model 553	

are also able to reproduce the condition-dependent behavioral results we observe in our data. We 554	

simulated the gkRL model 80 times under the two loading conditions. In the High Load condition 555	

w values were randomly drawn from a uniform distribution with mean -2, whereas for the Low Load 556	

condition the mean was set to 5. The other parameters did not change between the two conditions and 557	

their values were randomly chosen from a uniform distribution with mean set around the mean values 558	

observed in participants’ data. We then labeled model’s choices in the unequal information as directed 559	

exploratory, random exploratory and exploitative. We conducted a 2 (condition: High Load, Low Load) 560	
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by 3 (strategies: exploitation, random exploration, directed exploration) non-parametric ANOVA. Results 561	

showed an effect of strategy F(2,395) = 223.04), p < 10-15 , partial eta-squared = 0.53, and a condition X 562	

strategy interaction F(2,395) = 240.52, p < 10-15, partial eta-squared = 0.549. The effect of condition did 563	

not reach the significant threshold, p = .5. The results mimicked the same behavioral pattern observed in 564	

participants’ data (Figure 8a). Additionally, we computed random exploration and exploitation in the 565	

equal information condition. We conducted a 2 (condition: High Load, Low Load) by 2 (strategies: 566	

exploitation, random exploration) non-parametric ANOVA. Results showed an effect of strategy F(2,237) 567	

= 382.89, p < 10-15 , partial eta-squared = 0.617, however neither an effect of condition X strategy and an 568	

effect of condition was observed (all p > 0.05) (Figure 8b). The behavior of the model in the equal 569	

information condition, however, did not replicate the findings observed in participants’ data. We better 570	

discuss this result in the next section. 571	

--------------------- 572	
Insert Figure 8 573	

--------------------- 574	

 575	

Cognitive control and value degradation 576	

In order to understand the underlying mechanisms affected in the equal information condition that 577	

are not captured by the information integration account expressed by the gkRL model, we implemented a 578	

new version of the gkRL model- the value gamma knowledge RL (vgkRL). The rationale behind this 579	

additional model implementation is that cognitive load might have affected processes concerning both 580	

information integration (as captured by the gkRL model) as well as reward information. Indeed, the gkRL 581	

model was developed primarily in order to capture participants’ behavior in the unequal sampling 582	

scenario where differences in information are expected to have a large influence on exploration-583	

exploitation decisions (Cogliati Dezza et al., 2017). However, model simulations in the equal information 584	

condition appears to suggest that cognitive load may additionally degrade the integration of reward 585	

information into an overall choice value. In order to investigate this reward degradation account, the 586	
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vgkRL adds an integration of reward values on top of the information integration expressed in gkRL. 587	

Equation (3) thus becomes: 588	

 589	

𝑉#,' 𝑐 = 	 (𝑄#$%,' 𝑐 ∗ 	𝜌) − (𝐼#,' 𝑐 ∗ 	𝜔) (5) 590	

 591	

r indicates the degree by which reward values are integrated in choice values. We fitted vgkRL to 592	

participants’ data and simulated the model using the retrieved parameters. We then analyzed model 593	

behavior in both unequal and equal information condition. In the unequal condition, we conducted a 2 594	

(condition: High Load, Low Load) by 3 (strategies: exploitation, random exploration, directed 595	

exploration) non-parametric ANOVA. Results showed an effect of strategy F(2,110) = 21), p < 10-7 , 596	

partial eta-squared = 0.144, and a condition X strategy interaction F(2,110) = 4.79, p = .01, partial eta-597	

squared = 0.743 (Figure 9a). The effect of condition did not reach the significant threshold, p = .9. Post-598	

hoc comparisons revealed the same pattern observed in participants’ behavior where directed exploration 599	

decreases whereas random exploration increases in the High Load condition compared to the Low Load 600	

condition (all p < .05). On the contrary, exploitation did not differ between the two conditions (p > .05). 601	

Subsequently, we conducted a 2 (condition: High Load, Low Load) by 2 (strategies: exploitation, random 602	

exploration) non-parametric ANOVA in the equal information condition. Results showed an effect of 603	

strategy F(2,72) = 23.87), p < 10-5 , partial eta-squared = 0.249, and a condition X strategy interaction 604	

