
HIGHER ORDER DEFORMATIONS OF HYPERBOLIC
SPECTRA
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In memory of Erik Balslev

Abstract. This is an expanded writeup of a talk given by the
second author at Erik Balslev’s 75th birthday conference on Oc-
tober 1-2, 2010 at Aarhus University. We summarize our work
on Fermi’s golden rule and higher order phenomena for hyperbolic
manifolds, a topic which occupied the last part of Erik Balslev’s
research.

1. Introduction

In 1911 Herman Weyl [Wey11] proved, that the number N(λ) of
eigenvalues λn less than λ of the Dirichlet Laplacian on a bounded
domain X ⊆ Rn with sufficiently nice boundary has the following as-
ymptotic behaviour:

(1.1) N(λ) ∼ ωdvol(X)

(2π)d
λd/2, as λ→∞.

Here ωd is the volume of the unit ball in Rn, and vol(X) is the volume
of X. For us it is useful to know that Weyl’s law holds for compact
Riemannian manifolds, see [MP49,Bus92]. Weyl’s law has been gener-
alized and extended to many other cases, see e.g. [Ivr16].

In a seemingly unrelated direction Erich Hecke [Hec36] showed that
the zeta function ζK of an imaginary quadratic field K is related in a
simple manner to a certain modular form through Mellin transform. A
modular form of weight k is a holomorphic function on the upper half-
plane H such that the differential f(z)(dz)k/2 is invariant under the
action of certain subgroups of the full modular group SL2(Z). Hans
Maass [Maa49] investigated whether an analogous relation were true
for real quadratic fields. This led him to consider eigenfunctions of the
hyperbolic Laplacian

−∆ = −y2

(
∂2
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∂2
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)
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on square integrable functions f on the upper half-planeH transforming
as

f(γz) = χ(γ)f(z), for ∈ H, γ ∈ Γ.

Here Γ is a discrete subgroup of PSL2(R) acting on H by linear frac-
tional transformations, and χ : Γ → S1 is a unitary character. We
denote the induced automorphic Laplacian by L. Such eigenfunctions
have since been called Maass forms. Maass managed to show that –
at least for certain Hecke congruence groups Γ0(N) and Dirichlet char-
acters χ mod N – such forms exist. Moreover he showed that these
forms are related to zeta functions of real quadratic fields in a way sim-
ilar to how zeta functions of imaginary quadratic fields are related to
modular forms. At that time it was not clear whether a single Maass
form existed for SL2(Z), χ = 1. On the other hand, Maass constructed
non-holomorphic Eisenstein series, i.e. generalized eigenfunctions of L,
but these are not square integrable.

Roelcke [Roe53,Roe66] and Selberg [Sel56,Sel89] gave a detailed de-
scription of the spectrum of L when the hyperbolic volume vol(Γ\H)
is finite. It consists of two parts:

(i) A discrete set of eigenvalues

0 ≤ λ0 ≤ λ1 ≤ . . . λn ≤ . . .

This part may be finite or infinite, and does not have accumu-
lation points.

(ii) Furthermore, if Γ\H is not compact, then the spectrum also
contains a continuous part [1/4,∞[ with multiplicity equal to
the number of inequivalent open cusps for (Γ, χ).

The continuous spectrum associated with the cusp a is provided by
Eisenstein series Ea(z, s, χ) for s = 1/2 + it, provided the cusp a is
open, i.e. for its stabilizer Γa in Γ we have χ(Γa) = 1.

We denote by Nd(λ) = #{λn ≤ λ} the counting function for the
discrete part. Using his newly developed trace formula, Selberg proved
the following groundbreaking result: if Γ\H is not compact, but Γ is a
congruence group and χ a Dirichlet character, then the set of discrete
eigenvalues satisfies Weyl’s law, i.e.

(1.2) Nd(λ) ∼ vol(Γ\H)

4π
λ, as λ→∞.

