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Quantum ergodicity for a class of mixed systems

Jeffrey Galkowski

Abstract. We examine high energy eigenfunctions for the Dirichlet Laplacian on domains
where the billiard flow exhibits mixed dynamical behavior. (More generally, we consider semi-
classical Schrödinger operators with mixed assumptions on the Hamiltonian flow.) Specifically,
we assume that the billiard flow has an invariant ergodic component,U , and study defect mea-
sures, �, of positive density subsequences of eigenfunctions (and, more generally, of almost
orthogonal quasimodes). We show that any defect measure associated to such a subsequence
satisfies �jU D c�LjU , where �L is the Liouville measure. This proves part of a conjecture
of Percival [18].
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1. Introduction

The distribution of eigenfunctions over phase space in the semiclassical limit is an
important object of study in the theory of quantum chaos. The fundamental result
is a quantum ergodicity theorem of Shnirelman [19], Zelditch [21], and Colin de
Verdière [5] which states that, for classically ergodic systems, high energy eigen-
functions distribute uniformly in phase space. Since we will study domains with
boundary, we note that Gérard and Leichtnam [7] and Zelditch and Zworski [22]
generalized quantum ergodicity to that case.

Some progress has been made toward understanding semiclassical limits of eigen-
functions for systems with dynamical behavior that is not completely ergodic. Marklof
and O’Keefe [13] examine separated phase spaces for certain maps. More recently,
Marklof and Rudnick [14] have made further strides towards an understanding of
quantum behavior for mixed phase space. In particular, they prove that, for rational
polygons, the eigenfunctions of the Dirichlet Laplacian equidistribute in configura-
tion space. We use [14] as inspiration for further work on semiclassical limits for
systems with mixed dynamical behavior.
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We examine systems whose phase spaces have invariant subsets, U , such that the
flow restricted to U is ergodic and the Liouville measure of U is positive. In partic-
ular, let .M; g/ be a smooth Riemannian manifold of dimension d with a piecewise
smooth boundary, @M . Then M � zM , where zM is a manifold without boundary
to which g extends smoothly, and @M D SJ

j D1Nj where Nj are smooth embedded

hypersurfaces in zM: Define @oM � @M to be the open set of all points where the
boundary is smooth. Then the complement @M n @oM has measure zero.

We consider
P.h/ D �h2�C V

with Dirichlet boundary conditions and let p.x; �/ be its principal symbol. Since
p.x; �/ is smooth up to the boundary, we can extend it smoothly to T � zM . We
assume that

dpjp�1.E/ ¤ 0; E 2 Œa; b�; (1.1)

and
x 2 @oM;V.x/ D E H) dV … N �

x @
oM: (1.2)

so that p�1.E/ and T �
@oM

M intersect transversally.
We then write

p�1.E/ \ T �
@oMM D �C

E t��
E t�0

E ;

where .x; �/ lies in �C
E if the vector Hpx 2 T zM points outside of M , in ��

E if it
points inside M , and �0

E if it is tangent to @M . The set �0
E contains the glancing

covectors and, under (1.2), has measure zero in p�1.E/ \ T �
@oM

M:

We define the broken Hamiltonian flow as follows. (see, for example, [6], Ap-
pendix A). We denote this flow by

't
defD exp.Hpt /:

Assume without loss of generality that t > 0. We consider exp.tHp/.x; �/ defined on
T � zM , and let t0 be the first nonnegative time when exp.tHp/.x; �/ hits the boundary.
If this happens at a non-smooth point of the boundary, or if exp.t0Hp/.x; �/ 2 �0

E ,
then the flow cannot be extended past t D t0. Otherwise, exp.t0Hp/.x; �/ 2 �C

E and
there exists unique .x0; �0/ 2 ��

E such that the natural projections of exp.t0Hp/.x; �/

and .x0; �0/ onto T �@M are the same. We then define 't inductively, by putting
't .x; �/ D exp.tHp/.x; �/ for 0 < t < t0 and 't .x; �/ D 't�t0.x0; �0/ for t > t0:

Define for T > 0, the set

BT � T �M \ p�1.Œa; b�/

to be the closed set of all .x; �/ such that 't .x; �/ intersects a glancing point for some
t 2 Œ�T; T �: Then, as shown in [22], Lemma 1, BT has measure zero in p�1.E/.
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In many cases, quasimodes with specified concentration properties are easier to
construct than corresponding eigenfunctions. One example of this is Hassell’s use
of concentrating quasimodes in [8] to show non quantum unique ergodicity in some
domains with ergodic billiard flow (for another, see Section 5). Other connections
between quasimodes and quantum ergodicity have been explored in [1], [12], and [20].
The utility of quasimodes motivates us to generalize existing quantum ergodicity
results to that setting (Section 2). Although this is a natural generalization and not
unexpected, it does not seem to be available in the literature.

