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ABSTRACT
We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric
data in the 22–850μm range. We derive the total dust mass, temperature T, and emissivity
index β of the galaxies through the fitting of their spectral energy distribution (SED) using
a single modified blackbody model (SMBB). We apply a hierarchical Bayesian approach
that reduces the known degeneracy between T and β. Applying the hierarchical approach, the
strength of the T–β anticorrelation is reduced from a Pearson correlation coefficient R = −0.79
to R = −0.52. For the JINGLE galaxies we measure dust temperatures in the range 17−30 K
and dust emissivity indices β in the range 0.6−2.2. We compare the SMBB model with the
broken emissivity law modified blackbody (BMBB) and the two modified blackbody (TMBB)
models. The results derived with the SMBB and TMBB are in good agreement, thus applying
the SMBB, which comes with fewer free parameters, does not penalize the measurement of the
cold dust properties in the JINGLE sample. We investigate the relation between T and β and
other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample.
We find that β correlates with the stellar mass surface density (R = 0.62) and anticorrelates
with the H I mass fraction (MH I/M∗, R = −0.65), whereas the dust temperature correlates
strongly with the star formation rate normalized by the dust mass (R = 0.73). These relations
can be used to estimate T and β in galaxies with insufficient photometric data available to
measure them directly through SED fitting.
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1 IN T RO D U C T I O N

Interstellar dust plays an important role in galaxies: it helps to
balance gas heating and cooling and the surface of dust grains
provides a favourable place for chemical reactions to occur. Dust
contributes only a small fraction of the mass of the interstellar
medium (ISM), but in normal star-forming galaxies it can re-radiate
up to ∼ 30 per cent of the stellar light in the infrared (e.g. Clements
et al. 1996).

The two main places where dust is formed are in the ejecta of
core-collapse supernovae and in the envelopes of asymptotic giant
branch (AGB) stars (Galliano, Galametz & Jones 2018). These
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two production mechanisms alone however cannot account for the
amount of dust observed in high-redshift galaxies (Bertoldi et al.
2003; Priddey et al. 2003; Rowlands et al. 2014; Michałowski 2015;
Watson et al. 2015). Grain growth is another mechanism that can
increase the dust content of a galaxy, but it is not well understood
how much this process can contribute to the total dust production
(Barlow 1978; Ferrara, Viti & Ceccarelli 2016; Ceccarelli et al.
2018). In order to resolve this tension, first we need to improve our
understanding of all the mechanisms of dust production and growth.
Secondly, it is necessary to have tools to accurately measure the dust
content of distant galaxies and have a good understanding of the
uncertainties on these measurements; this is the question this paper
tackles.

Dust masses are measured by fitting the spectral energy distri-
bution (SED) of galaxies in the far-infrared/sub-millimetre spectral
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range. The standard model used is a modified blackbody function
(MBB), which depends on the dust mass, temperature (T), and
emissivity index β. An anticorrelation between temperature and β

has been observed in galactic sources and luminous infrared galaxies
(Dupac et al. 2003; Yang & Phillips 2007; Désert et al. 2008).
However, it has been shown that noise in the data can introduce
an artificial anticorrelation between T and β (e.g. Shetty et al.
2009a,b). An incorrect estimate of T and β would consequently
bias the measurement of the dust mass. A way to overcome this
problem and break the T−β degeneracy is to use a hierarchical
Bayesian approach (Kelly et al. 2012; Juvela et al. 2013; Veneziani
et al. 2013; Galliano 2018). The hierarchical approach uses the
information from the parameter distribution of the entire sample of
galaxies to better constrain temperature and β for each single galaxy.
The hierarchical method has the advantage that it does not require
knowing the prior distribution of the parameters before the fitting,
but can infer the parameters describing the prior directly during
the fitting procedure, after assuming the shape of the distribution.
The limitation of this is that the prior is only valid for the sample
of galaxies under consideration, i.e. the prior depends on the
population that one is considering.

The Herschel Space Observatory1 (Pilbratt et al. 2010) has been
key for the study of dust in nearby galaxies, providing photometric
observations in the wavelength range 100–500μm, that allowed
to characterize the shape of their far-infrared SED. The Herschel
Reference Survey (HRS; Boselli et al. 2010) is a guaranteed time
program that measured the far-infrared SED of ∼300 nearby
galaxies. Using HRS galaxies, Cortese et al. (2014) show that
their far-infrared and sub-mm colours are inconsistent with a single
modified blackbody (SMBB) model with the same emissivity index
β for all galaxies.

Dust continuum observations can also be used to infer the
molecular gas mass of a galaxy. It has been shown that the dust
continuum luminosity of galaxies correlates with the CO luminosity
(Hildebrand 1983; Eales et al. 2012; Magdis et al. 2012; Scoville
et al. 2014; Groves et al. 2015) and this relation can be used to
infer the molecular gas mass of a galaxy by applying a molecular
gas-to-dust ratio. This method can be extremely useful for faint
or high-redshift galaxies, since the dust emission is brighter and
therefore easier to observe than the CO line emission. This method
can therefore be beneficial for measuring the molecular gas content
of large samples of galaxies.

The JINGLE (JCMT dust and gas In Nearby Galaxies Legacy
Exploration), survey is a large program on the James Clerk Maxwell
Telescope (JCMT) which aims to characterize the dust and molec-
ular gas in nearby galaxies and study the relation between the two
(Saintonge et al. 2018). JINGLE combines dust observations from
the SCUBA-2 camera on the JCMT (and from Herschel), with the
cold gas measurements obtained with the JCMT RxA instrument.
With both measurements of the dust and cold gas properties for a
statistical sample of nearby galaxies, we can study the variations in
the dust-to-gas mass ratio as a function of galaxy and dust properties.

One of the objectives of the survey is to benchmark dust
scaling relations with other galaxy properties such as stellar mass,
metallicity, and star formation rate (SFR). These relations can be
used to estimate the dust temperature and dust emissivity index in
galaxies for which there are not enough photometric data available

1Herschel is an ESA space observatory with science instruments provided
by European-led Principal Investigator consortia and with important partic-
ipation from NASA.

to measure them directly through SED fitting. This can be useful
especially for high-redshift galaxies.

An excess of emission at wavelengths ≥500μm with respect to
the MBB model has been observed in numerous dwarf galaxies
(e.g. Galametz et al. 2011; Rémy-Ruyer et al. 2013, 2015), in late-
type galaxies (Dumke, Krause & Wielebinski 2004; Bendo et al.
2006; Galametz et al. 2009), in the Magellanic Clouds (Bot et al.
2010; Israel et al. 2010), and in M33 (Hermelo et al. 2016; Relaño
et al. 2018). The origin of this ‘sub-mm’ excess is still an open
question. The SCUBA-2 observations at 850μm can help to place
better constraints on the sub-mm slope and investigate the presence
of this excess in the JINGLE sample.

In this paper we take advantage of the large and homogeneous
JINGLE sample and apply a hierarchical Bayesian approach to
reduce the T−β degeneracy and obtain more accurate measure-
ments of the dust parameters using MBB models. The hierarchical
approach is crucial to disentangle dust temperature T and emissivity
index β and allows us for the first time to study the independent
relations of these two dust quantities with other galaxy global
properties.

This paper is organized as follows. In Section 2, we present the
sample and the data used in this paper. Then we describe the classical
and hierarchical Bayesian SED fitting methods and compare the two
methods using simulated SEDs (Section 3). Section 4 illustrates the
results of the SED fitting of the JINGLE sample, the T–β relation,
and comparison of different MBB models. In Section 5, we derive
scaling relations between dust quantities and other global galaxy
properties. Finally, in Section 6, we summarize the main results and
our conclusions. Readers who are less interested in the statistical
methods and tests of the fitting methods may wish to skip ahead to
Section 4.

2 SAMPLE AND DATA

2.1 JINGLE sample

The 192 galaxies in the JINGLE sample have stellar masses in the
range log M∗/M� = 9−11.3 and are in the redshift range 0.01 < z

< 0.05. The targets were selected from the H-ATLAS survey (Eales
et al. 2010; Maddox et al. 2018) with the requirement to have a
detection ≥3σ in the 250 and 350μm SPIRE bands. Additionally,
they have been selected to have a flat logarithmic stellar mass
distribution. Due to these requirements, they are mainly main-
sequence star-forming galaxies with −1.5 < log SFR/[M� yr−1]
< 1.5 (see Fig. 1). A detailed description of the selection criteria is
provided in Saintonge et al. (2018). Most of the JINGLE objects are
late-type galaxies, with only seven classified as early-type galaxies
(Saintonge et al. 2018).

Properties of the JINGLE galaxies used in this work (such as SFR,
metallicity, distances, . . . ) are taken from the JINGLE catalogue
(Saintonge et al. 2018). In particular, we use the SFRs and stellar
masses measured with MAGPHYS (da Cunha, Charlot & Elbaz 2008).
In this paper, we refer to JINGLE galaxies using their corresponding
JINGLE ID, as described in the JINGLE catalogue (Saintonge et al.
2018).

2.2 HRS sample

To extend our analysis to a larger range in galaxy properties, we
include in our analysis also galaxies from the HRS (Boselli et al.
2010). The HRS is a volume-limited sample (15 Mpc ≤ D ≤ 25
Mpc) of 323 galaxies, with flux limits in the K band to minimize

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by guest on 16 O
ctober 2019
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Figure 1. Distribution of the JINGLE and HRS sample in the SFR–M∗
plane. The position of the star formation main sequence (Saintonge et al.
2016) is shown as a dashed line, the 0.4 dex dispersion is shown by dotted
lines. The grey contours show the distribution of SDSS galaxies at redshift
z < 0.05.

selection effects due to dust and young high-mass stars. A large
fraction of HRS galaxies lie in clusters, with 47 per cent of the
HRS galaxies listed in the Virgo Cluster Catalogue alone. They
have stellar masses in the range log M∗/M� = 8.4−11.3. Galaxies
from the HRS have been observed in the five Herschel bands (at
100, 160, 250, 350, and 500μm), but do not have observations at
850μm. In our analysis we use the SFR and stellar masses measured
with MAGPHYS by De Vis et al. (2017), to be consistent with the
JINGLE measurements.

Fig. 1 shows the JINGLE and HRS galaxies on the SFR–M∗ plane.
With respect to the JINGLE galaxies, the HRS sample includes
galaxies which are less massive (log M∗ < 9) and with lower SFR
(−2 < log (SFR/[M� yr−1]) < 0.6, mean log (SFR/[M� yr−1]) =
−0.71) compared to JINGLE, which has a mean log (SFR/[M�
yr−1]) = 0.04. HRS galaxies are also less dusty than JINGLE targets
(De Looze et al., in preparation), since contrary to JINGLE they have
not been selected based on detection in the infrared bands. The HRS
sample includes also a large number of early-type galaxies (62/323;
Smith et al. 2012a), which are not well represented in the JINGLE
sample (7/192). Therefore by including this sample in our analysis,
we can test whether the dust scaling relations that we find with the
JINGLE sample hold also for other types of galaxies. Additionally,
increasing the dynamical range of galaxy properties will help to
constrain better the dust scaling relations.

2.3 Data

2.3.1 JINGLE

Our data set consists of photometric points at 22μm (WISE),
60μm (IRAS), 100, 160μm (Herschel/PACS), 250, 350, 500μm
(Herschel/SPIRE), and 850μm (SCUBA-2). A detailed description
of the JINGLE photometric data set is given in Smith et al. (2019)
and De Looze et al. (in preparation). Here, we summarize the most
important points. The fluxes of the WISE, Herschel, and SCUBA-2
bands have been extracted from matched apertures based on the

SPIRE 250μm band. The flux extraction is described in detail by
Smith et al. (2019). One galaxy (JINGLE 62) has been removed
from the sample since it is not detected in the 250μm band and
therefore it is not listed in the release version of the H-ATLAS DR2
catalogue (Maddox et al. 2018). Thus, the sample analysed in this
work consists of 192 galaxies.

We consider upper limits for fluxes with peak signal-to-noise ratio
(S/N) < 3. Since the CO(3–2) 345.79 GHz line emits in the 850μm
band, we corrected the SCUBA-2 flux by subtracting the estimated
contribution of the CO(3–2) line (for details see Smith et al. 2019).
After subtracting the CO(3–2) emission, some of the fluxes become
negative, due to the uncertainties in the 850μm fluxes and in the
CO(3–2) predictions. These fluxes are consistent with zero within
the uncertainties and are considered as upper limits. In our sample,
there are 66 galaxies with peak S/N < 3 and additionally four
galaxies have negative 850μm flux, even though their peak S/N
> 3 before subtraction of the CO(3–2) contribution. For all these
cases, we use conservative upper limits equal to five times the flux
uncertainty in that band.

The IRAS 60μm fluxes are derived using the Scan Processing
and Integration Tool (SCANPI2), following the strategy of Sanders
et al. (2003). In our sample, 69/192 galaxies have 5σ upper limits for
the 60μm flux and 22/192 do not have IRAS 60μm observations.

2.3.2 HRS

For the HRS sample, we have flux measurements in the
Herschel/PACS (Cortese et al. 2014) and Herschel/SPIRE bands
(Ciesla et al. 2012), from 100 to 500μm. We note that, contrary
to JINGLE, this sample does not have observations at 850μm,
therefore the long-wavelength slope of the SED can be constrained
only by the 500μm point. In the case of non-detections, we consider
upper limits equal to five times the flux uncertainties as we do for
the JINGLE sample.

We exclude from the sample 39 galaxies which are not detected
in all of the Herschel bands, and therefore do not have constraints on
their dust properties. We also exclude four galaxies that do not have
SFR and stellar mass measurements from De Vis et al. (2017). They
were excluded from the sample because their SEDs show signs of
contamination from dust heated by an active galactic nucleus or a
hot X-ray halo or from synchrotron radiation emission (Eales et al.
2017). The final sample consists of 41 early-type and 239 late-type
galaxies, for a total of 280 galaxies.