Roelcke and Selberg independently speculated about the behaviour
of Nd(λ) for general cofinite groups, i.e. Γ with vol(Γ\H) < ∞, and
general characters χ. The belief that Nd(λ) → ∞ as λ → ∞ for such
groups has been called the Roelcke–Selberg conjecture by several au-
thors, even if it is unclear to what extent Roelcke and Selberg formally
stated it as a conjecture. Even if there may be an infinite number of
Maass forms, they may or may not satisfy Weyl’s law.
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The difficulty of this conjecture lies in trying to count the discrete
eigenvalues embedded in the continuous spectrum [1/4,∞[. The gen-
eral belief in the conjecture weakened after the work of Phillips and Sar-
nak on the stability of eigenvalues, see [PS85b,PS85a,Sar90,PS92] and
our description below. A similar stability phenomenon occurs in the
study of the Schrödinger Hamiltonian for the helium atom, see [Sim73].
In the physics literature embedded eigenvalues tend to be unstable
and turn into scattering poles or resonances under perturbation. Reso-
nances are poles of the analytic continuation of the resolvent in a second
sheet (as opposed to the physical plane). The same phenomenon is true
for the hyperbolic Laplacian. With the parametrization λ = s(1 − s)
the second sheet corresponds to the left half-plane Re s < 1/2. The
instability of embedded eigenvalues for the Schrödinger operator is de-
scribed by Fermi’s Golden Rule, proved rigorously by Simon in [Sim73]
following the work on analytic dilations of Balslev and Combes [BC71].
Phillips and Sarnak turned their attention to the analogous situation
for hyperbolic surfaces with cusps.

Motivated by Selberg’s trace formula, Phillips and Sarnak defined
the singular set. For a given eigenvalue λj we consider the two values
sj counting multiplicity satisfying λj = sj(1− sj). The singular set is
then defined as follows: It is the multiset consisting of

(i) sj counted with the multiplicity of the corresponding eigen-
value.

(ii) ρj the poles of the scattering determinant ϕ(s) counted with
multiplicity the order of the pole.

(iii) 1/2 with multiplicity (n+tr (Φ(1/2)))/2 where n is the number
of open cusps of (Γ, χ) and Φ is the scattering matrix related
to (Γ, χ).

We refer to [Sel89] for the definition of scattering matrix etc. Note that
the above definition differs form [PS92] by a rotation by i followed by a
shift of 1/2. Using the Lax–Phillips scattering theory [LP76] as applied
to automorphic functions, Phillips and Sarnak showed that the singular
set is better behaved under deformations than the discrete spectrum.
We consider the following three types of deformations of (Γ, χ):

(i) Character deformations defined by

χε :Γ→ S1

γ 7→ exp

(
2πiε

∫ γz0

z0

α

)
,

where α = Re(f(z)dz) is a real Γ-invariant holomorphic 1-
form, and ε is a real parameter.

(ii) Real analytic deformations in Teichmüller space generated by
f a holomorphic cusp form of weight 4, see [PS85a] for details.
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(iii) Real analytic compact deformations in the set of admissible
surfaces, i.e. Riemannian surfaces of finite area with hyperbolic
ends, see [Mül92] for details.

Phillips and Sarnak proved that in the cases (i), (ii) the singular set
has at most algebraic singularities. It follows in particular that, if s(0)
has multiplicity one, then s(ε) is analytic for small ε. Müller [Mül92]
extended this to case (iii), and Balslev [Bal97] gave a different proof.

In all three cases described above the Laplacian L(ε) admits a real
analytic expansion

L(ε) = L(0) + εL(1) + ε2L
(2)

2
+ · · ·

after possibly making a suitable conjugation, and adjustments of the
corresponding metric high in the cusps. See Section 2.2 for additional
details.

Phillips and Sarnak identified a condition that will ensure that an
embedded eigenvalue λj = sj(1 − sj) = 1/4 + t2j > 1/4 will dissolve
into a resonance when ε 6= 0. For simplicity we restrict ourselves to the
case of only one open cusp. Let E(z, 1/2+ it) be the generalized eigen-
function for the continuous spectrum at 1/4 + t2 (see Section 2.1). Let
furthermore ŝj(ε) be the weighted mean of the branches of the singular
points generated by splitting the eigenvalue sj(0) = sj of multiplicity
m under perturbation, i.e.

