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BACKGROUND: Early prediction of cardiovascular risk in the general 
population remains an important issue. The T-wave morphology 
restitution (TMR), an ECG marker quantifying ventricular repolarization 
dynamics, is strongly associated with cardiovascular mortality in patients 
with heart failure. Our aim was to evaluate the cardiovascular prognostic 
value of TMR in a UK middle-aged population and identify any genetic 
contribution.

METHODS: We analyzed ECG recordings from 55 222 individuals from 
a UK middle-aged population undergoing an exercise stress test in UK 
Biobank (UKB). TMR was used to measure ventricular repolarization 
dynamics, exposed in this cohort by exercise (TMR during exercise, 
TMRex) and recovery from exercise (TMR during recovery, TMRrec). The 
primary end point was cardiovascular events; secondary end points 
were all-cause mortality, ventricular arrhythmias, and atrial fibrillation 
with median follow-up of 7 years. Genome-wide association studies for 
TMRex and TMRrec were performed, and genetic risk scores were derived 
and tested for association in independent samples from the full UKB 
cohort (N=360 631).

RESULTS: A total of 1743 (3.2%) individuals in UKB who underwent the 
exercise stress test had a cardiovascular event, and TMRrec was significantly 
associated with cardiovascular events (hazard ratio, 1.11; P=5×10-7), 
independent of clinical variables and other ECG markers. TMRrec was also 
associated with all-cause mortality (hazard ratio, 1.10) and ventricular 
arrhythmias (hazard ratio, 1.16). We identified 12 genetic loci in total 
for TMRex and TMRrec, of which 9 are associated with another ECG 
marker. Individuals in the top 20% of the TMRrec  genetic risk score were 
significantly more likely to have a cardiovascular event in the full UKB 
cohort (18 997, 5.3%) than individuals in the bottom 20% (hazard ratio, 
1.07; P=6×10-3).

CONCLUSIONS: TMR and TMR genetic risk scores are significantly 
associated with cardiovascular risk in a UK middle-aged population, 
supporting the hypothesis that increased spatio-temporal heterogeneity 
of ventricular repolarization is a substrate for cardiovascular risk and the 
validity of TMR as a cardiovascular risk predictor.

VISUAL OVERVIEW: A visual overview is available for this article.
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Cardiovascular mortality is the main cause of death 
in the general population,1 and it accounts for 
31% of all deaths worldwide, with its estimated 

cost expected to be $1044 billion by 2030. Despite 
technological advances, prediction remains a critically 
important challenge.

The QT interval is the most recognized ECG index and 
reflects the duration of ventricular depolarization and 
repolarization. However, increasing evidence suggests 
that dispersion of repolarization and, in particular, its vari-
ations with heart rate, is a stronger marker for cardiovas-
cular risk than the total duration of repolarization.2,3 The 
T-wave morphology restitution (TMR)4 is a recently pro-
posed ECG marker that quantifies the rate of variation of 
the T-wave morphology with heart rate. This marker has 
shown to be a strong predictor of sudden cardiac death in 
chronic heart failure patients.4,5 However, its performance 
as a potential cardiovascular risk marker in the general 
population has not been evaluated. Furthermore, the bio-
logical mechanisms underlying TMR are not known.

ECG markers are heritable6 and statistical genetic 
methods are available to estimate the cumulative con-
tribution of genetic factors to cardiovascular events via 
genetic risk scores (GRSs).7 We hypothesize that the 
interaction between repolarization dynamics and car-
diovascular risk has a genetic component and that TMR 
can be used to capture it.

Our primary objective was to validate the prognostic 
significance of TMR in a dataset of 55 222 individuals 
where exercise and recovery from exercise were used 
to expose spatio-temporal heterogeneity of ventricu-
lar repolarization. Our secondary objectives were to 
perform genome-wide association studies (GWASs) to 
identify single-nucleotide variants (SNVs) determining 
the genetic contribution of TMR and to develop GRSs 
to evaluate their association with cardiovascular events 
in an independent population of 360 631 individuals.

METHODS
Anonymized data and materials have been returned to UK 
Biobank (UKB) and can be accessed per request.

