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Abstract 

 

Background/Aims 

 

Published methods for sample size calculation for cluster randomised trials with 

baseline data are inflexible and primarily assume an equal amount of data collected 

at baseline and endline i.e. before and after the intervention has been implemented 

in some clusters. We extend these methods to any amount of baseline and endline 

data. We explain how to explore sample size for a trial if some baseline data from 

the trial clusters have already been collected as part of a separate study. Where such 

data aren’t available we show how to choose the proportion of data collection 

devoted to the baseline within the trial, when a particular cluster size or range of 

cluster sizes is proposed. 

 

Methods 

 

We provide a design effect given the cluster size and correlation parameters, 

assuming different participants are assessed at baseline and endline in the same 

clusters. We show how to produce plots to identify the impact of varying the amount 

of baseline data accounting for the inevitable uncertainty in the cluster 

autocorrelation. We illustrate the methodology using an example trial. 

 

Results 

 



Baseline data provide more power, or allow a greater reduction in trial size, with 

greater values of the cluster size, intra-cluster correlation, and cluster auto-

correlation.  

 

Conclusion 

 

Investigators should think carefully before collecting baseline data in a cluster 

randomised trial if this is at the expense of endline data. In some scenarios this will 

increase the sample size required to achieve given power and precision.  
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study design 

 

 

  



1. Introduction 

 

Many cluster randomised trials compare an intervention to current practice. If 

outcome data have already been collected as part of a separate study or routine 

data collection preceding the trial (i.e. on a different sample of individuals but from 

the same clusters), these ‘retrospective baseline data’ can be included in the analysis 

along with the trial data. This will increase power or reduce the required sample size 

for the trial. Methods are available to calculate these impacts, but only for an equal 

amount of prior baseline data as data collected in the trial.1  

 

However, when retrospective data are not available researchers may choose to 

collect baseline data prospectively as part of the trial. A proportion of the total data 

collection can be allocated to baseline data, rather than ‘endline’ data collected after 

some clusters have implemented the intervention. Whilst earlier researchers 

focussed on equal data collection at baseline and endline,1,2 Green et al. recently 

investigated more flexible choices.3 They established the circumstances in which 

collecting some baseline data for a given total cluster size will increase power or 

equivalently reduce the number of clusters required, and also showed how to 

calculate the optimal proportion of baseline data to maximise power. However they 

did not directly provide methodology for sample size calculation. We note that 

prospective collection of baseline data together with endline data from different 

individuals (two independent cross-sectional samples) is a design commonly chosen 

when the trial clusters are large communities subject to in- and out- migration which 

makes a panel design problematic.   



 

Besides influencing power and sample size, another possible benefit of baseline data 

is to prevent baseline imbalance between arms through their use in stratified or 

restricted randomisation.4-6 Baseline data may also improve the perceived ‘face 

validity’ of trials with a small number of clusters, where baseline imbalance can be a 

particular concern.7      

 

In this article we provide design effects to allow sample size to be calculated with 

any number of baseline measurements, whether part of the trial (prospective) or 

already collected (retrospective). We then explain when baseline data will be more 

beneficial and show for prospective baseline data collection how to use plots based 

on the design effect to choose how much baseline data to collect (if any) given 

uncertainty in the correlation parameters and the range of total cluster sizes 

considered. 

 

 

2. Methods 

 

2.1 Design framework 

 

We consider trials where different participants are assessed at baseline and endline 

in the same clusters (i.e. cross-sectional), and with a continuous outcome.  

 

The data are assumed to follow this model: 



 

푌 = 훽 + 훽 푡 푋 + 훽 푡 + 1 − 푡 푢 + 푡 푢 + 휀  

 

for participant j in cluster i, where Xi denotes the trial arm for cluster i (coded 0 or 1), 

and tij denotes the period in which participant j in cluster i is assessed (0 for baseline, 

1 for endline). We assume the random terms are Normally distributed. The 

observation error or variability term is denoted  휀  and is assumed independent of 

terms 푢  and 푢  which are the cluster random effects for baseline and endline. We 

denote the variance and correlations thus 

  

푉푎푟 휀 = 휎  

푉푎푟(푢 ) = 푉푎푟(푢 ) = 휎 ;퐶표푟푟(푢 , 푢 ) = 휋 

 

and from these we can define the intracluster correlation (ICC) 휌 = 휎 /(휎 + 휎 ). 

