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ABSTRACT

BACKGROUND: Maternal prenatal stress exposure (PNSE) increases risk for adverse psychiatric and behavioral
outcomes in offspring. The biological basis for this elevated risk is poorly understood but may involve alterations to
the neurodevelopmental trajectory of white matter tracts within the limbic system, particularly the uncinate fasciculus.
Additionally, preterm birth is associated with both impaired white matter development and adverse developmental
outcomes. In this study we hypothesized that higher maternal PNSE was associated with altered uncinate fasciculus
microstructure in offspring.

METHODS: In this study, 251 preterm infants (132 male, 119 female) (median gestational age = 30.29 weeks [range,
23.57-32.86 weeks]) underwent brain magnetic resonance imaging including diffusion-weighted imaging around
term-equivalent age (median = 42.43 weeks [range, 37.86-45.71 weeks]). Measures of white matter microstructure
were calculated for the uncinate fasciculus and the inferior longitudinal fasciculus, a control tract that we
hypothesized was not associated with maternal PNSE. Multiple regressions were used to investigate the
relationship among maternal trait anxiety scores, stressful life events, and white matter microstructure indices in
the neonatal brain.

RESULTS: Adjusting for gestational age at birth, postmenstrual age at scan, maternal age, socioeconomic status,
sex, and number of days on parenteral nutrition, higher stressful life events scores were associated with higher axial
diffusivity (B = .177, g = .007), radial diffusivity (3 = .133, g = .026), and mean diffusivity (8 = .149, g = .012) in the left
uncinate fasciculus, and higher axial diffusivity (B = .142, g = .026) in the right uncinate fasciculus.
CONCLUSIONS: These findings suggest that PNSE is associated with altered development of specific frontolimbic
pathways in preterm neonates as early as term-equivalent age.
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Maternal prenatal stress exposure (PNSE) represents a global
public health problem (1-4) and affects 10% to 35% of children
worldwide (5). In particular, exposure to stressful life events and
prenatal maternal anxiety has been associated with an increased
risk for a range of adverse behavioral outcomes in offspring.
These include more crying and/or fussing (6), anxiety disorders
(7), externalizing behavior (8), attention-deficit/hyperactivity dis-
order (9), and conduct disorders (10). Furthermore, these
changes can lead to a transgenerational cycle of adaptations of
brain function and behavior (11). However, the biological mech-
anism(s) that translate maternal PNSE into behavioral changes in
offspring remain poorly understood. One potential mechanism
involves disruption of the neurodevelopment of specific white
matter tracts within the limbic system (12).

White matter development can be assessed in vivo using
diffusion tensor imaging (DTI) (13), which characterizes water
molecular motion in tissue and provides objective metrics

including fractional anisotropy ([FA], a measure of the direc-
tional dependence of water diffusion); mean diffusivity ((MD],
the magnitude of water diffusion within brain tissue); radial
diffusivity ([RD], an estimate of the magnitude of diffusion
perpendicular to the direction of fibers); and axial diffusivity
([AD], the estimated magnitude of diffusion parallel to the di-
rection of fibers). DTl tractography is a noninvasive neuro-
imaging technique that can be used to delineate the
trajectories of white matter fibers and enables tract-specific
measures to be obtained, allowing comparison of corre-
sponding fasciculi between individuals.

PNSE has been linked to abnormal neurodevelopment of a
number of brain regions including the limbic system and pre-
frontal cortex, in both animal (14-17) and human (18,19)
studies. Previous DTI studies in neonates exposed to PNSE
have, for example, reported reduced FA and increased MD,
RD, and AD in multiple fiber bundles within the limbic system
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(20-22). The most consistently reported finding involves
altered development of white matter fibers connecting the
amygdala with the prefrontal cortex, which are contained
within the uncinate fasciculus (19,23,24). This is a white matter
association tract that has been implicated in several neuro-
developmental and psychiatric disorders (25), specifically
anxiety disorders and early-life stress (26-30).

Preterm birth affects approximately 11% of global live births
and is associated with adverse neuropsychiatric and devel-
opmental outcomes (31-36). A number of studies have
focused on investigating the relationship between brain
development and these adverse outcomes (37-39), with
aberrant white matter microstructural development (38,40-42)
being commonly reported. However, it is important to also
assess the role that early adverse experiences may have in
moderating these associations. Some studies have suggested
an increased risk of preterm birth in women experiencing a
high number of stressful life events or increased anxiety
(43-46). To our knowledge, however, no studies have exam-
ined the relationship between PNSE and white matter micro-
structure in infants born prematurely.