F(2,72) = 6.16, p = .015, partial eta-squared = 0.079 (Figure 9b). The effect of condition did not reach the 605	

significant threshold, p = .986. Post-hoc comparisons revealed the same pattern observed in participants’ 606	

behavior where exploitation decreases whereas random exploration increases in the High Load condition 607	

compared to the Low Load condition (all p < .05). These results seem to suggest that on the top of the 608	

information degradation process occurring in the unequal information condition, cognitive load also 609	

affected reward value degradation captured by the r parameter in vgkRL model. Therefore, cognitive load 610	

appears to specifically interferes with the ability to combine reward and information in order to inform 611	
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choices. To better test this hypothesis, we compared the estimated parameters of the model between the 612	

two conditions. Unfortunately, the analysis did not reveal any differences in the estimated parameters 613	

between Low Load and High Load condition (all p > .05). The reason behind this counterintuitive result 614	

might be that when adding parameters to the model higher number of data points are necessary in order to 615	

obtain a reliable estimate within the same statistical power. Thus, the fitting procedure was less powerful 616	

and less able to recover the accurate estimates. 617	

                                                                       --------------------- 618	

Insert Figure 9 619	
--------------------- 620	

 621	

Discussion 622	

The results of this study challenge a popular view concerning the cognitive mechanisms underlying 623	

the resolution of the exploration-exploitation dilemma. Specifically, following this perspective the dilemma 624	

is considered as a binary process and cognitive control as the main underlying mechanism which is 625	

required in order to override default exploitative strategies in favor of exploration of the surrounding 626	

environment (Daw et al., 2006; Cohen et al., 2007). Our results showed that indeed the need for cognitive 627	

control seems necessary when resolving the dilemma. However, increased cognitive load appears to affect 628	

only one aspect of exploration, namely directed exploration, and the effect of cognitive load on exploration 629	

seems to mostly be driven by information degradation. Additionally, our results unveiled a different facet 630	

of exploitative behaviors that moves away from the traditional view of exploitation as a ‘default strategy’. 631	

Together, these findings shed additional light on the mechanisms underlying adaptive control and behavior 632	

and suggest new approaches for interpreting the exploration-exploitation dilemma. In the following, we 633	

discuss the implications of our main results. 634	

In line with what could be expected due to dual-task interference (Herath, Klingberg, Young, 635	

Amunts, & Roland, 2001), participants’ choice RTs were affected by high cognitive load, suggesting that 636	

participants cognitive control resources were effectively reduced in this condition. Further analyses 637	
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showed that high cognitive load affected participants’ performance on the gambling task in terms of 638	

choosing the option associated with highest reward (i.e., overall performance). Under both load 639	

conditions, overall performance was above chance-level. However, during the High Load condition 640	

participants were slower in integrating new evidence, as shown by the decrease in the learning rate during 641	

the free-choice task, which, in turn, might explain the decrease in overall participants’ performance.  642	

One of the main results of this study concerns the antagonist effects of cognitive load on the two 643	

exploratory strategies. Specifically, increased cognitive load resulted in a decrease in directed exploration 644	

and in an increase in random exploration, suggesting that directed exploration depends on the availability 645	

of sufficient control resources, and that depletion of such resources promotes random exploration. This 646	

result presents a different picture concerning the involvement of cognitive control in the resolution of the 647	

exploration-exploitation dilemma compared to that suggested by the behavioral control hypothesis (Daw 648	

et al., 2006; Cohen et al., 2007). Resolving the dilemma through exploration seems not to be a unitary 649	

process that always requires cognitive resources to be mustered, independent of the type of exploratory 650	

strategies adopted. On the contrary, the resolution of the dilemma through exploration is a multi-faceted 651	

phenomenon (Wilson et al., 2014; Warren et al., 2017; Somerville et al., 2017; Zajkowski et al., 2017), 652	

and cognitive control seems to intervene only when exploring the environment in a directed, intentional 653	