Study Population, Follow-Up, and End 
Points
UKB is a prospective study of 488 377 individuals (FULL-UKB 
cohort), comprising relatively even numbers of men and 
women aged 40 to 69 years old at recruitment (2006–2008). 
A total of 95 216 individuals were invited for an exercise test 
using a stationary bicycle in conjunction with a 1-lead ECG 
device (Methods in the Data Supplement). Complete ECG 
recordings from 58 839 individuals, who were considered 
fit to perform the exercise stress test (EST), were available 
(EST in UKB [EST-UKB] cohort; Figure  1). Individuals were 
excluded if they had existing medical conditions known to 
affect heart rate, if they had experienced a previous cardio-
vascular event (matching the codes from Table I in the Data 
Supplement), if they were on heart rate altering medica-
tions, had been diagnosed with bundle branch block, if the 
ECG had poor quality, or there was no heart rate change 
during the exercise test (Methods in the Data Supplement). 
This led to N=55 222 individuals included in the analyses. 
The UKB study has approval from the North West Multi-
Centre Research Ethics Committee, and all participants pro-
vided informed consent.8

The primary end point of this study was cardiovascu-
lar events, defined as cardiovascular mortality or admis-
sion to hospital with a cardiovascular diagnosis. The exact 
International Classification of Diseases, Tenth Revision codes 
used to define cardiovascular events are presented in Table 
I in the Data Supplement. The secondary end points were 
all-cause mortality (excluding external causes), ventricular 
arrhythmic events (defined as arrhythmic mortality or admis-
sion to hospital with an arrhythmic diagnosis), and atrial fibril-
lation. Details on cause and date of death and diagnoses are 
available in the Methods in the Data Supplement. Follow-up 
was from the study inclusion date until March 31, 2017.

Derivation of TMR During Exercise and 
TMR During Recovery
The bicycle ergometer exercise test followed a standard-
ized protocol: 15 s resting period, 2 minutes of constant 
load, 4 minutes of exercise during which the workload was 
gradually increased, and a 1-minute recovery period with-
out pedaling (Figure  2A). Details of the preprocessing of 

WHAT IS KNOWN?
•	 The T-wave morphology restitution (TMR) is a 

recently proposed ECG marker that quantifies the 
rate of variation of the T-wave morphology with 
heart rate.

•	 TMR is a strong predictor of sudden cardiac death 
in chronic heart failure patients.

WHAT THE STUDY ADDS?
•	 TMR at 1-minute recovery from exercise (TMR dur-

ing recovery) was associated with cardiovascular 
risk (hazard ratio, 1.11; P=5×10-7), all-cause mor-
tality (hazard ratio, 1.10), and ventricular arrhyth-
mic risk (hazard ratio 1.16) independent of clinical 
variables, resting corrected QT interval, and resting 
and recovery heart rate from an analysis of 60 000 
individuals from a UK middle-aged population par-
ticipating in an exercise stress test.

•	 Genetic loci for TMR during exercise and TMR 
during recovery were identified, of which 9 had 
been previously associated with other ECG mark-
ers. Individuals having a cardiovascular event in a 
≈500 000 cohort had a higher genetic risk score for 
TMR during recovery than unaffected individuals.

•	 We demonstrate that TMR is a heritable risk 
marker for cardiovascular risk in a UK middle-aged 
population.
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the ECG recordings are available in the Methods in the Data 
Supplement. Automatic quantification of TMR during exer-
cise (TMRex) and recovery (TMRrec; shown in Figure 2) was 
performed on every ECG recording in 3 steps:

1. Derivation of average T waves: signal averaging of 
all available heartbeats within a 15 s window at rest, 
peak exercise, and recovery was used to reduce noise 
(Figure 2B). The onset, peak, and offset timings of the 
waveforms were located using bespoke software.9,10 
Average T waves at rest, peak exercise, and recovery 
were selected using the T onset and T offset timings and 
were further low-pass filtered at 20 Hz.

2. T-wave morphology differences quantification: using 
a previously published algorithm based on time warp-
ing,11 we derived the marker dwex, representing the 
average temporal stretching necessary to align each 
point of the average T wave at rest to the average T 
wave at peak exercise.11 Figure 2C shows an example 
where 2 T waves have similar morphology and small 
dwex. Similarly, the marker dwrec represents the average 
temporal stretching necessary to align each point of 
the average T wave at peak exercise and the average 
T wave at recovery. Figure 2C shows that the morpho-
logical difference between the 2 T waves has increased 
along with dwrec.

3. TMR calculations: TMRex and TMRrec were calculated 
by dividing dwex and dwrec by the change in the  RR 
interval (inverse of hearte rate) during exercise, ΔRRex, 
and during recovery, ΔRRrec, respectively, and represent 
the T-wave morphological change per RR increment 
during exercise and recovery, respectively.4

Computation of Other ECG markers
The QT interval and QRS duration were measured as the 
interval between the QRS-onset and the T-wave end, and 
between the QRS-onset and the QRS-offset, respectively, 
from the averaged heartbeat at rest. Then, we corrected the 
QT interval using Bazett formula.12 We additionally derived 
the marker T-wave inversion, which indicated a change in 
the polarity of the T waves between resting and exercise 
stages13 (Methods in the Data Supplement).