In this study, we assessed the relationship between
maternal PNSE and white matter microstructure of the unci-
nate fasciculus in a large sample of premature neonates. We
hypothesized that higher scores on maternal stressful life
events and trait anxiety would be associated with decreased
FA and increased RD, AD, and MD in the uncinate fasciculus.

METHODS AND MATERIALS

Participants

A total of 511 premature infants (born before 33 weeks of
gestational age) took part in the Evaluation of Preterm Imaging
Study (ePRIME), a randomized control trial that investigated
the effect of having a brain magnetic resonance (MR) imaging
or ultrasound scan at term-equivalent age on parental anxiety
(47). As part of this study, data were collected on maternal
anxiety (State-Trait Anxiety Inventory [STAI]), stressful life
events, demographic data, and perinatal clinical risk factors.
MR images were reviewed by a perinatal neuroradiologist.
Women who reported alcohol and drug abuse during

Table 1. Infant
Characteristics

Obstetric and Sociodemographic

Infant Characteristics Values
Gestational Age at Birth, Weeks, Median (Range)  30.29 (23.57-32.86)
Postmenstrual Age at Scan, Weeks, Mean = SD 4221 = 1.64
Total Parenteral Nutrition, Days, Median (Range) 6.00 (0-59)

Total Ventilation, Days, Median (Range) 0 (0-33)

Total Number of Pregnancy Complications, 1(0-5)

Median (Range)

Birth Weight, g, Median (Range) 1290.00 (572.00-2600.00)

Head Circumference at Birth, cm, Mean + SD 28.94 + 3.05
Sex, n (%)
Male 132 (52.6)
Female 119 (47.4)

Mean and SD are reported for normally distributed data; median and
range are reported for nonnormally distributed data.
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Table 2. Maternal Sociodemographic Characteristics

Values
33.35 = 5.83
17.06 (1.73-60.58)
36.00 (20.00-68.00)

53.00 (0-270.00)

Maternal Characteristics

Maternal Age, Years, Mean = SD
Socioeconomic Status, Median (Range)
Maternal Trait Anxiety, Median (Range)
Stressful Life Events Score, Median (Range)
Maternal Ethnicity, n (%)

White British or Irish 97 (38.7)
Other white background 38 (15.1)
Black or Black British 49 (19.6)
Mixed race 4 (1.6)
Asian or Asian British 54 (21.5)
Other ethnicity group 6 (2.4)
Not reported 3(1.2)
Maternal Age on Leaving Formal Education, n (%)
16 years or less 22 (8.8)
17-19 years 35 (13.9)
19+ years 180 (71.7)
Still in full-time education 9 (3.6)
Not reported 5 (2.0)

Mean and SD are reported for normally distributed data; median and
range are reported for nonnormally distributed data.

pregnancy (n = 6) and cases with major focal lesions such as
periventricular  leukomalacia, hemorrhagic parenchymal
infarction, and other ischemic or hemorrhagic lesions (n = 40)
were excluded from analysis (Supplemental Table S1). In the
case of multiparous pregnancies, only 1 infant from a twin and/
or triplet pregnancy was included in this study (selected at
random). From the remaining sample, DTl data, demographics,
and both STAI and stressful life events data were available for
251 mother-infant dyads. Descriptive statistics are presented
in Table 1 (for infant characteristics) and Table 2 (for maternal
characteristics).

Ethical approval was obtained from the Hammersmith and
Queen Charlotte’s Research Ethics Committee (09/H0707/98).

Trait Anxiety

The STAI (48) was administered at the time of the scan. There
are 2 subscales within this measure; State Anxiety measures
the current level of anxiety, with questions referring to how
participants feel “right now,” while Trait Anxiety (STAI-TR)
measures the relatively stable tendency to be prone to anxiety,
with questions referring to how participants feel “in general”
(48). We restricted our analysis of anxiety to STAI-TR, as it
extends to the period before birth. For STAI-TR, missing values
were imputed for participants (1 = 32) who had missing values
on a maximum of 10% of questions (n = 28 missing 1 answer
out of 20, n = 4 missing 2 answers out of 20; see the
Supplement). Missing data were imputed by calculating the
average score for the questions that were answered and
imputing this value.