manner. These results are in line with recent studies that suggest that random and directed exploration are 654	

distinct strategies, even if based on a common exploratory drive (Cogliati Dezza et al., 2017; Zajkowski 655	

et al., 2017). 656	

Furthermore, when interfering with the resolution of the dilemma, cognitive control cooperates 657	

with those aspects of exploration related with the integration of information into choice values. Under 658	

cognitive load participants were more prone to stay with the same option (as shown by effects of 659	

cognitive load in the switch/stay behavior) penalizing the search for new information. This result is in line 660	

with several studies on information-based processes concerning the exploration-exploitation dilemma that 661	

collectively highlight a tight association between information-based exploration (directed exploration) 662	

with pre-frontal areas involved in higher-level cognitive processes (Badre, Doll, Long, & Frank, 2012; 663	
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Cavanagh, Figueroa, Cohen, & Frank, 2012) as well as the prefrontal dopamine network ( Frank, Doll, 664	

Oas-Terpstra, & Moreno, 2009; Kayser, Mitchell, Weinstein, & Frank, 2015). However, our results 665	

appear to contrast with a study by Daw and colleagues that suggested a crucial role for top-down control 666	

processes in random exploration (Daw et al., 2006). In their study, activity in brain regions associated 667	

with higher-level cognitive functions (i.e. frontopolar cortex) was associated with the probability of 668	

randomly exploring options. Frontopolar cortex was subsequently associated with switching between 669	

strategies instead of targeting exploratory strategy itself (Boorman, Behrens, Woolrich, & Rushworth, 670	

2009) and TMS studies of this region affected only directed exploration (Zajkowski et al., 2017). Clearly, 671	

more research is needed to understand the neuronal and neurochemical mechanisms underlying 672	

exploration in light of the new and recent evidence on directed and random exploration. 673	

Our results are in line with a recent finding that showed higher cognitive costs associated with 674	

those processes involved in reflexive exploration (Otto et al., 2014). Specifically, cognitive load seems to 675	

affect participants’ ability to use a model of the environment where environmental statistics (i.e., state 676	

transition probabilities) and reward structure are integrated into choice values in order to guide 677	

exploratory behaviors. However, our results suggest a more nuanced view concerning this phenomenon: 678	

the results of our model fits suggested that reducing cognitive resources specifically affected those 679	

processes involved in information-integration, while processes involved in transforming probability 680	

distributions into action selection (decreasing or increasing the level of noise in the system through a 681	

softmax function) were unaffected. Moreover, the effect of cognitive load on information is restricted to 682	

integration and not to other aspects of the information processing, such as information decay (which 683	

might be captured by differences in the gamma parameter). In our study, however, we approached the 684	

computational problem using a model-free strategy where choices are only driven by past experience 685	

(information and reward history) without a representational characterization of the environment (contrary 686	

to a model-based strategy where choices are driven by the model of the world; Daw, Niv, & Dayan, 687	

2005). It might be possible that in real life scenarios humans adopt model-based approaches when facing 688	

exploration and exploitation problems, requiring more complex, and resource-intensive computations that 689	
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are only approximated by the manner in which information is integrated in the gkRL model. The relation 690	

between model-based strategy and information integration should be addressed by future research. 691	

Our results further question the interpretation of exploitation as a default strategy that requires 692	

cognitive control to be inhibited (Daw et al., 2006; Cohen et al., 2007). Contrary to what might have been 693	

expected by the behavioral control hypothesis (Cohen et al., 2007), exploitation was affected by the 694	

cognitive control manipulation in such a way that when participants visited the options the same number of 695	

times (i.e., equal information condition), they decreased exploitative choices during the High Load 696	

condition. This finding seems to suggest that, under certain scenarios, cognitive control is necessary to 697	

achieve exploitation, as in the other goal-directed behaviors. That is, choosing to exploit requires cognitive 698	

resources in a fashion similar to choosing to explore. Our results are in line with recent findings on 699	

cognitive foraging, where exploring other patches or exploiting familiar patches involved similar cognitive 700	

mechanisms (Hills, 2010). Our results also provide support for the view that considers exploitation not only 701	