Statistical Analyses
The 2-tailed Mann-Whitney and Fisher exact tests were used 
for univariate comparison of quantitative and categorical 
data, respectively. Correlation was evaluated with Spearman 
correlation coefficient. Receiver operator curves were derived 
using the pROC package14 from R and C-indices were calcu-
lated for each marker. We estimated the optimal cutoff values 
for TMRex and TMRrec in a training set (N=27 612) from the 
EST-UKB cohort (Methods in the Data Supplement) by means 
of log-rank statistics optimization with the aim of maximizing 
the predictive value. Kaplan-Meier curves were derived using 
the optimal cutoff values in the test set (N=27 610), with a 
comparison of cumulative events performed by using log-
rank tests.

Univariate and multivariate Cox regression analyses were 
performed to determine the predictive value of the risk mark-
ers. The proportional hazard assumptions were checked 
when applying these analyses. Continuous variables were 

standardized to a mean of 0 and SD of 1 to allow for com-
parisons in the Cox models. Only the variables with a signifi-
cant association with the end point in univariate analysis were 
included in the multivariate model. Individuals who died from 
causes not included in the primary end point were censored 
at the time of death. A value of P<0.05 was considered sta-
tistically significant. Statistical analyses were performed using 
R version 3.5.1.

Heritability and GWASs
Inverse-normal transformation of TMRex and TMRrec was 
performed as the distributions were skewed and did not 
approximate a normal distribution (Figure I in the Data 
Supplement). Heritability was estimated using a variance 
components method (BOLT-REML).15 GWAS for TMRex and 
TMRrec were performed in a discovery (N=29 393) and rep-
lication (N=22 382) datasets separately using a linear mixed 
model method (BOLT-LMM).16 The TMRex model included the 
following covariates: sex, age, body mass index (BMI), rest-
ing RR, ΔRRex and a binary indicator variable for the genotyp-
ing array (UKB versus UK BiLEVE). The TMRrec model included 
covariates sex, age, BMI, recovery RR, ΔRRrec and the geno-
typing array. After careful review of significant (P<1×10-6) 
SNVs from the discovery GWASs, 6 variants for TMRex and 
7 variants for TMRrec were taken forward into replication. 
Replication was confirmed if the SNVs remained significant 
(with Bonferroni correction) and with concordant direction 
of effects to the discovery analyses. A full dataset GWAS 
for both TMRex and TMRrec was conducted and additional 
loci reaching genome-wide significance (P<5×10−8) were 
reported. Since TMRex and TMRrec were genetically correlated 
(ρ=0.58), multitrait analysis of GWAS17 was used to leverage 
additional loci discovery. Detailed information can be found 
in Methods in the Data Supplement.

To examine if there were independent secondary SNVs at 
TMR loci, we applied genome-wide complex trait analysis18 
for all reported loci from the full dataset GWAS. The per-
cent variance of TMRex and TMRrec explained by the identi-
fied loci was calculated with standard methods, detailed in 
the Methods in the Data Supplement. Bioinformatics analy-
ses were performed to annotate SNVs and identify candi-
date genes, including Variant Effect Predictor,19 GTEx  (the 
Genotype-Tissue Expression project), and long-range chro-
matin interaction data.20 We used PhenoScanner,21 GWAS 
catalog (https://www.ebi.ac.uk/gwas/), and UKBiobank 
ICD PheWeb (http://pheweb.sph.umich.edu/SAIGE-UKB/) 
to determine SNV and gene associations with other traits. 
Pathway analyses were performed using g:profiler.22 Further 
description of bioinformatics analyses can be found in the 
Methods in the Data Supplement. We downloaded the 
summary statistics for atrial fibrillation23 to calculate its 
genetic correlation with TMRex and TMRrec using LD score 
regression.24

Genetic Risk Score Analyses
We used PRSice v225 to construct the GRS for TMRex and 
TMRrec using the effect sizes from the full-cohort GWASs 
(EST-UKB) and performed prediction for the primary end 
point in the full UKB cohort (FULL-UKB) dataset (after exclu-
sions, Figure II and Methods in the Data Supplement). We 
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first removed individuals included in the GWASs (EST-UKB) 
and their relatives, then removed all individuals with a pre-
vious history of cardiovascular events and non-Europeans. 
The GRSs were standardized to have a mean of 0 and an SD 
of 1. Their association with the study end points was tested 
in the FULL-UKB cohort (after exclusions, Figure II in the 
Data Supplement) using Mann-Whitney and Univariate Cox 
regression analyses.

