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Abstract

In scientific experiments where human behaviour or animal response is intrinsically involved, such as clinical trials,
there is a strong possibility of recording missing values. Missing data in a clinical trial has the potential to impact
severely on study quality and precision of estimates. In studies which use a cross-over design, even a small number of
missing values can lead to the eventual design being disconnected. In this case, some or all of the treatment contrasts
under test cannot be estimated and the experiment is compromised since little can be achieved from it.

Experiments comparing two treatments that use a cross-over design with more than two experimental periods are
considered. Methods to limit the impact of missing data on study results are explored. It is shown that the breakdown
number and, if it exists, perpetual connectivity of the planned design are useful robustness properties which guard
against the possibility of a disconnected eventual design. A procedure is proposed which assesses planned designs for
robustness against missing values and the method is illustrated by assessing several designs that have been previously
considered on cross-over studies.
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1. Introduction

Cross-over designs are a popular choice for clinical trialists, due in part to the additional efficiency gains they
provide (Chow and Liu, 2008; Jones and Kenward, 2015; Shih and Aisner, 2015). In a cross-over trial, fewer partic-
ipants are needed than the equivalent parallel group trial, and, from a clinical viewpoint, the experimental treatments
are tested within each subject which eliminates many of the confounding factors that might occur in studies with a
different design. In particular, Chow and Liu (2008, page 37), point out that regulatory agencies, such as the U.S.
Food and Drug Administration (FDA), look favourably on studies which implement a cross-over design for bioequiv-
alence and bioavailability pharmacology trials. For bioequvialence studies, the cross-over design is the study design
recommended by both the FDA and the European Medicines Agency (EMA, 2010; FDA, 2001).

Designs that have two treatments and two periods were frequently utilized by researchers, but it has been shown
that these designs lack the structure to test for carry-over and also produce biased direct treatment effects under the
presence of carry-over (Freeman, 1989; Hills and Armitage, 1979). Potential solutions to these problems have also
been considered, but these designs are not normally recommended in practice (Fleiss, 1989; Senn, 2001). Therefore,
higher-order designs that involve two treatments administered over more than two periods are preferable and are
becoming more widely used. Such a design repeats any of the two experimental interventions a specific amount of
times in a number of sequences. A four period design with four unique sequences is proposed by the FDA as the most
suitable design to use for bioequivalence studies with two treatments if carry-over is expected (FDA, 2001). There
has been a thorough examination to determine the best two-treatment higher-order design in terms of both statistical
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and cost efficiency (Matthews, 1987; Kunert, 1991; Kushner, 1997; Jones and Kenward, 2015; Reed, 2012; Yuan and
Zhou, 2005; Zhou, Yuan, Reynolds et al., 2006).

However, little attention has been paid in the literature to how robust various cross-over designs are to data that
becomes unavailable during the course of the experiment. In clinical trials, missing data is not uncommon and many
studies experience subject drop-out of up to 30% (National Academy of Sciences, 2010, page 39). Participants can
drop-out through administrative issues such as change of location, unhappiness with trial processes or difficulty with
attending study visits. It is also not unusual for a number of participants to withdraw consent part-way through the
trial. As well as this, subjects may leave the study prematurely for reasons related to treatment, or even be excluded
due to protocol deviations, for example poor adherence to the intervention or use of concomitant medication. This
issue can be especially prevalent in cross-over studies, as participants experience more treatments and longer follow-
up time when compared to the equivalent parallel-group study. Exposure to different interventions could result in a
multitude of side effects and/or adverse drug reactions which could lead to subject drop-out at various points in the
study. In higher order cross-over studies, this issue is heightened further as the number of experimental and associated
washout periods are increased which can lead to trials with lengthy follow-up. Similar difficulties with drop-out
during the term of the experiment can also arise when animal subjects are involved in pharmaceutical studies; see for
example, Bate et al. (2008).

Missing data in any experiment will result in a loss of precision of parameter contrasts in effects of interest and,
in some cases, can lead to a design which is disconnected; see for example Godolphin (2004). In studies which use
a cross-over design, a specific pattern of drop-out behaviour can result in a disconnected design in which some and
occasionally all contrasts in treatment direct, treatment carry-over and period effects will not be estimable. Such a
situation has the potential to compromise the experiment severely, and could result in substantial loss of information
about the aims of the study as well as incurring unwanted excess monetary and time costs from a repeated experiment.
Throughout this paper, the design that is selected for the experiment is called the planned design and the design that
remains after any drop-out is referred to as the eventual design. It is expected that the analysis of the experiment
will be based on the eventual design. A useful measure when planning an experiment to reduce or even prevent the
possibility of a disconnected eventual design is the concept of the minimum number of observations that a planned
design is required to lose for the corresponding eventual design to be disconnected; this is referred to in what follows as
the breakdown number of the planned design. Thus, planned designs with a high breakdown number are advantageous
on grounds of robustness to missing data.

Contributions to the analysis of cross-over designs when one or more subjects fail to complete all periods of
treatment are given by Patel (1985); Shih and Quan (1997); Ho et al. (2012) and references therein. The consideration
of robustness properties of cross-over designs with regard to subject drop-out appears to be confined to the class of
planned designs which are uniformly balanced repeated measurement designs; see for example Majumdar, Dean and
Lewis (2008); Godolphin and Godolphin (2017). This class of designs necessarily excludes from consideration the
two-treatment higher-order designs.

In this paper many of the planned two-treatment higher-order cross-over designs are assessed for robustness to
missing values due to subject drop-out. By tradition, the two treatments are labelled A and B. A general treatment of
connectivity and estimability is given and the approach is illustrated by considering several examples. In particular all
possible two-treatment, four-period, four sequence dual cross-over designs are examined and ranked by breakdown
number and minimum variance, thus enabling the identification of a good design which is robust against missing
observations caused by subject drop-out. A discussion of the findings and how these may implicate designing cross-
over experiments is also presented.

