
1

Fixed-Cost Pooling Strategies
Aldo Lipani, David E. Losada, Guido Zuccon, Mihai Lupu

Abstract—The empirical nature of Information Retrieval (IR) mandates strong experimental practices. A keystone of such experimental
practices is the Cranfield evaluation paradigm. Within this paradigm, the collection of relevance judgments has been the subject of
intense scientific investigation. This is because, on one hand, consistent, precise, and numerous judgements are keys to reducing
evaluation uncertainty and test collection bias; on the other hand, however, relevance judgements are costly to collect. The selection of
which documents to judge for relevance, known as pooling method, has therefore a great impact on IR evaluation. In this paper we
focus on the bias introduced by the pooling method, known as pool bias, which affects the reusability of test collections, in particular
when building test collections with a limited budget. In this paper we formalize and evaluate a set of 22 pooling strategies based on:
traditional strategies, voting systems, retrieval fusion methods, evaluation measures, and multi-armed bandit models. To do this we run
a large-scale evaluation by considering a set of 9 standard TREC test collections, in which we show that the choice of the pooling
strategy has significant effects on the cost needed to obtain an unbiased test collection. We also identify the least biased pooling
strategy in terms of pool bias according to three IR evaluation measures: AP, NDCG, and P@10.

Index Terms—Pooling Method, Test Collections, Pool Bias.

F

1 INTRODUCTION

THE effectiveness of an IR system is evaluated with the
use of test collections. A test collection consists of a

collection of documents, a set of topics, and a set of rele-
vance judgments, which express the relevance relationship
between topics and documents.

This set of relevance judgments is, in the vast majority
of cases, by necessity a very small subset of the Cartesian
product between the set of documents and the set of topics.
If we were to consider even a relatively small test collection,
with 500,000 documents and 50 topics (this is approximately
the size of the Ad Hoc 8 test collection [1]), the total
relevance judgments to be made would be 5 × 106. At a
rate of 120 seconds/judgment, this represents the equivalent
of 95 years of work for one person [2]. Therefore, since the
very beginning of standardized IR benchmarking at the Text
REtrieval Conference (TREC) in the early 1990s, “pooling”
has been used to reduce the number of judgments, while
still preserving the ability of the benchmark to distinguish
between two or more retrieval systems [3].

The typical organizational process of an evaluation exer-
cise (in Figure 1) goes as follows: After having identified
a retrieval issue, the organizers of this exercise define a
collection of documents and a set of topics (c and Q).
These two sets are then given to a number of participating
organizations (O), which, after having developed their IR
systems, return to the organizers a series of search results
(rs). Out of the union set of rs over all organizations (R),
a subset is selected, the pooled set (Rp). This pooled set
is then used as input of the pooling method (J), which
together with human assessors, generates a set of relevance
judgments (J). In this process many decisions need to be
taken when defining c, Q, Rp and J , which give rise to
important research questions [4]. In this paper, we focus on
the decision of the pooling method J .

Pooling fundamentally relies on the assumption that if
many and sufficiently diverse systems participate in a pool
(i.e., having provided lists of documents they consider to be
relevant for each topic), a set of judgements can be identified

that, once adjudicated, can provide, using an effectiveness
measure, a score that is predictive of the future relative
performance of two or more systems. The original pooling
method, now referred to as Depth@K , was first proposed in
1975 by Spärck Jones and van Rijsbergen [5], and first used
when TREC started in 1991 [6].

The Depth@K strategy aggregates, for every topic, the
top K documents returned by each system, and presents
only this set to the human assessor(s) for evaluation. While
the pooling method was introduced with the objective of
finding as many relevant documents as possible (under
the assumption that if a document is not retrieved by any
system, it is probably irrelevant for the topic), the realistic
objective is in fact to produce an unbiased sample of the set of
relevant documents [7].

Since the proposal of the Depth@K pooling strategy,
substantial research effort has gone into improving the
evaluation procedures, reducing the associated costs, mit-
igating the effect of biases, and devising alternative pooling
strategies (e.g. [8], [9], [10], [11], [12], [13], [14], [15], [16]).