The term 휋 is the cluster autocorrelation, the correlation between the underlying 

cluster population means at baseline and endline. 

 

The two trial arms are assumed to be assessed under identical conditions at 

baseline, but may differ at endline, so that the model does not include a main effect 

for Xi. We assume all clusters provide the same number of measurements. We 

assume the baseline and endline data are each collected within a short period, so 

that measurements within each period within a cluster can be consider equally 

correlated (i.e. exchangeable).   

 



2.2 Design effects 

 

Previous authors mainly considered an equal number of baseline measurements (nb) 

as endline measurements from each cluster (ne), with only a few exceptions.3,8 To 

allow more general designs we first express the correlation between the cluster 

sample means from the two periods as (see Appendix A for derivation) 

 

푟 =
휋휌 푛 푛

1 + (푛 − 1)휌 1 + (푛 − 1)휌
 

 

and assume 휌 and 휋 are both positive as would generally be the case. Other authors 

gave an equivalent formula for r when nb = ne.1,9 

  

Suppose 푁  is the number of measurements required in an individual RCT without 

baseline data and 푁 is the number of prospective measurements under an 

alternative design then we define the design effect (DE) by 

  

푁 = 퐷퐸 × 푁 . 

 

The number of clusters required is N divided by the number of prospective 

measurements (i.e. taken as part of the trial) per cluster, rounded up to the next 

even integer assuming equal cluster allocation to control and intervention. 

 



We next present two design effects for trials with baseline data which differ in 

whether the baseline data are part of the prospective trial data collection or 

alternatively are already collected prior to the trial (for example through a separate 

preparatory study) and so are not included in the sample size target for the trial. 

 

2.2.1 Baseline data collected within the trial 

 

For baseline data collected prospectively within the trial the design effect can be 

expressed as (see Appendix A for derivation) 

 

퐷퐸 = [1 + (푛 − 1)휌][1− 푟 ][(푛 + 푛 )/푛 ]. 

 

Hemming and Taljaard provide an equivalent design effect for when nb = ne and also 

휋 = 1.2  

 

In some scenarios it may be helpful to consider the number of baseline 

measurements to be collected per cluster given a particular total cluster size 

푚 = 푛 + 푛 , and this can be repeated where a range of sizes is considered. 

Consequently in Appendix B1 we re-express r and 퐷퐸  to show the impact of 

varying the proportion of baseline measurements 휃 = 푛 /푚. 

 

Only in some scenarios will collecting baseline measurements as part of the trial 

given a total cluster size increase power, relative to the design with no baseline 

measurements (휃 = 0). Green at al. show that power is increased by baseline data if 



and only if 휌 > 1/(1 + 푚휋),3 and that if this holds then the optimum proportion of 

baseline measurements to maximise power is given by 

 

휃 = (푚휌휋 + 휌 − 1)/[휌푚(1 + 휋)]. 

 

They also show this optimum proportion is always less than one half. Because the 

maximum possible value of 휋 is 1 and investigating the range of values it may take 

could be challenging, an initial condition to check for whether collecting baseline 

data could possibly increase power is 휌 > 1/(1 + 푚). 

 

2.2.2 Baseline data already collected before the trial 

 

Where baseline data have already been collected as part of another study, the 

design effect when considering the sample size for the trial can be expressed as (see 

Appendix A for derivation) 

 

퐷퐸 = [1 + (푛 − 1)휌][1− 푟 ].  

 

Others give an equivalent design effect for when nb = ne.1,10  

 

2.3 Selecting ranges for the correlation terms 

 

The design effects require specification of the ICC (ρ) and cluster autocorrelation (π). 