Stressful Life Events

All mothers completed a questionnaire measuring the number
of stressful life events they experienced in the year prior to the
study visit (e.g., “Arguments with your partner increased”). The
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questionnaire was adapted from the Avon Longitudinal Study
of Parents and Children (49) and was administered to include
only yes-no answers. To obtain a continuous score, stressful
life events were ranked according to severity based on the
Social Readjustment Rating Scale (50). The final score was
then calculated for each mother to represent a sum of the
severity scores for the stressful life events she experienced
(Supplemental Table S2). Face validity for this adapted ques-
tionnaire was established through examination by a consultant
psychiatrist (MCC) with experience in anxiety and mood
disorders.

There were no missing data on the stressful life events
questionnaire.

MR Imaging

Three-dimensional magnetization prepared rapid acquisition
gradient echo (repetition time: 17 ms; echo time: 4.6 ms; flip
angle: 13°; slice thickness: 0.8 mm; in-plane resolution: 0.82 X
0.82 mm), T2-weighted turbo spin echo (repetition time: 8670
ms; echo time: 160 ms; flip angle: 90°; slice thickness: 2 mm;
in-plane resolution: 0.86 X 0.86 mm), and single shot echo
planar DTI (repetition time: 7536 ms; echo time: 49 ms; flip
angle: 90°; slice thickness: 2 mm; in-plane resolution: 2 x 2
mm, 32 noncollinear gradient directions, b value of 750 s/mm?,
1 non-diffusion-weighted image, b = 0) were acquired on a
Philips 3T (Philips Medical Systems, Best, The Netherlands)
MR system sited on the neonatal intensive care unit using an
8-channel phased array head coil.

All examinations were supervised by a pediatrician experi-
enced in MR imaging. Parents were offered the option of
having their infant sedated with oral chloral hydrate (25-50 mg/
kg) prior to scanning (219 infants were sedated). Pulse oxim-
etry, temperature, and electrocardiography were monitored
throughout the scan and ear protection was used, comprising
earplugs molded from a silicone-based putty (President Putty;
Coltene Whaledent, Mahwah, NJ) placed in the external audi-
tory meatus and neonatal earmuffs (MiniMuffs; Natus Medical
Inc., San Carlos, CA).

DTI Analysis

Diffusion-weighted images were visually inspected in 3
orthogonal planes for the presence of motion artifact, and
corrupt diffusion-weighted volumes were excluded before
tensor fitting. Seventy-seven datasets had at least 1 volume
removed (median: 0 [range, 0-8]). Image processing and data
analysis were performed using FMRIB’s Diffusion Toolbox
(version 3.0) and DTI-TK (version 2.3.1; http://.dti-tk.
sourceforge.net) (51). For each infant the diffusion-weighted
images were registered to their native b0 image and cor-
rected for differences in spatial distortion using eddy correct.
Nonbrain tissue was removed with FSL’s BET [version 2.1;
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET (52,53)].

Diffusion tensors were calculated on a per-voxel basis,
using a simple least-squares fit of the tensor model to
the diffusion data. From this the tensor eigenvalues describing
the diffusion strength in the primary, secondary, and tertiary
diffusion directions were obtained. AD, RD, MD, and FA maps
were calculated for each subject.
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DTl measures were derived for each subject using tract-
specific analysis (54) as described in Pecheva et al. (55).
Briefly, a study-specific template was created by registering all
subjects together to create an iteratively refined average tensor
image (54). Following registration, tracts of interest were
delineated within the template using deterministic tractography
based on the FACT approach (56) (part of DTI-TK) and
manually drawn regions of interest (57). We delineated the left
and right uncinate fasciculus as well as a “nonlimbic” control
tract, the inferior longitudinal fasciculus. The inferior longitu-
dinal fasciculus connects the occipital cortex to the temporal
lobe (58), and it was selected as a control tract as it shares a
termination point with the uncinate fasciculus but has not been
implicated in social and emotional behavior (58). This tract has
been used as a control tract in previous studies focusing on
children who were exposed to maternal stress (12). From the
tractography results, the tract-specific analysis medial repre-
sentation model was used to create tractwise white matter
skeletons of the uncinate fasciculus and inferior longitudinal
fasciculus (Figure 1). Each white matter skeleton comprises a
medial surface (Figure 2) and tract boundary (59). Diffusion
data from each subject were projected onto the skeleton by
searching for the tensor with the highest FA value along the
unit normal from each point on the skeleton to the tract
boundary, as described in Pecheva et al. (55). Whole tract
average AD, RD, MD, and FA values were calculated for each
subject (Supplemental Table S3).