ŝj(ε) =
1

m

m∑
k=1

sj,k(ε).

Let uj,1, . . . uj,m be an orthonormal basis of the eigenspace of λj.

Theorem 1.1 (Fermi’s Golden Rule). If
〈
L(1)uj,k, E(·, 1/2 + itj)

〉
6= 0

for some k, then some of the eigenvalues with eigenvalue λj turn into
resonances under the perturbation. More precisely:

Re ŝ
(2)
j (0) = − 1

4t2j

m∑
k=1

∣∣〈L(1)uj,k, E(·, 1/2 + itj)
〉∣∣2 .

For m = 1 this is Eq. (5.29) in [PS92]. For m > 1 this is discussed
in [Pet94a].

Since the singular spectrum cannot move to the right under pertur-
bation we always have Re ŝ

(1)
j (0) = 0, so Re ŝ

(2)
j (0) determines if ŝ(2)

j (0)
moves to the left up to second order.

It turns out that for Γ a Hecke congruence group and perturbations
of type (i) and (ii) the dissolving condition

(1.3)
〈
L(1)uj,k, E(·, 1/2 + itj)

〉
6= 0, for some k = 1, . . . , l.

is equivalent to the nonvanishing of a special value of a Rankin–Selberg
L-function. This allows one to use techniques from the analytic the-
ory of L-functions to investigate how many eigenvalues are dissolved
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under perturbations. Luo [Luo01] succeeded in proving that a positive
proportion of these special values of Rankin–Selberg L-functions are
indeed non-zero. Assuming that multiplicities of the eigenvalues for
the Laplacian of a fixed Hecke congruence groups are all bounded by
the same common bound – which is indeed expected to hold – this
allowed him to prove that a small deformation of the Hecke congruence
groups does not satisfy Weyl’s law, i.e. (1.2) does not hold.

Phillips and Sarnak [DIPS85] conjectured something much stronger:
the generic cofinite hyperbolic surface should only have finitely many
discrete eigenvalues.

1.1. Erik Balslev’s interest in spectral deformations in the con-
text of hyperbolic surfaces. Throughout his career Erik Balslev was
interested in various properties of spectra of Schrödinger operators.
One of his major contributions to this field was the use of analytic
dilation techniques in the setting of quantum mechanical many–body
systems; see [BC71].

Balslev knew Ralph Phillips from his time in the United States in the
1960s and 1970s, and from Phillips numerous long-term visits to Den-
mark. Balslev was employed at Aarhus University, Denmark during
most of his career. In the autumn of 1991 Balslev was visiting Stan-
ford and found himself in Phillips’ office. Simultaneously Petridis went
to the same office to explain to Phillips his work on the genericity of
the L2-eigenvalue 1/4 and half-bound states, i.e. E(z, 1/2), which are
also known as nullvectors [Pet94b]. This work was complementing that
of Phillips and Sarnak. Soon after this encounter Balslev realized that
the analytic dilation techniques, which he had used so effectively in the
context of Schrödinger operators, could be used also in the context of
deformations of hyperbolic surfaces. This realization led him to write
[Bal97], where he reproved much of the theory of Phillips and Sarnak,
including Fermi’s Golden rule, using analytic dilation techniques. It is
well-known that the Eisenstein series E(z, 1/2 + it), which provide the
continuous spectrum, have zero Fourier coefficient non-vanishing for
t ∈ R∗. However, the eigenfunctions with eigenvalue embedded in the
continuous spectrum have vanishing zero Fourier coefficient. Balslev
introduced a family of operators U(λ) acting only on the zero Fourier
coefficient, corresponding to dilations in the hyperbolic distance for
λ real. For λ complex the continuous spectrum [1/4,∞[ of ∆ is ro-
tated by an angle −2 arg λ to provide the continuous spectrum of the
conjugated operator U(λ)∆U(λ)−1. The embedded eigenvalues do not
change location, so they become isolated. Resonances of ∆ also turn
into discrete eigenvalues (for appropriate choice of angle). This allowed
him to use analytic perturbation theory and to reprove Fermi’s Golden
rule.
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In the early 1990s Balslev met Alexei B. Venkov. This became the
beginnning of a fruitful collaboration and close friendship which would
last for the rest of Balslev’s life. At this point Venkov had already
been thinking about the Roelcke–Selberg conjecture and the Phillips–
Sarnak conjecture for a long time [Ven79,Ven90a,Ven90b,Ven92], and
together they started discussing the implications of Balslev’s work
[Bal97]. Venkov started to visit Balslev at Aarhus University regu-
larly, and in 2001 he joined their faculty. Together they worked on how
to refine, use, and extend the deformation ideas of Phillips and Sarnak.
This lead to several joint results on Weyl’s law [BV98,BV01,BV07] as
well as on other related topics [BV00,BV05].