However, unlike the ICC in cluster randomised trials, estimates of autocorrelation are 



not routinely reported for trials with baseline data or other designs.10 Estimates of 

autocorrelation can be derived from a mixed regression analysis of data from cluster 

randomised trials with baseline data as shown in Appendix C. Estimates may also be 

obtained from routine datasets with clustered data collected in multiple periods. 

Clustered data collected in continuous time could be divided into discrete time 

periods for this purpose, but note that the implicit assumption that observations 

from the same cluster within each period are exchangeable may be a slightly 

artificial one in this case. Estimates derived in this way from clustered observational 

data have been reported for outcomes related to diabetes and ranged from 0.49 to 

0.89.11 In this article we consider values of π between 0.5 and 0.9. When applying 

these methods to a particular trial it may be possible to narrow the range, depending 

on trial characteristics and other information available. 

  

Estimates of π are likely to come from previous studies that do not correspond 

exactly to the planned trial so it is necessary to also think qualitatively about its likely 

value. Higher values of π are more likely when, between the baseline and endline, 

there are only small changes in (i) the distribution of participant characteristics, (ii) 

the nature of exposure/care, (iii) staff providing care if appropriate, and (iv) the data 

collection method. Since less change is likely, higher values are more likely when the 

time interval between baseline and endline is short. 

 

3. Results 

 

3.1 Baseline data collected within the trial 



 

Figure 1 presents plots based on the design effect to show the relative change in the 

numbers of clusters required as baseline data vary from none to half the total data 

collected (since the optimal proportion is always less than one half). 

 

We see the benefits of baseline data are greater with greater values of the total 

cluster size, ICC and π. When the total cluster size is 50 and ICC is 0.01 then any 

baseline data collection reduces power, if half the data collection is devoted to 

baseline then the number of clusters must increase by around 60% to compensate. 

Conversely when the total cluster size is 200 and ICC is 0.05 then reductions in the 

number of clusters of between 15% (π=0.5) and 52% (π=0.9) are possible. 

Furthermore the shape of the curves indicates that the optimal baseline data 

proportion would be between around 25% (π=0.5) and 40% (π=0.9). A good design 

given uncertainty in π might allocate a third of data collection to baseline. In the 

other scenarios (total cluster size 50 and ICC 0.05, or size 200 and ICC 0.01) 

appreciable reductions in the number of clusters are impossible. Trialists may 

nevertheless consider baseline data to provide other benefits such as its use for 

restricted randomisation. We see that in both scenarios if 25% data collection were 

devoted to baseline then even if π=0.5 the loss of power can be compensated by an 

increase in the number of clusters of only around 5%. 

 

3.2 Baseline data already collected before the trial 

 



Figure 2 presents plots to show the relative change in the numbers of clusters 

required for a trial due to different amounts of additional baseline data, already 

collected separately from the trial, varying from none to double the amount of 

endline data. These plots are based on re-expressing r to show how it, and hence 

퐷퐸 , vary with the ratio of baseline to endline measurements as we describe in 

Appendix B2. The three lines represent π=0.5, 0.7 and 0.9. The four graphs represent 

each combination of what in our work we consider a small endline cluster size (푛 ) of 

50 and large of 200, and low ICC 휌=0.01 and high 휌=0.05. 

 

As with baseline data collected as part of the trial, we see additional baseline data 

are more beneficial with greater values of the endline cluster size, ICC, and π. When 

the size is 50 and 휌=0.01 then even double the amount of endline data permits only 

a negligible reduction in number of clusters, irrespective of π. Conversely when the 

endline cluster size is 200 and 휌=0.05 then reductions in the number of clusters of 

between 20% (π=0.5) and 70% (π=0.9) are possible. Furthermore most of the 

potential reduction in the number of clusters available can be achieved from 

additional baseline measurements amounting to half the number of endline 

measurements. 

  

We provide Stata code to generate these types of plots in Appendix D. The reader 

can also access an R Shiny App and a Stata program to generate these plots for their 

own trial by visiting https://github.com/UCL/samplesize-CRTs-baseline. 