Statistical Analysis

Statistical analyses were performed using SPSS version 24
(IBM Corp., Armonk, NY), graphs were created with R package
ggplot2 (R Foundation for Statistical Computing, Vienna,
Austria) (60,61), and figures were created with ParaView (62).
Multiple linear regressions were used to examine associations
between maternal anxiety (STAI-TR) and stressful life events
with diffusion properties in the left and right uncinate fasciculus
(FA, apparent diffusion coefficient, AD, RD) in preterm neo-
nates. Assumptions for multiple regression were met (i.e., re-
siduals were normally distributed, no multicollinearity,
homoscedastic data), and there were no missing data in any of
the variables included in the model. For each regression, one
diffusion measure was considered as an outcome variable,
with STAI-TR and stressful life events used as predictors in the
same model. Correction for multiple comparisons was done
using the Benjamini and Hochberg false discovery rate
correction.

The relationship between potential covariates and variables
of interest was assessed through bivariate Pearson’s correla-
tions (Table 3). We assessed the following relevant perinatal
clinical covariates: gestational age at birth (GA), postmenstrual
age at scan (PMA), birth weight, occipitofrontal circumference
at birth, socioeconomic status (SES) assessed with the Car-
stairs Index (63), maternal age, maternal education, total
number of pregnancy complications, number of days on total
parenteral nutrition (TPN), and number of days on mechanical
ventilation. The covariates that remained in the model were
GA, PMA, TPN (based on associations with uncinate fasciculus
microstructure) (Table 3), SES, sex, and maternal age (based
on previous literature). Birth weight was not included as a
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covariate, as it was very highly correlated with GA (r= .76, p <
.001) and would have introduced multicollinearity in the
regression analysis. The number of days on ventilation was not
included as a covariate, as it was highly correlated with TPN
(r = .61, p < .001), and both measures provide information on
the health status of infants. There was no significant difference
between male and female infants on any of the variables
included in the model.

RESULTS

Demographics

A total of 251 infants (132 male, 119 female) born prematurely
were scanned at term-equivalent age. Demographic data are
presented in Table 1 (for infant characteristics) and Table 2 (for
maternal characteristics). Additional information is presented in
Supplemental Table S4.

The number of stressful life events experienced by mothers
ranged between 0 and 7 (median = 1 [interquartile range =
1-2]). This included mothers who had experienced no events
(n = 36), 1 event (n = 90), 2 events (n = 66), 3 events (n = 33), 4
events (n = 16), 5 events (n = 5), 6 events (n = 4), and 7 events
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Figure 1. Diffusion tensor imaging tractography of
the uncinate fasciculus (blue) and inferior longitudinal
fasciculus tract (green) in axial and sagittal planes
(left to right). A, anterior; I, inferior; L, left; P, posterior;
R, right; S, sagittal.

(n = 1). The stressful life event scores were calculated for each
participant based on the severity of experienced events
(mean = 68 [range, 0-270]). Using Spearman’s correlation,
scores on the stressful life events measure did not correlate
with trait anxiety (r = .05, p = .373).

Stressful Life Events

Associations Between Maternal Stressful Life Events
and Uncinate Fasciculus Properties. After controlling
for GA, PMA, SES, TPN, sex, and maternal age, and after
correcting for multiple comparisons, maternal stressful life
events were associated with infant left uncinate fasciculus AD
(standardized B = .177, g = .007, whole-model R? = .37), RD
(standardized B = .133, g = .026, whole-model R? = .46), and
MD (standardized B = .149, g = .012, whole-model R? = .44), as
well as right uncinate fasciculus AD (standardized 3 =.142, q =
.026, whole-model R? = .39). Figure 3 shows scatter plots of
these relationships, while Table 4 (and Supplemental Table S5)
provide more detailed information on the regression models.
The only other variable that was associated with uncinate
fasciculus microstructure after correction for multiple com-
parisons was postmenstrual age (g < .001). Partial regression