1.2. Higher order deformation. The current work was inspired by
the following question posed by Erik Balslev to the authors: If the
Phillips-Sarnak condition (1.3) is not satisfied, can one give simple
conditions that ensures that an eigenvalue is dissolved? We will report
on our work in this direction. We refer to [PR13] for full details.

Understanding higher order deformations seems daunting at first. If
one considers general expressions for the perturbation series of eigen-
values under analytic deformations one finds e.g. a 15-term expression
for λ̂(4)(0), see [Kat76, p. 80]. We managed to find simpler expressions
assuming that the lower order terms vanish, see Theorem 2.1 below.

Our motivation to understand what happens when the Phillips–
Sarnak condition (1.3) is not satisfied came from the numerical in-
vestigation by Farmer and Lemurell [FL05] and Avelin [Ave07]. For a
given cusp form Farmer and Lemurell found curves (branches) in Teich-
müller space where a cusp form for ε = 0 remains cusp form, i.e. is not
destroyed to any order. For specific even cusp forms Avelin identified
an analytic curve in Teichmüller space such that the movement of the
poles of the scattering matrix gives a fourth order contact to the line
Re(s) = 1/2. Our work aims to explain such phenomena theoretically.

2. Stability of eigenvalues under character
deformations

We start by recalling a basic few properties of Eisenstein series. We
refer to [Iwa02] for additional details.

2.1. Standard non-hololorphic Eisenstein series. For simplicity
of exposition we assume that Γ has precisely one cusp, and that it is
located at infinity. Placing the cusp at infinity can always be achieved
by conjugation. Assume further that the stabiliser of the cusp is gener-
ated by γ∞ : z 7→ z + 1, and that χ(γ∞) = 1. Recall that the standard
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non-holomorphic Eisenstein series is defined by

E(z, s, χ) =
∑
γ∈Γ∞\Γ

χ(γ) Im(γz)s, when Re(s) > 1,

and that it admits meromorphic continuation to s ∈ C. Recall also
that E(z, 1/2+it, χ) is a generalized eigenfunction of ∆ with eigenvalue
1/4 + t2. These numbers, with t ≥ 0 span the continuous spectrum.
Clearly E(γz, s, χ) = χ(γ)E(z, s, χ). The zero Fourier coefficient of
E(z, s, χ) has the form∫ 1

0

E(z, s, χ)dx = ys + ϕ(s, χ)y1−s.

This defines the scattering matrix ϕ(s, χ), which in the one cusp case is
just a function. We recall that ϕ(s, χ) satisfies the functional equation

(2.1) ϕ(s, χ)ϕ(1− s, χ) = 1,

and that it is unitary on the line Re(s) = 1/2. Furthermore

(2.2) E(z, s, χ) = ϕ(s, χ)E(z, 1− s, χ).

We define

(2.3) M(T ) = − 1

4π

∫ T

−T

ϕ′

ϕ
(1/2 + it, χ)dt.

Selberg proved that for all cofinite groups Γ we have

Nd(λ) +M(
√
λ− 1/4) ∼ vol(Γ\H)

4π
λ.