 

 



4. Example 

 

We describe a completed trial and consider variations on its design to illustrate our 

methodology. The trial assessed the effectiveness of a novel theory-based 

community mobilization intervention to change harmful gender norms.12,13 The trial 

was conducted in South Africa and 22 villages (trial clusters) were randomised, 11 to 

the intervention and 11 to control. The primary outcome was the score from the 

Gender Equitable Mens Scale (GEMS), and when designing the trial this was assumed 

to have an ICC of 0.05. The trial collected outcome data through cross-sectional 

samples taken at endline and also at baseline as part of the trial (no baseline data 

were already available for the trial clusters before the trial). The expected sample 

size was 55 per cluster at each time point, but it was planned for the primary analysis 

to be conducted separately by participant gender with roughly equal numbers of 

each gender. Hence the target sample size was roughly 55 men and 55 women per 

cluster divided equally between baseline and endline, giving an average cluster size 

of 27.5 at each time point, though for each cluster of course these values are whole 

numbers. 

 

We illustrate our methodology through focussing on sample size and power for the 

analysis of data from women. The published power calculation states that the design 

provides 80% power to detect a mean difference of 3 points in GEMS between arms, 

conservatively based on endline data alone (baseline data were ignored in the 

sample size calculation but included in the final analysis) and assuming a standard 

deviation of 6 at each time point. It seems the calculation may be further 



conservative because the design effect used was based on the full cluster size rather 

than for each gender, and was therefore too large, since the primary analysis and 

sample size calculations are conducted for each gender separately. We calculate that 

the design effect considering women alone should be approximately 2.33 and the 

effective sample size is therefore roughly 130 per arm so that (ignoring baseline 

data) the design provides 80% power to detect a mean difference of 2.1 points in 

GEMS and we continue our illustration treating this as the target effect size. 

 

We considered a range for the cluster auto-correlation, π, of 0.5 to 0.8. We 

considered values as high as 0.9 unlikely because the two surveys were over 2 years 

apart and because there would have been some residential turnover in that period 

so that small changes in the characteristics of the clusters were possible.  

 

We consider the total cluster size that was used, 55, and in Figure 3 we present the 

impact on the number of clusters required from varying the proportion of baseline 

data from zero to one half, which was the value used in the design. Whilst the lines 

plotted closely reflect Figure 1 for size 50 and ICC 0.05, as expected, here we plot the 

impact on the number of clusters required per arm. The number required with no 

baseline data, where the standard design effect takes value 3.70, is 8.8, which for 

graphical illustration we do not round up to 9 as would be needed in practice. The 

initial check of whether baseline data could potentially increase power (see section 

2.1.1) is satisfied as 0.05 > (1/55). Figure 3 shows that a choice of just under one fifth 

baseline data (10 participants measured at baseline and 45 endline) would be good 

because this is optimal for π=0.65 and provides a near optimal reduction in the 



design effect if π=0.5 or 0.8. The optimal proportions calculated following Green et 

al.,3 and which match Figure 3 closely, are 0.103, 0.185 and 0.253 for π=0.5, 0.65 and 

0.8 respectively. 

    

Table 1 shows sample size calculations comparing the designs with total cluster size 

55 and either no baseline measurements, 10 participants measured at baseline and 

45 at endline, or equal numbers at baseline and endline as was implemented. The 

calculations reflect Figure 3 and quantify the modest benefit from including 10 

baseline measurements relative to none and the modest reduction in power from 

allocating half the measurements to baseline. Given the modest number of clusters 

concerned, in this example it would be more natural to select 10 baseline 

measurements per cluster in order to increase power rather than to reduce the 

number of clusters in the trial, as shown in the final column of the table.  

 

Trialists may of course consider a range of total cluster sizes, in this example 

increasing the size beyond 55 would lead to higher optimal proportions of baseline 

data and decreasing below 55 would lead to lower optimal proportions conveying 

lower benefit. At average cluster size 27.5 (basis of original sample size calculation) 

the optimal design has no baseline data unless π is close to 1 (optimal proportion 

zero at π =0.65), and even then any benefit conveyed from baseline data is very 

small. This design with no baseline data, as shown in Table 1, can achieve 80% power 

with many fewer participants (303) than any of the designs with total cluster size 55. 

