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Abstract. We consider a nonlinear evolution problem with an asymptotic parameter and construct
examples in which the linearized operator has spectrum uniformly bounded away from Re z ≥ 0
(that is, the problem is spectrally stable), yet the nonlinear evolution blows up in short times for
arbitrarily small initial data.

We interpret the results in terms of semiclassical pseudospectrum of the linearized operator:
despite having the spectrum in Re z < −γ0 < 0, the resolvent of the linearized operator grows very
quickly in parts of the region Re z > 0. We also illustrate the results numerically.

1. Introduction

For a large class of nonlinear evolutions the size of the resolvent has been proposed as an
explanation of instability for spectrally stable problems. Celebrated examples include the plane
Couette flow, plane Poiseuille flow and plane flow – see Trefethen-Embree [6, Chapter 20] for
discussion and references. Motivated by this we consider the mathematical question of evolution
involving a small parameter h (in fluid dynamics problem we can think of h as the reciprocal of
the Reynolds number) in which the linearized operator has the spectrum lying in Re z < −γ0 < 0,
uniformly in h, yet the the solutions of the nonlinear equation blow up at time O(1) for data of
size O(exp(−c/h).

We know of one rigorous example of such a phenomenon given by Sandstede-Scheel [11].
They considered ut = uxx + ux + u3 on [0, `] with Dirichlet boundary conditions, and showed that
blow up occurs with arbitrarily small initial data as ` → ∞. In that problem h = 1/`. The paper
[11] is our starting point and we use its maximum principle approach to obtain results for suitable
operators in any dimension. In addition, we emphasize the connection with the semiclassical
pseudospectrum and provide some numerical comparisons.

We consider a semiclassical nonlinear evolution equation

(1.1) hut = P(x, hD)u + u3 , x ∈ Rd , t ≥ 0 .

where P(x, hD) is the following semiclassical differential operator

(1.2) P(x, hD) := −
(
(hD)2 + V(x)

)
+ ih〈∇ρ,D〉 + µ , D j :=

1
i
∂ j D2 = −∆.

Here, V ∈ C∞ is a potential function with

(1.3)
V(x) ≥ C〈x〉k on |x| ≥M, |∂αV(x)| ≤ Cα〈x〉k,

V(x0) = 0 for some x0 ∈ Rd, V(x) ≥ 0,
1
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for some C,Cα, k,M > 0. Also, ρ ∈ C∞ has the properties

(1.4) |∂2
i jρ| ≤ Ci j〈x〉k, |∇ρ|2 ≥ 4(µ + γ0),

for some Ci j, γ0,N > 0. Finally, µ > 0.

Remark: All of our results hold for weaker assumptions on the growth of V and ρ, however (1.3)
and (1.4) are convenient for our purposes.

We will show in section 2 that for V(x) and ρ as in (1.3) and (1.4) respectively, the linearized
problem is spectrally stable, that is, the spectrum is bounded away from Re z ≥ 0 uniformly in h.
Yet, we also show that (1.1) has an unstable equilibrium at u ≡ 0 for all potentials V(x) satisfying
(1.3) and all ρ satisfying (1.4). Specifically, we show

Theorem 1. Fix µ > 0. Then, for each
0 < h < h0 ,

where h0 is small enough, there exists

u0 ∈ C∞c (Rn) , u0 ≥ 0 , ‖u0‖Cp ≤ exp
(
−

1
Ch

)
, p = 0, 1, . . . ,

such that the solution to (1.1) with u(x, 0) = u0(x), satisfies

‖u(x, t)‖L∞ −→ ∞, t −→ T ,

where
T = O(1) .

A nice example for which our assumptions hold is (1.2) with x ∈ R, V(x) = x2, and 〈∇ρ,D〉 = Dx.
That is

(1.5) P1(x, hD) := −
(
(hDx)2 + x2

)
+ ihDx + µ , x ∈ R

It is easy to see (and will be described in Section 2) that
Spec(P1(x, hD)) = {µ − 1/4 − h(2n + 1) : n = 0, 1, 2 · · · }

⊂ {z : Re z ≤ µ − 1/4} .

For µ > 1
4 the spectrum intersects the right half plane and thus instability of the linear problem

follows. We are interested in the range 0 < µ < 1
4 , where we will relate the instability of u = 0 to

the presence of pseudospectrum in the right half plane.
For more about (1.5) see [6, Chapter 12]. In particular, Cossu-Chomaz [1] relate it to the lin-

earized Ginzburg-Landau equation and analyze resolvent of (1.5) and the norm of the semigroup
eP1(x,hD)t numerically.

The operator (1.5) is also closely related to the advection-diffusion operators mentioned above,
−D2

y + iDy = ∂2
y + ∂y, on [0, `], with, say, Dirichlet boundary conditions; see [6, Chapter 12] for

a discussion and references. When rescaled using x = y/`, h = 1/l the operator becomes the
semiclassical operator −(hD)2 + ihDx on [0, 1]. When the domain is extended to R, the potential
x2 is added to (hDx)2 to produce a confinement similar to a boundary.