2. Preliminaries

2.1. Definitions and Notation
Let a cross-over design D be selected for the experiment and suppose that the n × 1 observation vector Y is a

response variable which follows the additive model, described in matrix form as

Y = µ1n + X1τ + X2ρ + X3α + X4β + ε, (1)

where X1, X2, X3 and X4 are components of the design matrix for the planned design, 1n is the n × 1 vector, all of
whose elements are unity, and ε is a n × 1 random vector with expectation 0n and covariance matrix σ2In (σ2 > 0).
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It is assumed that there is one response from each subject in each period and that there is no carry-over effect for a
response for any subject in the first period. Here µ is a mean parameter, τ = [τA τB]′, ρ = [ρA ρB]′, α, β are vectors
of treatment direct, treatment carry-over, row (period) and column (subject) effects of sizes 2 × 1, 2 × 1, p × 1 and
s × 1 respectively. It is further assumed that n, the number of observations derived from the planned design D is
such that n ≥ p + s + 1. In most circumstances the main interest in the experiment is the comparison τA − τB of the
treatment direct effects whilst the comparison ρA − ρB of the treatment carry-over effects is often a secondary, but
usually nontrivial, interest.

In what follows it is convenient to express the model description (1) in summary form as

Y = µ1n + Xθ + ε, (2)

where X = [X1 X2 X3 X4] and the parameter vector θ = [τ′ ρ′ α′ β′]′, so that the design matrix for the planned design
D is XD = [1n X]. The linear parameter combinations of interest are mostly, but not exclusively, contrasts in the
treatment effects, both direct and carry-over, and contrasts in the period or subject effects and linear combinations of
them. However, in no cases are parametric combinations involving µ of interest and these are excluded by adopting
the model description (2). Particular concern is for the estimable space Λ, i.e. the set of vectors λ of size (p+ s+4)×1
that define the coefficients of estimable parametric combinations

Λ =
{
λ : λ′θ is estimable

}
. (3)

The planned design is said to be totally connected, a term due to Srivastava and Anderson (1970), if the independent
contrasts τA − τB, ρA − ρB and a further p + s − 2 independent parametric combinations in treatment, subject and
period effects are estimable. The planned design is totally connected if and only if the dimension of the estimable
space is dim

(
Λ
)

= p + s. A further equivalent condition for total connectivity of D is that the rank of X is given by
rank

(
X
)

= rank
(
XD

)
= p + s + 1 (Godolphin, 2013). For simplicity the single term connected is used throughout the

paper when these equivalent conditions are satisfied.

2.2. Unavailability of data due to subject drop-out

One of the distinguishing features of a cross-over design that is not normally associated with a row-column design
in general is that the corresponding experiment will be conducted over a length of time that is divided into p separate
measurement periods. It follows that if a subject drops out in the qth period then the number of measurements that
are not recorded is p − q which may be substantially larger than unity. This, of course, assumes that a subject
who drops out does not return to the study in subsequent periods, which is usually the case. Consequently the
number of measurements that are missing may be considerably larger than the number of subjects who leave the
study prematurely. Furthermore most of these missing observations will be lost from later periods of the experiment.
Although a subject may drop out of the study at any period it is reasonable to suppose that the subject is less likely to
do so in the earlier periods, except possibly when there is a reaction to the experimental treatment.

Two suppositions are made in this paper about the unavailability of data due to subject drop-out. Firstly, it is
assumed that subject drop-out is missing at random (MAR), which implies that the missingness mechanism depends
only on the data that are measured and not on any of the missing observations (Little and Rubin, 2002). When data are
MAR it follows that valid estimates of estimable parametric combinations can be obtained using traditional likelihood-
based approaches, which ignore the missing data mechanism (Molenberghs and Kenward, 2007, Chapter 12). Thus,
situations where data is missing not at random (MNAR), for example where drop-out is due to adverse or favourable
reactions to the intervention, are not considered here. In this case, the missingness mechanism also depends on the
observations which are missing. A discussion of cross-over studies where data is MNAR is given by Rosenkranz
(2014) and Matthews and Henderson (2013).

Secondly, a simplified assumption is made in the paper that each subject remains in the study for at least two
periods. This assumption is equivalent to requiring that each subject block has a minimum of two observations which
is necessary for the variability within that block to be measurable. Furthermore, this assumption is consistent with the
familiar situation that subject drop-out tends to occur in the later periods of the experiment.
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2.3. Robustness criteria
It is necessary to formalize methods for categorizing the robustness properties of a design which may be subject

to loss of information due to subject drop-out. Given a planned design D, it sometimes happens that the usual
analysis of D cannot be carried out because some measurements are not recorded after one or more subjects leave the
study prematurely. Instead it is necessary to analyze the eventual design, De say, using the measurements which are
available. Clearly for a given D there are many possible eventual designs De which could occur. We first consider the
robustness concept of breakdown number which was introduced in a paper by Mahbub Latif et al. (2009).

Definition 1. The breakdown number mD of a planned design D is the minimum number of missing observations that
result in at least one disconnected eventual design.

This definition implies that there is at least one De which is disconnected; this design will consist of mD fewer
measurements than would be available from D. Furthermore there will usually be several other disconnected eventual
designs which have mD or more observations missing when compared with the planned design.

When D has breakdown number mD then no eventual design De will be disconnected if fewer than mD observations
are lost during the experiment. Thus D is robust to the unavailability of observations due to subject drop-out if mD is
relatively high. Note, however, that the loss of mD observations does not mean necessarily that the number of subjects
dropping out is high. The extreme case for high breakdown number is a perpetually connected design which was
discussed by the authors in a previous paper (Godolphin and Godolphin, 2017).