RESULTS
Predictive Value of TMR in a UK Middle-
Aged Population
The EST-UKB population consisted of 55 222 individu-
als (25 669 males, 29 553 females) aged 40 to 73 years 
(mean 57±8 years) after exclusions. The demographic 
characteristics of this population are shown in Table II 
in the Data Supplement. During the follow-up, 1743 
(3.2%) individuals had a cardiovascular event. The dis-
tributions of TMRex and TMRrec are shown in Figure I in 
the Data Supplement.

Age, BMI, TMRrec (P<2×10-16 for all), TMRex 
(P=3×10-8) and resting heart rate (P=3×10-4) were 
significantly higher in the cardiovascular events 
group than in the event-free group, whereas heart 
rate response to exercise and recovery were lower 

(P<2×10-16 for both). Also, there were more males, 
diabetics, hypertensives (stage 1 [130 mm Hg ≤ sys-
tolic blood pressure <140 mm Hg or 85 mm Hg ≤ dia-
stolic blood pressure <90 mm Hg] and stage 2 [sys-
tolic blood pressure ≥140 mm Hg or diastolic blood 
pressure ≥ 90 mm Hg]), individuals with high choles-
terol levels (P<2×10-16 for all), smokers (P=1×10-13), 
diagnosed with chronic kidney disease (P=5×10-2), 
or with T-wave inversions (P=9×10-3). QRS duration 
was not significantly different in individuals with 
and without cardiovascular events and thus was not 
included in the survival analyses (Table III and Figure 
III in the Data Supplement). Spearman correlation 
coefficient between TMRex and TMRrec  was 0.484; 
lower correlations were found between them and 
covariates (Table IV in the Data Supplement).

Individuals in the TMRex ≥ 0.082 group (strati-
fied according to the optimal cutoff value—Figure 
IV in the Data Supplement) had 1.65 fold risk (95% 
CI, 1.38–1.98) of having a cardiovascular event 
than those in the TMRex  <0.082 group (P<10-3; Fig-
ure 3A). Similarly, individuals in the TMRrec  ≥0.115 
group (Figure V in the Data Supplement) had 1.71 
fold risk (95% CI, 1.43–2.05) of having a cardiovas-
cular event than those in the TMRrec  <0.115 groups 
(P<10-3; Figure 3B).

Figure 1. Flow diagram of analyses in the 
exercise stress test (EST; EST in UK Biobank 
[EST-UKB]) population.  
HR indicates heart rate; TMR, T-wave morphol-
ogy restitution; TMRex, TMR during exercise; and 
TMRrec, TMR during recovery.
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To compare the hazard ratios (HRs) of TMRex and 
TMRrec with those from other continuous markers, 
independently from cutoff thresholds, we included 
the continuous TMRex and TMRrec markers into a multi-
variate Cox regression model. The following variables 
remained significantly associated with cardiovascular 
events (HR [95% CI] reported): chronic kidney disease 
(2.85 [1.07–7.62]), sex (2.82 [2.52–3.15]), T-wave 
inversion (2.21 [1.10–4.45]), age (1.73 [1.63–1.84]), 

diabetes mellitus (1.56 [1.32–1.84]), hypertension 
stage 2 (1.32 [1.15–1.51]), hypertension stage 1 (1.19 
[1.02–1.39]), BMI (1.18 [1.13–1.25]), corrected QT 
interval (1.11 [1.06–1.17]), and TMRrec (1.11 [1.07–
1.16]; Table  1). Among ECG markers, resting heart 
rate, heart rate responses to exercise and recovery, 
and TMRex were no longer significant. Among all car-
diovascular events, 81.7% were related to ischemic 
heart disease. TMRrec was independently associated 

Figure 2. Assessment of T-wave morphology restitution (TMR).  
A, Illustration of the RR profile during the exercise stress test. B, Three averaged heartbeats are derived at rest (black), peak exercise (red) and 50 s after peak 
exercise (full recovery, blue), respectively. C, TMR during exercise (TMRex) and TMR during recovery (TMRrec) are derived by quantifying the morphological change 
between the T waves at rest (black T wave) and at peak exercise (red T wave), and between the T waves at peak exercise and full recovery (blue T wave), respec-
tively, normalized by the corresponding RR change. ∆RRex indicates change in RR interval during exercise; and ∆RRrec, change in RR interval during recovery.
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with both ischemic (HR [95% CI] of 1.08 [1.03–1.13]) 
and nonischemic (HR [95% CI] of 1.20 [1.11–1.30]) 
causes (Tables VA and VB in the Data Supplement). 
The assumption of proportional hazards was support-
ed for all covariates.