We relate the blow-up of solutions to (1.1) to the presence of pseudospectrum of (1.2) in the
right half plane. However, because estimates on semigroups for (1.1) with quasimode initial data
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are poor, we are unable to exhibit blow-up starting from a quasimode. Instead, we present a
simple and explicit construction of quasimodes for P(x, hD) (for a more general setting see [5]).
We then use these quasimodes as initial data in numerical simulations and observe that, although
in some cases the ansatz solution blows up more quickly, the solutions with quasimode initial
data behave similarly to what is expected from a pure eigenvalue for (1.2) with positive real part.
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Figure 1. The plot shows numerical simulations of the evolution of (1.1) with
h = 1/193 and two initial data. The evolution with initial data a real valued O(h3)
error quasimode with eigenvalue z = 1

16 is shown in the top two graphs and that
with the ansatz constructed in the proof of Lemma 3 as initial data is shown in
the bottom two graphs. We observe that, when the initial data is a quasimode,
blowup occurs in time ≈ 0.3, while for ansatz initial data, blow-up occurs in time
≈ 0.175. However, as would be expected from eigenfunction initial data, we see
that the solution with quasimode initial data exhibits little transport to the left.
On the other hand, the ansatz transports left significantly.

The paper is organized as follows. In Section 2 we review the definitions of spectra and
pseudospectra and discuss them for our class of operators. In Section 3 we give a construction
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of quasimodes for one dimensional problems. Although the results are known, (see [3],[5],[12])
a self-contained presentation is useful since we need the quasimodes for our numerical exper-
iments. Also, there is no reference in which analytic potentials (for which quasimodes have
O(exp(−c/h)) accuracy) is treated by elementary methods in one dimension. Section 4 is devoted
to the proof of Theorem 1 using heat equation methods. Finally, in Section 5 we report on some
numerical experiments which suggest that quasimode initial data gives more natural blow-up
and that blow-up occurs at complex energies.
Acknowledgemnts. The author would like to thank Maciej Zworski for suggesting the problem
and for valuable discussion, guidance, and advice. Thanks also to Laurent Demanet and Trever
Potter for allowimg him to use their MATLAB codes, Justin Holmer for informing him of the
paper by Sandstede and Scheel, and Hung Tran for comments on the maximum principle in
Lemma 3. The author is grateful to the National Science Foundation for partial support under
grant DMS-0654436 and under the National Science Foundation Graduate Research Fellowship
Grant No. DGE 1106400.

2. Spectrum and Pseudospectrum

We do not use the results of this section to prove Theorem 1. Instead, we present them to
emphasize the connection of the size of the resolvent with instability. We believe that instability
based on quasimodes would be more natural and allow for proof of instability at complex
energies. We illustrate this with numerics in Section 5.

To describe the spectrum of P(x, hD), we observe that

e
ρ(x)
2h P(x, hD)e−

ρ(x)
2h = −

[
(hD)2 + V(x) +

1
4
|∇ρ|2 +

h
2

∆ρ

]
+ µ.

Thus, the spectrum of P(x, hD) is given by that of a Schrödinger operator with potential V(x) +
1
4 |∇ρ|

2 + h
2∆ρ. Since V(x) and ρ have the properties given in (1.3) and (1.4) respectively, P(x, hD)

has a discrete spectrum that has real part bounded above by −γ0 (see for instance [13, Section
6.3]).

We now examine the pseudospectral properties of (1.2).
Definition. Let Q(x, hD) be a second order semiclassical differential operator. Then, z ∈ Λ(Q) if
and only if ∃ u(h) ∈ H2(Rd) such that ‖u‖L2 = 1 and

‖(Q(x, hD) − z) u(h)‖L2 = O(h∞).

We say z is in the semiclassical pseudospectrum of Q if z ∈ Λ(Q).

Remark. We note that for z ∈ Λ(Q), ‖Q(x, hD) − z)−1
‖ ≥ h−N/CN, for any N. This relates

our definition to the more standard defintions of pseudospectra in terms of the resolvent. For
discussion and generalizations see Dencker [4] and Pravda-Starov [10].

The criterion for z ∈ Λ(Q) is based on Hörmander’s bracket condition (see Zworski [12] and
Dencker-Sjöstrand-Zworski [5]):

(2.1) Q(x0, ξ0) = z and {Re Q, Im Q}(x0, ξ0) < 0,
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then z ∈ Λ(Q). We use this condition to show that the pseudospectrum of P(x, hD) nontrivially
interesects the right half plane. Specifically,

Lemma 1. For P(x, hD) given by (1.2), Λ(P(x, hD))
⋂
{Im z = 0} = (−∞, µ].

Proof. First, observe that

P(x, ξ) = −|ξ|2 + i〈∇ρ, ξ〉 − V(x) + µ and {Re P, Im P} = −2〈∂2ρξ, ξ〉 + 〈∇V,∇ρ〉.

We have assumed Im z = 0. Therefore, we need only show that, for a dense subset U ⊂ (−∞, µ],
y ∈ U implies that there exists x such that (2.1) holds for the symbol P(x, ξ), at (x, 0) with z = y.

We proceed by contradiction. Suppose there is no such U. Then, there exists O ⊂ [0,∞) open
such that for all x ∈ V−1(O), 〈∇V,∇ρ〉(x, 0) ≥ 0. Let ϕt := exp(ti〈∇ρ,D〉) be the integral flow of
i〈∇ρ,D〉 and x0 ∈ Rd have V(x0) = 0. Define f (t) := V(ϕt(x0)). Then ∂t f = 〈∇V(ϕt(x0)),∇ρ(ϕt(x0))〉.