3 M E T H O D

3.1 Models

To describe the far-infrared and sub-millimetre SED we adopt the
three models employed by Gordon et al. (2014) for the SED fit of
the Magellanic Clouds: single modified blackbody (SMBB), broken
emissivity law modified blackbody (BMBB), and two modified
blackbody (TMBB). We describe below the analytic functions and
the parameters used for the three models:

(i) SMBB: The SMBB model describes the dust emission Fλ

(in units of W m−2 Hz−1 sr−1) at each wavelength λ in the following
way (Hildebrand 1983):

Fλ = Mdust

D2
κλBλ(T ), (1)

2http://irsa.ipac.caltech.edu/applications/Scanpi/
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where Mdust is the dust mass in the galaxy and D is the distance
of the galaxy. Bλ(T) is the Planck function for the emission of a
blackbody with a dust temperature T given by

Bλ(T ) = 2hc2

λ5

1

exp
(

hc
kBT λ

)
− 1

. (2)

The dust mass absorption coefficient κ describes which dust mass
gives rise to an observed luminosity. The value of κ depends on
the physical properties of the dust, such as the mass density of the
constituent materials, the efficiency with which they emit, the grain
surface-to-volume ratio, and the grain size distribution (Köhler,
Ysard & Jones 2015; Ysard et al. 2018). The SMBB applies a dust
emissivity power law to characterize the behaviour of κ as a function
of wavelength:

κλ = κ0

(
λ0

λ

)β

. (3)

where κ0 is the reference dust mass absorption coefficient. Lab-
oratory studies found that the absorption coefficient depends also
on the dust temperature and dust emissivity index β, with higher
κ values observed for higher temperatures and lower β values
(Coupeaud et al. 2011). For simplicity, here we assume a constant
value κ0 = κ(500μm) = 0.051 m2 kg−1 from Clark et al. (2016).
This model has three free parameters (Mdust, T, and β), and assumes
that the dust emission can be described by a dust component with a
single temperature. At wavelengths shorter than 100 μm, a second
warmer dust component can contribute to the FIR emission (e.g.
Relaño et al. 2018). Therefore for this model, we use only the
flux bands with wavelengths ≥100μm. Additionally, we use the
60μm point as an upper limit, in order to better constrain the dust
temperature.

(ii) BMBB: When fitting the FIR SED with an SMBB model,
some galaxies show an excess in the flux at wavelengths ≥500μm,
called ‘sub-millimetre’ excess (Lisenfeld et al. 2002; Galliano et al.
2003; Dumke et al. 2004; Bendo et al. 2006; Galametz et al. 2009;
Bot et al. 2010; Israel et al. 2010; Hermelo et al. 2016). The BMBB
model assumes that the sub-mm excess is due to variations in the
wavelength dependence of the dust emissivity law. These variations
are parametrized by a broken power law:

κλ =

⎧⎪⎨
⎪⎩

κ0

(
λ0
λ

)β1
if λ < λb

κ0

(
λ0
λb

)β1
(

λb
λ

)β2
if λ > λb

, (4)

where λb is the wavelength of the break. This model has five free
parameters: Mdust, T, β1, β2, and λb. Also for this model, we use
only the flux bands with wavelengths ≥100μm. In order to have
good constraints on the fitting parameters, it is crucial to have a
detection of the 850μm flux. If the SCUBA-2 point is not detected,
an upper limit is not enough to constrain the parameters of this
model. Without the 850μm flux point, the 500μm flux point is the
only one that can be used to determine β2 and λb, leading to large
uncertainties on their values.

(iii) TMBB: The TMBB model assumes that the FIR SED is
emitted by two dust populations with different temperatures. The
dust emission is parametrized by TMBB: one for the cold dust
(indicatively T < 40 K) and one for the warm dust (indicatively T >

40 K):

Fλ = F
SMBBcold
λ + F

SMBBwarm
λ , (5)

where the two SMBB components are defined as above. In order
to reduce the number of free parameters, we fix the β value of

the warm component to 1.5 (Coupeaud et al. 2011; Boselli et al.
2012), while we leave the β value of the cold component as a free
parameter. So in this model we have five free parameters: Mcold,
Tcold, βcold, Mwarm, and Twarm. For the fitting, we use the fluxes in all
available bands from 22 to 850μm.

All these models assume that dust grains are optically thin.
According to dust models, this assumption holds for wavelengths
≥100μm, while at shorter wavelengths it is possible that dust is
optically thick (Draine & Li 2007). Casey (2012) modelled the SED
of 65 luminous infrared galaxies from the GOALS survey (Armus
et al. 2009) and found that even if the dust is optically thick, the
difference in the SED shape at 22μm would be small. Utomo et al.
(2019) studied the dust emission at resolved scales in four nearby
galaxies (Small and Large Magellanic Clouds, M31, and M33)
and found that most of the dust emitting at wavelengths longer
than 100μm is optically thin. They observe that at wavelengths
∼20μm some regions of the galaxies become optically thick, but
on global galaxy scales we do not expect these regions to dominate
the emission.

We apply the SMBB model to both the JINGLE and HRS sample,
while we apply the BMBB and TMBB models only to the JINGLE
sample. We make this decision because for the HRS sample we do
not have the 850μm flux point, and therefore we do not have enough
flux points for models with a large number of free parameters.
Additionally, for the BMBB model it is very important to have the
850μm point to constrain the emissivity index β2 after the break.
Fig. 2 shows an example of the SED fitting of one galaxy from the
JINGLE sample using the three models.

3.2 Introduction to the Bayesian SED fitting method

In this section, we briefly describe the Bayesian approach used for
the SED fitting (we follow the same notation as in Galliano 2018).
Readers who are less interested in the statistical methods may wish
to go directly to the results presented in Section 4. The observed
SED of a galaxy (Fobs) can be described in the following way:

F obs(λj ) = F mod(λj , θ ) + ε(λj ) · F err(λj ), (6)

where Fobs(λj) is the flux observed at the wavelength λj and
F mod(λj , θ ) is the flux described by our model with parameters θ .
The last term describes the deviation of the observed flux from the
model due to random noise: Ferr(λj) is the amplitude of the noise
and ε(λj) is a random variable with mean 〈ε〉 = 0 and standard
deviation σ (ε) = 1. We can reverse the previous formula to express
ε(λj) as a function of the other quantities:

ε(λj ) = F obs(λj ) − F mod(λj , θ )

F err(λj )
. (7)

The goal is to find the best parameters to fit the data by minimizing
the offset between the model and the data. From a Bayesian point
of view, this is equivalent to maximizing the likelihood of the
model, given the data. The probability of the data given the model
parameters θ can be expressed as

p(Fobs|θ ) =
m∏

j=1

p(ε(λj , θ )), (8)

where Fobs = (
F obs(λ1), . . . , F obs(λm)

)
, is the vector containing

the flux emission at each waveband j = 1, . . . , m. We are interested in
the probability of the model parameters, knowing the observations.
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Figure 2. Example of FIR SED of one galaxy from the JINGLE sample, fitted with the non-hierarchical approach using the three models: SMBB (left-hand
panel), BMBB (middle panel), and TMBB (right-hand panel). The shaded regions show the lower and upper 1σ uncertainties on the SED models, defined by
taking the maximum and minimum flux values of the models with likelihood values in the highest 68th percentile.

Thus, we can use the Bayes’ theorem to write the expression:

p(θ |Fobs) = p(Fobs|θ ) · p(θ)

p(Fobs)
∝ p(Fobs|θ ) · p(θ), (9)

where p(θ) is the ‘prior’ distribution and p(θ |Fobs) is the ‘posterior’
distribution. The denominator p(Fobs) can be neglected since it is
constant for a given set of observed fluxes. By sampling the posterior
distribution in the parameter space we can construct the posterior
probability density function (PDF). Examples of posterior PDFs
are shown in the appendix (Fig. D1). The figure shows the PDFs
obtained from the SED fit of one galaxy using the SMBB, BMBB,
and TMBB models.

3.3 Hierarchical Bayesian method

The difference between the classical and hierarchical Bayesian
method is that in the former the prior distribution is an assumption
and in the latter it is defined by the data sample (e.g. Gelman et al.
2004; Galliano 2018). Hierarchical methods require therefore a pop-
ulation of objects, which are used to define the prior distributions.
In the case of SED fitting, the sample can be formed by multiple
spatially resolved regions of the same galaxy or by a sample of
galaxies with similar properties. The entire sample is then fitted
simultaneously, in order to extract both the information about the
prior distribution of the sample and the posterior distribution of the
single elements of the sample.

Kelly et al. (2012) showed that the hierarchical method can be
used to reduce the degeneracy between T and β. This approach
has subsequently been used in other studies to reduce the T–β

degeneracy (Juvela et al. 2013; Veneziani et al. 2013; Galliano
2018). The key assumption behind the hierarchical approach is that
the dust parameters of our sample of galaxies follow a common
distribution. In our case we assume that they follow a Student’s
t-distribution. Thanks to this assumption, we are able to better
constrain model parameters, especially for galaxies with low S/N,
where a large range of combinations of T and β provide reasonably
good fits to the data. In those cases, the prior helps to constrain
the range of possible T and β. The key point of the hierarchical
approach is that we do not need to specify the mean and standard
deviation of the prior distribution before doing the fit, but they can
be inferred by the data.

The new parameters describing the prior distribution of the
parameters θ are called hyper-parameters. The commonly used
hyper-parameters are

(i) μ: the average of the parameter vector θ ;

(ii) �: the covariance matrix describing the standard deviation
and correlation of θ .

Using this formalism, the posterior distribution of the parameters
given the data p(θ |Fobs) for the ith galaxy in the sample becomes

p(θi |Fi
obs, μ, �) ∝ p(Fi

obs|θi ) · p(θi |μ, �). (10)

This is the hierarchical equivalent of equation (9). The posterior
distribution of the parameters and hyper-parameters for the entire
sample of n galaxies is

p(θ1, . . . , θn,μ, �|F1
obs, ..., Fn

obs) ∝
n∏

i=1

p(θi |Fi
obs, μ, �) · p(μ) · p(�)

∝
n∏

i=1

p(Fi
obs|θi ) · p(θi |μ, �) · p(μ) · p(�), (11)

where p(μ) and p(�) are the prior distributions of the hyper-
parameters. When compared to the classical Bayesian method, the
hierarchical method is able to recover the distribution of parameters
with better precision, especially if the noise in the data is high (Kelly
et al. 2012; Galliano 2018). In that case, the hierarchical approach
uses the information about the parameter distribution obtained
from the rest of the sample to better constrain the parameters for
the particular objects where the quality of the data is low. The
hierarchical method will not necessarily perform better in measuring
the parameter of a single object, but it will be less biased when
measuring the distribution of parameters of the entire population.

3.4 Noise distribution

In this section, we describe the functions used to model the noise dis-
tribution for both the non-hierarchical and hierarchical approaches.
The noise is usually modelled with a normal distribution or a
Student’s t-distribution. The Student’s t-distribution has a higher
probability in the tails with respect to the normal distribution,
allowing for more outliers. Its shape is described by the number
of degrees of freedom f: as f decreases, more probability will be in
the tails of the distribution. The normal distribution is a special case
of the t-distribution with the number of the degrees of freedom that
goes to infinity, f → ∞.

The probability density of a normal distribution is defined as

Normal(y|μ, σ ) = 1√
2πσ

exp

(
−1

2

(
y − μ

σ

)2
)

, (12)

where μ is the mean and σ is the standard deviation. The multivariate
normal distribution is the generalization of the one-dimensional

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by guest on 16 O
ctober 2019



4394 I. Lamperti et al.

Table 1. Prior parameter ranges assumed
for the Bayesian non-hierarchical SED mod-
elling using the SMBB function.

Parameter Range

log Mdust/M� (5, 9)
T (K) (5, 50)
β (0.1, 3)

normal distribution to a higher dimension m:

MultiNormal( y|μ, �) = 1

(2π)m/2

1√|�|

× exp

(
− 1

2
( y − μ)T �−1( y − μ)

)
, (13)

where m is the dimension of the vector �y, � is the m × m covariance
matrix, and ( y − μ)T indicates the transpose of the vector ( y − μ).

The Student’s t-distribution is defined as

Student(y|μ, σ, f ) = 
((f + 1)/2)


(f /2)

1√
f πσ

(
1 + 1

f

(
y − μ

σ

)2
)− f +1

2

, (14)

where f is the number of degrees of freedom. The multivariate
Student’s t-distribution is the generalization of the one-dimensional
distribution to a higher dimension m:

MultiStudent( y|μ, �, f ) = 
((f + m)/2)


(f /2)

1

(f π)m/2

1√|�|

×
(

1 + 1

f
( y − μ)T �−1( y − μ)

)− f +m
2

, (15)

where m is the dimension of the vector y.
We expect to observe a flux excess at 850μm for some galaxies,

given the fact that the sub-mm excess has been reported in numerous
studies (e.g. Galametz et al. 2011; Rémy-Ruyer et al. 2013,
2015; Hermelo et al. 2016). Since the 850μm fluxes have usually
larger uncertainties than the other points, if we use a Student’s
t-distribution, the SMBB model will assume that every change in
slope at 850μm is due to the error being underestimated, rather than
to a physical effect. The model will then ‘ignore’ the 850μm point,
and produce a fit considering only the Herschel points. Since we
believe that there is information in the longer wavelength points,
we therefore decide to use a normal distribution for the error. In
Appendix A, we compare the results obtained using the Student
and normal distribution.

In both the non-hierarchical and hierarchical case, we model the
noise as

p(Fobs|Fmod(θ), C) = MultiNormal(Fobs|Fmod(θ ), C), (16)

where C is the covariance matrix, which describes the uncertainties
associated with the flux densities in the different wavebands (see
Section 3.6 for the definition of the covariance matrix).

3.5 Prior distributions

In this section, we describe the prior distributions assumed for the
hierarchical and non-hierarchical method.

Non-hierarchical: For the prior distribution of the parameters θ ,
we assume uniformly distributed (‘flat’) priors, i.e. p(θ ) = 1, in the
ranges described in Table 1.

Hierarchical: For the definition of the prior distributions in the
hierarchical framework, we follow Kelly et al. (2012), Galliano
(2018), and the STAN manual (Stan Development Team 2017).

(i) Parameters: For the definition of the prior distributions of
the parameters given the hyper-parameters, we follow Kelly et al.

Table 2. Ranges of the priors on the hyper-
parameter μ (sample mean) for the Bayesian
hierarchical SED modelling using the SMBB,
BMBB, and TMBB functions.