To match the 90% power that could be expected with 11 clusters per arm, 10 

baseline and 45 endline measurements per cluster, at average cluster size 27.5 and 



no baseline measurements 15 clusters per arm are required, which equates to 413 

participants. 

 

The final decision on the design to collect baseline data, and specifically an equal 

number of measurements at baseline and endline, may have been influenced by 

considering other benefits of baseline data such as face validity given the relatively 

modest number of clusters.   

 

5. Discussion 

 

We have provided new methodology to calculate power or sample size for cluster 

randomised trials with any amount of baseline data and endline data per cluster, 

where baseline and endline data are collected cross-sectionally from different 

groups of participants. We distinguish between scenarios where the baseline data 

have already been collected and others where it will be collected as part of the trial. 

When baseline data collected prior to the trial are not available, and trialists have a 

particular value or range of values for the total cluster size in mind, then the plots we 

recommend extend the work of Green et al.3 to guide the choice of the proportion of 

baseline data given uncertainty in the correlation parameters. Since the optimal 

proportion will often be zero (no baseline data), we provide a simple inequality in 

the cluster size and ICC so that researchers can see whether it is worth exploring 

baseline data collection. In more cases it will be possible to include some prospective 

baseline data without compromising power and yet conveying other benefits such as 

allowing its use in restricted randomisation.  



 

We found, as did Green et al.,3 that baseline data provide more power when the 

cluster autocorrelation is greater which is intuitive because this means baseline data 

are more predictive of endline outcomes so provide more information for the 

comparison between arms. We also found that baseline data provide more power 

when the cluster size and the ICC are larger. This too is intuitive because as these 

increase the information from each additional participant decreases and the 

standard cluster randomised trial becomes less efficient than other designs among 

which introducing baseline data is perhaps the simplest example.10 In common with 

these other designs, a further benefit of baseline data is some preservation of trial 

power if the ICC is higher than anticipated. 

 

In our presentation of sample size calculations where retrospective baseline data are 

available we have assumed these data are freely available to the researchers. Our 

methodology could also be used however where retrospective data are available but 

expensive to obtain, because for example they can only be collected through 

searching of paper records. In this scenario different amounts of baseline data per 

cluster could be considered, alongside different amounts of endline data, with the 

choice taking account of the relative cost of their collection. 

 

Because the cluster autocorrelation plays such an important role in planning trials 

with baseline data (as shown in Figure 3 for example) we strongly recommend that 

estimates be routinely reported, at least for cluster crossover trials, stepped wedge 

trials, and cluster randomised trials with baseline data. We suggest that in the latter 



design, estimates should also be reported separately by study arm. The methodology 

we have developed assumes the same cluster autocorrelation (and ICC) in the study 

arms and does not apply in the event of substantial difference. 

 

We have assumed that outcomes measured within the same time period (baseline or 

endline) in the same cluster are exchangeable, while outcomes from different 

periods in the same cluster have an attenuated correlation that depends on the 

cluster autocorrelation. This is likely if baseline and endline data are collected in 

surveys administered at two time points. If alternatively the two periods involve 

continuous recruitment of individuals over extended intervals of time, and 

particularly if these periods are contiguous, then these assumptions are doubtful. In 

fact in this case we would expect two participants recruited immediately before and 

after the cross-over between periods to have more closely correlated outcomes than 

two participants recruited at either end of the same period, and alternative 

statistical models may be more appropriate.   

 

We have presented methodology to calculate an optimal proportion of baseline data 

where this is collected prospectively as part of the trial. In conjunction with a range 

of total cluster sizes this allows trialists to identify an optimal trial design achieving 

good power whilst minimising the number of clusters and/or participants. We 

acknowledge however that trialists will need to consider research costs and in 

particular that typically including a baseline survey adds additional fixed costs. In 

other words for a given total cluster size a trial with both baseline and endline survey 

will typically cost more than a trial with endline survey only. However once it is 



decided to have a baseline survey then costs will typically be similar for each 

baseline and endline measurement. Costs will also relate to both the number of 

clusters and number of participants surveyed, costs and feasibility across different 

total cluster sizes can be compared to select the best size.14 When the number of 

clusters available is modest our methodology is better used to increase power or 

reduce cluster size than investigate a reduction in the number of trial clusters, 

because of concerns over face validity and also to permit a full range of analysis 

methods (some authors have suggested that some methods should not be applied 

when there are fewer than 20 clusters per arm).15-17  

 