Hence Nd satisfies Weyl’s law precisely if

(2.4) M(T ) = o(T 2).

Selberg proved that (2.4) holds for Γ a congruence group and χ a
congruence character. For such a group the scattering determinant ϕ
can be computed explicitly in terms of completed L-functions, and the
bound (2.4) follows from classical bounds on these L-functions.

2.2. Character deformations. For the rest of the paper we consider
for simplicity the case of character deformations. The cases of real ana-
lytic Teichmüller deformations and real analytic compact deformations
within the set of admissible surfaces can be dealt with in a similar way.
We refer to [PR13] for additional details.

Let f be a cusp form of weight two, i.e. f : H→ C is a holomorphic
function that satisfies

f(γz) = (cz + d)2f(z) for all γ ∈ Γ,

and admits a Fourier expansion

(2.5) f(z) =
∞∑
n=1

ane
2πinz.
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Let ω = Re(f(z)dz) be the corresponding real invariant 1-form, and
let α be a compactly supported 1-form in the same cohomology class
as ω. We now define the modular symbol to be

〈γ, α〉 := −2πi

∫ γz0

z0

α.

Here z0 is any point inH∪{i∞}. The modular symbol is independent of
the choice of z0, the choice of compact form α in the same cohomology
class, as well as choice of path between z0 and γz0. The modular symbol
mapping is an additive homomorphism, i.e. 〈γ1γ2, α〉 = 〈γ1, α〉+〈γ2, α〉,
and, moreover, vanishes at parabolic elements: 〈γ∞, α〉 = 0.

With the help of modular symbols we create a one-parameter family
of unitary characters. Consider now the unitary characters

χε(γ) = exp(ε〈γ, α〉)

and the space

L2(Γ\H, χε)) =

{
f : H→ C : f(γz) = χε(γ)f(z),

∫
Γ\H
|f(z)|2 dµ(z) <∞

}
.

Here dµ(z) = y−2dxdy is the PSL2(R)-invariant measure on H. We
denote the induced automorphic Laplacian by L̃(ε). We now conjugate
this family of operators to the fixed space L2(Γ\H) by using unitary
operators

U(ε) : L2(Γ\H)→L2(Γ\H, χε))

f(z) 7→ exp

(
2πiε

∫ z

z0

α

)
f(z),

and let L(ε) = U−1(ε)L̃(ε)U(ε). This new family of operators has the
advantage of being defined on a fixed space. It is now a straightforward
computation to show that on smooth functions h

L(ε)h = ∆h+ εL(1)h+
ε2

2
L(2)h,

where

L(1)h = 4πi 〈dh, α〉 − 2πiδ(α)h,

L(2)h = −8π2 〈α, α〉h.
(2.6)

Here

〈f1dz + f2dz, g1dz + g2dz〉 = 2y2 (f1g1 + f2g2) ,

δ(pdx+ qdy) = −y2(pz + qy).

We want to investigate whether embedded eigenvalues are destroyed
under this perturbation, i.e. they turn into resonances.
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2.3. Goldfeld Eisenstein series. Goldfeld [Gol99b, Gol99a] intro-
duced in the late 1990s a generalization of the standard Eisenstein
series E(z, s), which has since been studied by several people. It turns
out that the stability of eigenvalues under perturbations as described
above can be analyzed using such series.

The Goldfeld Eisenstein series, also known as Eisenstein series twist-
ed by modular symbols, is defined by

En(z, s) =
∑
γ∈Γ∞\Γ

〈γ, α〉n Im(γz)s, when Re(s) > 1.

It is well establised [PR04, JO08] that En(z, s) admits meromorphic
continuation to s ∈ C .

For n > 0 the function En(z, s) is not invariant but satisfies an nth
order automorphy relation, i.e. En(z, s) ∈ AnΓ where AnΓ is defined re-
cursively as follows: the set A0

Γ is simply the set of Γ-invariant functions
on H, and AnΓ consists on functions f on H satisfying f(γz) − f(z) ∈
An−1

Γ for all γ ∈ Γ. For details on higher order Maass forms see e.g.
[BD12].