Hyper-parameter Range

SMBB
μ(log Mdust/M�) (6, 9)
μ(T) (K) (15, 50)
μ(β) (0.5, 3)

BMBB
μ(log Mdust/M�) (5, 9)
μ(T) (K) (5, 50)
μ(β1) (0, 5)
μ(β2) (0, 5)
μ(λb) (μm) (420, 500)

TMBB
μ(log Mcold/M�) (6, 10)
μ(Tcold) (K) (5, 40)
μ(βcold) (0.5, 5)
μ(log Mwarm/M�) (2, 7)
μ(Twarm) (K) (50, 90)

(2012) and Galliano (2018). We assume a multivariate Student’s
t-distribution with f = 8 degrees of freedom:

p(θi |μ, �) = MultiStudent(θi |μ, �, f = 8). (17)

We also tried to vary the number of degrees of freedom and did
not see any differences in the results. Assuming a Student’s t-
distribution allows one to have more galaxies with dust parameters
that are ‘outliers’ from the mean of the sample. In this way, we
make sure that our assumption that the galaxies belong to the same
population is not too stringent. We note that the parameters θi are
not constrained within a certain range but they are allowed to take
any value. Their distribution is described by the prior distribution
and we set some constraints on the allowed range of the hyper-priors
(mean and standard deviation) that determine the shape of the priors
(see next point).

(ii) Hyper-parameters: For the mean μ of the parameters, we
assume a uniform prior with a large parameter range. In this way
we ensure that the prior is proper (i.e.

∫
p(θ )dθ < ∞), and at the

same time we maintain the prior vague enough to not constrain the
results (Gelman & Hill 2007; Tak, Ghosh & Ellis 2018). The prior
ranges for μ are shown in Table 2. We note that we set the prior
range of μ(Twarm) to be >50 K, because we want the distribution
of warm temperatures to be well separated from the distribution
of cold temperatures. For the covariance matrix �, we use the
separation strategy from Barnard, McCulloch & Meng (2000). This
formalism ensures that the prior distributions of the correlations
between parameters are uniform over the range [ − 1, 1], meaning
that all values of the correlations are equally likely. The separation
strategy breaks down the covariance matrix in

� = SRS, (18)

where S is a diagonal matrix with the values of the standard deviation
and R is the correlation matrix. Both S and R have dimension q ×
q, where q is the number of free parameters in the model. The prior
distribution of the hyper-parameters is then

p(μ) · p(�) ∝ p(μ) · p(S) · p(R). (19)

For the priors on the S and R, we follow the recommendations given
by the STAN manual (Stan Development Team 2017). For the priors
on the diagonal elements of S, we use a weakly informative prior,
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parametrized by a half-Cauchy distribution with a small scale σ

= 2.5 (Stan Development Team 2017):

p(Sk,k) = Cauchy(0, σ ) = 1

πσ

1

1 +
(

Sk,k

σ

)2 , (20)

where Sk, k > 0, for k = 1, . . . , q. For the priors on the correlation
matrix R, we use an LKJ correlation distribution with shape ν = 2:

p(R) = LKJ Corr(R, ν) ∝ det(R)ν−1 (21)

(see Lewandowski, Kurowicka & Joe 2009 for definitions). The
basic idea of the LKJ correlation distribution is that as ν increases,
the prior increasingly concentrates around the identity matrix.

3.6 Covariance matrix, beam, and filter corrections

In order to perform an accurate fit, it is important to take into account
correctly the uncertainties associated with each flux measurement as
well as the correlation between these uncertainties. The covariance
matrix C describes the uncertainties associated with the flux
densities in the different wavebands, and includes both calibration
and measurement uncertainties. Calibration uncertainties can be
correlated between bands observed with the same instrument. For
the definition of the covariance matrix, we follow Gordon et al.
(2014). The calibration covariance matrix is defined as

Ccal
j,k = [Acor,j ,k + Auncor,j ,k] = [σ 2

cor,j ,k + δj,kσ
2
uncor,j ,k], (22)

where Acor is the matrix of the noise correlated between bands,
Auncor is the diagonal matrix of repeatability that is uncorrelated
between bands. σ cor,j,k and σ uncor,j,k are thepercentage of correlated
and uncorrelated uncertainties, respectively, between the jth and kth
band, and δj,k is one for j = k and zero otherwise. The calibration
uncertainty values that we use are reported in Table 3, given
inpercentage of the flux.

The total covariance matrix C is a combination of the calibration
and measurement uncertainties:

Cj,k = Ccal
j,k · Fj · Fk + F err

j · F err
k , (23)

where Fj and Fk are the fluxes in the jth and kth waveband, and F err
j

and F err
k are the corresponding measurement uncertainties.

The colour and beam corrections applied to our data are described
in detail in De Looze et al. (in preparation).

Non-hierarchical: The filter corrections are applied to the model
SED by convolving the model flux points with the appropriate
filter response curve in each band. The Herschel/SPIRE fluxes
were corrected also for the effective beam area, which depends
on the shape of the spectrum due to the absolute SPIRE calibration
in units of flux density per beam. The SED shape is described
by the dust temperature T and the emissivity index β. At each
step of the Markov chain Monte Carlo (MCMC) algorithm, the
Herschel/SPIRE fluxes are corrected according to the two model
parameters, before comparing them to the fluxes of the SED model.
For the BMBB model, we applied the beam and colour corrections
using β1 or β2 depending on the wavelength position of the break λb.
For the TMBB model, we calculate which of the two components
(warm or cold) contribute the most to the flux in every band. Then
we calculate the corrections using the temperature T and β values
of the dominant component in each band.

Hierarchical: The beam and filter corrections make it more
difficult for the code to converge, since in every MCMC step
the fluxes are slightly modified. This is more problematic for
the hierarchical approach, because it has a larger number of

free parameters. Therefore, in order to achieve convergence in a
reasonable amount of time, we apply a slightly different approach
to implement the beam and filter corrections in the hierarchical case.
We first do the hierarchical fit without beam and filter corrections.
Then we apply the beam and filter corrections on the fluxes based
on the values of T and β measured from the fit with no corrections,
and finally we repeat the hierarchical fit using the ‘corrected’ fluxes.
The beam and filter corrections are generally small compared to the
flux uncertainties, therefore this approximation of the corrections
does not affect the results significantly.

3.7 Implementation of the SED fitting

Non-hierarchical method: For the implementation of the classical
Bayesian SED fitting method, we employ the affine-invariant
ensemble sampler for MCMC (Metropolis et al. 1953) code EMCEE

(Goodman & Weare 2010; Foreman-Mackey et al. 2013). The
MCMC algorithm is designed to sample the posterior distribution
of the unknown parameters, i.e. the probability of the parameters
given the data. The values of the parameters with the corresponding
uncertainties can then be inferred from the posterior distribution. We
consider as results the median values of the marginalized posterior
probability distributions, and we estimate the uncertainties from the
values corresponding to the 16th and 84th percentiles.

To monitor the convergence we look at the effective sample size
(Neff), which is defined as the number of iterations divided by the
integrated autocorrelation time Neff = Niter/τ int. The autocorrelation
time τ int measures the number of steps after which the drawings are
truly independent (Foreman-Mackey et al. 2013). It is recommended
to have at least Neff > 10, to ensure that the sequence has converged
(Gelman et al. 2004).

Hierarchical method: For the implementation of the hierar-
chical Bayesian fitting we use STAN (Carpenter et al. 2017, http:
//mc-stan.org/), a software for Bayesian inference which employs
the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo
(HMC) sampler. The HMC sampling (Duane et al. 1987; Neal
1994, 2011) is a form of MCMC sampling which uses the gradient
of the logarithmic probability function to accelerate the parameter
exploration and the convergence to the stationary distribution (Stan
Development Team 2017). The HMC algorithm is more efficient
than other MCMC algorithms (as for example the Metropolis–
Hastings algorithm) in sampling the parameter space and in finding
the region of high likelihood, because it samples the probability
distribution with fewer samples. Therefore, it is particularly well
suited for problems with high dimension, as is the case for
hierarchical models. For example, for the hierarchical fit of 100
galaxies using the SMBB model, which has three free parameters,
the dimension is of the order of ∼300. Another advantage of STAN

is that it can sample simultaneously the posterior distribution of
parameters and hyper-parameters. STAN allows to define the model
by specifying the probability distribution of each parameter (or
hyper-parameter) independently, without the need of computing the
full posterior distribution. For the practical implementation, we used
PYSTAN,3 which is the PYTHON interface to STAN (Stan Development
Team 2018).

The recommended method for monitoring the convergence of the
MCMC chains in STAN is computing the potential scale reduction
statistics R̂ (Gelman & Rubin 1992), which gives an estimate of
the factor by which the scale of the posterior distribution may be

3http://pystan.readthedocs.io/en/latest/http://mc-stan.org

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by guest on 16 O
ctober 2019

http://mc-stan.org/
http://pystan.readthedocs.io/en/latest/
http://mc-stan.org


4396 I. Lamperti et al.

Table 3. Percentage of correlated and uncorrelated uncertainties for the different instruments.

Instrument Waveband Correlated Uncorrelated Reference
(μm) uncertainty uncertainty

(per cent) (per cent)

WISE 22 – 5.7 Jarrett et al. (2011)
IRAS 60 – 20 Sanders et al. (2003); Miville-Deschênes & Lagache (2005)
PACS 100, 160 5 2 Balog et al. (2014), Decin & Eriksson (2007)
SPIRE 250, 350, 500 4 1.5 Bendo et al. (2013)
SCUBA 850 – 10 Smith et al. (2019)

reduced as the number of iterations goes to infinity. If R̂ is large, it
means that increasing the number of iterations is likely to improve
the inference. If R̂ ∼ 1, then we can be confident that the number
of iterations that we are using is large enough. Thus, we set the
requirement that for our runs R̂ < 1.15. We also check that the
effective sample size Neff is always larger than 10.

3.8 Validation of the method with simulations of mock SEDs

We test our fitting methods using simulated FIR SEDs. For the mock
SEDs, we know the input parameter values, thus we can assess how
well our fitting procedure is able to recover them. The simulation
code takes as input parameters the dust mass (log Mdust), temperature
T, and emissivity index β, and it uses these parameters to generate
an SED assuming an SMBB model. Then it extracts the flux density
in the selected wavebands and it adds random noise at each flux
point. We assume the noise to be Gaussian distributed around zero,
with amplitude equal to the noise level. We assume a different noise
level in every band. For the wavebands (100, 160, 250, 350, 500,
850) μm, we use the following noise levels, given aspercentages of
the flux: (20, 10, 5, 10, 20, 25) per cent, respectively. We estimate
these values by taking the mean of the error fraction in each band
from our data.

The goal of the test is to assess how well the non-hierarchical
Bayesian approach can measure the values of temperature and β.
We simulate 100 SEDs with the same input parameters (log Mdust =
8 M�, T = 30 K, β = 1.5), adding to every SED random noise in
every band as explained above. Fig. 3 shows the results in the T–β

plane. As we can see from the figure, an artificial anticorrelation
is generated only from the effect of adding noise to the fluxes.
This suggests that the non-hierarchical Bayesian approach will
always measure a T–β anticorrelation, even if it is not present
in the data. Thus, in order to asses if the T–β anticorrelation is
indeed present in our sample, we need a more sophisticated fitting
method.

We run the same simulation, but this time we use the hierarchical
code to fit the SEDs. The results are in better agreement with
the input value, and do not show any artificial correlation or
anticorrelation between T and β. The non-hierarchical method
measures a large range of temperatures (T = 22−42 K) and β values
(β = 0.8−2.3). The hierarchical method measures smaller ranges
of T = 27−30 K and β = 1.50−1.55, which are closer to the input
values. Consequently, also the dust masses are better measured with
the hierarchical method. The dust masses measured with the non-
hierarchical method are in the range log Mdust/M� = 7.87−8.23,
with typical uncertainties of ∼0.13 dex, while the ones measured
with the hierarchical method are in the range log Mdust/M� =
8.06−8.09, with typical uncertainties 0.02 dex.

We also test whether the codes can recover a positive or negative
T–β correlation. In both cases, the hierarchical method perform

equally or better than the non-hierarchical code. Details of these
simulations can be found in Appendix C.

4 R ESULTS

4.1 JINGLE sample: non-hierarchical versus hierarchical
results

In the previous section we have demonstrated, using simulated
SEDs, that the hierarchical method works better than the non-
hierarchical approach. Here, we apply both methods to the 192
galaxies of the JINGLE sample and we show the advantages of
using the hierarchical method.

We start by using the simplest model, the SMBB. Fig. 4 shows
the comparison of the dust masses, dust temperatures and β derived
with the two approaches. In general, dust masses agree quite well
between the two methods (median difference = 0.07 dex). The dust
masses derived using the hierarchical method are slightly smaller,
and this is probably due to the variations in dust temperatures.
For a given constant flux, higher dust temperatures correspond to
lower dust masses. In the range 15−25 K the dust temperatures
from the hierarchical approach are indeed slightly higher. At
high temperatures, the differences between the two methods are
larger and the non-hierarchical method measures much higher
temperatures (T > 30 K) than the hierarchical method. This is
because as the dust temperature increases, the peak of the SED
moves to shorter wavelengths. If the SED peaks at wavelengths
shorter than 100μm, it is not sampled by the flux bands considered
in the fit, since for the SMBB we are considering the 60μm point
as an upper limit. Therefore, it is more difficult to constrain the
temperature. If we were to include flux points at shorter wavelengths
we would need to consider a second MBB component with a warmer
temperature, because the assumption of a single temperature MBB
does not hold over such a large wavelength range. Instead, in the
hierarchical framework, the code uses the information from the
temperature distribution of the galaxy population to constrain T,
and it will consider more likely for the galaxy to have a temperature
close to the population mean temperature than an extreme value.
Therefore, the hierarchical method can better constrain the dust
temperature.

The range of temperatures is smaller in the hierarchical case
(T = 17−30 K), than in the non-hierarchical case (T = 15−48 K).
The same is true for the range of β: in the hierarchical case β =
0.6−2.2, while in the non-hierarchical case β = 0.0−2.5. In the
hierarchical approach, we assume that the population follows a
common distribution, thus the fitting is less likely to return extreme
values of β. However, the hierarchical code can accommodate some
outliers, since we do not define a priori the standard deviation
of the prior distribution. Thus, if the data require it, the standard
deviation can be large, allowing for more ‘extreme’ values of β.
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Figure 3. Results of temperature and β from the fit of 100 simulated SMBB SEDs with the same input parameters (log Mdust/M� = 8, T = 30 K, and β = 1.5)
and 10 per cent added noise. The output values are derived with the non-hierarchical (left-hand panel) and hierarchical (right-hand panel) SED fitting method.
In red is shown the input value and in blue are the measured values.