We make the following definitions (with the obvious analog in the homogeneous
setting under the rescaling h D ��1).

Definition 1. A positive density set of quasimodes for P on Œa; b�, 0 � a < b is a
collection

f. j ; Ej /; j D 1; : : : g
satisfying,

(1) k j kL2 D 1,

(2) k.P �Ej / j kL2 D o.h2dC1/,

(3) jh j ;  kij D o.h2d / for j ¤ k,

(4) jfEj 2 Œa; b�gj � ch�d ; c > 0:

Definition 2. LetEj ; j D 1; ::: be all the eigenvalues of P with multiplicity. A com-
plete set of quasimodes for P is a collection f j ; j D 1; :::g satisfying

(1) k j kL2 D 1,

(2) k.P �Ej / j kL2 D o.h2dC1/,

(3) jh j ;  kij D o.h2d /, for j ¤ k.

Remarks 1. (1) Notice that the set of all eigenfunctions is a complete set of quasi-
modes in the sense of Definition 2, in particular, a positive density set of quasimodes
for P on Œa; b�. Hence, our results apply to eigenfunctions.

(2) The discrepancies for these quasimodes are much smaller than the mean spec-
tral density given by the Weyl law and are necessary so that Hilbert–Schimidt norms
can be accurately expressed in terms of quasimodes.

(3) Note that, although it is often easy to construct positive density sets of quasi-
modes with specified concentration properties, it is difficult to construct complete
sets of quasimodes with the same. However, the proofs of our results are simplified
by using complete sets of quasimodes. To avoid these difficulties, we formulate our
results in terms of positive density sets of quasimodes. and prove in Lemma 4 that it
is enough to consider complete sets of quasimodes.
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Under assumptions (1.1), (1.2), and

't is ergodic on p�1.E/; E 2 Œa; b� (1.3)

we have the following analog of quantum ergodicity for a positive density set of
quasimodes for P . For a semiclassical pseudodiffential operator of order m, we
write B 2 ‰m

h
, and denote its semiclassical symbol, �h.B/ (see, for example, [23],

Section 14.2, for definitions).

Theorem 1. Suppose that .M; g/ is a compact manifold with a piecewise smooth
boundary and (1.3) holds. Let f. j ; Ej /; j D 1; :::g be a positive density set of
quasimodes of the Dirichlet realization of P on Œa; b� for 0 < a < b. Then there
exist a family of subsets

ƒ.h/ � f j j a � Ej � bg
of full density such that if f kg � ƒ.h/ is a sequence with unique defect measure �
then there is an E 2 Œa; b� such that

� � .�E .p
�1.E///�1�E :

Here a defect measure for a sequence  j is the weak limit of the semiclassical
measures �j associated to  j (See, for example, [23], Chapter 5, for details.)

Remarks 2. (1) An equivalent way of formulating this theorem is that for all  j 2
ƒ.h/ and B 2 ‰0

h
.M o/ with symbol, �h.B/, compactly supported away from @M ,ˇ̌

ˇ̌hB j ;  j i � �
Z

p�1.Ej /

�h.B/d�Ej

ˇ̌
ˇ̌ �! 0:

(2) Note that Theorem 1 applies to positive density subset of eigenfunctions in
energy bands Ej 2 Œa; b�, while that in [9] is stronger and applies to such subsets of
energy shells Ej 2 Œa�Ch; aCCh�:However this does not apply to manifolds with
boundary and such an energy shell quantum ergodicity theorem is not known in that
case; see [9]. It would be interesting to obtain such a result.

In Section 3, we relax the dynamical assumption (1.3) and instead make the mixed
dynamical hypotheses:

there exists U � p�1.Œa; b�/ such that

8<
:
�E .U \ p�1.E// > 0;

�E .@U n U \ p�1.E// D 0;
(1.4)

for E 2 Œa; b�, where �E is the Liouville measure on p�1.E/ and8<
:
't is ergodic on U \ p�1.E/; E 2 Œa; b�;
't .U / D U:

(1.5)
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Remark 3. Hypotheses (1.4) include the case where U is closed with a boundary of
positive measure.