Figure 2. “Glass brain” illustrations showing the
skeletonized versions of the uncinate fasciculus
(blue) and inferior longitudinal fasciculus (green)
medial surface overlaid on the template radial diffu-
sivity image, presented in coronal and sagittal planes
(left to right). See the Supplemental Video for
3-dimensional data visualization. A, anterior; |, infe-
rior; L, left; P, posterior; R, right; S, sagittal.
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Table 3. Relationships Between Potential Covariates and Microstructural Properties of the Left and Right Uncinate

Fasciculus
L-UF R-UF
FA MD AD RD FA MD AD RD
GA r=—.046 r=.213 r=.239 r=.196 r=-.103 r=.199 r=.208 r=.191
p = .463 p =.001° p < .001% p = .002° p =.105 p = .002° p = .0017 p = .002°
PMA r=.586 r=—.642 r=—.570 r=—.661 r=.625 r=—.658 r=—.595 r=—.674
p < .0017 p < .001° p < .001% p < .001° p < .001° p < .001% p < .001% p < .001°
Birth Weight r=—.001 r=.192 r=.231 r=.1720 r=—.055 r=.175 r=.193 r=.163
p =.986 p = .002° p < .001% p = .007° p =.388 p = .0057 =.002° p =.010°
Head Circumference at Birth r=.051 r=.009 r=.024 r=.002 r=.022 r=-.019 r=—.021 r=-.018
p = .457 p =.892 p=.723 p=.972 p =.747 p=.777 p =.759 p =.790
Socioeconomic Status r=.037 r=—.055 r=—.050 r=—.056 r=.082 r=—-.057 r=—.034 r=—.066
p =.559 p =.388 p = .430 p =.380 p=.194 p = .366 p = .588 p =.295
Maternal Age r=.101 r=-.028 r=—.006 r=—.038 r=.073 r=-.043 r=—.035 r=-.045
p=.112 p = .654 p =.992 p = .550 p = .247 p = .501 p = .585 p = .474
Maternal Education r=—.054 r=.092 r=.088 r=.092 r=—.069 r=.063 r=.055 r =.065
p =.395 p =.149 p=.168 p =.150 p =.283 p =.323 p =.387 p =.307
Pregnancy Complications r=.030 r=.024 r=.041 r=.016 r=.040 r=-.017 r=-.010 r=—.020
p = .633 p =.705 p =.515 p = .806 p =.526 p =.788 p =.872 p =.755
Days TPN r=.052 r=-.150 r=-.163 r=-.142 r=.088 r=-.155 r=—.156 r=-.152
p=.412 p=.0177 p =.010° p = .025% p=.163 p =.0147 p=.013" p =.0167
Days Ventilation r=.036 r=-.183 r=—.206 r=-.169 r=.086 r=-.146 r=-—.144 r=—.145
p =.574 p = .004° p =.0017 =.007° p=.175 p = .020° p = .022° p = .022°

AD, axial diffusivity; FA, fractional anisotropy; GA, gestational age at birth; L, left; MD, mean diffusivity; PMA, postmenstrual age at scan; R, right;
RD, radial diffusivity; TPN, total parenteral nutrition; UF, uncinate fasciculus.

?Results significant at p < .05.

scatterplots for nonsignificant relationships are reported in
Supplemental Figure S1.

Associations Between Maternal Stressful Life Events
and Inferior Longitudinal Fasciculus Properties. To
determine whether these results are specific to the uncinate
fasciculus tract, the above analyses were repeated for the
control tract, the inferior longitudinal fasciculus. Neither
maternal stressful life events nor trait anxiety predicted diffu-
sion propetties in the left or right inferior longitudinal fasciculus
(Supplemental Figure S1, Supplemental Table S6).

Maternal Trait Anxiety

Associations Between Maternal Trait Anxiety and
White Matter Microstructure. There was no significant
relationship between maternal trait anxiety and uncinate
fasciculus microstructural properties (Table 4) or inferior lon-
gitudinal fasciculus properties (Supplemental Table S6).

Sensitivity Analyses

There was no association between infant sex and any of the
dependent variables.