Definition 2. A planned design is perpetually connected if all subjects complete the first two periods and the eventual
design is connected irrespective of subject drop-out behaviour in succeeding periods.

Thus D is perpetually connected if there is no De which is disconnected, conditional on no drop-out in the first
two periods of study. The breakdown number for a perpetually connected design D will be cited as mD = ∞.

2.4. Designs to compare four treatments using eight subjects
The robustness concepts of subsection 2.3 can be illustrated by considering an experiment to compare treatments

A and B by using eight subjects over four periods. Here and throughout the paper the columns of the design refer to
the subjects and the rows refer to periods in sequential order. Two designs for this study are considered. Design 2.4.1
is given by four replicates of the optimal two-subject four period design, confer Jones and Kenward (2015, page 125),
and Design 2.4.2 is given by Hedayat and Stufken (2003, page 525).

A B A B A B A B
B A B A B A B A
B A B A B A B A
A B A B A B A B

Design 2.4.1.Design 2.4.1.Design 2.4.1. From Jones and Kenward (2015)

A B A B A B A B
A B B A B A B A
B A A B B A B A
A B A B A B B B

Design 2.4.2.Design 2.4.2.Design 2.4.2. Hedayat-Stufken Design

Each of these two designs has 19 degrees of freedom available for the residual error variance. Each design is robust
to the possibility that up to three subjects drop out of the study in the third or fourth period. However the breakdown
number for Design 2.4.1 is eight, consequently the experiment based on Design 2.4.1 is at risk if four or more subjects
leave prematurely. For example, Design 2.4.3 is the eventual design after four subjects dropped out in the third period,
where the symbol ‘*’ signifies a missing observation. Design 2.4.3 is disconnected. No unbiased estimator of the
direct treatment contrast τA − τB exists even though twelve replications of treatment A and twelve replications of
treatment B have been recorded successfully. Furthermore no unbiased estimator of the carry-over treatment contrast
ρA − ρB exists.

A B A B A B A B
B A B A B A B A
∗ A ∗ A ∗ A ∗ A
∗ B ∗ B ∗ B ∗ B

Design 2.4.3.Design 2.4.3.Design 2.4.3. Drop-out from Design 2.4.1
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The unpleasant outcome described here is avoided with Design 2.4.2. In this case no drop-out activity in the third or
fourth periods will result in a disconnected eventual design. This is indicated by specifying the breakdown number
mD = ∞. Given the assumption that all subjects remain with the study for two periods then contrasts τA−τB and ρA−ρB

have unbiased estimators, irrespective of subject drop-out behaviour in periods three and four. The Hedayat-Stufken
design does not have the risk due to drop-out in the third or fourth periods that is associated with Design 2.4.1.

3. Criteria for cross-over design assessment

3.1. Introductory Comments
Much of the attention on robustness against the unavailability of observations has tended to concentrate on various

types of incomplete block designs, following the classic contribution of Ghosh (1982) on balanced incomplete blocks;
see Godolphin and Godolphin (2015) and references therein. Some of the criteria developed in these works can apply
to the more structured cross-over designs. In this section various robustness criteria are considered to assist with the
assessment, selection and subsequent analysis of a two-treatment cross-over design.

3.2. Ranking Designs by Breakdown Number
Searle (1971), page 181, has given the traditional definition of estimability of a parametric combination λµµ+λ′θ,

where the mean parameter µ and the parameter vector θ are defined in (2), as follows: λµµ + λ′θ is estimable if and
only if there is a n × 1 vector w such that [λµ λ′] = w′XD = w′[1n X]. Taking λµ = 0, this becomes

Proposition 1. For the planned design D defined in (2),

λ′θ is estimable if and only if there is w such that w′1n = 0 and λ′ = w′X. (4)

The condition λ′ = w′X in Proposition 1 is equivalent to requiring λ ∈ Rplan, where Rplan is the row space of
X. Thus the criterion cited by (4) is given in a particularly useful form for dealing with the possibility of missing
values since each observation has a one-to-one relationship with a row of X. Consequently the loss of one or more
observations from D to give the eventual design De is equivalent to losing the corresponding spanning vectors from
Rplan to yield a new space R ⊆ Rplan. As long as the dimension, dim

(
R
)
, of the remaining row space is the same as

dim
(
Rplan

)
then R and Rplan are the same space. Hence the estimability space for De is the same Λ as specified in

equation (3), i.e. if D is connected then De is a connected design. On the other hand, if dim
(
R
)
< dim

(
Rplan

)
then R

is a strict subspace of Rplan so that De is disconnected and the corresponding estimability space will also be a strict
subspace of Λ. Therefore certain parametric combinations will no longer be estimable. Typically the contrasts τA−τB

and ρA − ρB are inestimable so the experiment will be compromised.
An example of this unwelcome situation is provided when D is given by Design 2.4.1 in Section 2.4; in this case

the loss of eight observations to yield Design 2.4.3 corresponds to the loss of eight spanning vectors from Rplan, with
dimension p + s + 1 = 4 + 8 + 1 = 13, to yield the residual row space R with lower dimension 12 in which τA − τB

and ρA − ρB and many period and subject contrasts are inestimable. Even if all measurements from Design 2.4.3 are
made successfully no unbiased estimators of either τA − τB or ρA − ρB exists.

The choice of a cross-over design, in general, is typically made on grounds of estimator efficiency. Whilst this is
always an important consideration the consequences of having to deal with a disconnected eventual design because of
drop-out suggest strongly that robustness properties should also be taken into account. To achieve this it is required to
determine a way of ranking designs in terms of robustness properties.