For prospective collection of baseline data we have focussed on selecting a 

proportion between zero and one half because Green et al. showed the optimal 

proportion to maximise precision or power is always less than one half.3 However 

our design effect can be used for any proportion of baseline data collection between 

zero and one. A proportion of baseline data above one half could be considered in 

particular if the baseline data will be used for other purposes, for example to 

understand population needs and hence refine aspects of the intervention.  

 

If baseline data are collected prospectively we recommend, to ensure high quality 

data, randomisation should be delayed until after baseline data collection. If this is 

not possible then alternatively participants and data collectors should remain 

blinded to allocation. 

        



In further work our methodology could be examined and possibly adapted for binary 

outcomes, a small number of clusters,18 unequal cluster sizes,19 trials where 

outcomes are collected gradually over time leading to a more complex correlation 

structure, and ‘open cohort’ trials in which the some individuals are measured both 

at baseline and endline, and other individuals in one period only. 

 

Previous methods for sample size calculation have focussed on an equal number of 

baseline and endline measurements. Our work has provided the means and Stata 

code by which to relax this artificial restriction and design trials that efficiently either 

increase power or provide the other benefits of baseline data. This can lead to trials 

that are cheaper, more robust, and expose fewer participants to unproven 

interventions.   
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Design Cluster 

auto-
correlation 

Design 
effect 

Number of 
clusters per 
arm for 80% 
power 

Number of 
participants 
per arm for 
80% power 

Power 
from 11 
clusters 
per 
arm1, % 

Individual RCT N/A N/A N/A 130 N/A 
      
Parallel group cluster RCT, 
average m=27.5 

N/A 2.33 11 303 80 

      
Parallel group cluster RCT, 
m=55 

N/A 3.70 9 495 88 

      
Cluster RCT, m=55: 10 
baseline and 45 endline 
measurements  

0.50 3.67 9 495 89 
0.65 3.51 9 495 90 
0.80 3.30 8 440 92 

      
Cluster RCT, m=55: half 
baseline and half endline 
measurements  

0.50 4.24 11 605 84 
0.65 3.96 10 550 86 
0.80 3.61 9 495 89 

      
1. Power calculation included because the example trial had 11 clusters per arm  
 
Table 1. Sample size for different possible designs to detect an intervention effect of 
2.1 units given a standard deviation of 6 units in both arms under two-sided testing 
at 5% level, and power given 11 clusters per arm. The anticipated ICC is 휌=0.05.  



 
 
Figure 1. Proportionate change in number of clusters required according to the proportion of baseline data collection (θ), for two different total cluster sizes 
(m) and ICC values (ρ), and in each case for π=0.5, 0.7 and 0.9 
  



 
 
Figure 2. Proportionate change in number of clusters required according to the ratio of additional retrospective baseline data to endline data ranging from 0 
to 2, for two different endline cluster sizes (ne) and ICC values (ρ), and in each case for π=0.5, 0.7 and 0.9 
 



 
 
Figure 3. Effect of varying the proportion of data allocated to prospective baseline 
data collection on number of clusters required per arm (in practice would be 
rounded up) in example trial for π=0.50, 0.65 and 0.80 
 
  



Appendix A 

 

A1. Derivation of expression for the sample autocorrelation between cluster 

means at baseline and endline 

 

Under the model presented in section 2.1, and using the notation of sections 2.1 and 

2.2, the variance of a cluster sample mean at baseline conditional on study arm is  

푉푎푟(푌 ) = 휎 + 휎 /푛  and similarly at endline is 푉푎푟(푌 ) = 휎 + 휎 /푛  

 

The variance terms above can be re-expressed, noting that 

 

휎 =
1 − 휌
휌 휎 . 