To check the reliability of the adapted stressful life events
scale, we repeated the analyses detailed above excluding the
items that did not have a direct equivalent in the Holmes and
Rahe scale from the total score (“Your house was burgled,”
“Your partner lost his job,” “Your partner was in trouble with
the law,” “You took an examination,” and “Your partner had
problems at work”). The pattern of results remained the same
as when these items were included.

To check the robustness of the results, we repeated our
analyses accounting for 1) imputed data for STAI-TR, 2) out-
liers, 3) postnatal age, 4) ethnicity, 5) multiple births, 6) days on
ventilation, 7) emergency cesarean section, 8) intrauterine
growth restriction, 9) pregnancy-induced hypertension, 10)
larger sample, and 11) age range. The relationship between
stressful life events and uncinate fasciculus microstructure
retained significance (see the Supplement).

DISCUSSION

Preterm birth is associated with a range of adverse psychiatric
and neurodevelopmental outcomes. To our knowledge, this is
the first study examining the relationship between maternal
PNSE and brain microstructure in preterm neonates. Our
findings suggest that maternal PNSE is associated with alter-
ations in the offspring’s uncinate fasciculus tract as early as
term-equivalent age. More specifically, we found that in-
creases in PNSE were associated with higher diffusivity (higher
MD, AD, and RD) in the uncinate fasciculus when controlling
for GA, PMA, sex, SES, maternal age, and number of days on
parenteral nutrition.

The limbic system contains 3 distinct, but partially over-
lapping, functional networks. These include the dorsomedial
default mode, hippocampal-diencephalic-retrosplenial, and
temporo-amydala-orbitodrontal networks (64). The uncinate
fasciculus is the main tract within the latter network and runs
from the anterior part of the temporal lobe, parahippocampal
gyrus, uncus, and amygdala to the orbital and polar frontal
cortex (64). Abnormal microstructural organization of this tract
in children and adults has been associated with a range of
outcomes including antisocial behavior (65,66), autism
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Figure 3. Partial regression scatterplots showing the relationships between stressful life events and mean diffusivity (MD), axial diffusivity (AD), and radial
diffusivity (RD) in (A) left (L) uncinate fasciculus (UF), (B) right (R) uncinate fasciculus, (C) left inferior longitudinal fasciculus (ILF), and (D) right inferior lon-
gitudinal fasciculus, while holding the other predictors constant (i.e., gestational age at birth, postmenstrual age at scan, socioeconomic status, total parenteral
nutrition, maternal age, sex). Points on the scatterplot represent residuals and the regression line includes standard error bars. Relationships that were sta-
tistically significant are shown in red. B, standardized beta; p, significance level before correction for multiple comparisons.
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Table 4. Associations Between Stress and/or Anxiety and Uncinate Fasciculus Microstructural Properties

Adj Stressful Events

STAI-TR

Regression R> R®> F B B t p q

95% Cl B B t p g 95% Cl

L-UF FA .375 .354 18.113 —0.000005 —.018 —0.344 .731 .820
R-UF FA 414 394 21.346 0.000016 .054 1.088 .278 .467
L-UF MD  .448 .429 24.509 0.00016 149 3.095 .002 .012%

R-UF MD  .456 .438 25.362 0.00011 .093 1.944 .053 .199
L-UF AD .377 .356 18.280 0.00019 177 3.464 .001 .007¢
R-UF AD  .391 .370 19.385 0.00015 142 2.804 .005 .026%

2.812 .005 .026%
1.469 .143 .366

L-UF RD 467 .449 26.473
R-UF RD 472 .455 27.063

0.00015 133
0.000086 .069

—.000034 to .000024
—.000013 to .000046

0.00017 110 2.129 .034 .145 .000013 to .00033
0.000073 .045 0.891 .374 .514 —.000089 to .00023

.000061 to .00027 —0.00039 —.064 —1.315 .190 .419 —.00097 to .00019
—.000001 to .00022 —0.00062 —.098 —2.018 .045 .180 —.0012 to —.000015
.000082 to .00030 —0.00023 —.040 —0.781 .436 .545 —.0008 to .00035
.000047 to .00027 —0.00067 —.112 —2.18 .030 .137 —.0012 to —.000065
.000047 to .00026 —0.00046 —.073 —1.535 .126 .350 —.0010 to .00013

—.000029 to .00020 —0.00060 —.089 —1.876 .062 .220 —.0012 to .00003

Results from multiple regression analyses showing the model fit, as well as associations between stress and/or anxiety and uncinate fasciculus
microstructural properties. The other covariates in the regression model are gestational age at birth, postmenstrual age at scan, maternal age, sex,
socioeconomic status, and days on parenteral nutrition (see the Supplement).