Suppose that ϕt(x0) escapes every compact set as |t| increases. Then (1.4) implies that f (t)→∞
as |t| increases. Let w ∈ O and t0 := inf

{
t ∈ R : f (t) = w

}
. Then t0 is finite since w ≥ f (0) and

f (t) → ∞. Together, f (t0) = w ∈ O and f−1(O) open imply the existance of δ > 0 such that for
t ∈ (t0 − δ, t0 + δ), f (t) ∈ O. But, f (t) ∈ O implies f ′(t) ≥ 0. Therefore, f (t) ≤ w for t ∈ (t0 − δ, t0)
and thus, since f (t)→∞, there exists t < t0 such that f (t) = w, a contradiction.

We have shown that there is a dense subset U ⊂ (−∞, µ] with U ⊂ Λ(P). Hence (−∞, µ] ⊂ Λ(P).
Next, observe that sup Re P(x, ξ) = µ and thus, Λ(P(x, hD))

⋂
{Im z = 0} = (−∞, µ] as desired.

To finish the proof, we need only show that ϕt(x0) escapes every compact set. Suppose the
flow at x0 exists for all t ∈ R. Define h(t) := ρ(ϕt(x0)). Then ∂th = |∇ρ|2 ≥ c > 0 and we have that
h → ±∞ as t → ±∞. But, ρ ∈ C∞ and is therefore bounded on every compact set. Thus, ϕt(x0)
escapes every compact set as t→ ±∞.

Now, suppose the flow at x0 is not global. Then, ϕt(x0) is an integral curve of i〈∇ρ,D〉 with t
domain a proper subset ofR. Thus, as proved in [9, Lemma 17.10], ϕt(x0) escapes every compact
set. �

Putting this together with our discussion of the spectrum of P(x, hD), we have that for 0 < µ
and ρ as in (1.4), although Spec(P) is bounded away from Re z ≥ 0, Λ(P) nontrivially intersects
Re z ≥ 0.

For the specific case, V(x) = |x|2, and ∇ρ constant with |∇ρ| = 1, the above argument gives us
that

spec (P(x, hD)) =
{
−(2n + 1)h + (µ −

1
4

) : n ≥ 0
}
.

In addition, the pseudospectrum is given by,

Λ (P(x, hD)) =
{
z : Re z ≤ −(Im z)2 + µ

}
.

We see that for µ > 1
4 , the spectrum interesects the right half plane and so instability of u ≡ 0 is

a classical result. However, for 0 < µ < 1
4 , the spectrum is bounded away from the Re z ≥ 0 and

only the pseudospectrum enters the right half plane. Yet, in the regime 0 < µ < 1
4 , we will show

that u ≡ 0 is unstable and, moreover, for arbitrarily small initial data, the solution blows up in
finite time.
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Figure 2. We see that the spectrum of (1.5) (blue dots) is bounded away from
Re z = 0, while the pseudospectrum (shaded region) enters the right half plane.
The region for which we prove blow-up corresponds to the dashed red line.

3. One Dimensional Quasimodes

We proceed by constructing quasimodes for operators in the one dimensional case with
i〈∇ρ,D〉 = ∂x. We implement WKB expansion for the quasimode following the method used
in [3]. Let

(3.1) P(x, hD) := − (hDx)2 + ihDx + V ,

where V ∈ C∞ and V may be complex.

Remark. The following theorem is a special case of general theorems about quasimodes [5,
Theorems 2 and 2’]. For the reader’s convenience we present a direct proof in the spirit of Davies
[3].

Theorem 2. Suppose that P(x, hD) is given by (3.1) and that

z = −ξ2
0 + iξ0 + V(x0) ,

where x0 satisfies the condition that
Re V′(x0) > 0 .

There exists an h−dependent function ϕ ∈ C∞c (R), such that ‖ϕ‖L2 = 1 and

‖(P(x, hD) − z)ϕ‖L2 = O(h∞).

In addition ϕ is microlocalized to (x0, ξ0) in the sense that for every g ∈ C∞c (Rn
×Rn) vanishing in a

neighbourhood of (x0, ξ0),
‖g(x, hD)ϕ‖L2 = O(h∞) .
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When V is real analytic than we can find ϕ such that

‖(P(x, hD) − z)ϕ‖L2 ≤ C exp(−1/Ch) .

Proof. Let χ ∈ C∞c (R) with χ(x) = 1 if |x| < δ/2 and χ(x) = 0 if |x| > δ where δ will be determined
below. Define f := exp(iψ/h)a(x) where

a(x) =

N−2∑
m=0

am(x)hm.

Finally, let g(x0 + x) := χ(x) f (x) for all x ∈ R.
We will find appropriate am and ψ in what follows. First, by a simple computation

(P(x, hD) − z) f =

 N∑
m=0

hmφm

 eiψ/h

where φm are inductively defined by

φm := (−(ψ′)2 + iψ′ + V − z)am + iψ′′am−1 + (2iψ′ + 1)a′m−1 + a′′m−2,

where we use the convention that am ≡ 0 for m > N − 2 or m < 0. Now, we set φm = 0 for
0 ≤ m ≤ N − 1. Given that δ is small enough, this will enable us to determine all am as well as ψ.

Observe that, using the condition, φ0 = 0, we obtain

ψ′2 − iψ′ = V − z.

Now, letting z = −ξ2
0 + iξ0 + V(x0), we have a complex eikonal equation(

ψ′ −
i
2

)2
= V(x0 + x) − V(x0) +

(
ξ0 −

i
2

)2
.