For the secondary end points, there were 979 (1.8%) 
cases of all-cause mortality, 198 (0.4%) who had a ven-
tricular arrhythmic event, and 1112 (2.0%) who had atrial 
fibrillation (Table II in the Data Supplement). In multivari-
ate Cox analysis, TMRrec remained significantly associated 

Figure 3.  Kaplan-Meier survival curves. 
Cumulative survival rates of individuals stratified by T-wave morphology restitution (TMR) during exercise (TMRex) of ≥0.082 (A) and by TMR during recovery 
(TMRrec) of ≥0.115 (B). Dashed lines indicate the 95% confidence levels. HR indicates hazard ratio.

Table 1.  Association With Cardiovascular Risk

Univariate Multivariate

HR (95% CI) P Value HR (95% CI) P Value

Clinical variables

 ��� Age (per 1 SD) 1.88 (1.78–2.00) <2×10−16* 1.73 (1.63–1.84) <2×10−16*

 ��� Sex (male) 3.01 (2.70–3.35) <2×10−16* 2.82 (2.52–3.15) <2×10−16*

 ��� Diabetes mellitus (yes) 2.71 (2.31–3.19) <2×10−16* 1.56 (1.32–1.84) 2.20×10−7*

 ��� High cholesterol (yes) 1.95 (1.72–2.20) <2×10−16* 1.10 (0.97–1.25) 1.60×10−1

 ��� BMI (per 1 SD) 1.28 (1.23–1.34) <2×10−16* 1.18 (1.13–1.25) 3.00×10−11*

 ��� Hypertensive stage 1 1.72 (1.48–2.01) 4.10×10−12* 1.19 (1.02–1.39) 2.60×10−2*

 ��� Hypertensive stage 2 2.43 (2.14–2.76) <2×10−16* 1.32 (1.15–1.51) 4.70×10−5*

 ��� Previous or current smoker (yes) 1.38 (1.25–1.53) 9.30×10−11* 1.10 (0.99–1.21) 8.60×10−2

 ��� CKD (yes) 3.62 (1.36–9.66) 1.00×10−2* 2.85 (1.07–7.62) 3.70×10−2*

ECG variables

 ��� Resting heart rate (per 1 SD) 1.10 (1.05–1.15) 5.70×10−5* 0.97 (0.91–1.03) 2.90×10−1

 ��� Heart rate response to exercise (per 1 SD) 0.70 (0.66–0.74) <2×10−16* 1.02 (0.94–1.10) 6.70×10−1

 ��� Heart rate response to recovery (per 1 SD) 0.74 (0.71–0.76) <2×10−16* 0.96 (0.90–1.03) 2.50×10−1

 ��� Corrected QT (per 1 SD) 1.15 (1.10–1.20) 4.00×10−10* 1.11 (1.06–1.17) 5.40×10−5*

 ��� T-wave inversion (yes) 2.80 (1.40–5.60) 3.70×10−3* 2.21 (1.10–4.45) 2.70×10−2*

 ��� TMR during exercise (per 1 SD) 1.17 (1.12–1.22) 6.10×10−15* 1.03 (0.98–1.08) 2.50×10−1

 ��� TMR during recovery (per 1 SD) 1.23 (1.19–1.28) <2×10−16* 1.11 (1.07–1.16) 4.90×10−7*

Hypertensive stage 1 defined as 130 mm Hg ≤ SBP <140 mm Hg or 85 mm Hg ≤ DBP <90 mm Hg. Hypertensive stage 2 defined as SBP 
≥140 mm Hg or DBP ≥90 mm Hg. Reference Hypertension group is Hypertensive stage 0, defined as SBP <130 mm Hg and DBP <85 mm Hg. 
BMI indicates body mass index; CKD, chronic kidney disease; DBP, diastolic blood pressure; HR, hazard ratio; SBP, systolic blood pressure; 
and TMR, T-wave morphology restitution.