AD, axial diffusivity; Adj, adjusted; B, unstandardized beta coefficient; 3, standardized beta coefficient; Cl, confidence interval; FA, fractional
anisotropy; L, left; MD, mean diffusivity; g, corrected p value using Benjamini-Hochberg false discovery rate correction; R, right; RD, radial
diffusivity; STAI-TR, State Trait Anxiety Inventory—Trait Anxiety; UF, uncinate fasciculus.

4Significant results at p < .05.

spectrum disorder (67,68), anxiety (26), mood disorders
(69,70), obsessive-compulsive disorder (71), and vulnerability
to stress (72) and has been observed in children exposed to
early adverse experiences such as previous institutionalization
(73,74).

Recent studies provide evidence that the developing white
matter is vulnerable to maternal prenatal adversity. Reduced
FA in white matter areas including the uncinate fasciculus has
been observed in infants of highly anxious mothers (21,75).
Dean et al. (20) reported higher diffusivity (increased MD, RD,
and AD) in the right frontal white matter of term infants born to
mothers experiencing high prenatal symptoms of depression
and anxiety.

The reasons for our findings of a relationship between the
microstructure of the uncinate fasciculus and PNSE, but not
trait anxiety, remain unclear. A number of factors may account
for this finding. A recent study into the validity of the STAl in the
perinatal period suggests that the mean STAI-TR score in our
sample was well below the cutoff range associated with clini-
cally diagnosable DSM-IV anxiety disorder (76). Furthermore,
stressful life events and trait anxiety may have different bio-
logical correlates (77), such as distinctive inflammatory re-
sponses with the transmission of specific cytokines across the
placenta, with differential effect on neurodevelopment (78).
Furthermore, while maternal anxiety can be a common proxy
for stress, experiencing stressful life events during pregnancy
does not always coincide with elevated scores on anxiety
scales (1). Previous studies reporting associations between
maternal antenatal anxiety and infant brain development have
focused on state, rather than trait, anxiety (20) or a combined
score of state and trait anxiety (21), while those focusing on
trait anxiety alone reported no significant associations with
brain development (18).

Although the precise mechanisms linking PNSE with neu-
rodevelopmental outcomes in offspring have yet to be deter-
mined, research suggests that it may lead to changes in
hormones and neurotransmitters in utero (79). This is sup-
ported by findings suggesting that maternal cortisol can pass
through the placenta (80) and that infants born to mothers who
experienced a mood disorder during pregnancy show

increased cortisol and norepinephrine, as well as decreased
dopamine and serotonin (81). These hormones and neuro-
transmitters have an essential role in neurogenesis, neuronal
differentiation, apoptosis, and synaptogenesis (82), and thus
disruption to their normal functioning during critical early-
development time periods can lead to changes in brain
development, which in turn can lead to adverse neuro-
developmental and behavioral outcomes (83). Animal research
has provided support for this, as studies of in utero stress
exposure in guinea pigs reported an association between
PNSE and reactive astrocyte expression in the hippocampus
and subcortical white matter (84), as well as a delay in gamma-
aminobutyric acidergic cell number and maturation in the
medial frontal cortex and hippocampus, which was further
associated with inhibited and anxiety-like behaviors. Further-
more, elevated PNSE has been shown to increase levels of
proinflammatory markers across pregnancy (85), which has
been linked to decreased FA in the uncinate fasciculus of
newborn offspring and decreased cognition at 12 months of
age (86). In addition, PNSE is associated with physiological
changes including alterations in fetal heart rate (87). Indeed, a
recent study assessing structural and functional connectivity in
infants exposed to maternal depression suggested that alter-
ations in fetal heart rate may influence the development of the
amygdala-prefrontal circuit (88).