Then, letting ψ̃ = ψ − i
2 x, we have

ψ̃(x) :=
∫ x

0

(
V(x0 + t) − V(x0) +

(
ξ0 −

i
2

)2)1/2

dt

=

∫ x

0

(
ξ0 −

i
2

) (
1 +

(
ξ0 −

i
2

)−2
(V(x0 + t) − V(x0))

)1/2

dt

=
(
ξ0 −

i
2

) (
x +

1
4

(
ξ0 −

i
2

)−2
V′(x0)x2 + O(x3)

)
and hence

ψ = ξ0x +

(
ξ0 + i

2

)
4
(
ξ2

0 + 1
4

)V′(x0)x2 + O(x3).

Now, we have assumed that Re V′(x0) > 0. Therefore there exists γ > 0 such that

γx2
≤ Imψ(x) ≤ 3γx2
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for all small enough x and h. Also, for x and h small enough

θ := (2iψ′ + 1)−1

satisifies |θ(x)| ≤ β. We choose δ > 0 small enough so that these conditions both hold for 0 < h < δ2

and |x| < δ.
The condition φm+1 = 0, implies

a′m = −θ(iψ′′am + a′′m−1)

with the convention that a−1 ≡ 0 and initial conditions,

a0(0) = 1, am(0) = 0, m > 0.

Putting G(x) :=
∫ x

0 iψ′′(y)θ(y)dy we obtain a0 = exp(−G(x)) and

(3.2) am+1(x) := −e−G(x)
∫ x

0
eG(y)θ(y)a′′m(y)dy, m > 0.

Before proceeding to show exponential error for V analytic, we show O(hN) error for arbitrary
V. To complete the proof of O(hN) quasimodes, we need to estimate

‖(P(x, hD) − z)g‖L2/‖g‖L2 .

Let C denote various positive constants that are independent of h and x. Then,

‖g‖2L2 ≥

∫ δ/2

−δ/2
| f (x)|2dx ≥

∫ δ/2

−δ/2
e−6γx2h−1

−Cdx

=

∫ δh−1/2/2

−δh−1/2/2
e−6γt2

−Ch1/2dt ≥
∫ 1/2

−1/2
e−6γt2

−Ch1/2dt = Ch1/2.(3.3)

Next, we compute

‖ (P(x, hD) − z) g‖L2 = ‖h2 fχ′′ + 2h2 f ′χ′ + h fχ′ + χ(P(x, hD) f − z f )‖L2

≤ h2
‖ fχ′′‖L2 + 2h2

‖ f ′χ′‖L2 + h‖ fχ′‖L2 + ‖hNχφNeiψ/h
‖L2 .(3.4)

Thus, we need to estimate each of the norms. Note that χ′ and χ′′ have support in {x : δ/2 ≤ |x| ≤
δ}. Thus, we have

‖ fχ′′‖2L2
≤ C3

∫
δ/2≤|x|≤δ

e−2γx2h−1+Cdx ≤ Ce−γδ
2/2h.(3.5)

Similarly,

(3.6) ‖ f ′χ′‖2L2 ≤ Ce−γδ
2/2h, ‖ fχ′‖2L2 ≤ Ce−γδ

2/2h.

Next, observe that

‖hNχφNeiψ/h
‖

2
L2 ≤ h2N

‖φN‖
2
L∞

∫ δ

−δ
e−2γx2h−1+Cdx ≤ Ch2N

‖φN‖
2
L∞

∫ δh−1/2

−δh−1/2
e−2γx2+Ch1/2dx

≤ Ch2N
‖φN‖

2
L∞

∫
∞

−∞

e−2γx2+Ch1/2dx ≤ C
(
hN
‖φN‖L∞

)2
h1/2.(3.7)
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Now, |φm| ≤ cm on {x : |x| ≤ δ}, uniformly for h ≤ δ2. Therefore, combining (3.4) with inequalities
(3.3), (3.5), (3.6), and (3.7), gives O(hN) quasimodes for arbitrary N. We then normalize to obtain
ϕ.

We will now assume that V(x) is real analytic and prove exponential smallness of the error.

Lemma 2. Let I = [−δ, δ] where δ is a small constant. Suppose that τ0, τ1, τ2, and d0 are holomorphic
functions of z ∈ Ω and |τ2| ≥

1
C for some C > 0 where Ω is a neighborhood of I in C.

If dm is defined inductively by

(3.8) dm+1(z) =

∫ z

0
τ2(ζ)d′′m(ζ) + τ1(ζ)d′m(ζ) + τ0(ζ)dm(ζ)dy.

Then for some C1 > 0, C2 > 0 and [−δ, δ] ⊂ Ω̃ ⊂ Ω,

(3.9) sup
Ω̃

|∂pdm| ≤ Cp+1
2 p!Cm+1

1 mm.

Proof. Using integration by parts, we obtain that

dm+1(z) = τ2(z)d′m(z) − τ2(0)d′m(0) + (τ1(z) − τ′2(z))dm(z) +

∫ z

0
(τ′′2 (ζ) − τ′1(ζ) + τ0(ζ))dm(ζ)dζ.

Then, since τ2 is holomorphic in Ω and infΩ |τ2| ≥
1
C for some C > 0, we make the conformal

change of variables z→ w where
dw
dz

= τ2(z)−1.