*Indicates statistically significant.
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with all-cause mortality (HR [95% CI] of 1.10 [1.04–1.17]) 
independently of age, sex, smoke, diabetes mellitus, rest-
ing heart rate, heart rate response to recovery, and heart 
rate response to exercise (Table VI in the Data Supple-
ment). TMRrec also remained significantly associated with 
ventricular arrhythmic events (HR [95% CI] of 1.16 [1.03–
1.30]) independently of sex, age, and heart rate response 
to recovery (Table VII in the Data Supplement). Finally, 
TMRrec was not independently associated with atrial fibril-
lation (Table VIII in the Data Supplement).

Twelve Genetic Loci Are Associated With 
TMR
A total of 51 574 subjects were taken forward for 
genetic analyses after applying genetic quality control 
and excluding individuals of non-European ancestry 
(Figure  1). The heritability estimations of TMRex and 
TMRrec  were 3.5% and 4.9%, respectively, and their 
phenotypic correlation was 0.43.

In the discovery cohort GWAS (Methods), 1 genome-
wide significant (P≤5×10-8) locus was found for TMRex, 
and 3 for TMRrec (Table IX in the Data Supplement). Four 
SNVs for TMRex and 3 for TMRrec  formally replicated 
in the independent validation cohort (Tables 2 and 3). 
In the full dataset analysis, 2 additional SNVs reached 
genome-wide significance for TMRex and 4 SNVs for 
TMRrec, respectively, all with concordant directions of 
effect (Tables  2 and 3). Manhattan plots for the full 
dataset are shown in Figure VI in the Data Supplement. 
Visual inspection of the corresponding QQ plots from 
the discovery and full dataset GWASs did not show evi-
dence of P value inflation or confounding (Figure VII in 
the Data Supplement). Analysis using multitrait analysis 
of GWAS17 (Methods) indicated 2 additional loci were 
significantly associated with TMRex and 1 for TMRrec 
(Tables XA and XB in the Data Supplement). Sex-strati-
fied analyses did not identify sex-specific loci for TMRex Ta
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Figure 4. Overlap of loci for T-wave morphology restitution (TMR) dur-
ing exercise (TMRex) and TMR during recovery (TMRrec).  
The loci names indicate the coding gene that is in the closest proximity to the 
most associated single-nucleotide variation.
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or TMRrec. Conditional analyses showed evidence for 2 
secondary independent signals at the SCN5A-SCN10A 
locus, 1 for each trait (Tables 2 and 3).

In total, 12 loci were identified, 8 for each trait with 
SNVs at 4 loci associated with both markers (Figure 4). 
The lead SNVs at the shared loci at NOS1AP, KCNQ1, 
SCN5A-SCN10A, and SOX5 were identical or in high 
linkage disequilibrium (r2>0.8). The identified SNVs for 
TMRex explained 0.63% of its variance. Similarly, the 8 
SNVs identified for TMRrec  explained 1.14% of its vari-
ance. This corresponds to 20% and 23% of the esti-
mated heritability for each TMR marker, respectively.

Variants at 7 of the 12 TMR loci have previously been 
reported to be associated with resting QT (RNF207, 
KCNH2, KCNJ2, NOS1AP, SCN5A-SCN10A, KCNQ1, 
and KLF12). Regional plots are shown in Figure VIII in 
the Data Supplement. Look-ups in PhenoScanner indi-
cated 9 of the 12 SNVs have associations with other 
cardiovascular markers, including pulse rate, QT inter-
val, PR interval, QRS duration, P-wave duration, cardiac 
arrhythmias, and heart function (Tables XIA and XIB in 
the Data Supplement).

None of the lead variants or their close proxies 
(r2>0.8) were annotated as missense variants. Vari-
ants at 2 loci NOS1AP and SSBP3 were associated with 
expression levels of nearby genes (c1orf226 and SSBP3, 
respectively) in heart atrial appendage samples (Table 
XII in the Data Supplement). We found 11 potential 
target genes whose promoter regions form significant 
chromatin interactions at 9 TMR loci (Table XIII in the 
Data Supplement). Using this information and literature 
review, we derived a list of candidate genes at each 
locus (Table XIV in the Data Supplement).

Table XV in the Data Supplement shows a lookup of 
all candidate genes in the GWAS catalog and in UKBio-
bank ICD PheWeb and indicate associations across dif-
ferent cardiovascular traits, including atrial fibrillation. 
Our LD Score regression analysis indicated there was no 
significant genetic correlation between TMRex or TMRrec 
and atrial fibrillation. The top 3 biological pathways 
for TMRex were cardiac muscle cell action potential 
(P=4×10-10), regulation of ventricular cardiac muscle cell 
membrane repolarization (P=4.7×10-10), and ventricular 
cardiac muscle cell membrane repolarization (P=1×10-

9; Figure IX in the Data Supplement). The analyses for 
TMRrec indicated similar pathways including cardiac 
muscle cell action potential (P=6.6×10-8), regulation of 
cardiac muscle contraction (P=1.2×10-7), and regula-
tion of striated muscle contraction (P=3×10-7, Figure X 
in the Data Supplement).