In this case, we have the following result:

Theorem 2. Suppose that .M; g/ is a compact manifold with a piecewise smooth
boundary, and that (1.1), (1.2), (1.4), and (1.5) hold. Let f. j ; Ej /; j D 1; : : : g
be a positive density set of quasimodes of the Dirichlet realization of P on Œa; b�,
0 < a < b. Then there exist a family of subsets

ƒ.h/ � f j j a � Ej � bg
of full density such that if f kg � ƒ.h/ is a further subsequence such that f kg has
unique defect measure, �, then there exist E 2 Œa; b� and c such that

supp� � p�1.E/

and
�jU \p�1.E/ � c�E jU \p�1.E/:

Remark 4. Although Theorem 1 can be seen as a corollary of Theorem 2, the proof
of Theorem 1 is essential to that of Theorem 2 and, in addition, presenting the direct
proof is useful to demonstrate the new ideas involved in obtaining Theorem 2.

In Section 4, we specialize to the caseP D �h2� and pass from the semiclassical
quantization to the Kohn-Nirenberg calculus. For a homogeneous pseudodifferen-
tial operator of order m, we write B 2 ‰m and denote its symbol, �.B/ (see, for
example, [10], Chapter 18, for definitions).

Theorem 3. Suppose that .M; g/ is a compact manifold with a piecewise smooth
boundary and (1.3) holds. Let f. j ; Ej /; j D 1; : : : g be a positive density set of
quasimodes of the Dirichlet realization of �� on Œ0; 1�. Then, there is a full density
subsequence  jk

such that for all pseudodifferential operators B 2 ‰0.M o/ with
symbols compactly supported away from @M ,

hB jk
;  jk

i �! �
Z

S�M

�.B/d�L:

Remark 5. Although the passage from Theorem 1 to 3 is known in the case of eigen-
functions and is not unexpected for quasimodes, we include it here because neither
the result for quasimodes nor the passage from the semiclassical to the homogeneous
case seem to appear in the literature.

We also specialize Theorem 2 to the homogeneous setting as follows.
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Theorem 4. Suppose that .M; g/ is a compact manifold with a piecewise smooth
boundary and that there exists

U � S�M
such that

(1) �L.U / > 0,

(2) �L.@U n U/ D 0,

(3) 't is ergodic on U ,

(4) 't .U / D U:

Let f. j ; Ej /; j D 1; : : : g be a positive density set of quasimodes of the Dirichlet
realization of �� on Œ0; 1�. Then there is a full density subsequece of  j such that if
any further subsequence  jk

has unique defect measure �, then �jU D c�LjU for
some c.

Remark 6. In the homogeneous and boundaryless case, Riviére [17] recently proved
a theorem on accumulation points of semiclassical measures that gives similar results
for separated phase spaces. He also provides examples of separated phase spaces for
the geodesic flow on boundaryless manifolds.

Percival [18] made conjectures on eigenfunctions that were numerically verified
by Barnett and Betcke in [2] in the case of mushroom billiards. In particular, Percival
used the quantum-classical correspondence principle to state that most eigenfunctions
concentrate either entirely in the ergodic portion of phase space or in the integrable
portion and, moreover, that the eigenfunctions concentrating in the ergodic portion of
phase space spread uniformly over that piece of phase space. Although we are not able
to show the dichotomy between integrable and chaotic eigenfunctions, Theorems 4
and 2 provide rigorous proofs of the fact that most eigenfunctions spread uniformly
in the ergodic portions of phase space.

Finally, in Section 5, we apply our results to the Dirichlet Laplacian for mushroom
billiards. Figure 1 shows two billiards trajectories, one in the ergodic region and one
in the integrable region. (For a complete description of the billiard map on mushrooms
see [3].)
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discussion, Stéphane Nonnenmacher and Zeév Rudnick for pointing him toward
mushroom billiards and [14], Semyon Dyatlov for advice on boundary value prob-
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and referring him to [18], and the anonymous reviewer for many helpful comments.
The author is grateful to the Erwin Schrödinger Institue for support during the Sum-
mer School on Quantum Chaos and to the National Science Foundation for sup-
port under the National Science Foundation Graduate Research Fellowship Grant
No. DGE 1106400, and for support during the Erwin Schrödinger Institute’s Summer
School on Quantum Chaos.
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Figure 1. We show two billiards trajectories in a Bunimovich mushroom [3] with semicircular
hat of radius 1 and centered base of width 1/2 and height 1. On the left, we have a trajectory
in the ergodic portion of phase space. On the right, we have one in the integrable portion.

Figure 2. We show two high energy eigenfunctions for the Laplacian in a Bunimovich mush-
room [3]. The left hand eigenfunction spreads uniformly through the ergodic portion of phase
space, and the right hand eigenfunction concentrates in the integrable portion. (Images courtesy
of A. Barnett and T. Betcke [2]).
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2. Quantum ergodicity for quasimodes

In this section, we demonstrate how to adapt quantum ergodicity results for eigen-
functions to positive density sets of quasimodes.