Definition 3. If D1 and D2 are cross-over designs with the same dimension then D1 is said to be more robust than D2
when their breakdown numbers satisfy mD1 > mD2 .

It follows that if many designs are under consideration then the design D with breakdown number max(mD) is more
robust than the competing designs and should be preferred on grounds of robustness. When several designs have the
same largest breakdown number max(mD) then efficiency considerations should apply to these designs. Evidently a
useful preliminary step is to aim to identify those designs that possess this largest breakdown number.

Definition 4. Given a cross-over design D, let Dmin denote the eventual design which remains after all s subjects
drop-out after completing two periods. Then Dmin is termed the minimal design associated with D.
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Assume without loss of generality that the ordering of the rows of X is such that X∗, the submatrix of X consisting
of the first 2s rows, corresponds to the first two periods of the design. Then X∗ can be written as

X∗ =
[
Xmin 0∗2s

]
(5)

where Xmin is the minimal design matrix and 0∗2s is a 2s × (p − 2) matrix consisting of zero elements. Clearly the
rows of X∗ form a subspace R∗ ⊆ Rplan. Using an argument of Godolphin and Godolphin (2017), it can be shown
that dim

(
R∗

)
= rank

(
Xmin

)
, consequently there are two possible cases to consider. If the minimal design matrix Xmin

is connected, i.e. it has maximal rank s + 3, then the deficiency in the dimension dim
(
R∗

)
compared to dim

(
Rplan

)
is due solely to the fact that no measurements are made in the final p − 2 periods which are missing in the minimal
design. This implies that no drop-out activity from the design D which occurs in these final p−2 periods will result in
a disconnected eventual design, i.e. D is perpetually connected. On the other hand if Xmin is disconnected then there
will be other eventual designs that include Xmin which are also disconnected.

3.3. Choosing a Perpetually Connected Design

Clearly if a perpetually connected design exists then it should be considered seriously for selection. However, it
sometimes happens that the setD of perpetually connected designs which are available may contain several members.
In these circumstances a choice of planned design fromD is sensible. Considerable attention has been given to design
selection based on various optimality criteria which assume no drop-out will arise: see the useful reviews in Jones and
Kenward (2015, Chapter 3), and Chow and Liu (2008, Chapters 9-10).

In addition the authors suggest making use of a complementary method of choice between members ofD that does
not appear to be available easily in many software packages. This procedure gives the explicit forms for the unbiased
estimators of τA−τB and ρA−ρB as linear forms in the observations Y , for each competing member ofD. The method
is based on an established alternative test of estimability, described by Searle (1971, Section 5.4). Suppose that λ ∈ Λ,
where Λ is the estimability space defined in (3). Then λ′θ is estimable so it follows from Proposition 1 that there is a
w of size n × 1, referred to as the weight vector, such that

λ′ = w′X. (6)

Let (X′X)− be a generalized inverse of X′X, i.e. (X′X)− satisfies X′X(X′X)−X′X = X′X. Then PX = X(X′X)−X′ is the
orthogonal projection operator on the column space of X and

PXX = X ⇒ X′ = X′PX = X′X(X′X)−X′

after noting that PX is symmetric. Thus if S X is defined as S X = X′X(X′X)− then S XX′ = X′, i.e. S X is a projection
operator on the column space of X′, which is Rplan. This implies that λ ∈ Rplan if and only if λ′S ′X = λ′. From this
condition it follows that, whenever λ′θ is estimable

λ′ = λ′S ′X = λ′(X′X)−X′X = w′X, (7)

taking account of (6), where the weight vector is given by

w′ = λ′(X′X)−X′. (8)

Searle (1971, page 185) remarks that “the derivation of a vector λ satisfying λ′ = w′X may not always be easy”,
however the improvement in methods for computing the expression (8) in the intervening years has probably made
this comment somewhat pessimistic. In particular, it follows from (8) that expressions for the least-squares estimators
of the estimable contrasts τA − τB and ρA − ρB are given by

τ̂A − τ̂B = w′τY = λ′τ(X
′X)−X′Y and ρ̂A − ρ̂B = w′ρY = λ′ρ(X

′X)−X′Y (9)

respectively, where λτ and λρ are the (p + s + 4) × 1 vectors

λτ = [1 − 1 0 0 0′p+s]
′ and λρ = [0 0 1 − 1 0′p+s]

′. (10)
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These estimators (9) are specified uniquely as weighted sums of the elements of Y and are, of course, unbiased. The
least-squares estimators of τA − τB and ρA − ρB have sampling variances

var(̂τA − τ̂B) = w′τwτσ
2 and var(̂ρA − ρ̂B) = w′ρwρσ

2, (11)

respectively.These results can be summarized as follows:

Proposition 2. If the design D is connected then the weighted coefficients of the least-squares estimators of the direct
effects contrast and the carry-over effects contrast are given by w′τ = λ′τ(X

′X)−X′ and w′ρ = λ′ρ(X
′X)−X′ respectively,

where λ′τ, λ
′
ρ are given by (10). The least squares contrast estimators are given by (9) and their sampling variances

are given by (11)

It should be remarked that Proposition 2 also applies to an eventual cross-over design De in the event of missing
observations due to subject drop-out, provided that De is connected. The proposition is therefore useful for estab-
lishing the weights w for eventual designs that occur after subject drop-out from a perpetually connected design.
Furthermore it is evident that a choice between competing perpetually connected designs in D can be made by com-
paring the corresponding sampling variances for the direct effects var(̂τA − τ̂B), specified in (11), which give the usual
measure of precision of the estimator in each case.