Predictive Value of GRSs for TMR
After excluding individuals from the EST-UKB cohort 
and applying the exclusion criteria defined in Methods, 
the FULL-UKB population consisted of 360 631 healthy Ta
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individuals (160 793 men, 199 838 women) aged 40 
to 73 years (mean 57±8 years, Figure II and Table II in 
the Data Supplement). During the follow-up, 18 997 
(5.3%) individuals had a cardiovascular event, and 
12 081 (3.3%), 2040 (0.6%) and 14 517 (4.0%) were 
individuals of all-cause mortality, ventricular arrhythmic 
events, and atrial fibrillation, respectively.

The optimal GRS for TMRex was derived combin-
ing 3442 SNVs identified using a P value of 3.1×10-3 
for thresholding (Figure XI in the Data Supplement). 
This GRS was not significantly different between indi-
viduals with a cardiovascular event and those without 
(P=5.5×10-2). The optimal GRS for TMRrec was derived 
combining 3281 SNVs with a P<2.9×10-3 (Figure XII 
in the Data Supplement). The TMRrec GRS was signifi-
cantly higher in individuals with a cardiovascular event 
than those that did not have an event (P=1.5×10-2). 
Univariate Cox analysis showed that individuals in 
the top 20% of the GRS for TMRrec were significantly 
more likely to have a cardiovascular event than those 
in the bottom 20% (HR [95% CI] of 1.07 [1.02–1.12]; 
P=5.9×10-3). No significant associations were found 
with the secondary end points for the 2 GRSs.

DISCUSSION
TMR is a recently developed ECG marker to measure 
the rate of variation of the T-wave morphology due 
to heart rate changes. TMR is associated with spatio-
temporal heterogeneity of ventricular repolarization,11 
exposed in this cohort by exercise and recovery from 
exercise. The main findings of this study are (1) TMRrec 
is significantly associated with cardiovascular events, 
all-cause mortality, and ventricular arrhythmias in a UK 
middle-aged population and (2) the identified loci for 
TMRrec show a significant association with cardiovascu-
lar events despite limited heritability.

TMRrec was an independent predictor of cardiovas-
cular risk, after adjustment for conventional predictors 
(age, sex, diabetes mellitus, BMI, smoking, chronic kid-
ney disease, and hypertension) and other ECG mark-
ers, including heart rate, corrected QT interval, and 
T-wave inversions in a general UK middle-aged popula-
tion (Table 1). In this population, the majority of cardio-
vascular events were related to ischemic heart disease, 
and TMRrec was associated with cardiovascular events in 
both ischemic and nonischemic individuals (Tables VA 
and VB in the Data Supplement). Well-established pre-
dictors of cardiovascular risk, like resting heart rate,26 
chronotropic incompetence, or heart rate recovery,27 
did not remain significantly associated with cardiovas-
cular events after adjustment for ECG markers of ven-
tricular repolarization (corrected QT interval, T-wave 
inversion, and TMRrec). This suggests that ventricular 
repolarization abnormalities may play a more impor-

tant role in creating a substrate for malignant cardio-
vascular events than heart rate markers in a UK middle-
aged population. The QRS duration was not associated 
with cardiovascular events in our population; this may 
be explained by our cohort being a low-risk popula-
tion, and we had excluded individuals with previous 
cardiovascular events. We suggest that future analyses 
should incorporate additional ECG indices with similar 
proven findings in individuals undergoing an EST.28

In our previous work, TMR predicted sudden car-
diac death in a population of 651 chronic heart failure 
patients.4,5 In that work, TMR, derived from 24-hour 
ambulatory Holter recordings, was the strongest sud-
den cardiac death predictor compared with other mark-
ers, including left ventricular ejection fraction, QRS 
duration, or T-wave alternans.4 Interestingly, although 
the prevalence of ventricular arrhythmic events in the 
current study is too small to infer any robust conclu-
sions (0.4% in UKB-EST, compared with 8.4% in the 
published chronic heart failure study), our results seem 
to support an association of TMR with sudden cardiac 
death (Table VII in the Data Supplement). In this study, 
TMRrec was not significantly associated with atrial fibril-
lation.