We will need the following lemmas relating various spectral quantities for oper-
ators to their corresponding expressions involving complete sets of quasimodes.

Lemma 1. Let fuk ; k D 1; :::g be the eigenfunctions of P corresponding to Ek and
let f j ; j D 1; :::g be a complete set of quasimodes for P . Then,

uj D
X

jEj �Ek j<ChdC1

cjk k C o.hd /:

Proof. First, observe that, near an energy level E, there exists .c1.h/; c2.h// with
jc1.h/ � c2.h/j � chdC1 such that

..E � c2.h/; E � c1.h// [ .E C c1.h/; E C c2.h/// \ fEj ; j D 1; : : : g D ;:
If this were false, then the spectrum of P would violate the Weyl law.

Now, let
ƒ D f j jEj 2 .E � c1.h/; E C c1.h//g

and … be the spectral projection onto ŒE � c1.h/; E C c1.h/�. By the Weyl law,
jƒj � Ch�d . Therefore, by [11], Proposition 32.4,

dim .… span .ƒ// D jƒj;
since

o.h2d /C o.h2dC1/O.h�d�1/ D o.hd /:

But, rank… D jƒj. Hence, spanƒ = range… and the result follows from the almost
orthogonality of  j .

Lemma 2. Let A be a Hilbert–Schmidt operator and f j ; j D 1; :::g be a complete
set of quasimodes for P and a < b. Then,

hd
X

a�Ej �b

kA j k2 D hd k…Œa;b�Ak2
HS C o.1/ (2.1)

and if A is of trace class,

hd
X

a�Ej �b

hA j ;  j i D hd Tr…Œa;b�AC o.1/: (2.2)
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Proof. First, let .cjk/ D huk ;  j i. Then, by Lemma 1,

uj D
X

k

cjk k C o.hd / and  j D
X

k

cjkuk ;

where all sums are taken over k such that jEk �Ej j < ChdC1. Observe that

uj D
X

k

cjk k C o.hd / D
X
k;k0

cjkckk0uk0 C o.hd /:

Hence, by the orthogonality of uj ,
X

k

cjkckk0 D ıkj C o.hd /:

Now,

hd
X

a�Ej �b

hA j ; A j i D hd
X

j;k;k0

cjkcjk0hAuk ; Au
0
ki

D hd
X
k;k0

.ıkk0 C o.hd //hAuk ; Auk0i

D hd k…Œa;b�Ak2
HS C hd

X
k;k0

o.hd /hAuk ; Auk0i

D hd k…Œa;b�Ak2
HS C o.1/

where the last equality follows from the fact that there are at most O.h�d / terms in
each sum.

An analogous argument shows that (2.2) holds.

To prove Theorem 1, we need the following lemma similar to [6], Lemma A.2,

Lemma 3. Let 	 2 C1
c .M o/ with 0 � 	 � 1: Then for a0 < a < b < b0,

.2
h/d
X

Ej 2Œa;b�

Z
M

.1 � 	/j j j2dVol

�
Z

T �M \p�1.Œa0;b0�/

.1� 	/d�� C o.1/ as h ! 0:

Proof. This follows directly from [6], Lemma A.2, and Lemma 2 once we observe
that

.2
h/d
X

Ej 2Œa;b�

Z
M

.1� 	/j j j2dVol D .2
h/d
X

Ej 2Œa;b�

h.1 � 	/ j ;  j i

D .2
h/d Tr…Œa;b�.1� 	/C o.1/:
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The following lemma allows us to take arbitrary collections of orthogonal quasi-
modes and complete them. Hence, we only have to prove results for complete sets
of quasimodes and they follow for positive density sets.

Lemma 4. Let f. j ; Ej /; j D 1; :::; J g be a set of almost orthogonal quasimodes
with

(1) k j kL2 D 1,

(2) k.P �Ej / j kL2 D o.h2dC1/,

(3) jh j ;  kij D o.h2d /, for j ¤ k:

Then, there exists
f'k; k D 1; : : : ; Kg

such that the set
f'k ; k D 1; : : : ; Kg [ f j ; j D 1; : : : ; J g

is a complete set of quasimodes for P .

Remark 7. Note that this lemma applies to sets of quasimodes that do not have
positive density.