4. The two-treatment four-period designs with four sequences

4.1. Three planned two-treatment four-period designs with four sequences
To illustrate the results of Section 3 consider the robustness of a design for two treatments which employs 4s0

subjects over four periods where, for simplicity but without affecting the general argument, it is assumed that s0 = 1.
The problem of design selection for this situation has been considered extensively by many authors, confer Chow and
Liu (2008, Section 2.5), Reed (2012) and Jones and Kenward (2015, Section 3.10); however, the robustness of the
designs do not appear to have been addressed in detail. Three designs are considered here:

A B A B
A B B A
B A B A
B A A B

Design 4.1.1.Design 4.1.1.Design 4.1.1.

A B A B
B A B A
A B B A
B A A B

Design 4.1.2.Design 4.1.2.Design 4.1.2.

A B A B
B A B A
B A B A
A B A B

Design 4.1.3.Design 4.1.3.Design 4.1.3.

Design 4.1.1 is the optimum design described by Chow and Liu (2008, page 43), Jones and Kenward (2015, Section
3.10) which has optimum cost efficiencies (Yuan and Zhou, 2005) and is recommended for use by the FDA in bioe-
quivalence experiments (FDA, 2001). Design 4.1.2 is one of the designs described by Reed (2012). Design 4.1.3
consists of two replicates of the two-sequence four-period design given in Table 3.22 of Jones and Kenward (2015)
which has good estimation properties. Note that Jones and Kenward (2015, Section 3.10) label these three designs
4.4.13, 4.4.23 and 4.4.33 respectively. Design 4.1.1 is perpetually connected but the other two designs are not. In fact
designs 4.1.2 and 4.1.3 have the same minimal design, consequently all disconnected eventual designs will have the
same lack of estimability of treatment effects which, in these cases, is that neither τA − τB nor ρA − ρB is estimable.
However, the breakdown numbers for these two planned designs are not the same; Design 4.1.2 has breakdown num-
ber equal to six and Design 4.1.3 has breakdown number equal to four.

The weight vectors (8) for the treatments direct effects contrast estimator τ̂A − τ̂B specified by (9), with w = wτ

defined in Proposition 2, for the three designs are specified as follows:

A
(

1
8

)
B

(
− 1

8

)
A

(
1
8

)
B

(
− 1

8

)
A

(
1
8

)
B

(
− 1

8

)
B

(
− 1

8

)
A

(
1
8

)
B

(
− 1

8

)
A

(
1
8

)
B

(
− 1

8

)
A

(
1
8

)
B

(
− 1

8

)
A

(
1
8

)
A

(
1
8

)
B

(
− 1

8

)
Design 4.1.1 with (wτ weights) superimposed.Design 4.1.1 with (wτ weights) superimposed.Design 4.1.1 with (wτ weights) superimposed.

A
(

9
56

)
B

(
− 9

56

)
A

(
13
56

)
B

(
− 13

56

)
B

(
− 5

56

)
A

(
5
56

)
B

(
− 1

56

)
A

(
1
56

)
A

(
1

56

)
B

(
− 1

56

)
B

(
− 17

56

)
A

(
17
56

)
B

(
− 5

56

)
A

(
5
56

)
A

(
5

56

)
B

(
− 5

56

)
Design 4.1.2 with (wτ weights) superimposed.Design 4.1.2 with (wτ weights) superimposed.Design 4.1.2 with (wτ weights) superimposed.
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A
(

3
20

)
B

(
− 3

20

)
A

(
3
20

)
B

(
− 3

20

)
B

(
− 3

40

)
A

(
3

40

)
B

(
− 3

40

)
A

(
3

40

)
B

(
− 7

40

)
A

(
7

40

)
B

(
− 7

40

)
A

(
7

40

)
A

(
1
10

)
B

(
− 1

10

)
A

(
1
10

)
B

(
− 1

10

)
Design 4.1.3 with (wτ weights) superimposed.Design 4.1.3 with (wτ weights) superimposed.Design 4.1.3 with (wτ weights) superimposed.

These results show that for Design 4.1.1 the least squares estimator of τA−τB is simply the difference between the
mean of the eight measurements on treatment A minus the mean of the eight measurements on treatment B, which is
the intuitive estimator. The least squares estimator of τA − τB for Designs 4.1.2 and 4.1.3 are weighted means, which
implies that the intuitive estimator is biased in each of these cases.

The sample variances (11) for these designs are 1
4σ

2, 11
28σ

2 and 11
40σ

2 respectively. This shows that Design 4.1.1 is
the most efficient design of the three. Design 4.1.3 has smaller variance than Design 4.1.2, thus demonstrating that the
preferred design on grounds of minimum variance is not necessarily the preferred design on the grounds of robustness
since, at least in this case, it is not the more robust design.

In a similar way the weight vectors (8) for the treatments carry-over effects contrast estimator ρ̂A − ρ̂B specified by
(9), with w = wρ defined in Proposition 2, for the three designs are given by:
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The corresponding sample variances (11) for the ρ̂A − ρ̂B contrast estimators for these designs are 4
11σ

2, 4
7σ

2 and
2
5σ

2 respectively, which are ranked the same as the estimators for the direct effect contrast.

4.2. Two-treatment four-period design with four sequences: Eventual designs
It is interesting and useful to point out that the procedure for determining the coefficients of the contrast estimators

and the sample variances outlined in Section 3.3 will apply to the eventual designs when data are missing, provided
they are connected, in the same way as the planned design. To illustrate this point the wτ weights are presented for
two eventual designs after drop-out occurs to Design 4.1.1 by the loss of one subject in the third period and by the
loss of all four subjects in the third period, i.e. the minimal design.