Then, letting bm = dm(z(w)), we have

∂
p
w(bm+1)(w) = ∂

p+1
w bm(w) − δp0(∂wbm)(0) + ∂

p
w(ρ0bm)(w) + ∂

p
w

∫ z(w)

0
ρ1(ζ)bm(ζ)dζ

where ρ0 = (τ1 − τ′2)(z(w)) and ρ1 = ((τ′′2 − τ
′

1 + τ0)τ2)(z(w)). Put Ωw := {w : z(w) ∈ Ω}. Then, since
the change of variables was conformal, and τi, i = 0, 1, 2, are holomorphic, we have that there
exists Cρ > 0 such that

|∂
p
wρi|Ωw ≤ Cp+1

ρ pp for i = 0, 1

where we define | f |Ω := supΩ | f | for a function f defined on Ω.
We claim that for some C1 > 0, C0 > Cρ,

|∂
p
wbm|Ωw ≤ Cp+1

0 Cm+1
1 (m + p)m+p.

We prove the claim by induction. The holomorphy of b0 gives us the base case. We now prove
the inductive case.

By the inductive hypothesis, we have that

(3.10) |∂
p+1
w bm|Ωw ≤ Cp+2

0 Cm+1
1 (m + p + 1)m+p+1.

Similarly,

(3.11) |bm(0)|Ωw ≤ Cm+1
1 mm.
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Next, we prove similar estimates for ∂p
w(ρ0bm). By Leibniz rule, we have that

(3.12) |∂p(ρ0bm)|Ωw =

∣∣∣∣∣∣∣
p∑

k=0

p!
k!(p − k)!

∂kρ0∂
p−kbm

∣∣∣∣∣∣∣
Ωw

≤

p∑
k=0

Cp+2
0 Cm+1

1 rk,m,p

where

rk,m,p :=
p!

k!(p − k)!
kk(m + p − k)m+p−k.

We claim that for 0 ≤ k ≤ p
2 , rk,m,p ≥ rp−k,m,p. To see this, we write this inequality as

kk(m + p − k)m+p−k
≥ (p − k)p−k(m + k)m+k, for 0 ≤ k ≤

p
2
.

Putting x := k
m and y =

p−k
m , the inequality is equivalent to

xx(1 + y)1+y
≥ yy(1 + x)1+x, for 0 ≤ x ≤ y

which follows from the monotonicity of the function x 7→
(

1+x
x

)x
(1 + x).

Next, observe that, 0 ≤ k < p − 1,

rk+1,m,p

rk,m,p
=

p − k
k + 1

(k + 1)k+1

kk

(m + p − k − 1)m+p−k−1

(m + p − k)m+p−k

=
p − k

m + p − k − 1

(
1 +

1
k

)k (
1 −

1
m + p − k

)m+p−k

≤
p − k

m + p − k − 1
e1−1+ 1

2(m+p−k) ≤ e
1

2(m+p−k) ,

where we use log(1 − x) ≤ −x + x2

2 . Then, since for 0 ≤ k ≤ p
2 , rk,m,p ≥ rp−k,m,p, we have

|∂p(ρ0bm)|Ωw ≤ 2Cp+2
0 Cm+1

1

p
2 +1∑
k=0

rk,m,p ≤ 2Cp+2
0 Cm+1

1

p
2 +1∑
k=0

r0,m,p

k−1∏
n=0

e
1

2(m+p−n)

≤ 2Cp+2
0 Cm+1

1

p
2 +1∑
k=0

r0,m,pe
k

2m+p ≤ 2Cp+2
0 Cm+1

1

p
2 +1∑
k=0

r0,m,pe
p+2

4m+2p

≤ Cp+2
0 Cm+1

1 (p + 2)r0,m,pe
1
2 ≤ e

1
2 Cp+2

0 Cm+1
1 (m + p + 1)m+p+1

Therefore, there exists M1 > 0 such that

(3.13) |∂
p
w(ρ0bm)|Ωw ≤M1Cp+2

0 Cm+1
1 (m + p + 1)m+p+1.

By analagous argument, there exists M2 > 0 such that

(3.14)

∣∣∣∣∣∣∂p
w

∫ z(w)

0
ρ1(ζ)bm(ζ)dζ

∣∣∣∣∣∣
Ωw

=
∣∣∣∣∂p−1

w ((ρ1∂wz)bm)
∣∣∣∣
Ωw
≤M2Cp+1

0 Cm+1
1 (m + p)m+p.
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Next, choose C1 > C0 (4 max(M1,M2, 1)) . Then, combining (3.10), (3.11), (3.13), and (3.14), we
have

|∂
p
wbm+1(w)|Ωw ≤ Cp+1

0 Cm+2
1 (m + p + 1)m+p+1.

Then, since w → z is a change of variables independent of m which maps Ωw → Ω and bm(w) =
dm(z(w)), we have

|dm|Ω = |bm|Ωw ≤ C0Cm+1
1 mm.

Now, choose Ω̃ ⊂ Ω with inf{|z − ζ| : z ∈ Ω̃, ζ ∈ ∂Ω} > γ > 0. Then, since dm are holomorphic, we
apply Cauchy estimates to obtain

|∂pdm|Ω̃ ≤ γ
−pp!|dm|Ω ≤ γ

−pp!C0Cm+1
1 mm.

�

We apply the lemma with dm(x) := eG(x)am(x), τ2 := −θ, τ1 := 2θG′, and τ0 := θ(G′′ − (G′)2)
where θ and G are given above. Analyticity of V implies that a0, θ, and ψ are holomorphic in a
neighbourhood of I.