As Im(γz)s is formally an eigenfunction of ∆, we have furthermore

(∆ + s(1− s))En(z, s) = 0.

There is a related invariant function constructed by automorphizing(
−2πi

∫ z
z0
α
)n

Im(z)s as follows:

Dn(z, s) =
∑
γ∈Γ∞\Γ

(
−2πi

∫ γz

z0

α

)n
Im(γz)s, when Re(s) > 1.

Similarly to En(z, s) the function Dn(z, s) also admits meromorphic
continuation to s ∈ C. Indeed there is a simple way to relate the two:

Dn(z, s) =
n∑
j=0

(
n

j

)(
−2πi

∫ z

z0

α

)n−j
Ej(z, s).

The function Dn(z, s) is not an eigenfunction of ∆ but satisfies
(2.7)

(∆ + s(1− s))Dn(z, s) = −
(
n

1

)
L(1)Dn−1(z, s)−

(
n

2

)
L(2)Dn−2(z, s),

where L(1) and L(2) are as in (2.6). Here we interpret Dn(z, s) = 0, if
n is negative.

2.4. Higher order Fermi’s Golden Rules. We are now ready to
formulate our main theorem, which answers the question of Balslev
mentioned in the introduction:
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Theorem 2.1 ([PR13]). Let sj be a cuspidal eigenvalue for L(0) and
let ŝj(ε) be the weighted mean of the branches of the singular points for
L(ε) generated by sj. Assume that

ŝ
(l)
j (0) = 0, for l ≤ 2(n− 1).

Then
(i) ŝ(2n−1)

j (0) = 0,
(ii) Dn(z, s) has at most a first order pole at sj, and

(iii) Re ŝ
(2n)
j (0) = − 1

2n

(
2n

n

)∥∥∥∥ res
s=sj

Dn(z, s)

∥∥∥∥2

.

We note that if

(2.8) res
s=sj

Dn(z, s) 6= 0,

then at least one eigenvalue sj will be become a resonance under the
deformation, so we may interpret this as a higher order vanishing con-
dition.

We also note that when n = 1 this reduces to Theorem 1.1. We note
that the Phillips–Sarnak vanishing condition can be formulated as

(2.9) res
s=sj

D1(z, s) 6= 0,

since we have

res
s=sj

D1(z, s) =
m∑
k=1

c

πsj
L(uj,k ⊗ f, sj + 1/2)Γ(sj − 1/2)uj,k(z),

see [Pet02, Eq. (1.13)] and [PS85a].

3. Relation to special values of Dirichlet series

We first need to setup some additional notation. An eigenfunction
uj with eigenvalue sj(1− sj) > 1/4 has a Fourier expansion

uj(z) =
∑
n6=0

bn
√
yKsj−1/2(2π |n| y)e2πinx,

where Ks(t) is the McDonald–Bessel function. We assume that uj has
been normalized to have L2-norm equal to 1.

The Phillips–Sarnak condition for dissolving a cuspidal eigenvalue
(1.3) can be expressed as the non-vanishing of a special value of a
Rankin–Selberg L-function, see [Sar90,PS85a]. This is defined as

L(uj ⊗ f, s) =
∞∑
n=1

anb−n
ns+1/2

for Re(s) > 1.

We will now explain that something similar happens for the higher
order dissolving conditions in Theorem 2.1.
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We consider the antiderivative of the cusp form f inducing χε, i.e.

F (z) =

∫ z

i∞
f(w)dw =

∞∑
n=1

an
2πin

e2πinz.

Then for Re(s) > 1 we define the convergent Dirichlet series

(3.1) L(uj ⊗ F 2, s) =
∞∑
n=1

∑
k1+k2=n

ak1
k1

ak2
k2

b−n
ns−1/2

.

One can show that L(uj ⊗ F 2, s) admits meromorphic continuation to
s ∈ C and satisfies a functional equation relating its value at s and
1− s. The possible poles of L(uj ⊗ F 2, s) are at the singular points.