as the strategy that selects best rewarded actions, but also as a strategy that relies on cognitive control 702	

resources to maintain task demands (Hills, Todd, & Goldstone, 2010). Sticking with the same option can be 703	

considered as a sub-goal of the higher goal of maximizing reward in the long run, and maintaining attention 704	

between competing task demands required higher cognitive control functions (e.g., the cocktail party 705	

phenomenon; Conway, Cowan, & Bunting, 2001; Hills et al., 2010). A drawback, however, is that our 706	

model was unable to capture this phenomenon (Figure 8b). Indeed, gkRL was developed in order to capture 707	

human behavior in unequal sampling scenarios (Cogliati Dezza et al., 2017). In order to understand the 708	

underlying mechanisms of the effect of cognitive load on the exploitation, we presented an implementation 709	

of the gkRL model where the integration of reward into choice value was also modulated. Simulations of 710	

this model showed that the reward value degradation might be the underlying mechanism behind the 711	

decrease in exploitation in the equal information condition. However, the limited number of trials available 712	

in our paradigm precluded a definitive answer to this question. Further work is needed in order to 713	

understand how cognitive control might influence choice value computation. 714	



Running	head:	cognitive	control	and	information	integration	in	the	dilemma	

	 29	

Taken together, our results suggest a new perspective on the exploration-exploitation dilemma as 715	

the product of multiple competing control modes that jointly promote adaptive behavior through 716	

increased emphasis on stability or flexibility. Similar to cognitive search modes (Hommel, 2012), the 717	

differences between these control modes might be in the control-style they call for: a divergent decision-718	

making style- one goal representation that diverges to different action selections (or perceptual 719	

representations in the case of cognitive search )- and a convergent style where a potential number of 720	

possible actions (or a number of representations) converges toward an optimal solution (Hommel, 2012). 721	

At the neural level, these different modes may be represented by tonic and phasic activity in the Locus 722	

Coeruleus expressed by the release of norepinephrine (NE) (Aston-Jones & Cohen, 2005). LC-NE is the 723	

target of projections from cortical regions implicated in cognitive control and adaptive behavior, 724	

including regions involved in processing information regarding behaviorally salient changes in the 725	

environment (e.g., Anterior Cingulate Cortex. Anterior Insula, and Orbitofrontal Cortex). Following 726	

unexpected changes in the environment, tonic LC-NE activity may favor adaptive exploration by allowing 727	

disengagement from current task demands (Yu & Dayan, 2005). On the other hand, in stable 728	

environments, phasic LC-NE activity may promote exploitative behavior by increasing attention toward 729	

task-relevant stimuli and maintenance of the current goal (Aston-Jones & Cohen, 2005; Jepma & 730	

Nieuwenhuis, 2011). This perspective, however leaves many questions unanswered. For example, the 731	

interaction between these control modes and the regions previously associated with exploration (i.e., 732	

frontopolar cotex) is still unknown and needs to be addressed by future research. Moreover, random 733	

exploration, but not directed exploration, was affected by pharmacological manipulation of baseline NE 734	

levels (Warren et al., 2017) questioning how the LC-NE system may control the two exploratory 735	

strategies and which is the role of random exploration in this mode-based trade-off. So far, random 736	

exploration seems to be a low-level (Warren et al., 2017) or automatic action control process (Humphries 737	

et al., 2012) that might be necessary when a less engaging or faster behavioral adaption is required. 738	

However, the exact manner in which low-level control interacts with higher cognitive control remains an 739	

open question and should be the subject of future research.  740	
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Although our study adds additional perspective on the cognitive mechanisms underlying the 741	

resolution of the exploration-exploitation dilemma by humans, there are nonetheless limitations that may 742	

influence the scope of our results. Besides the limitation of the computational model discussed above, the 743	

absence of horizon manipulation in our paradigm makes impossible to distinguish whether the increase in 744	

random exploration in the High Load condition was due to random exploration itself (changes in 745	

randomness in long horizon) or by overall increase in randomness (Krueger, 2017). On the same line, the 746	

information integration parameter was not horizon-dependent. Thus, we cannot explain the effect of 747	

cognitive load on the information integration on a trial-basis. Additionally, although ambiguity appears to 748	

modulate the tension between exploration and exploitation (Wilson et al., 2014; Krueger, 2017), we did not 749	

specifically investigate this aspect in this study. Lastly, we did not compute participants’ memory span, 750	

preventing us from delineating individual profiles concerning the efficacy of our experimental 751	

manipulation.  752	

Regardless of these limitations, using a recently developed behavioral paradigm (Wilson et al., 753	