Figure 4. Comparison of dust properties of the JINGLE sample obtained through the fit of an SMBB using the non-hierarchical and hierarchical approaches.
The lower panels show the difference between the hierarchical and non-hierarchical fit in each of the derived properties.

But if the extreme objects have large noise on the flux values, then
the hierarchical method considers more likely that they are not
‘true outliers’, but that their extreme SED shape is only due to the
noise in the data points. If we believe that the hierarchical approach
gives more accurate results for the cases with high noise level, we
conclude that the extreme values found with the non-hierarchical
approach are likely not reliable, but only due to the noise in the
data. The results of the hierarchical fit using the SMBB model are
given in Table E1.

4.2 T–β relation in the JINGLE sample

We use the results of the SED fitting using the SMBB model to
investigate whether there is a relation between dust temperature
and β in our sample of galaxies. An anticorrelation between T and

β has been observed in many studies (e.g. Dupac et al. 2003; Désert
et al. 2008), but it has been demonstrated that it can be attributed to
the degeneracy between the two parameters and the effect of noise
on the data (Shetty et al. 2009a,b).

Fig. 5 shows the results from the non-hierarchical and hierarchical
approach applied to our sample of 192 galaxies. The results from the
non-hierarchical method show a significant anticorrelation between
T and β. The Pearson correlation coefficient is Rpear = −0.79 (p-
value = 1.19 × 10−41). The results from the hierarchical method
shows a weaker anticorrelation (Rpear = −0.52, p-value = 9.79
× 10−15). This shows that the choice of the method used is
really important and can deeply influence the results. This result
confirms previous findings (Shetty et al. 2009a,b; Kelly et al.
2012; Juvela et al. 2013; Veneziani et al. 2013) that the observed
T−β anticorrelation is mainly driven by the fact that they are
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Figure 5. Relation between the dust temperature and dust emissivity index (T–β relation) for the JINGLE sample derived with non-hierarchical (left-hand
panel) and hierarchical (right-hand panel) Bayesian methods. In both cases, we fit the SED using an SMBB model and we include the 850μm flux point in the
fit.

degenerate parameters, and by the noise on the data. There is still
an anticorrelation between T and β even using the hierarchical
approach (Rpear = −0.52). This could mean that there is indeed
a physical relation between these two quantities. However, it is
also possible that the hierarchical method is not able to remove
completely the T−β degeneracy, leaving a residual anticorrelation.
With our current data we are not able to distinguish whether the
observed relation is a physical effect or whether it is due to a
residual degeneracy.

We also compare the results obtained with and without including
the 850μm flux point in the fit using the hierarchical approach
(see Fig. 6). In general, the emissivity indices β measured with the
850μm flux point are equal or lower than the ones measured without
the 850μm point. This means that without the SCUBA-2 flux, the
fits of the Herschel points alone have steeper slopes. This suggests
that there is indeed a ‘sub-mm’ excess visible at 850μm, at least in
some galaxies. This is visible especially for low values of β < 1.
We note that not all galaxies show this behaviour: for some galaxies
the β values measured with and without SCUBA-2 flux are in good
agreement, or they show a small deficit at 850μm. Consequently,
the dust temperatures show the opposite trend: they are in general
larger when the 850μm point is included in the fit, because they
have to compensate for the lower β values. The mass measurements
are only slightly affected by the presence of the SCUBA-2 flux
point (median difference: 0.002 dex). The largest difference in the
dust masses measured with and without the SCUBA-2 flux point
is 0.07 dex. The fact that the dust masses do not show a larger
variation depends on the fact that we assumed a constant absorption
coefficient κ0. Laboratory studies show that κ changes with dust
temperature T and β (Coupeaud et al. 2011; Demyk et al. 2017a,b).
Therefore, by keeping κ constant we erase the difference in dust
masses that would arise from the different temperature and β values.
A certain value of κ0 will give an accurate dust mass only if the β

value used for the fit is the same that was used to measure κ0 (Bianchi
2013). However, a recent laboratory study by Demyk et al. (2017a)
shows that variations in κ0 are more prominent for high temperatures
(T > 30 K) than for low temperatures. For the temperature range
considered in this study (10−30 K) they do not observe variations in
κ0. A possible approach to account for variations in κ0 would be to
change the value of κ0 according to the value of T and β used for the
fitting in an iterative way. We plan to investigate this in the future.

4.3 Comparison of models: SMBB, BMBB, TMBB

In many cases, the SMBB model is not enough to fit the FIR/sub-
mm SED accurately. Especially at long wavelengths, the SED often
shows a change in the slope. Therefore, we consider also two other
models: the BMBB and TMBB models, described in Section 3.1. In
this section, we compare the results obtained applying these models
to the SED fit of the JINGLE sample. The results of the hierarchical
fit using the BMBB and TMBB models are given in Tables E2
and E3.

4.3.1 BMBB

The BMBB model (Gordon et al. 2014) allows for a variation in
the wavelength dependence of the dust emissivity law, to account
for a sub-mm excess. This is parametrized by using two emissivity
indices for shorter and longer wavelengths. The break wavelength
is a free parameter in our model. For the JINGLE sample we
find values in the range 480–488μm. The emissivity index at
wavelengths shorter than λbreak (β1) is in the range 0.6–2.2. The
range of the second emissivity index at wavelengths > λbreak (β2) is
larger (0.1–3.3). We compared the results obtained using the BMBB
model with the results from the SMBB model (Fig. 7). The dust
masses measured with the BMBB model are in agreement with the
ones measured with the SMBB model, with a maximum difference
of 0.1 dex. The BMBB model measures generally slightly lower
temperatures than the SMBB model (median difference of 1 K).
In the case of a shallower slope of the sub-mm SED, the SMBB
model fits it by using a lower value of β and a higher T. The
BMBB can correct using a smaller value of β2, without affecting
the temperature measurement. Thus, T does not depend anymore
on the longer wavelength points and can have a lower value. We
compare also the emissivity index β from the SMBB model, with
the parameter β1 that describes the slope of the BMBB model before
the break. β1 tends to be larger than β from the SMBB for low values
of β. This is due to the fact that any excess at longer wavelength can
be modelled by a second index β2, while in the case of the SMBB
the excess needs to be taken into account by β.

The results from the BMBB model are more similar to the SMBB
fit without the 850μm point. This is due to the fact that the BMBB
model fits the fluxes at longer wavelengths (500 and 850μm point)
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Figure 6. Comparison of the dust masses, temperatures, and emissivity indices obtained through the fit of an SMBB using the hierarchical approach, with
and without the SCUBA-2 flux point at 850μm. The lower panels show the difference between fit with and without the SCUBA-2 flux in each of the derived
properties.

using a second emissivity index β2, thus the measurements of T and
β1 are not sensitive to the flux measurement at 500μm and 850μm.
Fig. 8 shows an example of the SMBB and BMBB fit of one galaxy
for which the difference in temperature is more evident (JINGLE 1).
This model is especially useful to quantify the possible sub-mm
excess, given by the difference between the two emissivity indices
β1 and β2. Further discussion on the sub-mm excess is presented in
Section 5.2.

4.3.2 TMBB

The bottom panels of Fig. 7 show the comparison of the SMBB
and the two MBB models (TMBB). The dust masses are in good
agreement, with the cold dust masses derived from the TMBB being
slightly higher (median offset: 0.03 dex).

The dust temperatures of the cold component obtained with
the TMBB model tend to be lower than the ones measured
from the SMBB model by about 3 per cent (or 0.8 K). This is
expected, since the warm component is contributing to the fit of
the 100μm flux, allowing the cold component to shift to longer
wavelengths, corresponding to colder temperatures. Consequently,
the βcold values from the TMBB are also slightly higher (median
offset: 0.05). The outlier is JINGLE 33 (Fig. 9). This galaxy has
a high 60μm flux, compared to the 100μm flux, which results
in the warm dust component (with Twarm = 52.3 K) reproducing
most of the emission, and skewing the cold dust component
to a lower temperature (Tcold = 17.2 K) and a higher dust
mass.

The warm dust component does not contribute much to the
entire dust mass. Warm dust masses are in the range 103.4−106.6

M�, which correspond to only 0.01–4.4 per cent of the total dust
mass of the galaxies. Nevertheless, it is important to take into
account this component because, as we have shown, it can affect
the measurement of the temperature and emissivity β of the cold
component. The temperatures of the warm component are in the
range 66−76 K, with the exception of JINGLE 33 which has a
lower temperature (52.3 K).

If we compare the total dust masses (Mdust,tot = Mcold + Mwarm)
from the TMBB with the cold dust masses Mcold from the SMBB,
the latter are smaller by 10 per cent (∼0.08 dex) on average. Other
studies found that fitting the SED using the TMBB model will
result in higher cold dust masses. For example Gordon et al. (2014)
found that the dust masses of the Small and Large Magellanic
Clouds are 6–15 times larger when estimated using a TMBB
model instead of the SMBB model. Clark et al. (2015) found
that the warm dust mass can contribute up to 38 per cent of the
total dust mass of galaxies in the Herschel-ATLAS survey. The
disagreement with our findings is probably due the fact that these
studies do not include the 22μm flux point in their fit. Consequently,
their warm component is shifted to longer wavelength and has
lower temperature than ours, thus contributing more to the total
dust mass. The cold dust temperature of the TMBB will also be
smaller than in the SMBB case, thus resulting in higher cold dust
masses.

4.4 Model comparison with information criterion

In order to decide which of the models provides a better fit to
the data, we applied a criterion based on the comparison of the
likelihoods. We consider the Bayesian Information Criterion (BIC)
(Schwarz 1978) that takes into account not only the likelihood of the
fit, but also the number of free parameters of the models. The latter
point is important, since increasing the number of free parameters
would generally lead to better fits. The BIC (Schwarz 1978) is
defined as

BIC = −2 · ln(L) + q · ln(m), (24)

where L is the likelihood (i.e. the probability of the data given the
parameter p(F|θ )), q is the number of free parameters of the model,
and m is the number of data points (wavebands). The model with the
lowest BIC value is the preferred model according to this criterion.
To calculate the likelihood Li for the ith galaxy we consider the
product of the likelihood p(F obs

i,j |θi , F
err
i,j , δj ) in all wavebands j =
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4400 I. Lamperti et al.

Figure 7. Upper panels: Comparison of the cold dust masses, temperatures, and emissivity index obtained through the fit of an SMBB and a broken emissivity
power-law MBB model (BMBB). For the BMBB model, the β value shown in the plot is β1, i.e. the emissivity index at wavelength < λbreak. The lower
sub-panels show the difference between the two models in each of the derived properties. Bottom panels: Comparison of the results from the SMBB and TMBB
models. For the TMBB model, the values shown in the plot are the parameters of the cold component (log Mcold, Tcold, βcold).

1, . . . , m.

Li =
m∏

j=1

p(F obs
i,j |θi , F

err
i,j , δj ). (25)

Fig. 10 shows the BIC values for the BMBB and TMBB models
compared to the SMBB model. For most of the galaxies (180/192,
94 per cent), the TMBB model is preferred. This is probably due to
the fact that the additional warm component can help to improve
the fit at 100μm, without affecting the fit of the points at longer
wavelengths.

For seven galaxies the preferred model is the BMBB model
(JINGLE ID: 35, 56, 77, 101, 118, 133, and 147). In all these
galaxies there is a clear sub-mm excess at 850μm. The BIC
criterion does not identify all galaxies for which the 850μm flux is
enhanced with respect to the SMBB model, but selects the ones for

which the discrepancy cannot be attributed to flux uncertainties or
uncertainties in the model.

There are five galaxies that are best modelled with the SMBB
model (JINGLE ID 83, 110, 142, 159, and 186). The TMBB
model is not able to fit well the 60 and 100μm flux points of
these galaxies. For JINGLE 83 and JINGLE 159, the 60μm flux
is too low and is not well fitted by the TMBB model. For JINGLE
110 the 60μm, flux is instead too high compared to the 100μm
flux. For JINGLE 186, the uncertainty on the 60μm flux is very
small, and therefore even a small deviation from the perfect fit of
that data point results in a low likelihood. In JINGLE 142, the
500μm point is enhanced with respect to the 350μm flux point and
the 850μm upper limit. In general neither the SMBB and TMBB
models are able to produce a good fit for this galaxy. The SED fits
with the BMBB and TMBB models for all galaxies are shown in
Fig. D2.
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JINGLE – V. Dust properties 4401

Figure 8. SMBB and BMBB fit for the galaxy JINGLE 1, where there is a clear difference in the dust temperature measured with the two different models.

Figure 9. SMBB and TMBB fit for the galaxy JINGLE 33, which shows a clear difference in the cold dust mass measured with the two different methods.
The warm component has a large contribution to the total dust emission in this galaxy.

We conclude that the TMBB model produces the best fit of the
FIR SED for most of the galaxies. Additionally, the comparison of
the BIC of the SMBB and BMBB model can be used to identify
galaxies which show a strong sub-mm excess or deficit.

5 R ELATION BETWEEN DUST PRO PERTIES
AND GA LAXY PROPERTIES

In this section, we investigate how dust properties correlate with
global galaxy properties. We use the results obtained using the
SMBB model, even though the TMBB model is preferred according
to the BIC. We decide to use the SMBB model because one of the
goals of this analysis is to provide prescriptions to estimate T and β

from other galaxy quantities. These prescriptions can be useful in
those cases where only a few photometric data points are available
and in such cases it is preferred to use the model with the smallest
number of free parameter (i.e. the SMBB model). Additionally, as
we have shown in the previous section, the differences in T and β

derived from the SMBB and the TMBB models are not very large
and they are mainly systematic shifts, that can be accounted for.