A
(

3
20

)
B

(
− 3

20

)
A

(
3
20

)
B

(
− 3

20

)
A

(
3
20

)
B

(
− 3

20

)
B

(
− 3

20

)
A

(
3

20

)
B

(
− 1

10

)
A

(
1
5

)
B

(
− 1

10

)
∗

B
(
− 1

5

)
A

(
1

10

)
A

(
1
10

)
∗

Eventual Design 4.1.1 (wτ weights superimposed.)Eventual Design 4.1.1 (wτ weights superimposed.)Eventual Design 4.1.1 (wτ weights superimposed.)

A
(

1
2

)
B

(
− 1

2

)
A

(
1
2

)
B

(
− 1

2

)
A

(
1
2

)
B

(
− 1

2

)
B

(
− 1

2

)
A

(
1
2

)
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Minimal Design 4.1.1 (wτ weights superimposed.)Minimal Design 4.1.1 (wτ weights superimposed.)Minimal Design 4.1.1 (wτ weights superimposed.)

Similarly, the wρ weights for the two eventual designs after drop-out occurs to Design 4.1.1 by the loss of one
subject in the third period and the minimal design are also presented.
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It is noticeable that all of the weights for the data that remain in the eventual designs have changed from those in
the planned design. Furthermore the sampling variances have increased over the values for the planned design, as one
would expect. The displays of the weight vectors for the minimal design are possible only because Design 4.1.1 is
perpetually connected.

4.3. The general case

DesignDesignDesign
DesignDesignDesign 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7

4.2.1 4.4.11 4.4.12 4.4.13 4.4.14 4.4.15 4.4.16 4.4.17
4 ∞ ∞ ∞ 6 ∞ 6

4.2.2 4.4.22 4.4.23 4.4.24 4.4.25 4.4.26 4.4.27
4 6 6 ∞ 6 ∞

4.2.3 4.4.33 4.4.34 4.4.35 4.4.36 4.4.37
4 6 ∞ 6 ∞

4.2.4 4.4.44 4.4.45 4.4.46 4.4.47
4 ∞ 6 ∞

4.2.5 4.4.55 4.4.56 4.4.57
4 ∞ 6

4.2.6 4.4.66 4.4.67
4 ∞

4.2.7 4.4.77
4

Table 1: Breakdown numbers for all two-treatment cross-over designs with four periods and four sequences

In general, the four period designs for two treatments with four sequences are considered by Jones and Kenward
(2015, Section 3.10) who describe these designs as combinations of pairs of four period designs for two treatments
with two sequences, each of which is a dual of the other. Because of the importance of the Jones-Kenward designs
and their robustness implications, the Jones-Kenward referencing of these designs is adopted here in this section and
in the appendix to this paper.

The Jones-Kenward referencing is as follows. There are seven two-sequence four-period designs, designated 4.2.1
to 4.2.7, and these are listed in the Appendix for ease of reference. The four-sequence four-period design is obtained
by combining 4.2.a with 4.2.b and is labelled 4.4.ab, (a, b = 1, . . . 7). Table 1 presents the breakdown numbers for all
of the 28 possible designs. These breakdown numbers are sufficiently high to ensure that none of the eventual designs
will be disconnected if only one subject drops out in the third or fourth period; however if two subjects drop out at the
third period then seven designs are at risk, viz. Designs 4.4.aa (a = 1, . . . , 7).

For the two-treatment, four-period designs with four sequences, the set D of perpetually connected designs con-
tained 12 unique designs, which are listed in the Appendix for reference. Therefore, to choose between these designs,
an estimate for the sampling variance of τA − τB can be computed for each perpetually connected design. These
estimates are displayed in Table 2, where the designs are ranked by minimum variance. Design 4.4.13 had the lowest
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Design Treatment contrast variance Breakdown number

4.4.13 0.250σ2 ∞

4.4.12 0.275σ2 ∞

4.4.14 0.288σ2 ∞

4.4.16 0.288σ2 ∞

4.4.37 0.315σ2 ∞

4.4.67 0.333σ2 ∞

4.4.56 0.341σ2 ∞

4.4.35 0.344σ2 ∞

4.4.47 0.418σ2 ∞

4.4.45 0.458σ2 ∞

4.4.27 0.571σ2 ∞

4.4.25 0.603σ2 ∞

Table 2: Sampling treatment contrast variance and breakdown number for all 12 two-treatment four-period four-sequence perpetually connected
designs, ranked by order of efficiency

estimate of treatment contrast variance for any of the perpetually connected designs, and can be recommended for
an experiment that investigates two treatments over four periods. Interestingly, it appears that specific two-sequence
designs that each four-sequence design is made up of perform better than others. Clearly, Design 4.2.1 contributes
low variance, as each design which contains these two sequences have lower variance than any other design. It ap-
pears that the estimate of treatment contrast variance is a combination of the treatment contrast variance from each
two-sequence design. Whilst all designs possess the same properties with respect to robustness to missing values,
there is a considerable advantage in choosing Design 4.4.13 or Design 4.4.12 when compared with Design 4.4.27 or
Design 4.4.25. Therefore, it is recommended that one of the higher ranked designs is chosen for use in practice.

5. Discussion

Considerable attention has been given to the problems associated with incomplete data in clinical trials due to
subject drop-out. It is evident that the concepts of breakdown number and perpetual connectivity are useful aids for
assessing the robustness of possible cross-over designs that may be employed in these studies. In this paper it is
shown that two-treatment higher-order cross-over designs exist which are robust to missing values, based on these
criteria. In particular it is possible to rank the two-treatment designs by robustness, together with minimum variance
of the direct effects contrast. This is demonstrated by considering the class of two-treatment, four-period designs with
four sequences, arranged as two pairs of dual sequences. The results of Table 2 support the recommendation of the
FDA that Design 4.1.1 is the most suitable. It follows that a number, s0, of replicates of Design 4.1.1 would also be
suggested for designs that recruit 4s0 participants when s0 ≥ 2. Furthermore it is seen that there are other designs
which are also perpetually connected and have relatively small sampling variances.