2014), we disentangle the role of cognitive control in the resolution of the exploration-exploitation 754	

dilemma. Our results emphasized the multifaceted nature of the resolution of the dilemma and suggest 755	

that multiple-cognitive control modes are the underlying cognitive mechanisms. This study is in line with 756	

a new perspective on how to look at the exploration-exploitation dilemma, and provides a formal 757	

foundation within which to explore pathologies of goal-directed behavior such as manifest in addiction, 758	

obsessive-compulsive disorders and attentional deficits.  759	
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This study is part on a broader research project that aims to investigate the neurobehavioral and 766	

neurocognitive mechanisms underlying the resolution of the exploration-exploitation dilemma in humans 767	

in order to develop a solid framework within which to explore decision-making alterations in psychiatry 768	

disorders. The exploration-exploitation dilemma provides, indeed, a powerful tool to investigate 769	

motivation, outcome evaluation, effort as well as risk-taking and impulsivity which are the main decision-770	

making components disrupted in psychiatry disorders (Addicott, Pearson, Sweitzer, Barack, & Platt, 771	

2017). 772	
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Figure Captions 898	

Figure 1 Behavioral paradigm. a) Organization of games and trials. On each game, participants faced 6 899	

consecutive trials of the forced-choice task and between 1 and 6 trials of the free-choice task. In the first 900	

free-choice trial (in yellow), reward and information are orthogonalized enabling the distinction between 901	

random and directed exploration. The number of free-choice trials was exponentially distributed such that a 902	

higher proportion of games allowed subjects to make 6 free choices. b) Choices. Participants indicated their 903	

choices using the forefinger, middle finger and ring finger and pressing the keyboard keys ‘c’, ‘v’ and ‘b’, 904	

respectively. c) Forced-choice task. Three decks of cards were displayed on the screen (a blue, a red and 905	

green deck) and participants were forced to choose a preselected deck (outlined in blue in the figure). After 906	

selecting the deck, the card turned and revealed the points associated with the selected option, between 1 907	

and 100 points. At this stage, the points displayed to participants were not added to their total score. d) 908	

Free-choice task. Participants made their own decisions among the same three decks of cards displayed 909	

during the forced-choice task. After each trial, the points displayed on the screen were added to the 910	

participants’ total score and participants were instructed to attempt to maximize the total points earned at 911	

the end of the experiment. e) Cognitive load manipulation. Before the 1st trial of the free-choice task, a 912	

sequence of 9-digits was displayed on the screen. During the Low Load condition, the digits were presented 913	

in fixed numerical order (i.e., ‘123456789’) for 500 ms. On the contrary, during the High Load condition 914	

the digits were presented in random order (i.e., ‘371586249’), for 2000 ms, and a new sequence was 915	

generated on each game. After each free-choice trial a digit (randomly selected from the 9-digit sequence) 916	

was displayed to participants who needed to report (‘Rm’- memory response) the number that followed the 917	

presented number in the previous 9-digit sequence presented before the 1st free choice trial. 918	

 919	

Figure 2 Memory performance and Cognitive load manipulation. a) Memory accuracy measured by 920	

averaging trial-by-trial correct memory responses obtained by participants during both High and Low 921	

Load condition. Error bars are also represented as the standard error from the mean (s.e.m). b) Cognitive 922	
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load manipulation increased participants’ choice reaction time (RT in ms) during the High Load 923	

compared to the Low Load condition. Error bars are also represented as s.e.m. 924	