Proof. Let uj be eigenfunctions of P corresponding to Ej . Select an energy E.
Then, by the proof of Lemma 1, there are gaps at distance c1.h/ of size hdC1 in the
spectrum of P near E. Let

ƒ
defD fuk W jEk �Ej � c1.h/g

and

ƒ0 defD f j W jEj �Ej D o.hdC1/g:
Then, for  j 2 ƒ0, we have that

 j D
X

uk2ƒ

cjkuk :

Now, define
N

defD jƒj and M
defD jƒ0j

letting
bj D .cj1; cj 2; :::; cjN /; j D 1; : : : ;M:

Let fe1; : : : ; emg be an orthonormal basis for span .fbj W j D 1; : : : ;M g/. Apply the
Gram-Schmidt process to obtain an orthonormal basis fe1; : : : ; eM ; vM C1; : : : ; vN g
of RN where

vk D .vk1; : : : ; vkN /:
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Then, letting
'k D

X
j

vkjuj ; M C 1 � k � N;

f 1; : : : ;  M ; 'M C1; : : : ; 'N g is an almost orthonormal basis for spanƒ. Repeating
this process for each cluster, we obtain a complete set of quasimodes.

We also need the following restatement of results in [4], Section 4.3, that is found
in [6], Lemma A1.

Lemma 5. Fix T > 0. Assume that A 2 ‰comp.M o/ is supported away from the
boundary of M and WFh.A/ � p�1.Œa; b�/ n BT : Then, for each 	 2 C1

c .M o/

and for each t 2 Œ�T; T �, the operator 	e�itP=hA is a Fourier integral operator
supported away from @M and associated to the restriction of 't to a neighborhood
of WFh.A/\ '�1

t .supp	/, plus an OL2!L2.h1/ remainder. The following version
of Egorov’s theorem holds:

	eitP=hAe�itP=h D At;� CO.h1/L2.M /!L2.M /;

where AT;� 2 ‰comp.M o/ is supported away from @M and �h.AT;�/ D 	.a B 't /:

Now, we prove Theorem 1, following [6], Appendix A.

Proof of Theorem 1. Let . j ; Ej / be a positive density set of quasimodes. By Lem-
ma 4, and the fact that our original quasimodes have positive density, we may assume
without loss that . j ; Ej / is a complete set of quasimodes (see Definition 2).

We first show that

lim sup
h!0

hd
X

Ej 2Œa;b�

ˇ̌
ˇ̌hB j ;  j i � �

Z
p�1.Ej /

�h.B/d�Ej

ˇ̌
ˇ̌ D 0:

Then, by a standard diagonal argument that can be found, for example, in [23],
Theorem 15.5, we extract the set ƒ.h/.

Take a0; b0 such that a0 < a < b < b0 and the assumptions (1.2) and (1.1) hold
for E 2 Œa0; b0�. (If they do not hold when E … Œa; b�, then we need to take a0; b0
getting close to a and b. e.g. Let a0 D a� 1=T and b0 D bC 1=T: Then estimate the
extra contributions by the Weyl law.) Now, fix a T > 0 and choose 	T 2 C1

c .M o/

with 0 � 	T � 1 and
Z

T �M \p�1.Œa0�1;b0�1�/

.1� 	T /
2d�� � T �1:

Let  2 C1
c .a0 � 1; b0 C 1/ have

 .E/

Z
p�1.E/

	T d�E D
Z

p�1.E/

�h.B/d�E ; E 2 Œa0; b0�:
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Then, by Lemma 3, it is enough to show that the conclusion holds for

B �  .P.h//	T ;

whose symbol integrates to 0 on p�1.E/: Therefore, we assume, without loss, that
Z

p�1.E/

�h.B/d�E D 0; E 2 Œa0; b0�:

By elliptic estimates, we may assume that WFh.B/ � p�1..a0; b0//. More specif-
ically, B 2 ‰comp: Thus, we can write B D B 0

T C B 00
T , where WFh.B

0
T / \ BT D ;

and k�h.B
00
T /kL2.p�1Œa0;b0�/ � T �1:

Then, by Hölder’s inequality, Lemma 2 and [6], Lemma 2.2, we have that

hd
X

Ej 2Œa;b�

jhB 00
T j ;  j ij � C

�
hd

X
Ej 2Œa;b�

kB 00
T j k2

�1=2

D C
�
hd

X
Ej 2Œa;b�

kB 00
Tuj k2

�1=2 C o.1/

� Ck�h.B
00
T /kL2.p�1Œa0;b0�/ C o.1/:

Hence, the contribution ofB 00
T goes to 0 in the limit limT !1 lim suph!0 and we may

replace B by B 0
T .