 

For example  

 

푉푎푟(푌 ) =
휎
휌푛

[1 + (푛 − 1)휌] 

 

and a similar expression can be derived for 푉푎푟(푌 ). 

 

The covariance between cluster means at baseline and endline arises only though 

the cluster random effects as the other random terms are independent in our setting 

where different individuals are measured at baseline and endline. Specifically 

 



퐶표푣(푌 ,푌 ) = 퐶표푣(푢 ,푢 ) = 휋휎 , 

 

and hence  

퐶표푟푟(푌 ,푌 ) =
휋휎

푉푎푟(푌 ) 푉푎푟(푌 )
 

 

=
휋휌 푛 푛

1 + (푛 − 1)휌 1 + (푛 − 1)휌
 

 

  



A2. Derivation of design effects 

 

Our derivation is based on the work of Borm et al.,20 who show that for an 

individually randomised trial if baseline data are available from the same individuals 

then the number of individuals required can be reduced by multiplying by a factor 1-

r2, where r is the correlation between the baseline and follow-up measurements. 

This assumes an ANCOVA analysis, comparing the values of the outcome at endline 

between trial arms whilst adjusting for the baseline values of the outcome through a 

linear regression model. 

 

For our trial setting we consider a cluster summary ANCOVA analysis, comparing the 

cluster means at endline between trial arms and adjusting for cluster means at 

baseline. This corresponds directly to the individually randomised trial setting, but 

now the interpretation is that the number of clusters required can be reduced due to 

the baseline data by multiplying by 1-r2, where r is now the correlation between the 

cluster sample means at baseline and endline.1,10 Note that in Appendix A1 we see 

that the variance of the sample means may not be the same at baseline and endline, 

but Borm et al. acknowledge the possibility of unequal variance in their derivation. 

This leads directly to a design effect if the baseline data have already been collected 

and do not therefore need to be included within the target sample size for the trial. 

The overall design effect is a product of the design effect for a standard cluster 

randomised trial with endline data only, and then the reduction factor due to the 

baseline data:   

 



퐷퐸 = [1 + (푛 − 1)휌][1− 푟 ]. 

 

Next we consider the setting in which the baseline data do need to be collected as 

part of the trial. Noting that design effects are used to calculate a total number of 

individuals required (and subsequently to calculate the number of clusters by 

dividing by the cluster size) then it follows that the design effect here can be derived 

from 퐷퐸 	 by adding a simple multiplication by a factor of [(푛 + 푛 )/푛 ]	to 

recognise the proportionate increase in the number of individuals now that those 

measured at baseline need to be included:  

  

퐷퐸 = [1 + (푛 − 1)휌][1− 푟 ][(푛 + 푛 )/푛 ]. 

 

 

  



Appendix B1 

 

To help consider the impact of varying the proportion of baseline measurements 

휃 = 푛 /푚, where 푚 = 푛 + 푛 , we can express the DE equivalently 

 

퐷퐸 = [1 + ((1− 휃)푚 − 1)휌][1− 푟 ][1/(1− 휃)] 

 

and also re-express r thus 

   

푟 =
휋휌푚 휃(1− 휃)

1 + ((1− 휃)푚 − 1)휌 1 + (휃푚 − 1)휌
 

 

 

Appendix B2 

 

To see the impact of the ratio of baseline measurements to endline measurements, 

휆 = 푛 /푛 , we can re-express r thus 

 

푟 =
휋휌푛 √휆

1 + (휆푛 − 1)휌 1 + (푛 − 1)휌
. 

 

 

 

  



Appendix C 

 

Suppose we have cross-sectional data collected at two time points from a trial, each 

row is a measurement (equivalently an individual) and the following variables: 

 

idclus Cluster ID number 

baseline Indicator that measurement is taken at baseline 

  1=baseline; 0=endline 

endline Indicator that measurement is taken at endline 

  1=endline; 0=baseline 

group  Group to which the cluster is randomised 

0=randomised to be in the control condition at baseline and endline; 

1= randomised to cross over from the control condition at baseline to 

the intervention condition at endline. 

treat Whether the outcome was assessed under the control or intervention 

condition 

This can be calculated from group and endline: if group and endline 

are both 1 then treat is 1, otherwise 0. 

y  Outcome (continuous) 

 

Then Stata code to estimate the cluster autocorrelation is as follows: 

 

mixed y baseline endline treat || idclus: baseline endline, 

cov(exch) noconstant stddev 



 

where the term cov() specifies the covariance structure for the two cluster random 

terms at baseline and endline. The selected structure is “exch” denoting 

exchangeable which implies the two random terms have the same variance and are 

correlated with each other.  