We include in this analysis also the galaxies from the HRS
(Boselli et al. 2010), which allow us to extend the parameter range
to lower SFR and specific SFR (SSFR), since a large fraction of

the HRS sample are galaxies that lie below the star formation main
sequence (see Fig. 1). In this case, the total sample of galaxies
consists of two populations: star-forming galaxies (main-sequence
galaxies) and passive galaxies (below main-sequence). Therefore,
the basic assumption for the use of the hierarchical method that all
galaxies belong to the same population does not hold any more.
We therefore divide the ‘total’ sample (JINGLE + HRS) into two
sub-samples according to their position in the SFR–M∗ plane and fit
each separately. In this way, the assumption that the galaxies in one
sub-sample belong to the same population is still valid. We define
the two sub-samples as follows:

(i) Main-sequence galaxies/star-forming sample: Galaxies be-
longing to the SF main sequence or laying above it. This sample
consists of all galaxies which fall above the lower limit of the SF
main sequence, defined as 0.4 dex below the SF main sequence
from Saintonge et al. (2016).

(ii) Below main-sequence sample/passive sample: Galaxies lay-
ing below the SF main sequence. These are the galaxies which lie
more than 0.4 dex below the SF main sequence defined by Saintonge
et al. (2016).

The star-forming sample consists of 313 galaxies (177 from
JINGLE and 136 from HRS) and the passive sample of 159 galaxies
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Figure 10. Comparison of the negative Bayesian Information Criterion
(−BIC) for the fit using the three models: SMBB, BMBB, TMBB. The
model with the largest value of −BIC is the preferred model. If the difference
between the BICs is smaller than 2 (shown by the dotted lines), there is little
evidence to prefer one model over another.

(15 from JINGLE and 144 from HRS). We did a test fitting galaxies
belonging to the two sub-samples together. This test confirms that
it is necessary to separate the sample in two, to avoid to force the
two sub-samples to move towards a common mean, introducing
systematic biases in the results.

Fig. 11 shows the galaxies on the SFR–M∗ plane, colour-coded
by dust temperature T and emissivity index β. The dust temperature
increases when moving from the bottom-right corner (high M∗, low
SFR) to the upper-left corner (low M∗, high SFR). The emissivity β

instead tends to increase with M∗. From this figure we can already
see that T and β are related to different galaxy properties, with T
varying depending on the SSFR and β on the stellar mass.

We quantify the strength of these relations by calculating the
correlation coefficients between T, β and the following quantities:
stellar mass, stellar mass surface density (μ∗ = M∗/(2πR2

50), where
R50 is the optical half-light radius in the i band from SDSS),
metallicity (12 + log(O/H), using the O3N2 calibration of Pettini &
Pagel 2004), H I mass fraction (MH I/M∗), SFR, SSFR, SFR surface
density (�SFR), and SFR divided by dust mass. We consider all
quantities in log space.

We calculate the Pearson correlation coefficient R and perform
a linear fit when the absolute value of the correlation coefficient
is higher than 0.4, both for the total sample and for the JINGLE
and HRS samples separately. We did the fit also for the two
samples separately to see whether there are differences in the
correlations derived using JINGLE or HRS. We apply a correction
to account for the fact that the stellar mass distribution of our
sample does not exactly represent the stellar mass distribution in the
local Universe, using the method developed for the xCOLD GASS
survey (Saintonge et al. 2017). We compare the mass distribution
of our sample, in bins of 0.1 dex in log M∗, to the expected mass
distribution of a volume-limited sample based on the stellar mass
function from Baldry et al. (2012). For each mass bin, we calculate

the ratio between the normalized number of galaxies in our sample
and in the mass distribution from Baldry et al. (2012). We apply this
ratio as a statistical weight when we fit the dust scaling relations.
The correlation coefficients and parameters of the linear fits are
summarized in Table 4.

We find that the emissivity β shows a positive correlation with
log M∗ (Pearson correlation coefficient R = 0.58), log μ∗ (R =
0.62), and metallicity (R = 0.58). Since these galaxy properties
are all correlated with each other, it is not surprising that they all
correlate with β. These trends were already observed by Cortese
et al. (2014) in the HRS sample. They also observed negative
correlations of these quantities with dust temperature T, due to
the fact that they used a non-hierarchical method for the fitting and
therefore they could not break the degeneracy between T and β.
Thus, they were not able to distinguish whether the fundamental
physical correlations were driven by the temperature or by the
emissivity index. In our analysis, these three quantities do not
show a strong anticorrelation with temperature (−0.29 ≤ R ≤
−0.19). We note that for the JINGLE galaxies the metallicities
are measured from the SDSS fibre spectra and therefore represent
only the metallicities in the central 3 arcsec of the galaxies. For the
HRS sample, metallicities are measured from long-slit integrated
optical spectra (Boselli et al. 2013; Hughes et al. 2013), and thus
represent better the global metallicities of the galaxies. Indeed
we find that the correlation between β and metallicity is higher
(R = 0.67 if we consider only the HRS sample. We also find an
anticorrelation between β and the H I mass fraction (R = −0.65),
that was already observed in Cortese et al. (2014). In this case, the
H I mass fraction shows a weaker correlation with dust temperature
(R = 0.41). The H I mass fraction is known to correlate with the
inverse of the stellar mass surface density and with SSFR (Catinella
et al. 2013). Thus, it is expected to see an anticorrelation with β

and a positive correlation with T, due to the correlation of SSFR
with T.

The dust temperature correlates with log SSFR (R = 0.54),
log �SFR (R = 0.49), and log SFR/Mdust (R = 0.73). These
correlations have already been observed by Clemens et al. (2013)
and Cortese et al. (2014). As stated in Clemens et al. (2013),
the fact the cold dust temperature correlates with SFR surface
density but not with stellar mass surface density suggests that
the cold dust is heated more by ongoing star formation or by
young stars. Also Kirkpatrick et al. (2014) observed a correlation
between cold dust temperature and SFR normalized by the 500μm
luminosity, that is a proxy for the dust mass, on spatially resolved
scales in galaxies from the KINGFISH sample (Kennicutt et al.
2011). According to their work, this correlation suggests that
the number of photons from young stars relative to the amount
of dust has an important heating effect on the diffuse cold dust
component. Moreover, Galametz et al. (2012) studied a sub-sample
of galaxies from the KINGFISH sample and observed that the
higher dust temperatures coincide with the centre of star-forming
regions, showing a connection between dust temperature and star
formation.

The temperature of the dust is regulated by the radiation from star
formation, weighted by the amount of dust present in the galaxy.
The relation between T and SSFR shows more scatter at low SSFR.
This may be related in part to the fact that SFR measurements are
less accurate for low SSFR (log SSFR < −10.6; Hunt et al. 2019).
Also it is likely that the contribution of the older stellar population
to the dust heating is higher in low SSFR galaxies, since the star
formation is weak and the contribution from old stars can be more
significant.

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by guest on 16 O
ctober 2019



JINGLE – V. Dust properties 4403

Figure 11. Distribution of the JINGLE and HRS sample in the SFR–M∗ plane, colour-coded by dust temperature (left) and emissivity index β (right). Dust
temperatures and β are measured using the SMBB model and the hierarchical SED fitting approach. The position of the star formation main sequence (Saintonge
et al. 2016) is shown as a dashed lines, the 0.4 dex dispersion is shown by dotted lines.

5.1 Primary correlation analysis

In this section, we investigate which are the primary parameters
driving the correlation with dust properties. This analysis has two
goals: (1) to provide prescriptions to estimate the temperature T and
the emissivity index β of the dust from other galaxy properties and
(2) to understand which are the physical quantities that influence
and set T and β in a galaxy.

We perform a Bayesian inference analysis to find the best
combination of parameters that can be used to estimate the dust
properties. We consider the galaxy parameters which, alone or
combined, show some correlation with β and T: stellar mass M∗,
SFR, dust mass, metallicity, and surface area (A = 2πR2

50, where
R2

50 is the optical half-light radius in the i band from SDSS in kpc).
The surface area is used to calculate, for example, the SFR and stellar
mass ‘surface density’. We fit first-order polynomial models with a
different number of parameters, exploring all possible combinations
of parameters. The number of possible combination of k parameters
selected from a total sample of n parameters is Cn,k = n!

k!(n−k)! . We
use a first-order polynomial model in log space:

Qmodel(x1, . . . , xk) =
k∑

j=1

aj log(xj ) + b, (26)

where k is the number of galaxy properties xj considered, and Qmodel

is the value of the dust quantity (T or β) approximated by the model.
We use a Bayesian inference method to determine the optimal
number of parameters needed to fit the data and the best-fitting
relations. We model the probability of observing our data, given the
model and the uncertainties, as a normal distribution:

p(Qi |Qmodel,i(x1,i , . . . , xk,i),Qerr,i)

= wi · Normal(Qmodel,i , Qerr,i), (27)

for each galaxy i in our sample, where wi is the weight correcting
for the flat M∗ distribution (see Section 5). We consider only
the uncertainties on the dust quantity Qi, but not on the galaxy
properties xj,i. We make this choice because we want to minimize
the difference between Qi and Qmodel,i, given the quantities xj,i. We
perform an MCMC fit using STAN to find the best-fitting parameters
and measure the likelihood of the different models. Then we apply
the BIC to find the optimal number of parameters and the best
model.

We consider first the models to estimate β. According to the BIC,
the preferred model has five parameters: stellar mass, surface area,
metallicity, SFR, and H I mass. The best-fitting relation is given by

βmodel = 0.26+0.03
−0.03 · log M∗ − 0.27+0.03

−0.03 · log area

+ 0.60+0.09
−0.09 · [12 + log(O/H)

] + 0.18+0.03
−0.03 · log SFR

− 0.23+0.03
−0.03 · log MH I − 3.54+0.82

−0.84. (28)

This model includes five parameters, several of which are known
to be correlated, therefore it is difficult to know which one is more
fundamentally related to β. To assess this, we measure the increase
in R2 that each parameter produces when it is added to a model that
contains already all other parameters. This change represents the
amount of variance that can be explained by each parameter and
that is not explained by the other variables. We measure R2 (0 < R2

< 1) as the squared Pearson correlation coefficient between the dust
parameter (β or T) and the ‘modelled’ parameter (βmodel, Tmodel), i.e.
the parameter estimated by the linear combination of galaxy proper-
ties. Table 5 shows the results. From the analysis of the increase of
the R2, we can see that the most fundamental parameter determining
β is the stellar mass (increase in R2: �R2 = 11.2 per cent). The
second one is the surface area (�R2 = 8.0 per cent). Since they
have opposite coefficients in the fit with almost the same magnitude
(0.26 ± 0.03 for M∗ and −0.27 ± 0.03 for the surface area), this can
be interpreted as the stellar mass surface density correlating with β.
If we consider stellar mass and surface area combined as a single
parameter in the analysis, the increase in R2 due to stellar mass
surface density is �R2 = 17.9 per cent. The following parameter
in order of importance is the metallicity (�R2 = 7.1 per cent). SFR
and H I mass cause a smaller increase in R2 (�R2 = 5.0 per cent
and 5.7 per cent, respectively), and the dust mass has a negligible
contribution (�R2 = 0.5 per cent).

Smith et al. (2012b) studied the variation of β in M31 (An-
dromeda). They found that β decreases with galactocentric radius.
Since also the stellar mass surface density, μ∗, in M31 decreases
with radius (Tamm et al. 2012), their result is consistent with a
correlation between β and μ∗. Köhler et al. (2015) found that
the emissivity index of grains evolve from lower to higher β

values when transitioning from diffuse to denser ISM due to grain
coagulations. If the stellar mass density is related to the density of
the ISM, this could explain the relation between β and the stellar
mass surface density.
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4404 I. Lamperti et al.

Figure 12. Dust scaling relations: correlation of dust temperature T and effective β with other global galaxy properties: stellar mass (M∗), stellar mass surface
density (μ∗ = M∗/(2πR2

50), where R2
50 is the optical half-light radius in the i band from SDSS in kpc), metallicity (12 + log(O/H), O3N2 calibration of

Pettini & Pagel 2004), H I mass fraction (MH I/M∗), SFR, SSFR, SFR surface density (�SFR), and SFR over dust mass (SFR/Mdust). Dust temperatures and
β are measured using the SMBB model and the hierarchical SED fitting approach. The JINGLE sample is shown in blue and the HRS sample in magenta.
Galaxies of the ‘main-sequence’ sample are shown with circles and galaxies of the ‘below main-sequence’ sample are shown with triangles. In every panel we
show the Pearson correlation coefficient R. For the cases where R > 0.4, the plot shows the linear fit to the JINGLE sample (in blue), to the HRS sample (in
magenta), and to the two samples together (in black).

As we have seen in the previous section, β correlates also with
metallicity and with the inverse of the H I mass fraction. This
indicates a relation between β and the state of evolution of a
galaxy: more evolved galaxies tend to have higher metallicity and
lower H I fraction. A possible interpretation of the variation of β

with metallicity and H I mass fraction is related to the structure
and composition of dust grains. Crystalline or carbonaceous dust
is characterized by a lower β with respect to amorphous or silicate
dust (Désert, Boulanger & Puget 1990; Jones et al. 2013). We
expect less evolved (metal-poor) galaxies undergoing an elevated
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Table 4. The table shows the Pearson correlation coefficient R between dust properties (dust emissivity index β and dust
temperature T) and global galaxy properties. If |R| > 0.4 we provide the best-fitting relation (slope and intercept) between
the selected galaxy property (p) and T (or β).

Properties p Correlation with β Correlation with T
R Slope Intercept R Slope Intercept

log M∗ 0.58 0.23 ± 0.02 − 0.60 ± 0.22 − 0.29
log μ∗ 0.62 0.30 ± 0.03 − 0.84 ± 0.27 − 0.19
12 + log(O/H) 0.58 0.95 ± 0.13 − 6.64 ± 1.16 − 0.19
log MH I/M∗ − 0.65 − 0.25 ± 0.04 1.56 ± 0.02 0.41 0.38 ± 0.23 23.07 ± 0.15
log SFR 0.20 0.21
log SSFR − 0.40 0.54 1.83 ± 0.19 41.02 ± 1.90
log �SFR 0.13 0.49 2.49 ± 0.23 26.74 ± 0.38
log SFR/Mdust − 0.15 0.73 3.40 ± 0.29 49.52 ± 2.32

Table 5. Increase in R2 when the parameter is added to a model
that already contains the other parameters.