 925	

Figure 3 Cognitive load and decision strategies. a) In the unequal information condition, directed 926	

exploration decreased in the High Load condition compared to the Low Load condition, whereas random 927	

exploration and exploitation showed the opposite trend. Error bars are also represented as s.e.m. b) In the 928	

equal information condition, random exploration increased under High Load condition whereas 929	

exploitation decreased. Error bars are also represented as s.e.m. 930	

 931	

Figure 4 Information integration. a) First-free trials. Model fit on the first free-choice only revealed a 932	

decrease in the information weigh parameter w (that modulates to integration of information into choice 933	

values) during High Load condition compared to Low Load condition, whereas the inverse of temperature 934	

b, the learning rate a and the g parameter were not affected by the cognitive load. Error bars are also 935	

represented as s.e.m. b) All-free trials. Model fit on all free-choices showed a decrease in information 936	

parameter w and the learning rate a in the High Load condition, whereas both b and g were not affected 937	

by the cognitive manipulation. Error bars are also represented as s.e.m. c) Correct memory choices. 938	

Model fit on the trials where participants correctly performed the memory task. Error bars are also 939	

represented as s.e.m. The results showed the same pattern observed when fitting all free-choices. 940	

 941	

Figure 5 Comparative fit of the gkRL and sRL. The comparison of the fit is based on the BIC values of 942	

both models during the Low Load (a) and High Load condition (b). Each point is one participant. The 943	

sRL fit better when the point is below the identity line. When a point lays on the identity line the models 944	

equally explain participants’ behavior.  945	

 946	
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Figure 6 Seen analysis. a) Probability to choose the option seen least, middle and most of the time during 947	

the free-choice task. Choices towards the least seen option decreased during the High Load condition 948	

compared to the Low Load condition, whereas choices toward most seen options showed the opposite 949	

pattern. Error bars are also represented as s.e.m. b) Probability to choose the option seen most (Most-Seen 950	

options), least (Least-Seen options) and middle (Middle-Seen options) of the time during the free-choice 951	

task split by trial. During the first three free-trials, the probability to choose the least seen option (and 952	

most seen option) differs significantly, whereas in the last free-choice trials no difference was observed. 953	

To avoid overloading the visualization, we reported only when the comparisons did not reach significance 954	

threshold.  955	

 956	

Figure 7 Switch/Stay strategy. a) Probability to stay with the same option chosen at trial t-1 during the 957	

free-choice task. During last free-choice trials, the probability to stay with the same option did not differ 958	

between the two loading conditions. Error bars are also represented as s.e.m. b) Probability to switch form 959	

the option chosen at trial t-1 during the free-choice task. During last free-choice trials, the probability to 960	

switch did not differ between the two loading conditions. Error bars are also represented as s.e.m. 961	

 962	

Figure 8 gkRL Simulation. a) In the unequal information condition, the model simulated under the two 963	

loading conditions reproduced the same behavioral pattern observed in participants: directed exploration 964	

decreased in the High Load condition, whereas random exploration and exploitation increased in Low 965	

Load condition. b) In the equal information condition, no behavioral differences in exploitation and 966	

random exploration were observed between the two loading conditions. Only the comparisons that did not 967	

reach significance threshold are reported.  968	

 969	
Figure 9 vgkRL Simulation. Model simulation reproduced a similar patter observed in participants’ data 970	

in both unequal (a) and equal (b) information condition.  971	

 972	
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Figure  973	

Figure 1 974	
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Figure 2 977	
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Figure 3 980	
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Figure 4 983	
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Figure 5 986	
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Figure 6 989	
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Figure 7 992	
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Figure 8 995	
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Figure 9 998	
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Table Captions 1001	

Table 1 Model fit results: 1st free trials. Estimated parameters for each subject using gkRL model during 1002	

High Load and Low Load condition. Group average of the estimated parameters are also reported. Group 1003	

standard deviation are reported within parenthesis. 1004	

Table 2 Model fit results: all free trials. Estimated parameters for each subject using gkRL model during 1005	

High Load and Low Load condition. Group average of the estimated parameters are also reported. Group 1006	

standard deviation are reported within parenthesis. 1007	
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Table 1 1023	
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