A holomorphic form of weight 2 as in Section 2.2 gives rise to two
character deformations, namely those induced from ω1 = Re(f(z)dz)
and ω2 = Re(if(z)dz).

Theorem 3.1. Assume that the Phillips–Sarnak condition (2.9) at
a cuspidal eigenvalue sj is not satisfied for either of ω1, ω2. Then
L(uj ⊗ F 2, s) has a removable singularity at sj.

Assume further that L(uj ⊗ F 2, sj) 6= 0. Then in all directions ω in
the real span of ω1, ω2 with at most two exceptions we have

Re ŝ
(4)
j (0) 6= 0.

In particular there exists a cusp form with eigenvalue sj(1− sj) that is
dissolved in this direction.

We refer to [PR13, Sec. 4.3] for proofs of this theorem. The function
L(uj ⊗ F 2, s) is not as well studied as the Rankin–Selberg L-function,
and, although it does share many of its properties (continuation to s ∈
C, functional equation, bounds on vertical lines), there are important
differences. Most importantly L(uj ⊗ F 2, s) does not admit an Euler
product.

4. Idea of proof

We now indicate the main steps of Theorem 2.1, and refer to [PR13]
for details.

For the fixed group Γ and the family of characters χε we consider
the scattering matrix ϕ(s, ε). Besides properties that we have already
stated one can show that

(4.1) ϕ(s, ε) = ϕ(s, ε),

see [Hej83, page 218, Remark 61].
We track the movement of the singular set close to an embedded

eigenvalue sj(1− sj) > 1/4 i.e. the embedded eigenvalue/resonance in
the half-plane left of Re(s) = 1/2 using complex analysis, in particular,
a simple variation of the argument principle. Define Λ as the half circle
γ1(t) = ueit + sj, π/2 ≤ t ≤ 3π/2 followed by the line γ2(t) = sj + it,
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−u ≤ t ≤ u. Here u is chosen small enough, so that the only singular
point for ε = 0 inside the ball B(sj, u) is sj with multiplicity m =
m(sj). This contour is traversed counterclockwise. For ε sufficiently
small the total multiplicities of the singular points sj(ε) inside B(sj, u)
is m(sj).

We have

(4.2) m(ŝ(ε)− sj) = − 1

2πi

∫
Λ

(s− sj)
ϕ′(s, ε)

ϕ(s, ε)
ds+

∑
j∈C

(sj(ε)− sj),

where C is indexing the cusp forms eigenbranches inside B(sj, u), i.e.
the cusp forms that remain cusp forms. Let the last sum be denoted
by p(ε). The reason for using Λ and not the whole ∂B(sj, u) is that
on the right half-disc ϕ(s, ε) has zeros, which we do not want to count.
Note that by well-known properties of ϕ(s, ε) [Iwa02, Chapter 6] it has
no zeroes in Λ. Notice that

∫
γ
f(s) ds =

∫
γ̄
f̄(s̄) ds and, therefore we

find by using (4.1) that

m(ŝ(ε)− sj) =
1

2πi

∫
Λ̄

(s− s̄j)
(
ϕ′(s̄, ε)

ϕ(s̄, ε)

)
ds+ p(ε)

=
1

2πi

∫
Λ̄

(s− s̄j)
ϕ′(s, ε)

ϕ(s, ε)
ds+ p(ε).

Denoting by −γ the contour γ traversed in the opposite direction, we
get

m(ŝ(ε)− sj) = − 1

2πi

∫
−Λ̄

(s− s̄j)
ϕ′(s, ε)

ϕ(s, ε)
ds+ p(ε)

= − 1

2πi

∫
T−1(−Λ̄)

(1− w − s̄j)
ϕ′(1− w, ε)
ϕ(1− w, ε)

(−dw) + p(ε),

where s = T (w) = 1− w is a conformal map. By (2.2) we get

ϕ′(s, ε)ϕ(s, ε)− ϕ(s, ε)ϕ′(1− s, ε) = 0,

giving that
ϕ′(s, ε)

ϕ(s, ε)
=
ϕ′(1− s, ε)
ϕ(1− s, ε)

.