β T

Parameter
Increase in �R2

(per cent)
Increase in �R2

(per cent)

log M∗ 11.2 0.5
log SFR 5.0 80.0
log area 8.0 2.4

12 + log(O/H)
7.1 1.5

log Mdust 0.5 13.6
log MH I 5.7 0.5

period of star formation activity to produce a lot of dust in stars
(Zhukovska 2014), and this dust has a more crystalline structure
at the beginning (Waelkens et al. 1996; Waters et al. 1996; de
Vries et al. 2010) and tends to become more ‘amorphous’ with
time (e.g. Demyk et al. 2001). Therefore, more evolved galaxies
can be expected to have more amorphous dust and higher β.
Additionally, silicate dust is thought to survive for a longer time
compared to carbon dust (e.g. Jones & Nuth 2011). Thus, we
expect dust in a more evolved galaxy to have a larger fraction of
silicate grains that are associated with higher values of β. Another
possible explanation for the relation between β and metallicity is
the observation that the abundance of carbon stars, which produce
carbon dust, decreases at high metallicities (Boyer et al. 2019). Thus,
we can expect high-metallicity galaxies to have less carbonaceous
dust and consequently a higher β.

Another possibility is that the low β values are due to temperature
mixing. In our analysis we are not measuring directly the emissivity
of dust grains but we are measuring an ‘effective β’, which includes
both the actual emissivity of the dust and the effect of temperature
mixing (e.g. Hunt et al. 2015). It has been shown that variations of
the dust temperatures along the line of sight can broaden the SED
and mimic the effect of a low β value (Shetty et al. 2009a). Rémy-
Ruyer et al. (2015) find the SED of low-metallicity dwarf galaxies
to be broader than the one of higher metallicity galaxies, consistent
with our finding of lower β in low-metallicity galaxies. They explain
this effect with the fact that dwarf galaxies have a clumpier ISM
that produces a wider distribution of dust temperatures.

Since the preferred relation to approximate β needs a large
number of parameters, we also provide the best relation with two
parameters (stellar mass and surface area) and with three parameters
(stellar mass, surface area, and metallicity), that are more practical

to use:

βmodel = 0.42+0.02
−0.02 · log M∗ − 0.37+0.03

−0.03 · log area − 1.97+0.18
−0.18,

(29)

βmodel = 0.28+0.03
−0.03 · log M∗ − 0.38+0.03

−0.03 · log area

+ 0.80+0.09
−0.09 · [12 + log (O/H)

] − 7.48+0.64
−0.67. (30)

A summary with the best relations for every number k of
parameters can be found in Table 6.

We perform a similar analysis to investigate which combina-
tion of parameters gives the better approximation of the dust
temperature T. According to the BIC, the preferred model has
three parameters: SFR, dust mass, and metallicity (BIC = 848.8).
Also the two-parameter model with SFR and dust mass has a
similar BIC (BIC = 849.6), meaning that adding the metallicity
parameter has only a small effect on improving the correlation.
This confirms our previous finding that dust temperature correlates
strongly with SFR per unit dust mass. The R2 analysis gives the
same result: the most important parameter is clearly the SFR
(�R2 = 87.9 per cent), with a secondary dependence on the dust
mass (�R2 = 16.6 per cent). The other four parameters have a very
small effect (�R2 < 3 per cent).

This relation is however of limited practical interest since it
requires prior knowledge of the dust mass. Therefore, we consider
also the two-parameter model with the best BIC that do not include
log Mdust as a parameter. The two-parameter model uses SFR and
stellar mass (R = 0.50):

Tmodel = 2.50+0.22
−0.22 · log SFR − 2.14+0.20

−0.19 · log M∗ + 44.24+1.93
−2.02.

(31)

Tables for T and β with all the relations with two or three
parameters are in the appendix (Tables E4 and E5).

5.2 Sub-mm excess

In this section, we discuss the behaviour of the SED at long
wavelengths (λ > 500μm). In particular, we are interested in
galaxies that show a so-called sub-mm excess. An excess at sub-mm
wavelength has been observed in dwarf galaxies (Lisenfeld et al.
2002; Galliano et al. 2003), in late-type galaxies (Dumke et al. 2004;
Bendo et al. 2006; Galametz et al. 2009), and in the Magellanic
Clouds (Bot et al. 2010; Israel et al. 2010). The most significant
excesses cannot be explained by contribution from synchrotron,
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Table 6. Results of the correlation analysis to derive an expression to approximate the emissivity β and the dust temperature using global galaxy properties.
The table shows the coefficients aj of the best polynomial expression (Qmodel(x1, . . . , xk) = ∑k

j=1 aj log(xj ) + b) to estimate β and T using a different number
of parameters k. The table also shows the BIC and the Pearson correlation coefficient R between the dust parameter (β or T) and the ‘modelled’ parameter
(βmodel, Tmodel), i.e. the parameter estimated by the linear combination of galaxy properties.

Emissivity index β

Parameters log M∗ log SFR log area 12 + log(O/H) log Mdust log MH I Intercept BIC R
(M�) (M� yr−1) (kpc2) (M�) (M�)

k = 1 0.98 ± 0.06 −6.77 ± 0.59 170.56 0.61
k = 2 0.42 ± 0.02 −0.37 ± 0.03 −1.97 ± 0.18 53.19 0.64
k = 3 0.28 ± 0.03 −0.38 ± 0.03 0.80 ± 0.09 −7.48 ± 0.64 −14.37 0.70
k = 4 0.33 ± 0.03 −0.29 ± 0.03 0.69 ± 0.10 −0.13 ± 0.03 −5.92 ± 0.69 −27.87 0.71
k = 5 0.26 ± 0.03 0.18 ± 0.03 −0.27 ± 0.03 0.60 ± 0.09 −0.23 ± 0.03 −3.54 ± 0.82 −54.40 0.73
k = 6 0.31 ± 0.04 0.23 ± 0.04 −0.25 ± 0.04 0.66 ± 0.10 −0.13 ± 0.08 −0.20 ± 0.04 −3.84 ± 0.89 −51.19 0.73

Temperature
Parameters log M∗ log SFR log area 12 + log(O/H) log Mdust log MH I Intercept BIC R

(M�) (M� yr−1) (kpc2) (M�) (M�)

k = 1 0.65 ± 0.13 22.93 ± 0.08 1024.78 0.15
k = 2 4.19 ± 0.29 −3.73 ± 0.30 51.88 ± 2.20 849.60 0.68
k = 3 4.06 ± 0.29 −1.85 ± 0.75 −3.31 ± 0.31 64.7 ± 5.44 848.76 0.68
k = 4 3.93 ± 0.31 −0.66 ± 0.28 −2.24 ± 0.79 −2.71 ± 0.41 64.13 ± 5.67 849.08 0.69
k = 5 0.36 ± 0.35 3.99 ± 0.32 −0.63 ± 0.29 −2.36 ± 0.76 −3.08 ± 0.57 64.86 ± 5.82 853.77 0.69
k = 6 0.29 ± 0.39 4.01 ± 0.33 −0.58 ± 0.30 −2.59 ± 0.81 −2.86 ± 0.64 −0.23 ± 0.29 67.87 ± 7.28 859.06 0.70

free–free or molecular line emission (e.g. Galliano et al. 2003).
Different explanations proposed to explain this phenomenon are for
example the presence of a very cold dust component, a temperature-
dependent emissivity (Meny et al. 2007), and the presence of
rotating or magnetic grains (Draine & Hensley 2012).

We identify the galaxies with an excess at 850μm with respect to
the SMBB model, taking into account uncertainties on the SCUBA-
2 fluxes and on the SMBB model:

F obs − F model > F obs
err + F model

err . (32)

There are 27/192 galaxies (14 per cent) that satisfy this criterion.
If we adopt a more stringent criterion, requiring the galaxy to
have an excess above 2σ (i.e. (F obs − F model) > 2 · F obs

err ), we find
that 24 galaxies (12 per cent) satisfy this criterion. From a normal
distribution, we would expect to find only 2.5 per cent of the galaxies
with an excess above 2σ , thus we think that it is a statistically
significant result. The galaxies with sub-mm excess do not appear
to be in a particular region of the SFR–M∗ plane (see Fig. 13). There
also some galaxies that show a deficit at 850μm.

A weak point of this analysis is that the sub-mm excess is
determined only by a single point, the 850μm SCUBA-2 flux.
Therefore, the presence of an excess can also be due to a number
of factors including measurement errors, uncertainties on the
apertures, contamination by other sources, and uncertainties on the
CO(3–2) contribution. In order to better characterize and quantify
the sub-mm excess, additional flux points at longer wavelengths
are needed. We plan to investigate this in the future. We have an
accepted proposal to observe 18 JINGLE targets at 1 and 2 mm
with NIKA-2 on the IRAM-30 m telescope. With two additional
flux points we will be able to characterize better the sub-mm excess
and to test different models proposed to account for it.

6 C O N C L U S I O N S

In this paper, we analyse a sample of 192 star-forming galaxies
from the JINGLE survey. We also include in the analysis 323
galaxies from the HRS to expand our analysis to galaxies with
lower SSFR. We fit their far-infrared/sub-mm SED with MBB

Figure 13. JINGLE galaxies with a sub-mm excess are shown by red stars
symbols, while the JINGLE sample is shown in light blue. The position
of the star formation main sequence (Saintonge et al. 2016) is shown as a
dashed lines, the 0.4 dex dispersion is shown by dotted lines.

models using a hierarchical Bayesian approach that allows to
reduce the degeneracy between parameters, especially between dust
temperature and emissivity index β. We consider three models:
SMBB, TMBB, and MBB with a broken emissivity law (BMBB).

The main results of our study are as follows:

(i) Dust masses: The choice of the model (SMBB, BMBB, or
TMBB) has only a small effect on the dust mass estimates. The
cold dust masses measured with the TMBB are larger than the ones
measured by the SMBB by only 0.04 dex on average, and the dust
masses measured with the BMBB model agree very well with the
SMBB results.

(ii) T–β relation: The use of the hierarchical Bayesian approach
to fit the FIR SED is crucial to infer the intrinsic relation between
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dust temperature and dust emissivity index β. In the JINGLE
sample, the anticorrelation between T and β is reduced when we
use the hierarchical approach (R = −0.52) with respect to the non-
hierarchical result (R = −0.79). Using the hierarchical approach,
both T and β span smaller ranges (17 K < T < 30 K, 0.6 < β <

2.2) with fewer outliers.
(iii) Dust scaling relations: The hierarchical approach is able

to reduce the degeneracy between T and β and to separate their
relations with other galaxy properties. We find that the dust
emissivity index β correlates with stellar mass surface density,
metallicity and anticorrelates with H I mass fraction (MH I/M∗). The
strongest relation is with stellar mass surface density. The dust
temperature correlates with H I mass fraction, SSFR, SFR surface
density, and SFR per unit dust mass. The strongest relation is with
SFR per unit dust mass. These relations can be used to estimate the
dust temperature or emissivity index in galaxies where insufficient
data prevents determining them directly through SED fitting.

(iv) Sub-mm excess: We observe an excess at 850μm with respect
to the flux predicted from the SMBB fit in 26/192 (14 per cent)
galaxies, but we do not find these galaxies to lie in a particular
region in the stellar mass–SFR plane. Additional flux points at
longer wavelengths are needed to better characterize the sub-mm
excess and to investigate its origin.

The dust scaling relations derived in this work based on low-
redshift galaxies show that dust properties correlate with global
galaxy properties. After calibrating these relations with data at
higher redshift, they could be applied to the study of high-redshift
galaxies. Thanks to ALMA it is now possible to detect dust emission
in galaxies at redshifts as high as z > 7 (e.g. Watson et al. 2015;
Laporte et al. 2017), but the measurement of dust masses in these
objects is difficult due to the scarcity of photometric points. The
possibility to use scaling relations to predict what dust properties to
apply in the SED modelling will increase the precision of the dust
mass measurements in the early Universe, and consequently will
help our understanding of dust evolution over cosmic time.
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Jones A. P., Fanciullo L., Köhler M., Verstraete L., Guillet V., Bocchio M.,

Ysard N., 2013, A&A, 558, A62
Juvela M., Montillaud J., Ysard N., Lunttila T., 2013, A&A, 556, A63
Kelly B. C., Shetty R., Stutz A. M., Kauffmann J., Goodman A. A.,

Launhardt R., 2012, ApJ, 752, 55
Kennicutt R. C. et al., 2011, PASP, 123, 1347
Kirkpatrick A. et al., 2014, ApJ, 789, 130
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617, A124
Zhukovska S., 2014, A&A, 562, A76

SUPPORTI NG INFORMATI ON

Supplementary data are available at MNRAS online.

Figure D2. FIR SED of the galaxies of the JINGLE sample, fitted
with the hierarchical approach using the three models: SMBB (left-
hand panel), BMBB (middle panel), and TMBB (right-hand panel).
Table E1. Result parameters from the hierarchical SED fitting using
the SMBB model.
Table E2. Result parameters from the hierarchical SED fitting using
the BMBB model.
Table E3. Result parameters from the hierarchical SED fitting using
the TMBB model.
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APPENDI X A : N ORMAL D I STRI BUTI ON
VERSUS STUDENT’S t-DI STRI BUTI ON

In this section, we investigate how the choice of the prior distribu-
tions affect the results. In particular, the distribution of the parameter
population p(θ |μ, �) and the noise distribution p(F obs

j |θ , F err
j , δj ).

The Student’s t-distribution is appropriate for robust statistical
models (Gelman et al. 2004; Kelly et al. 2012) and it is recom-
mended when the measurement errors are assumed to be Gaussian,
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Figure A1. Comparison of the dust masses, temperatures, and emissivity index obtained through the fit of an SMBB using the hierarchical approach, assuming
a normal or a Student’s t-distribution with 8 degrees of freedom for the distribution of the parameters given the hyper-parameters p(θ |μ, �).

but their standard deviation is not known but only estimated. If
we assume that the true variance σ 2 follows a Scaled Inverse-
χ2 distribution with scale parameter σ ′2 (the estimated variance),
then modelling the noise as a Student’s t-distribution with standard
deviation σ ′ is equivalent to the assumption that the noise is normal
distributed with a standard deviation σ (Gelman et al. 2004). For
the choice of the degrees of freedom we follow Kelly et al. (2012)
and used f = 3, since it is the smallest value for which mean and
variance of the distribution are finite. The results do not depends
strongly on change on f which are less than an order of magnitude
and f < 10 is a typical choice for robust models (e.g. Gelman et al.
2004). For a Student’s t-distribution with f = 3, (61.5 per cent,
86.5 per cent, 94.6 per cent) of the distribution lie within (1σ ,
2σ , 3σ ) from the mean, respectively. In comparison, for a Gaus-
sian distribution thepercentages are (68.3 per cent, 95.4 per cent,
99.7 per cent).