Then, putting 1/N = eC1h, using Lemma 2 and that ψ is real analytic, we have

sup
x∈[−δ,δ]

|hNφN | ≤ hNC(C2CN
1 (N − 1)N−1 + 2C2

2CN
1 (N − 1)N−1 + 6C3

2CN
1 (N − 2)N−2)

≤ ChNCN
1 NN

≤ C(hNCN
1

( 1
eC1h

)N
) = Ce−N = Ce−

1
eC1h(3.15)

where C denotes various postive constants that are independent of N. Finally, combining (3.4)
with inequalities (3.3), (3.5), (3.6), (3.7), and (3.15) gives O(e−

1
Ch ) quasimodes. We then normalize

g to obtain ϕ. �

Now, applying this result to P1(x, hD), we obtain

ψ =

∫ x

0

i
2

+
(
ξ0 −

i
2

) 1 −
2x0t + t2(
ξ0 −

i
2

)2


1/2

dt

for x0 < 0 and z = −ξ2
0 + iξ0 + µ − x2

0.

4. Instability

Our approach to obtaining blow-up of (1.1) will follow that used by Sandstede and Scheel in
[11]. We will first demonstrate that, from small initial data, we obtain a solution that is ≥ 1 on a
deformed ball in time t1 = O(1). We will then use the fact that the solution is ≥ 1 on this region
to demonstrate that after an additional t2 = O(h), the solution to the equation blows up.

First, we prove that there exists initial data so that the solution to (1.1) is ≥ 1 in time O(1).
Recall that ϕt denotes the flow of i〈∇ρ,D〉.
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Figure 3. We set h = 10−2 and see that the difference between the solution to (1.1)
with initial data a quasimode with error O(h2) (red line) and the solution with
initial data a quasimode with error O(h3) (blue dots) is negligible. Thus, by using
O(h3) error quasimodes, we have not introduced large error into our numerical
calculations.

Lemma 3. Fix µ > 0, α < µ, 0 < ε ≤ 1
2 (µ − α), and (x0, a, δ) ∈ Rd

× R × R+ such that both
ϕt(B (x0, 2a)) ⊂ V−1[0, µ − α − ε] for t ≤ δ and ϕt is defined on B (x0, 2a) for 0 ≤ t < 2δ. Then, for each

0 < h < h0

where h0 is small enough, there exists

u0(x) ≥ 0, ‖u0‖CP ≤ exp
(
−

1
Ch

)
, p = 0, 1, ...

and 0 < t1 < δ so that the solution to (1.1) with initial data u0 satisfies u(x, t1) ≥ 1 on x ∈ ϕt1(B(x0, a)).

Proof. Let υ solve

(4.1) (h∂t − P(x, hD))υ = 0, υ(x, 0) = υ0.
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Figure 4. We show a numerical simulation u(t) of the evolution of (1.1) with
a quasimode at imaginary energy as initial data. Specifically, we set h = 1/193
and use a quasimode with eigenvalue z = 1

16 + i
4
√

2
. The real part is shown in

the top graph and the imaginary part in the bottom graph. We see that although
subsolution methods do not apply to these quasimondes, blow up still occurs in
time ≈ 0.35.

Let w0 : Rd
→ R and define O := {x : w0 > 0}. We make the following assumptions on w0,

(4.2) w0 ≥ 0, ‖w0‖Cp ≤ exp(−
1

Ch
), w0 ∈ C(Rd)

(4.3) w0 ∈ C∞(O), supp w0 ⊂ B(x0, 2a), w0 > exp
(
−
δ

2h

)
on B(x0, a),

(4.4) ∂O is smooth, −∆w0(x) ≤ Cw0(x) − β for x ∈ O and 0 < h < h0.

where C∞(O) are smoothly extendible functions on O. We will construct such a function at the
end of the proof.
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Define w : [0, 2δ) ×Rd
→ R by

w :=

exp
(
α
h t

)
w0(ϕt(x)) where ϕt is defined

0 else.

Since supp w ⊂ B(0, 2a) and ϕt is defined on B(0, 2a) × [0, 2δ), w is continuous. We proceed by
showing that w is a viscosity subsolution of (4.1) in the sense of Crandall, Ishi, and Lions [2].

First, we show that w is a subsolution on Ot := ϕt(O) for t < δ.

hwt − P(x, hD)w = hwt − h2∆w − ih〈∇ρ,D〉w − µw + V(x)w

= (α − µ + V(x))w − h2∆w

≤ exp
(
α
h

t
) (

(α − µ + V(x))w0
)
− h2∆w

Now, by Taylor’s formula, ϕt(x) = x + O(t). Hence −∆
[
w0(ϕt(x))

]
= −∆w0(x) + O(t). We have

t < δ, and −∆w0 ≤ Cw0 − β on O. Therefore, for δ small enough, −∆w ≤ Cw0. Hence, for h small
enough independent of 0 < δ < δ0,

hwt − P(x, hD)w ≤ exp
(
α
h

t
) (
α − µ + Ch2 + V(x)

)
w0

Now, since for some ε > 0 and t < δ, supp w ⊂ V−1[0, µ − α − ε] we have that

hwt − P(x, hD)w ≤ exp
(
α
h

t
)

(Ch2
− ε)w ≤ 0

for h small enough. Thus, w is a subsolution on Ot for t < δ. Next, we observe that on (Rd
\Ot),

w ≡ 0 and hence is a subsolution of (4.1).
Finally, we consider ∂Ot := ϕt(∂O). We have that ∂Ot is smooth. If y0 ∈ ∂Ot and w is twice

differentiable at y0, then wt = (∆w)(y0) = (Dw)(y0) = w(y0) = 0 and w is clearly a subsolution to
(4.1) at y0. Let y0 ∈ ∂Ot be a point where w is not twice differentiable. Suppose that φ ∈ C2 such
that w − φ has a maximum at y0.