We plug this into the expression for m(ŝ(ε)− sj) to get

(4.3) m(ŝ(ε)− sj) = − 1

2πi

∫
T−1(−Λ̄)

(w − sj)
ϕ′(w, ε)

ϕ(w, ε)
dw + p(ε).

We sum (4.2) and (4.3) and notice that the cuspidal branch contribu-
tions cancel, since the function sj,l(ε) − sj is purely imaginary for a
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cuspidal branch sj,l(ε) . We therefore conclude that

2mRe(ŝ(ε)− sj) = − 1

2πi

∫
Λ+T−1(−Λ̄)

(s− sj)
ϕ′(s, ε)

ϕ(s, ε)
ds

= − 1

2πi

∫
∂B(sj ,u)

(s− sj)
ϕ′(s, ε)

ϕ(s, ε)
ds,(4.4)

since the contribution from the line segment on Re(s) = 1/2 from Λ
and T−1(−Λ̄) cancel. By uniform convergence we can differentiate the
last formula in ε. We get

2m
d2n

dε2n
Re(ŝ(ε))

∣∣∣∣
ε=0

= − 1

2πi

∫
∂B(sj ,u)

(s− sj)
d2n

dε2n

(
ϕ′(s, ε)

ϕ(s, ε)

)∣∣∣∣
ε=0

ds

(4.5)

= − 1

2πi

∫
∂B(sj ,u)

(s− sj)
2n∑
k=0

(
2n

k

)
dkϕ′(s, ε)

dεk

∣∣∣∣
ε=0

d2n−k(ϕ(s, ε)−1)

dε2n−k

∣∣∣∣
ε=0

ds.

We can interchange the order of differentiation:
dk

dεk
ϕ′(s, ε) =

d

ds
ϕ(k)(s).

Note that the prime denotes derivative in s, whereas the ϕ(k)(s) denotes
the kth derivative in ε evaluated at ε = 0. By differentiating m times
ϕ(s, ε)−1ϕ(s, ε) = 1 we find

m∑
k=0

(
m

k

)
dk

dεk
ϕ(s, ε)−1

∣∣∣∣
ε=0

ϕ(m−k)(s, 0) = 0.

These observations combined with (4.5) show that in order to com-
pute 2m d2n

dε2n
Re(ŝ(ε))

∣∣∣
ε=0

it suffices to understand the analytic be-

haviour of ϕ(k)(s) at s = sj.
The general functional equation (2.2) implies that

Dn(z, s) =
n∑
k=0

(
k

n

)
ϕ(k)(s)Dn−k(z, 1− s).

Combining this with (2.7) and properties of the resolvent kernel R(s) =
(∆ + s(1− s))−1 we can show that
(4.6)

ϕ(n)(s) =
1

2s− 1

∫
Γ\H

E(z, s)

((
n

1

)
L(1)Dn−1(z, s) +

(
n

2

)
L(2)Dn−2(z, s)

)
dµ(z).

After some computations this and (4.5) lead to

2m
d2n

dε2n
Re(ŝ(ε))

∣∣∣∣
ε=0

=
ress=sj ϕ

(2n)(s, 0)

ϕ(sj, 0)
.

Combining this with the following result gives Theorem 2.1.
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Theorem 4.1. Assume that Di(z, s) is regular at sj = 1/2 + irj for
i = 0, . . . , n− 1. Then

(i) the function ϕ(l)(s) is regular at sj for l = 0, 1, . . . , 2n− 1.
(ii) the function ϕ(2n)(s) has at most a simple pole at sj. Further-

more the residue at sj is given by

res
s=sj

ϕ(2n)(s) = −ϕ(sj)

(
2n

n

)∥∥∥∥ res
s=sj

Dn(z, s)

∥∥∥∥2

.

This theorem is proved by investigating further (4.6) and (2.7). We
refer to [PR13, Thm 3.3] for details.
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