5.1. Criteria of Robustness

The concept of breakdown number of a design to denote the number of observations that need to be lost before
the resulting eventual design may be disconnected was introduced by Mahbub Latif et al. (2009) in an investigation
of robustness properties of microarray designs. An equivalent, if more unwieldy term, is minimal rank reducing
observation set that was introduced by Godolphin (2004). This concept plays a crucial part in seeking designs which
are maximally robust, a term due to Ghosh (1982), as described for example by Godolphin and Godolphin (2015).
Evidence that the breakdown number is received in the statistical design literature as a useful measure of robustness
is provided by Godolphin and Godolphin (2015) and the references therein. The proposal in this paper that perpetual
connectivity, which is assigned a breakdown number of ∞, is a limiting ideal property of a breakdown number is a
natural extension of this concept which has practical value for design assessment. If no perpetual connected design
exists, then there may be circumstances where designs with comparatively low breakdown numbers might be preferred
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on grounds of cost or statistical efficiency, however this will be at the risk of a disconnected eventual design. Indeed
it appears to be unwise to rely on efficiency considerations alone when planning a design for a cross-over experiment.
For example, it should be noted that the variance of Design 4.1.3 is 11

40σ
2 = 0.275σ2 which would rank Design 4.1.3

second on the list of minimum variance perpetually connected designs in Table 2, although the breakdown number for
Design 4.1.3 is only mD = 4, i.e. Design 4.1.3 has comparatively poor robustness properties. The authors suggest that
Design 4.1.3 is vulnerable to observation loss and should not be recommended in practice, despite its relatively low
sampling variance, since any one of the twelve perpetually connected designs do not have the same risk.

Quite apart from the use of the weighted coefficients procedure of Proposition 2 for formulating sampling variances
of the treatment contrasts for direct and carry-over effects, there is another property of these weighted values which is
helpful when comparing the effects of missing values on connected eventual designs. The output in Section 4.2 shows
that these weights change as different observations are lost, and this is useful information for assessing the influence
of those observations that remain.

5.2. Locally Efficient Designs

The literature on the optimality and efficiency of cross-over designs includes the recent contributions by Low et al.
(1999), Majumdar et al., (2008), Zhao and Majumdar (2012) and Zheng (2013), which study the possibility of subject
drop-out and yield some interesting and useful results. The approach of the present paper differs from these works in
two ways. Firstly, wherever possible the main objective is to define and then eliminate from consideration all eventual
designs that could be disconnected due to drop-out over the third and subsequent periods. The second objective is to
identify locally efficient designs, i.e. designs with good properties of design efficiency from the set D of perpetually
connected designs which remain. For example Zheng (2013, page 83) recommends a design for t = 2 treatments over
p = 6 periods for s = 14 subjects, designated d9 therein, and this is displayed here as Design 5.2.1.

A B A B A B A B A B A B A B
B A B A B A B A B A B A B A
B A B A B A B A B A B A B A
A B B A B A B A B A B A B A
B A A B A B A B A B A B A B
A B A B A B A B A B A B A B

Design 5.2.1.Design 5.2.1.Design 5.2.1. Zheng two-treatment design d9

This design has high efficiency and robustness, conditional on the assumption made by Zheng (2013) that there is
no subject drop-out in the first four periods and that drop-out is more likely in the final period compared to period 5 in
the ratio of 3:2. However, Design 5.2.1 is not perpetually connected so it follows that there will be some disconnected
eventual designs. In particular, let the subjects (columns) of the displayed design be labelled consecutively from 1 to
14. If all odd-numbered subjects and subject 2 leave the study at period 3 we get Design 5.2.2:

A B A B A B A B A B A B A B
B A B A B A B A B A B A B A
∗ ∗ ∗ A ∗ A ∗ A ∗ A ∗ A ∗ A
∗ ∗ ∗ A ∗ A ∗ A ∗ A ∗ A ∗ A
∗ ∗ ∗ B ∗ B ∗ B ∗ B ∗ B ∗ B
∗ ∗ ∗ B ∗ B ∗ B ∗ B ∗ B ∗ B

Design 5.2.2.Design 5.2.2.Design 5.2.2. Zheng design d9 with drop-out

The eventual design, Design 5.2.2, is disconnected. When this occurs, then no unbiased linear estimator of τA − τB

or ρA − ρB is available. Whilst this form of drop-out behaviour may seem extreme, the question of most concern in
this case is that the eventual design has 52 remaining measurements, 26 of treatment A and 26 of treatment B, but the
structure of this eventual design is such that unbiased linear estimates of these two contrasts cannot be realized.

This situation can be avoided when design selection is restricted to the set D of perpetually connected designs,
which is the procedure recommended by the authors whenever D is not empty. A perpetually connected design is
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given by Design 5.2.3 which consists of three copies of dual block AABBBA and BBAAAB and four copies of dual
block ABBAAB and BAABBBA.

A B A B A B A B A B A B A B
A B B A A B B A A B B A B A
B A B A B A B A B A B A B A
B A A B B A A B B A A B A B
B A A B B A A B B A A B A B
A B B A A B B A A B B A B A

Design 5.2.3.Design 5.2.3.Design 5.2.3. Alternative to Zheng design d9

Although Design 5.2.3 is chosen from a smaller universal set than Design 5.2.1, it turns out that the two designs have
similar properties of estimator efficiency. The pair of sampling variances {Var(̂τA − τ̂B), Var(̂ρA − ρ̂B)} are given by
{0.04792σ2, 0.05949σ2} for Design 5.2.1 and {0.04766σ2, 0.05915σ2} for Design 5.2.3. Furthermore, Design 5.2.3
is a candidate for selection since it belongs to the set D, therefore it has the property that there are no disconnected
eventual designs, whatever the drop-out mechanism, provided that all subjects stay in the experiment for the first two
periods. This is an important and worthwhile property which is not shared by Design 5.2.1 nor any other design that
does not belong toD and is not perpetually connected.