First, we focus on the population distribution of the parameters
given the hyper-parameters (mean and standard deviation). We
consider two distributions: normal and Student’s t-distribution,
which compared to the normal distribution allows for more outliers
in the tail of the distribution. For the Student’s t-distribution we use
f = 8 degrees of freedom, which is the value we use for the analysis
in this paper. As we can see from Fig. A1, the results do not change
much. The dust masses do not vary depending on the choice of
the sample distribution. Temperature and β show small differences,
within the uncertainties, and no systematic offset. We conclude that
the choice of the distribution does not affect the results critically.

The second assumption on the priors is about the noise distri-
bution. We consider also in this case a normal and a Student’s
t-distribution with three degrees of freedom (see description in
Section 3.4). The Student’s t-distribution is less sensitive to flux
points which may be outliers, due to large uncertainties or to the

Figure A2. Comparison of the dust masses, temperatures, and emissivity index obtained through the fit of an SMBB using the hierarchical approach, assuming
a normal distribution or a Student’s t-distribution with three degrees of freedom for the noise.
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4410 I. Lamperti et al.

Figure A3. Relation between the dust temperature and dust emissivity
index (T–β relation) from the SMBB hierarchical fit of the JINGLE sample
assuming a Student’s t-distribution with three degrees of freedom for the
noise.

noise being underestimate. Fig. A2 shows the comparison plots.
Again, the dust masses are robust with respect to the choice of
the noise distribution. Temperature and β, on the other hand, show
some variations, with the results obtained using the Student’s t-
distribution covering a smaller range of T and β values with respect
to the results from the normal distribution (T = 18−27 K, β =
1.1−2.1 for the Student’s t-distribution, T = 17−30 K, β = 0.6−2.2
for the normal distribution). The values of T or β which differ more
from the mean values are determined mostly by the flux points
at long (850μm) or short wavelengths (100μm). These are also
the flux points which on average have the largest measurement
uncertainties. With the assumption of a Student’s t-distribution, we
imply that the deviation of the SED shape from an SMBB with
mean parameter values is not due to a change in T or β, but is more
likely due to uncertainties in the flux measurements, which lead to
’outlier’ flux points. Therefore, the measured T and β will cover a
smaller range of values.

The choice of the noise distribution affects consequently also the
derived relation between T and β, shown in Fig. A3. Assuming
a Student’s t-distribution for the noise, the results show a weak
anticorrelation (R = −0.12) between T and β. This is similar to
the result obtained from the fit without the 850μm point. The fit
with Student noise assumes that the variations at 850μm are due
to larger uncertainties on the estimate of the 850μm uncertainties,
rather than to a real variations in the sub-mm slope of the SED.
Therefore, the fit tends to ‘ignore’ the extreme 850μm flux points.
In some cases the 850μm point does not follow the same SED
slope as the other points, but it shows an excess or a deficit. We
have two ways to model this type of SED. One possibility is to
assume that the true uncertainties on the 850μm point are larger
than the estimated ones, and therefore model the SED assuming
a Student’s t-distribution. If instead we believe that the different
behaviour of the SED at wavelengths longer than 500μm is real,
we can model the noise using a normal distribution. In this paper,
we decide to model the noise using a normal distribution.

APPENDIX B: U PPER LIMITS FORMALISM

In the case of a non-detection in one of the bands, the likelihood
needs to be modified to include an upper limit for the non-detection.

Following the formalism described in Sawicki (2012), the upper
limit of an observation provides a limit on the evaluation of a
definite integral. For a measured flux, Fj, which is clearly detected,
the probability of observing our data, given the true value of the
observables F true

j and the measurement uncertainties F err
j , is

p(Fj |F true
j , F err

j ). (B1)

In the case of a single non-detection, we consider the upper limit
Flim,j, and the probability is

p(Flim,j |F true
j , F err

j ) =
∫ Flim,j

−∞
p(Fj |F true

j , F err
j )dFj . (B2)

Non-hierarchical: In the non-hierarchical approach, the likeli-
hood in case of a non-detection on the jth flux measurement is
given by

p(Fobs|θ ) =
∫ Flim,j

−∞
MultiNormal(Fobs|Fmod(θ ), C)dF obs

j . (B3)

Since the likelihood evaluation in case of upper limits includes the
computation of integrals, the use of upper limit is computationally
expensive. Thus, we allow our code to perform the SED fit with
one flux point as upper limit at most, to avoid that the code has to
calculate too many integrals. If more than one band has an upper
limit, we consider only the upper limit in one band and we neglect
the other flux point. We prefer to keep the 850μm point, if it is an
upper limit, since it is the longest wavelength point and it is the one
that places more constraints on the SED slope.

Hierarchical: Similarly, for the hierarchical method the likeli-
hood for the ith galaxy in case of a non-detection in the jth band
is

p(Fi
obs|θi )

=
∫ Flim,i,j

−∞
MultiNormal(Fi

obs|Fi
mod(θi ), Ci)dF obs

i,j . (B4)

If the upper limit is in a band whose uncertainties are not
correlated with other bands (i.e. the SCUBA-2 850μm band or
the IRAS 60μm band), the expression for the upper limit can be
divided in two parts, and the part that does not depend on Fi,j can
be taken out of the integral:

p(Fi
obs|θi )

= MultiNormal(F
′
i

obs|F ′
i

mod(θi ), C
′
i )

·
∫ Flim,i,j

−∞
p(F obs

i,j |F mod
i,j (θi ), F

err
i,j )dF obs

i,j

= MultiNormal(F
′
i

obs|F ′
i

mod(θi ), C
′
i )

·
∫ Flim,i,j

−∞
Normal

(
F obs

i,j |F mod
i,j (θi ),

√
Ci,jj

)
dF obs

i,j , (B5)

where F
′
i is the (m − 1)-dimensional vector equal to the vector

Fi but without the jth component. Similarly, C
′
i is equal to the

covariance matrix Ci, but without the jth component. Ci,jj is the jj
component of the covariance matrix Ci for the ith galaxy.

The integral of the univariate normal distribution can then be
computed analytically:

∫ ylim

−∞
Normal(y|μ, σ )dy = 1√

2πσ
·
∫ ylim

−∞
exp

(
− 1

2

(
y − μ

σ

)2
)

dy

= 1

2

[
erf

(
ylim − μ√

2σ

)
+ 1

]
, (B6)
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where ‘erf’ is the error function. If the upper limit is in one of the
Herschel bands, the integral can also be computed analytically, but
it requires more computations and it slows down code. Therefore,
we decide to ignore the points with non-detections in the Herschel
bands.

APP ENDIX C : A DDITIONA L SIMULATIONS

T−β anticorrelated: The second test we did was to see whether the
hierarchical code can recover a T–β anticorrelation. We simulated
100 SEDs with temperatures uniformly distributed in the range
20–30 K and the corresponding β given by the relation:

β = −0.121 · T + 4.595. (C1)

The slope and intercept of this relation are derived from the results
of the non-hierarchical fit to the real data. We also added some

scatter to the T−β anticorrelation. As before, we kept the dust mass
constant (log M = 8 M�).

Fig. C1 shows the results from the hierarchical and non-
hierarchical method. The non-hierarchical method points move
in the T−β anticorrelation direction. Thus, even if the T−β

anticorrelation is maintained, the differences between input values
and measured values can be up to 8.6 K in temperature and 0.7
in β. Also the hierarchical code is able to recover the T−β

anticorrelation. The difference between input and measured are a bit
smaller than in the non-hierarchical case (<5.8 K in temperature and
0.5 in β).

Comparing directly the input and output parameters, we see that
the largest discrepancies between input and output temperatures
happen for high-temperature values. This is due to the fact that the
FIR SED moves to lower wavelengths with increasing temperature.
Thus, for the high-temperature models (T > 30 K), the peak of

Figure C1. Results of temperature and β derived from the fit of 100 simulated SMBB SEDs with T–β anticorrelated and the same dust mass (log Mdust =
8 M�). The temperature are linearly distributed and some scatter is added around a linear T−β relation. We added to every band Gaussian noise with an
amplitude proportional to the level of noise present in our data in that band. The output values are derived with the non-hierarchical (left-hand panel) and
hierarchical (right-hand panel) fitting approach. In red are shown the input values and in blue are the measured values (outputs), the grey lines connect the
corresponding inputs and outputs.

Figure C2. Results of temperature and β derived from the fit of 100 simulated SMBB SEDs with T–β correlated and the same dust mass (log Mdust = 8 M�).
The temperature are linearly distributed and some scatter is added around a linear T−β relation. We added to every band Gaussian noise with an amplitude
proportional to the level of noise present in our data in that band. The output values are derived with the non-hierarchical (left-hand panel) and hierarchical
(right-hand panel) fitting approach. In red are shown the input values and in blue are the measured values (outputs), the grey lines connect the corresponding
inputs and outputs.
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4412 I. Lamperti et al.

the SED is at wavelengths <100μm, which are not sampled by
our data points/bands. This problem affects also the measurements
of β: if the temperature is not well constrained, also β will
not be determined with high precision, due to the degeneracy
between the two parameters. Additionally, due to the assumed
T–β anticorrelation, high T values correspond to low β values,
i.e. shallower slopes of the SED. This will also contribute to the
difficulties of accurately measure T and β.

T–β correlated: We did the same test for positive correlation
between T and β, parametrized by the relation:

β = 0.121 · T − 1.325. (C2)

As we can see from the left-hand panel of Fig. C2, the non-
hierarchical method is not able to recover the positive correlation.
The results of the fitting move away from the input values along
diagonal lines in the T−β plane, following the anticorrelation
line. The right-hand panel of Fig. C2 shows the results from the

hierarchical SED fitting. The code can recover the input values and
the trend quite well. We note that the difference between input and
output is often larger than the error bars. The points tend to move
along diagonal lines in the T−β plane, following the anticorrelation
line. Therefore some points move outside the input correlation.
However, the difference between input and output are small enough,
that the T−β positive correlation is visible also in the outputs
value.

From these tests we can conclude that the hierarchical approach
performs better than the non-hierarchical approach in all three cases
of single input, T−β correlation, and anticorrelation. In the case of
a positive correlation, we note that even in the hierarchical approach
the difference between input and output values can sometimes be
larger than our errorbars. The differences in temperature are <3 K,
and the difference in β are <0.3. For comparison, in the non-
hierarchical case, the differences in temperature are <16 K, and the
difference in β are <0.8.
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JINGLE – V. Dust properties 4413

APPEN D IX D : PLOTS OF THE FITTED SE D

Figure D1. Example of the posterior PDFs of the model parameters obtained using the hierarchical method for the fit of one galaxy (JINGLE 147). The three
panels show the results of fit using the SMBB (upper left), BMBB (upper right), and TMBB (bottom) models. The blue line indicates the median values, the
dotted lines show the 16th and 84th percentiles that indicate the 1σ uncertainties on the parameters.
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4414 I. Lamperti et al.

Figure D2. FIR SED of the galaxies of the JINGLE sample, fitted with the hierarchical approach using the three models: SMBB (left-hand panel), BMBB
(middle panel), and TMBB (right-hand panel). The shaded regions show the lower and upper 1σ uncertainties on the SED models, defined by taking the
maximum and minimum flux values of the models with likelihood values in the highest 68th percentile. Additional figures showing the entire sample of 192
JINGLE galaxies are available online.
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APPEN D IX E: TABLES

Table E1. Result parameters from the hierarchical SED fitting using the SMBB model. The parameters of the model are the dust mass (log Mc),
temperature (Tc), and emissivity index (βc). The last column is the natural logarithm of the likelihood, i.e. the probability of the observed fluxes
given the model parameters (p (F|θ)). This table is available in its entirety in a machine-readable form in the online journal. A portion is shown
here for guidance regarding its form and content.

JINGLE ID SDSS name log Mc Tc βc ln L
(M�) (K)

0 J131616.82+252418.7 7.25 ± 0.05 27.92 ± 1.98 1.17 ± 0.18 11.82
1 J131453.43+270029.2 7.66 ± 0.07 24.33 ± 2.48 0.91 ± 0.26 7.28
2 J131526.03+330926.0 7.22 ± 0.14 20.69 ± 3.78 1.15 ± 0.51 11.54
3 J125606.09+274041.1 7.15 ± 0.04 28.57 ± 1.84 1.51 ± 0.16 14.33
4 J132134.91+261816.8 7.63 ± 0.04 24.50 ± 1.56 1.57 ± 0.18 12.13
5 J091728.99−003714.1 7.91 ± 0.04 24.40 ± 1.47 1.52 ± 0.16 10.40
6 J132320.14+320349.0 7.40 ± 0.11 21.51 ± 2.77 1.29 ± 0.29 16.99
7 J132051.75+312159.8 7.50 ± 0.05 23.84 ± 1.57 1.37 ± 0.18 16.89
8 J091642.17+001220.0 7.29 ± 0.06 25.76 ± 2.15 1.24 ± 0.23 12.67
9 J131547.11+315047.1 7.60 ± 0.05 23.76 ± 1.70 1.34 ± 0.19 15.55

Table E2. Result parameters from the hierarchical SED fitting using the BMBB model. The parameters are the dust mass (log Mc), temperature
(Tc), emissivity index before the break (β1) and after the break (β2), and the wavelength of the break (λbreak). The last column is the natural
logarithm of the likelihood, i.e. the probability of the observed fluxes given the model parameters (p (F|θ )). This table is available in its entirety
in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.