Appendix D 

 

Stata code to generate plots to examine the impact of varying amount of prospective 

baseline data collection. Here is the code for a trial in which the total cluster size 

(푛 + 푛 ) is set to 200, the ICC to 0.01, and the cluster autocorrelation is considered 

at values 0.5, 0.7 and 0.9 

 

local n 200 

local rho 0.01  

 

twoway function y = (1-`rho'+(`n'*`rho'*(1-x)))*(1/(1-x))*(1-

((0.5*0.5*`rho'*`rho'*`n'*`n'*x*(1-x))/((1+(((`n'*(1-x))-1)*`rho'))*(1+(((`n'*x)-

1)*`rho')))))/(1+((`n'-1)*`rho')), range(0 0.5) lcolor(black) || /// 

function y = (1-`rho'+(`n'*`rho'*(1-x)))*(1/(1-x))*(1-

((0.6*0.6*`rho'*`rho'*`n'*`n'*x*(1-x))/((1+(((`n'*(1-x))-1)*`rho'))*(1+(((`n'*x)-

1)*`rho')))))/(1+((`n'-1)*`rho')), range(0 0.5) lcolor(red) || /// 

function y = (1-`rho'+(`n'*`rho'*(1-x)))*(1/(1-x))*(1-

((0.7*0.7*`rho'*`rho'*`n'*`n'*x*(1-x))/((1+(((`n'*(1-x))-1)*`rho'))*(1+(((`n'*x)-

1)*`rho')))))/(1+((`n'-1)*`rho')), range(0 0.5) lcolor(blue) /// 

ytitle("Proportionate change in clusters required") xtitle("Baseline data as a 

proportion of total") /// 

legend(label(1 "0.5") label(2 "0.6") label(3 "0.7") pos(10) ring(0) forcesize symxsize(8) 

symysize(1) rowgap(1) size(large) colgap(1) symplacement(left) textfirst cols(1) 

colfirst) 



 

 

Next the code to generate plots to examine the impact of the amount of 

retrospective data. Here is the code for a trial, where the prospective (i.e. endline) 

cluster size (푛 ) is set to 200, the ICC to 0.01 and the cluster autocorrelation 

considered at values 0.5, 0.7 and 0.9 

 

local n 200 

local rho 0.01 

 

twoway function y = 1 - ((0.5*0.5*`rho'*`rho'*`n'*`n'*x)/((1+((`n'-

1)*`rho'))*(1+((((`n'*x))-1)*`rho')))), range(0 2) yscale(range(0)) ylabel(0(0.1)1) 

lcolor(black) || /// 

function y = 1 - ((0.7*0.7*`rho'*`rho'*`n'*`n'*x)/((1+((`n'-1)*`rho'))*(1+((((`n'*x))-

1)*`rho')))), range(0 2) yscale(range(0)) ylabel(0(0.1)1) lcolor(red) || /// 

function y = 1 - ((0.9*0.9*`rho'*`rho'*`n'*`n'*x)/((1+((`n'-1)*`rho'))*(1+((((`n'*x))-

1)*`rho')))), range(0 2) yscale(range(0)) ylabel(0(0.1)1) lcolor(blue) /// 

title("size=`n', ICC=`rho'") ytitle("Proportionate change in clusters required") 

xtitle("Baseline data as a ratio to endline data") /// 

legend(label(1 "0.5") label(2 "0.7") label(3 "0.9") pos(7) ring(0) forcesize symxsize(8) 

symysize(1) rowgap(1) size(large) colgap(1) symplacement(left) textfirst cols(1) 

colfirst) 