We take paths through y0 to reduce to a one dimensional problem. For any path γ : I→ R×Rd

with γ(0) = (t, y0), define hγ(s) := w(γ(s)) andφγ(s) := φ(γ(s)). Since w is nonnegative, continuous,
smooth on Ot, and extends smoothly from Ot to a function onRd for all t < δ, h′γ+ := lims→0+ h′γ(s)
and h′γ− := lims→0− h′γ(s) exist. Simlarly, h′′γ+ and h′′γ− exist. Therefore, since w − φ is maximized
at y0, h′γ+ ≤ φ

′
γ(0) ≤ h′γ−. Now, since w is not twice differentiable at y0, either there exists γ such

that hγ is not differentiable at 0 or w is differentiable at y0, but not twice differentiable.

Case 1: γ(s) is a path through y0 for which hγ is not differentiable.
Then h′

−
< h′+ and there exists no such φ.

Case 2: w is differentiable at x0 but not twice differentiable.
Then, for all γ through y0, ϕ′γ(0) = h′γ(0) and ϕ′′γ (0) ≥ max(h′′γ+, h

′′
γ−). Now, let γi be the

coordinate paths through x0 with w(γi(t)) > 0 for 0 < t < δ. Then, since on w > 0, w is a
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subsolution of the linearized problem (4.1), we have

(h∂tφ − P(x, hD)φ)(x0) = h∂tw − h2∆φ − ih〈∇ρ,D〉w − µw + V(x)w

≤ h∂tw − h2

∑
i

lim
t→0+

h′′γi+

 − ih〈∇ρ,D〉w − µw + V(x)w ≤ 0.

Thus, we have that w is a subsolution on ∂Ot. Putting this together with the arguments above,
we have that w is a viscosity subsolution for (4.1) on t < δ.

Now, by an adaptation of the maximum principle found in [2, Section 3] to parabolic equations,
any solution, υ to (4.1) with initial data υ0 > w0 will have υ ≥ w for t < δ. But, since υ ≥ 0, υ3

≥ 0
and hence the solution u to (1.1) with initial data υ0 will have u ≥ υ ≥ w for t < δ. Now, since for
t > δ

2 , w(x, t) ≥ 1 on ϕt(B(x0, a)), we have the result.
We now construct a function v0 satsifying the assumptions, (4.2),(4.3), and (4.4). Let v1 be the

ground state solution of the Dirichlet Laplacian on B(0, 1) ⊂ Rd i.e.

−∆v1 = λv1 on B(0, 1) v1|∂B(0,1) = 0.

Then, v1 extends smoothly off of B(0, 1) and has v1 > 0 inside B(0, 1) (see for instance [7, Section
6.5]).

Let χ ∈ C∞(B(0, 1)), 0 ≤ χ ≤ 1 with χ ≡ 1 on B(0, 1)\B(0, 1−ε) and supp χ ⊂ B(0, 1)\B(0, 1−2ε).
Then, define v2 := Mv1 + [χ(x)] (|x|2 − 1) where M is large enough so that v2 > 0. There exists such
an M since v1 > 0 in B(0, 1) and λ > 0 imply that −∆v1 = λv1 > 0 and hence, by Hopf’s Lemma,
∂νv1 < 0 on ∂B(0, 1) where ν is the outward normal vector to ∂B(0, 1) (see for instance [7, Section
6.4]).

For |x| ≤ 1 − ε, there exists C > 0 such that,

−∆v2 = λMv1 − [∆χ(x)] (|x|2 − 1) − 4〈∂χ, x〉 − 2χd ≤ λMv1 + C.

For |x| ≤ 1 − ε, v1 > δ. Thus, by increasing M if necessary, we obtain β > 0 such that

−∆v2 ≤ λMv1 + C ≤ 2λv2 − β.

Now, for 1 − ε < |x| < 1,

−∆v2 = λMv1 − 2d = λ(v2 − |x|2 + 1) − 2d ≤ λv2 + λ(2ε − ε2) − 2d.

Thus, for ε > 0 small enough, there exists β > 0 such that

−∆v2 ≤ λv2 − β.

Finally, ∃ a ∈ R, x0 ∈ Rd, and C1,C2 > 0 constants so that

v0 =

C1e−
1

C2h v2(a−1(x − x0)) x ∈ B(x0, a)
0 else

satisfies the conditions on w0.
�
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Remark 1. If a shorter time is desired, one may use initial data of O(hn) to obtain the same result
in time O(h| log h|).
Remark 2. Notice that to obtain a growing subsolution it was critical that µ > 0. This corresponds
precisely with the movement of the pseudospectrum of P(x, hD) into the right half plane.

Now, we will demonstrate finite time blow-up using the fact that in time O(1) the solution to
(1.1) is ≥ 1 on an open region. The proof of theorem 1 follows
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Figure 5. We show simulations of solutions to the equation hut = P1(x, hD)u with
h = 1/193. The solution using a quasimode u0 with eigenvalue z = 1

16 and error
O(h3) as initial data is shown in the blue solid linse. The red dotted lines show
u(x, t) = u0(x) exp (zt/h). We see that the solution to the linearized problem (4.1)
with quasimode initial data closesly approximates the exponential until t ≈ 0.3

Proof. Let u0(x) and t1 be the initial data and time found in Lemma 3 with (a, x0, δ) such that
ϕt is defined on B(x0, a), ϕt (B (x0, a)) ⊂ V−1[0, µ2 ] for t ∈ [0, δ], and t1 < δ. Then, u(x, t1) ≥ 1 on
ϕt (B (x0, a)).