JINGLE ID SDSS name log Mc Tc β1 β2 λbreak ln L
(M�) (K) (μm)

0 J131616.82+252418.7 7.25 ± 0.05 25.25 ± 2.28 1.51 ± 0.23 0.37 ± 0.26 481.26 ± 9.20 14.59
1 J131453.43+270029.2 7.78 ± 0.09 18.99 ± 2.18 1.67 ± 0.29 0.26 ± 0.23 481.72 ± 13.12 10.86
2 J131526.03+330926.0 7.26 ± 0.12 20.09 ± 2.79 1.17 ± 0.37 1.54 ± 0.81 485.10 ± 10.10 11.55
3 J125606.09+274041.1 7.17 ± 0.04 27.29 ± 2.12 1.61 ± 0.19 1.79 ± 0.54 482.77 ± 8.73 14.52
4 J132134.91+261816.8 7.63 ± 0.05 23.49 ± 1.48 1.73 ± 0.18 0.92 ± 0.41 482.09 ± 8.01 13.42
5 J091728.99−003714.1 7.93 ± 0.04 23.01 ± 1.14 1.71 ± 0.15 1.37 ± 0.36 483.26 ± 6.95 10.59
6 J132320.14+320349.0 7.44 ± 0.08 22.05 ± 2.16 1.08 ± 0.25 2.04 ± 0.60 485.77 ± 8.11 17.54
7 J132051.75+312159.8 7.51 ± 0.04 23.08 ± 1.25 1.46 ± 0.17 1.47 ± 0.47 483.62 ± 7.52 16.85
8 J091642.17+001220.0 7.28 ± 0.10 25.23 ± 2.14 1.34 ± 0.19 1.19 ± 0.77 483.69 ± 7.83 12.65
9 J131547.11+315047.1 7.62 ± 0.05 23.09 ± 1.33 1.44 ± 0.22 1.29 ± 0.36 483.35 ± 7.59 15.65
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4416 I. Lamperti et al.

Table E3. Result parameters from the hierarchical SED fitting using the TMBB model. The parameters are the dust mass (log Mc), temperature
(Tc), and emissivity index (βc) of the cold dust component, and the dust mass (log Mw), and temperature (Tw) of the warm dust component.
The emissivity index of the warm component has been fixed to βw = 1.5. The last column is the natural logarithm of the likelihood, i.e. the
probability of the observed fluxes given the model parameters (p (F|θ )). This table is available in its entirety in a machine-readable form in the
online journal. A portion is shown here for guidance regarding its form and content.

JINGLE ID SDSS name log Mc Tc βc log Mw Tw ln L
(M�) (K) (M�) (K)

0 J131616.82+252418.7 7.27 ± 0.04 27.09 ± 1.62 1.21 ± 0.17 4.51 ± 0.19 71.23 ± 3.35 18.37
1 J131453.43+270029.2 7.67 ± 0.07 24.02 ± 2.40 0.97 ± 0.28 4.20 ± 0.21 73.18 ± 3.94 11.78
2 J131526.03+330926.0 7.26 ± 0.17 18.98 ± 4.16 1.45 ± 0.57 3.76 ± 0.27 70.58 ± 4.57 18.19
3 J125606.09+274041.1 7.16 ± 0.04 27.93 ± 1.68 1.49 ± 0.15 4.97 ± 0.18 69.46 ± 3.00 20.09
4 J132134.91+261816.8 7.66 ± 0.04 23.78 ± 1.39 1.61 ± 0.18 4.81 ± 0.14 69.88 ± 2.38 18.57
5 J091728.99−003714.1 7.93 ± 0.04 23.71 ± 1.30 1.55 ± 0.15 4.97 ± 0.14 70.26 ± 2.39 15.79
6 J132320.14+320349.0 7.44 ± 0.12 20.53 ± 2.85 1.40 ± 0.33 4.00 ± 0.23 70.68 ± 3.66 22.82
7 J132051.75+312159.8 7.54 ± 0.05 22.68 ± 1.40 1.45 ± 0.18 4.32 ± 0.16 70.96 ± 2.82 22.50
8 J091642.17+001220.0 7.27 ± 0.05 26.87 ± 2.29 1.14 ± 0.26 4.51 ± 0.19 72.35 ± 3.40 17.26
9 J131547.11+315047.1 7.64 ± 0.05 22.74 ± 1.49 1.41 ± 0.18 4.40 ± 0.16 71.10 ± 2.79 21.20

Table E4. Results of the analysis of the correlation between dust emissivity index β and combinations of other galaxy properties. The table shows the coefficients
aj of the best polynomial expression βmodel(x1, . . . , xk) = ∑k

j=1 aj log(xj ) + b, to estimate β using combinations of two or three galaxy properties.

Emissivity index β

No. of param. log M∗ log SFR log area 12 + log(O/H) log Mdust log MH I Intercept BIC R
(M�) (M� yr−1) (kpc2) (M�) (M�) (1) (2)

2 param. 0.22 ± 0.03 −0.01 ± 0.03 − 0.44 ± 0.25 226.29 0.53
0.42 ± 0.02 − 0.37 ± 0.03 − 1.97 ± 0.18 53.19 0.64
0.08 ± 0.02 0.73 ± 0.10 − 5.34 ± 0.66 164.7 0.61
0.49 ± 0.04 − 0.31 ± 0.04 − 0.79 ± 0.15 172.34 0.55
0.39 ± 0.02 − 0.3 ± 0.02 0.64 ± 0.15 68.67 0.63

0.32 ± 0.02 − 0.22 ± 0.03 2.02 ± 0.04 228.43 0.47
0.04 ± 0.02 0.88 ± 0.08 − 5.89 ± 0.7 172.41 0.61
0.15 ± 0.04 0.04 ± 0.03 1.43 ± 0.26 299.18 0.45
0.44 ± 0.03 − 0.35 ± 0.03 5.01 ± 0.27 138.35 0.54

− 0.21 ± 0.02 1.39 ± 0.07 − 10.03 ± 0.63 91.25 0.62
− 0.43 ± 0.03 0.45 ± 0.03 − 1.15 ± 0.17 151.77 0.55

0.05 ± 0.03 − 0.01 ± 0.03 1.65 ± 0.22 435.98 0.21
1.07 ± 0.09 − 0.03 ± 0.02 − 7.35 ± 0.65 173.7 0.61
1.19 ± 0.07 − 0.13 ± 0.02 − 7.42 ± 0.55 131.88 0.62

0.48 ± 0.03 − 0.43 ± 0.03 2.05 ± 0.16 117.7 0.58
3 param. 0.37 ± 0.03 0.08 ± 0.03 − 0.38 ± 0.03 − 1.46 ± 0.26 51.04 0.65

0.09 ± 0.03 −0.01 ± 0.03 0.73 ± 0.09 − 5.46 ± 0.74 169.97 0.61
0.55 ± 0.04 0.26 ± 0.04 − 0.59 ± 0.06 0.78 ± 0.27 132.11 0.56
0.28 ± 0.02 0.23 ± 0.03 − 0.41 ± 0.03 2.76 ± 0.32 21.40 0.66
0.28 ± 0.03 − 0.38 ± 0.03 0.8 ± 0.09 − 7.48 ± 0.64 −14.37 0.70
0.41 ± 0.04 − 0.37 ± 0.03 0.01 ± 0.05 − 1.97 ± 0.19 58.63 0.64
0.46 ± 0.02 − 0.25 ± 0.03 − 0.18 ± 0.03 − 0.85 ± 0.26 18.08 0.67
0.39 ± 0.04 0.85 ± 0.09 − 0.37 ± 0.04 − 6.67 ± 0.68 96.94 0.64
0.28 ± 0.03 0.54 ± 0.1 − 0.28 ± 0.02 − 3.14 ± 0.67 41.97 0.67
0.32 ± 0.04 0.11 ± 0.06 − 0.34 ± 0.03 0.92 ± 0.22 70.94 0.63

0.19 ± 0.02 − 0.32 ± 0.03 1.15 ± 0.08 − 7.77 ± 0.69 33.69 0.66
0.04 ± 0.04 − 0.42 ± 0.03 0.41 ± 0.05 − 0.89 ± 0.35 156.46 0.55
0.46 ± 0.02 − 0.06 ± 0.03 − 0.32 ± 0.03 4.77 ± 0.28 140.08 0.54
0.23 ± 0.04 1.17 ± 0.09 − 0.25 ± 0.04 − 6.49 ± 0.65 142.45 0.62
0.29 ± 0.03 0.8 ± 0.08 − 0.33 ± 0.03 − 2.14 ± 0.72 38.58 0.66
0.23 ± 0.04 0.3 ± 0.04 − 0.46 ± 0.03 3.7 ± 0.31 85.63 0.60

− 0.40 ± 0.03 1.00 ± 0.09 0.25 ± 0.03 − 8.25 ± 0.7 38.36 0.65
− 0.21 ± 0.03 1.38 ± 0.08 0.00 ± 0.03 − 10.02 ± 0.67 96.77 0.62
− 0.31 ± 0.03 0.63 ± 0.03 − 0.35 ± 0.03 0.56 ± 0.22 42.80 0.63

0.63 ± 0.10 0.29 ± 0.04 − 0.34 ± 0.03 − 2.89 ± 0.78 84.11 0.63

Note. (1) BIC (Schwarz 1978), calculated as BIC = −2 · ln (L) + q · ln (m) where L is the likelihood (i.e. the probability of the data given the parameter
p(F|θ )), q is the number of free parameters of the model, and m is the number of data points (wavebands). (2) Pearson correlation coefficient.
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Table E5. Same as Table E4, but for the correlation between dust temperature T and galaxy properties.

Dust temperature T
No. of param. log M∗ log SFR log area 12 + log(O/H) log Mdust log MH I Intercept BIC R

(M�) (M� yr−1) (kpc2) (M�) (M�) (1) (2)

2 param. −2.14 ± 0.20 2.50 ± 0.22 44.24 ± 1.93 914.52 0.54
0.10 ± 0.18 − 0.59 ± 0.24 22.62 ± 1.53 1046.44 0.24
0.24 ± 0.17 − 2.86 ± 0.77 45.26 ± 5.44 1038.07 0.18

−1.07 ± 0.34 0.89 ± 0.35 26.50 ± 1.20 1045.98 0.14
−0.59 ± 0.17 0.53 ± 0.19 23.62 ± 1.27 1045.69 0.17

1.93 ± 0.18 − 2.17 ± 0.22 26.21 ± 0.33 931.29 0.53
1.50 ± 0.15 − 5.74 ± 0.61 72.73 ± 5.45 948.15 0.41
4.19 ± 0.29 − 3.73 ± 0.30 51.88 ± 2.20 849.60 0.68
1.78 ± 0.22 − 1.52 ± 0.23 37.27 ± 2.12 985.74 0.36

− 0.21 ± 0.18 − 1.69 ± 0.59 37.74 ± 5.05 1038.7 0.22
− 1.19 ± 0.30 0.65 ± 0.22 19.53 ± 1.40 1038.33 0.25
− 1.38 ± 0.24 1.00 ± 0.22 15.42 ± 1.78 1026.52 0.29

− 3.47 ± 0.72 0.45 ± 0.18 49.50 ± 5.74 1032.98 0.17
− 2.65 ± 0.60 0.33 ± 0.15 42.65 ± 4.65 1035.02 0.18

− 0.54 ± 0.22 0.54 ± 0.25 21.84 ± 1.24 1051.14 0.14
3 param. −1.56 ± 0.23 2.83 ± 0.22 − 1.40 ± 0.25 40.58 ± 2.08 887.83 0.61

−1.65 ± 0.23 2.52 ± 0.21 − 2.89 ± 0.74 64.51 ± 5.56 905.66 0.55
0.19 ± 0.37 4.24 ± 0.29 − 3.96 ± 0.48 51.72 ± 2.11 854.86 0.68

−1.92 ± 0.21 3.04 ± 0.25 − 0.97 ± 0.24 51.26 ± 2.56 903.19 0.58
0.64 ± 0.22 − 0.65 ± 0.24 − 2.98 ± 0.72 43.22 ± 5.51 1036.39 0.25

−1.24 ± 0.34 − 1.3 ± 0.29 1.9 ± 0.41 22.31 ± 1.50 1030.77 0.26
−0.20 ± 0.19 − 1.25 ± 0.27 1.07 ± 0.24 16.49 ± 1.95 1031.0 0.29
−0.64 ± 0.36 − 3.11 ± 0.79 1.02 ± 0.33 48.37 ± 5.39 1035.13 0.18
−0.04 ± 0.24 − 2.57 ± 0.75 0.35 ± 0.21 42.16 ± 5.75 1040.49 0.19
−0.94 ± 0.36 0.53 ± 0.46 0.32 ± 0.28 25.04 ± 1.74 1050.03 0.16

2.43 ± 0.19 − 1.85 ± 0.22 − 4.66 ± 0.63 66.19 ± 5.50 885.12 0.61
4.09 ± 0.29 − 0.50 ± 0.29 − 3.32 ± 0.38 49.48 ± 2.51 851.99 0.69
2.15 ± 0.22 − 1.94 ± 0.26 − 0.47 ± 0.27 30.33 ± 2.38 933.86 0.54
4.06 ± 0.29 − 1.85 ± 0.75 − 3.31 ± 0.31 64.70 ± 5.44 848.76 0.68
2.85 ± 0.23 − 6.20 ± 0.62 − 1.71 ± 0.22 92.99 ± 6.09 897.60 0.57
4.19 ± 0.31 − 3.70 ± 0.32 − 0.06 ± 0.27 52.12 ± 2.55 855.07 0.68

− 1.42 ± 0.29 − 4.09 ± 0.71 1.49 ± 0.26 48.84 ± 4.95 1013.67 0.30
− 1.10 ± 0.27 − 1.74 ± 0.60 1.01 ± 0.22 30.02 ± 5.51 1023.57 0.29
− 1.46 ± 0.29 0.13 ± 0.26 0.93 ± 0.26 15.14 ± 1.93 1031.79 0.29

− 3.47 ± 0.81 0.46 ± 0.34 − 0.01 ± 0.29 49.36 ± 6.84 1038.49 0.17

Note. (1) BIC (Schwarz 1978), calculated as BIC = −2 · ln (L) + q · ln (m) where L is the likelihood (i.e. the probability of the data given the parameter
p(F|θ )), q is the number of free parameters of the model, and m is the number of data points (wavebands). (2) Pearson correlation coefficient.
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Casilla 19001, Santiago, Chile
16Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing
210008, China
17Key Laboratory of Radio Astronomy, Chinese Academy of Sciences,
Nanjing 210008, China

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 489, 4389–4417 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/4389/5552673 by guest on 16 O
ctober 2019