We observed the heritability of TMRex and TMRrec 
to be 3.5% and 4.9%, respectively, in our data set, 
suggesting that the mechanisms underlying TMR are 
largely affected by environmental factors. Despite low 
heritability, we identified 12 loci associated with TMRex 
and TMRrec,  4 of which were common to both markers 
(Figure  4). Genetic variations at 4 of the 8 loci iden-
tified for TMRex have previously been associated with 
long-QT syndrome and QT in the general population: 
KCNH2, KCNJ2, SCN5A, and KCNQ1,29 all proven regu-
lators of cardiac excitation through regulation of the 
action potential duration and cardiac repolarizing chan-
nels.30 KCNQ1, KCNH2, and KCNJ2 underlie the major 
repolarising ventricular potassium currents, IKs, IKr, and 
IK1, respectively. Variations in these currents might lead 
to changes in the T-wave morphology is entirely consis-
tent with the known physiology. The signal involved in 
both TMRex and TMRrec at the KCNQ1 locus is particu-
larly significant as the modulation of this current by rate 
and sympathetic tone is one of the main mechanisms 
of adaptation of repolarization.31 Candidate genes indi-
cated at two of the TMRex  loci were PREP and SOX5 
from Hi-C analyses, which have also been associated 
with heart rate response to exercise and to recovery.32

For TMRrec, 4 of the identified loci overlapped TMRex 
loci (NOS1AP, SCN5A-SCN10A, KCNQ1, and SOX5). 
Regarding the remaining 4 loci, the variant at KLF12 
has previously been reported to be associated with 
the QT interval, the ST-T segment, and QRS duration. 
Variants at the 3 remaining loci (CAMKD2, SSBP3, 
and TSC22D2) have not been associated with an 
ECG marker previously. Candidate genes at these loci 
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include: SSBP3, which encodes single-stranded DNA 
binding protein 3, and the TMRrec variant identified 
at this locus has been reported to be associated with 
P-wave parameters, with its putative function being 
the transcriptional regulation of the alpha 2(1) colla-
gen gene.33 In addition, TSC22D2 encodes a DNA bind-
ing transcription factor. Finally, the protein CAMK2D 
regulates calcium dynamics, which is central in cardiac 
physiology, as the key event leading to the excitation-
contraction coupling and relaxation processes.34

TMR was developed based on the hypothesis that it 
reflects changes in the dispersion of ventricular repolar-
ization with heart rate.4 Although this is the first study 
that attempts to investigate the biological mechanisms 
underlying TMR, our predictive and genetic results 
indicate that TMR reflects relevant electrophysiologi-
cal information. Our prediction results indicate TMR is 
providing prognostic information independent to rest-
ing QT (reflecting total duration of ventricular repolar-
ization) or T-wave inversions (reflecting variations in 
the T-wave amplitude not captured by TMR). However, 
genetic analyses indicate there is a substantial overlap 
of loci with other ECG markers, thus shared biological 
processes. Future studies will investigate the relation 
between TMR and intracardiac indices of dispersion 
of repolarization, which is paramount to confirm its 
cardiovascular predictive utility.

Cardiovascular mortality remains the most common 
cause of death, with >4 million victims across Europe 
every year.1 Over the past 2 decades, numerous predic-
tion models have been developed,35 including the Fram-
ingham36 and SCORE37 models. This prediction can be 
further improved by including additional validated risk 
markers into the models. Table XVI in the Data Supple-
ment shows the reclassification results for the addition 
of TMRrec ≥0.115 to the SCORE model (Methods in the 
Data Supplement), indicating that TMR adds informa-
tion on risk prediction beyond traditional risk factors. In 
addition, the significant association between the GRS 
for TMRrec and cardiovascular events in the FULL-UKB 
cohort supports its potential as a cardiovascular risk 
predictor in high-risk populations, albeit with small HRs 
possibly due to the low number of events. Future work 
should combine ECG and genetic markers into one 
score (ECG markers could only be derived from EST-UKB 
in this study), which may show complementary cardio-
vascular predictive value of both TMRrec and its GRS.

CONCLUSIONS
We have conducted a systematic investigation of the 
genetic basis of ventricular repolarization and its influ-
ence in modulating cardiovascular risk through the anal-
ysis of the T-wave morphology. We demonstrate that 
TMR and the GRS for TMRrec are significantly associated 
with cardiovascular risk in a UK middle-aged population 

and that TMR reflects relevant biological mechanisms 
influencing the risk of cardiovascular events.
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