Now, let Φ ∈ C∞0 (R) be a smooth bump function with Φ(y) = 1 on |y| ≤ 1, 0 ≤ Φ ≤ 1, supp
Φ ⊂ (−2, 2), and Φ′′ ≤ CΦ1/3 (one such function is given by e−1/x for ε > x > 0). Define χ : Rd

→ R

by χ(y) := Φ
(
2a−1
|y|

)
.



NONLINEAR INSTABILITY IN A SEMICLASSICAL PROBLEM 17

Next, let y′ = ϕt(x0 + y) and let
v(y, t) := χ(y)u(y′, t).

Then, we have that

hvt = h2∆v + µv + v3
− 2h2

〈∇χ,∇u〉 − h2∆χu + (χ − χ3)u3
− V(y′)v.

Finally, define the operations, [ f ] and [ f , g] by

[ f ] :=
∫
−

B(0,a)
f (y)dy and [ f , g] :=

∫
−

B(0,a)
〈 f (y), g(y)〉dy.

Then, we have that

h[v]t = h2[∆v] + µ[v] + [v3] − h2 [∆χ,u] − 2h2 [∇χ,∇u] +
[
χ − χ3,u3

]
−

[
V(y′), v

]
≥ µ[v] + [v3] + h2 [∆χ,u] +

[
χ − χ3,u3

]
−

[
V(y′), v

]
(4.5)

Here, (4.5) follows from integration by parts, the fact that ∇χ = 0 at |y| = a and that∫
−

B(0,a)
∆v =

cd

ad

∫
∂B(0,a)

∇v · ν = 0.

We will later need that [v3] ≥ [v]3. To see this use Hölder’s inequality with f = wc
1
3
d (a)−

d
3 ,

g = c
2
3
d (a)−

2d
3 , p = 3, and q = 3

2 to obtain

[v3] =

∫
B(0,a)

v3cd

ad
dξ ≥

(∫
B(0,a)

vcd

ad
dξ

)3

= [v]3.

Next, we will estimate [∆χ,u]. Observe that

[∆χ,u] =

∣∣∣∣∣∫−∆χu
∣∣∣∣∣ ≤

∣∣∣∣∣∣ 1
Cd

∫ a

0

(
2a−1(d − 1)

r
Φ′(2a−1r) + 4a−2Φ′′(2a−1r)

) ∫
∂B(0,r)

u(r, φ)dSdr

∣∣∣∣∣∣
≤ C

∫ a

0

(
Φ1/2 + Φ1/3

) ∫
∂B(0,a)

u(r, φ)dSdr(4.6)

≤ C
∫
−χ1/3u ≤ C

∫
−(1 + χu3) ≤ C′ + C

∫
−χu3(4.7)

where C′ and C do not depend on h. Here (4.6) follows from the fact that for any function Φ ≥ 0,
Φ′ ≤ Φ1/2 and that Φ′ = 0 near r = 0. (4.7) follows from 0 ≤ Φ ≤ 1.

Now, we have

h[v]t = µ[v] + [v3] + h2 [∆χ,u] +
[
χ − χ3,u3

]
−

[
V(y′), v

]
≥ µ[v] + [v3] −O(h2) +

[
(1 −O(h2))χ − χ3,u3

]
−

[
V(y′), v

]
≥ µ[v] + [v3] −O(h2) −O(h2)[v3] −

[
V(y′), v

]
(4.8)

≥ µ[v] + (1 −O(h2))[v]3
−O(h2) −

[
V(y′), v

]
(4.9)

Here, (4.8) follows from the fact that χ ≤ 1 and (4.9) follows for h < 1 since [v3] ≥ [v]3.
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Now, on t < δ, we have V(y′) ≤ µ
2 . Thus, for 0 < t < δ,

h[v]t ≥
µ

2
[v] + (1 −O(h2))[v]3

−O(h2).

We have that [v](t1) ≥ 1/4 and µ > 0. Therefore there exists γ > 0 such that, for h small enough
and t1 ≤ t ≤ t1 + γ,

h[v]t ≥
µ

4
[v] +

1
2

[v]3.

But, the solution to this equation with initial data [v](0) ≥ 1/4 blows up in time t2 = O(h). Hence,
so long as t1 + t2 < min(δ, t1 + γ) and h is small enough, [v] blows up in time t1 + t2. Observe that
since t1 < δ, 0 ≤ t1 + t2 = t1 + O(h) < min(δ, t1 + γ) for h small enough. Thus, the solution to 1.1
blows up in time O(1). �

Remark. A similar result holds for polynomially small data with blow up in time O(h| log h|).

5. Numerical Simulations

We expect that the instability of (1.1) is related to the presence of pseudospectrum in the right
half plane. In fact, using numerical simulations for (4.1) based on code from [8] with P as in (1.5),
(see Figure 4) we are able to demonstrate that the the solution with a quasimode for a positive
eigenvalue as initial data closely approximates an exponential. Based on these results we expect
that a proof of blow-up using quasimodes will allow the results of Theorem 1 to be extended to
complex energies and wider classes of operators.

All simulations were run in 1 dimension with µ = 1
8 . Unless otherwise stated, all quasimodes

are constructed with errors of O(h3).
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