PNSE may also affect offspring through epigenetic mech-
anisms such as DNA methylation and histone modification
(89). It is thus likely that the relationship between PNSE and
infant white matter microstructure observed in our study is a
consequence of the interplay between in utero exposure with
genetic and epigenetic mechanisms.

Differences in microstructural properties of white matter
tracts are typically explained in relation to differences in mye-
lination. However, myelination in the uncinate fasciculus and
inferior longitudinal fasciculus commences in the third post-
natal month (90-93), and thus the differences observed in this
study are unlikely to occur as a result of differences in myeli-
nation. The elevated diffusivity in the uncinate fasciculus
observed here is likely to involve a combination of elevated
brain water content, decreases in axon density, increased
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membrane permeability, and impaired oligodendrocyte prolif-
eration and maturation (94,95). Reductions in fractional
anisotropy are generally related to increases in radial diffusivity
or reductions in axial diffusivity (96). The reason we did not
observe changes in measured FA in relation to maternal pre-
natal stress exposure in this study is presumably because we
observed an increase in both RD and AD associated with
maternal prenatal stress exposure.

Preterm infants in our study were scanned at term-
equivalent age and thus were more likely exposed to subop-
timal nutrition, ventilation, and other early-life stressors than
term-born neonates were. Furthermore, premature birth is
known to be associated with altered white matter development
(97-99). However, in this study, we accounted for immaturity at
birth and illness severity, and thus these results suggest that
prenatal stress may affect the development of white matter in
the uncinate fasciculus, above and beyond these additional
exposures considered adverse to brain development that are
associated with premature birth.

To our knowledge, this represents the largest sample in
studies of prenatal stress exposure and infant brain develop-
ment, as well as the first study to investigate this relationship in
a preterm sample. In a recent study by Benavente-Ferandez
et al. (100), the association between brain injury and cognitive
outcomes in a sample of children born preterm (24-32 weeks
GA) was mediated by maternal SES. Similarly, it is possible that
exposure to maternal prenatal stress may exacerbate the risk
for negative outcomes in preterm-born children. Future
research including term-born control infants is needed to further
clarify the nature of this relationship to develop potential in-
terventions that may dampen or reverse the effects of early
adversity.

A limitation of our study is that our measure of stressful life
events was adapted from a validated questionnaire. However,
our results are in line with existing literature on stressful life
events and early brain development. Moreover, our measure of
life events covers 1 year prior to the scanning session, which
includes several months prior to conception. However,
Scheinost et al. (1) suggested that preconception stress may
shape prenatal stress levels and that the cumulative impact of
preconception and prenatal stress levels should be considered
in research. Although our measures are retrospective, several
studies have suggested considerable stability in self-reported
anxiety during the perinatal period (76,101) and accurate recall
of pregnancy- and birth-related events (102,103). A further
limitation of this study is the lack of information regarding
maternal mental health (especially depression) and use of
psychotropic medication, as these have previously been
associated with adverse outcomes (1). There is a need for
future studies to conduct more comprehensive assessments
of maternal psychopathology in the perinatal period. In addi-
tion, our study was hypothesis based, focusing on prenatal
stress exposure and white matter microstructure in the unci-
nate fasciculus in offspring. Maternal mental health problems,
most notably prenatal depressive symptoms, have been
associated with altered microstructure in the cingulum in
offspring (104). To look at the wider limbic and association
pathways, future prospective studies combining a compre-
hensive assessment of maternal mental health and with more
exploratory whole-brain connectomic approaches [e.g.,
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network-based statistics (105)] have the potential to elucidate
specific relationships between a range of prenatal stressors
and white matter microstructure across the limbic system and
association pathways, while minimizing multiple comparison
problems that can arise when comparing a large range of
pathways.

Although impairments in uncinate fasciculus microstructure
have been associated with behavioral and/or psychiatric out-
comes in childhood and/or adolescence in term-born pop-
ulations (25), it is important to understand whether these
findings are observed in preterm-born children. Future studies
assessing the relationship between uncinate fasciculus
development and subsequent behavioral disorders in this
population are required.

In conclusion, we provide what we believe is the first evi-
dence that prenatal stress exposure is associated with altered
development of the uncinate fasciculus in premature neonates.
These findings add to a growing set of studies implicating
maternal prenatal stress in early brain development and sug-
gest that changes in white matter microstructure may be
present as early as term-equivalent age.
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