5.3. The Estimation Procedure

The representation (1) of the cross-over design is the traditional fixed-effects model recommended by regulatory
guidelines. The estimation of parametric combinations of interest, in particular the estimates of the contrasts τA − τB

and ρA − ρB, is achieved by standard least-squares as described, for example, in Section 3.3. If drop-out occurs but
the eventual design is connected, and all subjects stay with the study for at least two periods then the least-squares
estimates (9) are complete in the sense that they involve all available observations. It follows that all measurements
taken from subjects who drop out of the study, as well as all measurements taken from subjects who complete their
treatment sequences, are utilized in the contrast estimates. This is consistent with the recommendation of Patel (1985)
and others, that the practice of removing the results of subjects who drop out and do not complete their whole sequence
should be discontinued.

In common with other works, for example Majumdar et al.(2008), the approach given in this paper does not require
an estimate of the unrealized value of any observation which is lost due to subject drop-out in order to obtain the least-
squares estimates of contrasts, in this case τA − τB and ρA − ρB. Note that the estimation of missing values as linear
functions of the realized observations is equivalent to forming additional elements of the space R from those vectors
which remain after subjects have dropped out. This applies whether the eventual design is connected or otherwise. Of
course, if the eventual design is disconnected then dimR is strictly less than dimRplan, and it will not be possible in
this case to increase dimR by adding any number of linear combinations of the existing elements of R.

5.4. Assumptions Required of the Approach

The limitations of this approach stem from the need to make two assumptions, described in detail in Section 2.2.
It is not always plausible that there will be no subject drop-out in the first two periods of the study, especially for
experiments where there is extensive follow-up time between treatment being administered and response measured.
Furthermore, the assumption that all missing data is unrelated to a positive or negative treatment reaction will not
necessarily hold for all circumstances. If a participant reacts badly, or well, to a single treatment application and fails
to return for the second period then perhaps this is useful information for the experiment, although it would not be
classified as MAR. However, a formal assumption that subject drop-out is MNAR may need a further assumption
that carry-over is a non-existent effect. Given that higher-order designs are widely used in situations where carry-
over is expected, this assumption may seem undesirable. Additionally, the permitting of drop-out in the first or second
periods may require a restriction on the loss of data in later periods, which is perhaps less preferable. The assumptions
of the paper seem reasonable for many practical situations and, whilst they may be unrealized in some experimental
conditions, it is believed that these ideas and concepts provide a useful starting point in this area of research.
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Appendix

Two-treatment, Four-period, Two-sequence Designs

All seven dual two-treatment, four-period, two-sequence designs are given below with the Jones-Kenward labels
4.2.a, (a, b = 1, . . . 7). These designs are used to generate all 28 dual two-treatment, four-period, four sequence
designs discussed in Section 4.

A B
A B
B A
B A

Design 4.2.1.Design 4.2.1.Design 4.2.1.

A B
B A
A B
B A

Design 4.2.2.Design 4.2.2.Design 4.2.2.

A B
B A
B A
A B

Design 4.2.3.Design 4.2.3.Design 4.2.3.

A B
B A
A B
A B

Design 4.2.4.Design 4.2.4.Design 4.2.4.

A B
A B
B A
A B

Design 4.2.5.Design 4.2.5.Design 4.2.5.

A B
B A
B A
B A

Design 4.2.6.Design 4.2.6.Design 4.2.6.

A B
A B
A B
B A

Design 4.2.7.Design 4.2.7.Design 4.2.7.

Two-treatment, Four-period, Four-sequence Designs

The setD of twelve perpetually connected designs discussed in Table’s 1 and 2 and produced through the combi-
nation of 4.2.a with 4.2.b, and they are labelled 4.4.ab, (a, b = 1, . . . 7). All twelve designs are displayed below.

A B A B
A B B A
B A A B
B A B A

Design 4.4.12.Design 4.4.12.Design 4.4.12.

A B A B
A B B A
B A B A
B A A B

Design 4.4.13.Design 4.4.13.Design 4.4.13.

A B A B
A B B A
B A A B
B A A B

Design 4.4.14.Design 4.4.14.Design 4.4.14.

A B A B
A B B A
B A B A
B A B A

Design 4.4.16.Design 4.4.16.Design 4.4.16.

A B A B
B A A B
B A B A
A B B A

Design 4.4.25.Design 4.4.25.Design 4.4.25.

A B A B
B A A B
A B B A
B A A B

Design 4.4.27.Design 4.4.27.Design 4.4.27.

A B A B
B A A B
B A B A
A B A B

Design 4.4.35.Design 4.4.35.Design 4.4.35.

A B A B
B A A B
B A A B
A B B A

Design 4.4.37.Design 4.4.37.Design 4.4.37.

A B A B
B A A B
A B B A
A B A B

Design 4.4.45.Design 4.4.45.Design 4.4.45.

A B A B
B A A B
A B A B
A B B A

Design 4.4.47.Design 4.4.47.Design 4.4.47.

A B A B
A B B A
B A B A
A B B A

Design 4.4.56.Design 4.4.56.Design 4.4.56.

A B A B
B A A B
B A A B
B A B A

Design 4.4.67.Design 4.4.67.Design 4.4.67.
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Least Square Weights for Direct Treatment Contrast τA − τB
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Least Square Weights for Carry-over Treatment Contrast ρA − ρB
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