Now, by Duhamel’s formula and the unitarity of eitP=h,

eitP=h j D eitEj =h j C i

h

Z t

0

ei.t�s/P=ho.h2dC1/ D eitEj =h j C oT .h
2d /:

So, defining

hAiT
defD 1

T

Z T

0

eitP=hAe�itP=hdt;

and using Lemma 2 and Hölder’s inequality, we have

hd
X

Ej 2Œa;b�

jhB 0
T j ;  j ij D hd

X
Ej 2Œa;b�

jhB 0
T e

�itEj =h j ; e
�itEj =h j ij

D hd
X

Ej 2Œa;b�

jhhB 0
T iT j ;  j ij C oT .h

2d /

�
�
hd

X
Ej 2Œa;b�

.khB 0
T iT j k C oT .h

2d //2
�1=2

D
�
hd

X
Ej 2Œa;b�

khB 0
T iT uj k2

�1=2 C oT .1/:
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From this point forward, the proof is identical to that in [6], Theorem A.2.
By Lemma 5, hB 0

T iT 	T is, up to an O.h1/L2!L2 remainder, a pseudodifferen-
tial operator in ‰comp compactly supported inside M o and with principal symbol

�h.hB 0
T iT 	T / D 	T

T

Z T

0

�h.B
0
T / B 'tdt:

Now, all that remains to show is

lim
T !1 lim sup

h!0

hd
X

Ej 2Œa;b�

khB 0
T iT uj k2 D 0:

Since, by Lemma 3,

lim sup
h!0

.2
h/d
X

Ej 2Œa;b�

k.1 � 	T /uj k2
L2 � T �1;

we can replace hB 0
T iT by hB 0

T i	T : Thus, by [6], Lemma 2.2, it remains to show that

lim
T !1 k�h.hB 0

T iT 	T /kL2.p�1.Œa0 ;b0�// � lim
T !1 kh�h.B

0
T /iT kL2.p�1.Œa0;b0�// D 0:

(2.3)
To do this, write

kh�h.B
0
T /iT kL2.p�1.E// � kh�h.B/iT kL2.p�1.E// C kh�h.B

00
T /iT kL2.p�1.E//:

The first term on the right goes to 0 when T ! 1 by the von Neumann ergodic
theorem and the second term is bounded by k�h.B

00
T /kL2.p�1.E// and hence also

goes to 0.

Remark 8. Notice that (2.3) is the only step in which the ergodicity of the flow is
used. This will be important when we adapt the result to ergodic invariant subsets of
phase space.

3. Quantum ergodicity for subsets

Now, we prove Theorem 2 using the fact that only step (2.3) uses the ergodicity of
the flow. For completeness, we include the following elementary lemma.

Lemma 6. Let U satisfy (1.4), let �2 be a finite measure on p�1.E/ and suppose
that for all a 2 C1.p�1.E// compactly supported away from @M with

Z
U \p�1.E/

ad�E D 0;
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we have Z
U \p�1.E/

ad�2 D 0:

Then,
�2jU \p�1.E/ � c�E jU \p�1.E/

for some c � 0.

Proof. Let

V D U \ p�1.E/

and

�1 D .�E .V //
�1�E I

then, �1.V / D 1. Define 	 2 C1.p�1.E// compactly supported away from @M

with

0 � 	 � 2;

Z
V

	d�1 D 1;

Z
V

	d�2 D c2 > 0:

(To see that such functions exist simply take non-negative approximations to 1V with
support inside M o.)

Now, let a 2 C1.p�1.E// compactly supported away from @M with
Z

V

ad�1 D Na:

Then, Z
V

a � Na	d�1 D 0

and hence Z
V

a � Na	d�2 D 0:

Therefore, for a 2 C1.p�1.E// compactly supported away from @M ,
Z

V

ad�2 D c2

Z
V

ad�1:

But,�1jV and�2jV are positive distributions of order 0 sinceV satisfies (1.4). Hence,
since Z

V

ad�2 D
Z

V

ad.c2�1/ D 0

for all a 2 C1.p�1.E// compactly supported away from @M , and M can be ex-
hausted by compact subsets, �2jV � c2�1jV :
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Proof of Theorem 2. Lemma 4 shows that without loss of generality we may work
with  j forming a complete set of quasimodes. Fix A 2 ‰0

h
.M/ with symbol

a D �h.A/ compactly supported away from @M satisfying
Z

U \p�1.E/

ad�E D 0; E 2 Œa; b�: (3.1)

Fix " > 0. Then, let U" be open with

xU � U"

and
�E ..U" n U/ \ p�1.E// < "; E 2 Œa; b�:

(Note that we use (1.4) here.) Let 	" 2 C1
c .U"/ compactly supported away from

@M with 	"j NU � 1, 0 � 	" � 1. Then, let a" D 	"a. Based on the arguments used
to prove Theorems 1, we have that

lim sup
h!0

hd
X

Ej 2Œa;b�

ˇ̌hA" j ;  j iˇ̌ � Ckha"iT kL2.p�1Œa;b�/; (3.2)

where A" D a".x; hD/,

ha"iT
defD 1

T

Z T

0

a" B 't .x; �/dt:

We have that 't is ergodic on U and U is invariant under 't . Hence, by the
von Neumann ergodic theorem

ha"1U iT ! �
Z

U

a"d�E D 0 in L2.p�1.E//:

Again, by the ergodic theorem, ha"1U c iT ! Pa" in L2.p�1.E// with kPa"kL2 �
CkakL1": Hence,

lim
T !1 kha"iT kL2.p�1Œa;b�/ � CkakL1": (3.3)

We now show that there exists a full density subset

ƒ.h/ � f. j ; Ej / j a � Ej � bg
such that for all  j 2 ƒ.h/ and all A 2 ‰0

h
with symbol a D �h.A/ satisfying (3.1)

lim
"!0

lim
h!0

hA" j ;  j i D 0: (3.4)

We first do this for one such a 2 C1.T �M/. Fix " > 0 and let

�.h; "/ D fa � Ej � b W jhA" j ;  j ij � .CkakL1"/
1
2 g:
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Then, by the Chebyshev inequality, (3.2), and (3.3),

hd j�.h; "/j � .C "kakL1/
1
2

and for Ej … �.h/
jhA" j ;  j ij � .C "kakL1/

1
2 :

But, by the Weyl law,

j�.h; "/j=jfa � Ej � bgj D hd j�.h; "/j=.Vol.p�1Œa; b�/C o.1//

� C.kakL1"/1=2 C o.1/:

Now, let "m ! 0 and define

�.h/ D
\
m

�.h; "m/:

Then, �.h/ has 0 density as h ! 0. Hence,

ƒ.h/ D fa � Ej � bg n �.h/

has full density as h ! 0 and has the desired property for the operator a.x; hD/.
To complete the construction ofƒ.h/, first observe that it is enough to considerA 2

‰�1
h

since j are microlocalized inp�1Œa; b�. Then, take a countable dense set, fAkg
of ‰�1

h
\ fA 2 ‰0

h
W k�h.A/kL1 � 1; �h.A/ satisfies (3.1)g and apply a variant of

the standard diagonal argument (contained for example, in [23], Theorem 15.5).
Now, suppose that f j g � ƒ.h/ is a further subset with defect measure �. Then,

for A 2 ‰0
h

with symbol satisfying (3.1), we have that

lim
h!0

hA" j ;  j i D
Z
�h.A/"d� D o.1/:

Hence, by the dominated convergence theorem,

Z
U

�h.A/d� D 0:

Since f j g is a subset of a positive density set of quasimodes on Œa; b�, there exists
E 2 Œa; b� such that supp� � p�1.E/: Thus, we may apply Lemma 6 to obtain the
result.
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4. From semiclassical to standard quantum ergodicity

For completeness and to present the proof in the quasimode case, we will now pass
from Theorem 1 with P D �h2� to Theorem 3.

Proof of Theorem 3. Let h2�2
j D Ej and � D h�1, 	 2 C1 	.�/ � 0 for j�j � 1

and 	 � 1 for j�j � 2, and 	" D 	.�="/:

Let yA be a homogeneous pseudodifferential operator of order 0 onM with symbol
compactly supported away from @M . Define

a0
defD �. yA/:

Then, a0 is homogeneous degree 0 on T �M n f0g. Hence

a0.x;D/	.D/ D a0.x; hD/	.hD=h/:

Now, define A" 2 ‰0.M o/ by

A"
defD a.x; hD/	".hD/:

Theorem 1 gives, for 0 < a < b,

hd
X

h�j 2Œa;b�

ˇ̌
ˇ̌hA" j ;  j i � �

Z
p�1.Ej /

�h.A"/d�Ej

ˇ̌
ˇ̌ �! 0; h D ��1 ! 0:

Since �h.A"/ D a0.x; �/	".�/ and a0 is homogeneous degree 0, we have

�
Z

p�1.Ej /

�h.A"/d�Ej
D �

Z
S�M

�. yA/d�L CO."/:

Hence, we need to show,

lim
"!0

lim sup
h!0

hd
X

h�j 2Œa;b�

h. yA � A"/ j ;  j i D 0:

By Hölder’s inequality, Lemma 2, and [6], Lemma 2.2,

hd
X

h�j 2Œa;b�

jh. yA � A"/ j ;  j ij

� C
�
hd

X
h�j 2Œa;b�

k. yA � A"/ j k2
�1=2

D C
�
hd

X
h�j 2Œa;b�

k. yA � A"/uj k2
�1=2 C o.1/

� Ck�h. yA � A"/kL2.p�1.Œa;b�// C o.1/:
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We observe
lim
"!0

k�h. yA � A"/kL2.p�1.Œa;b�// D 0:

Thus, for any ı > 0, we have

lim sup
h!0

hd
X

h�j 2Œı;1�

ˇ̌
ˇ̌h yA j ;  j i � �

Z
S�M

�. yA/d�L

ˇ̌
ˇ̌ D 0:

All that remains is to show that

lim
ı!0

lim sup
h!0

hd
X

h�j 2Œ0;ı/

ˇ̌
ˇ̌h yA j ;  j i � �

Z
S�M

�. yA/d�L

ˇ̌
ˇ̌ D 0:

Letting

Na0 D �
Z

S�M

�. yA/d�L;

and applying the Weyl law, and the Hölder’s inequality we get

hd
X

h�j 2Œ0;ı/

jh yA j ;  j i � Na0j � C
�
hd

X
h�j 2Œ0;ı/

k. yA � Na0/ j k2
�1=2

D O.ıd /k. yA� Na0/kL2!L2 COı.h/:

Once again, to obtain the full density subsequence, we employ a standard diagonal
argument.

We may also make similar arguments to those above to pass to the homogeneous
setting for Theorem 2. In this case, we obtain Theorem 4.

Proof of Theorem 4. Let

yU defD f.x; �/ 2 T �M W .x; �=j�j/ 2 U g:
Then, yU satisfies (1.4) and (1.5) for any 0 < a < b. Hence, by Theorem 2 there
exists

ƒı.h/ � fh�j 2 Œı; 1�g
of full density such that for all f j g � ƒı.h/ with defect measure �, there is an
E 2 Œı; 1� such that

supp� � S�
EM and �j yU \S�

E
M /

� c�E j yU \S�
E

M
;

where
S�

EM D f.x; �/ 2 T �M W j�j D Eg:
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Now, for a 2 C1.T �M n f0g/, homogeneous of degree 0, " > 0 small enough and
	" as in the proof of Theorem 3

Z
yU \S�

E
M

a	"d�E D
Z

yU \S�
E

M

ad�E D
Z

U

ad�L

and hence the homogeneous defect measure, � of has �jU � c�LjU :
But, by the Weyl Law, hd jfh�j 2 Œ0; ı/gj D O.ıd /: Thus, letting

ƒ.h/ D
[
ı>0

ƒı.h/;

we have thatƒ.h/ � fh�j 2 Œ0; 1�g has full density and for all f j g subsequences of
ƒ.h/ with homogeneous defect measure �, there exists c � 0 with �jU D c�LjU :

5. An example

We now present an example to which Theorem 4 applies. Let � be a symmetric
mushroom billiard, as in [3], composed of a hat that is a semicircle of radius 1 and
a base that has width w and height h (Figure 1 shows such a mushroom with two
billiard flows). Then S�� has a subset U satisfying (1.4) and (1.5); see [3]. Let

unk D sin.n�/Jn.˛n;kr/

be the eigenfunctions of the Dirichlet Laplacian on the semidisk. Here Jn denotes
the Bessel function of the first kind of order n and ˛n;k the kth positive zero of Jn.

From [15], Appendix A, we have that for 0 <  < 2
3

, z 2 .0; 1� n�� 2
3 /

0 < Jn.nz/ < 2
�n�=3

:

Also, from [16], we have for 0 � k < c2n, that n < ˛n;k < Cn for some C > 0.

Thus, Jn.˛n;kr/ D O.2�n�=3
/ for r < 1

2C
.

Now, suppose 0 < w < 1
4C

. Then, let 	 2 C1.�/ with 	 � 0 in jr j < 1
4C

and
	 � 1 in jr j � 1

2C
. If we let

vn;k
defD 	un;k;

for 0 � k < c2n, and extend by 0 outside of the hat of �, then vn;k are quasimodes
for the Dirichlet Laplacian on � with

.�� � ˛2
n;k/vn;k D O.2�n�=3

/:
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Now, by the orthogonality of un;k , vn;k are orthogonal up toO.e�Cn�=3

/. Hence,

fvn;kg are a family of c2n.c2nC1/
2

almost orthogonal quasimodes with O.e�Cn�=3
/

error. Thus,
f.vn;k; ˛

2
n;k/; 0 � k < c2n; n D 1; :::g

form a positive density set of quasimodes for �� on Œ0; 1�.
Since the vn;k areO.n�1/ quasimodes, WFh.vn;k/ is invariant under the Hamil-

tonian flow (see, for example, [23], Section 12.3). Therefore, since WFh.vn;k/ does
not intersect the foot of �, the quasimodes must concentrate away from the ergodic
set, U . Thus, for any subsequence of fvn;kg with a defect measure �, �jU � 0.
Hence, Theorem 2 applies and the constant we obtain is 0.
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