Since the early days of pooling, it has been observed that,
in the absence of sufficiently numerous and diverse systems,
there is a risk that the identified set of relevant documents
will be so limited that future systems, retrieving a new set
of relevant (but at this point unjudged) documents, will
be considered ineffective because they do not primarily
find the set of relevant documents found by the systems
that were originally pooled [17]. Incomplete judgments,
i.e., the presence among the retrieved results of unjudged
documents, have little impact on the small newswire col-
lections used in early TREC years; however, they do lead
to uncertainty in the evaluation quality on larger, web-size
collections, thus rendering evaluation on these collections
biased [18], [19].

This bias, named pool bias, manifests with the effect that
documents that were not selected in the pool created from the
original retrieval systems will never be considered relevant [20].
In the following we provide a formal definition of pool bias:

2

Definition 1. The pool bias b(r, JRp
) is a systematic error

we observe when performing a measurement with an
evaluation measure f on a run r using the pooled doc-
uments resulting from a pooling strategy J with input
a set of pooled runs Rp, which may or may not contain
information about the run r:

b(r, JRp
) = f(r, JRp

)− f(r, I) (1)

where I is the ideal set of judgments one would obtain
when evaluating the entire collection of documents. We
say that f(r, I) is the true measurement and f(r, JRp

) is
the biased measurement.

The bias measured using f on the set of judgments (J)
is inversely proportional to the cost of J , which is equal to
the number of judgments times a unit cost of judgment (u):

b(r, JRp
) ∝ C(JRp

)−1, C(JRp
) = |JRp

| · u. (2)

To minimize this bias, we can either increase the number of
judgments, hence the cost of J , or improve J .

The research effort in this area has channeled in two
main directions. On one hand, prior work has attempted
to reduce bias at test collection build time by considering
different pooling strategies [9], [10], [21]. On the other
hand, for already existing test collections, some studies have
adopted measures that reduce the effect of the bias [11],
[12], [13]. Sometimes, the two directions intertwine, and a
new pooling strategy is proposed together with a matching
evaluation measure [22], but that significantly restricts the
future use of the collection to specific measures.

In this paper, we focus on reducing this pool bias at test
collection build time, exploring different pooling strategies
to identify the most efficient way to create the pool, while
controlling the bias. We focus on a specific case of pooling:
when the pool has to respect a financial constraint (budget)
that limits the number of documents to be pooled to a fixed
value (N documents). We call this fixed-cost pooling. More-
over, these N documents to be judged should be distributed
fairly across topics (equally divided when possible). Both
are typical constraints in most IR evaluation exercises like
TREC, CLEF and NTCIR. While a number of isolated studies
have analyzed and proposed a number of pooling strategies,
a complete picture of their effectiveness and bias is still
lacking, and little has been analyzed about these strategies
in the context of fixed-cost pooling. This article extends and
complements the body of evidence regarding pooling by
providing: a synthesis of a substantial line of research done
on the pooling method; a coherent mathematical framework
to describe pooling strategies; the identification of theoreti-
cal similarities between the analyzed strategies; and, a large-
scale evaluation using 9 test collections. Based on this, we
provide guidelines for building more stable test collections.
In addition to the traditional Depth@K pooling strategy, we
analyze the pool bias of a set of 22 previously identified
pooling strategies.

The remainder of this article is structured as follows.
Section 2 defines the notation used throughout the paper.
Then, Section 3 presents the pooling strategies. Experiments
are reported in Section 4, and discussed in Section 5. Finally,
we conclude in Section 6.

c ollection

J udgments

R uns

q uery

Rp uns
Pooled

Runs Selection

Pooling Method

1

r1 un . . .
n

rn un

|O| rganizations

Fig. 1. The typical organizational process of an evaluation exercise.

2 NOTATION

In the following table we present the notation used through-
out the paper. The table includes a set of symbols, functions
and operators used to express operations in a compact way.

Symbols

Q Set of topics.
q A topic q ∈ Q.
R Set of runs.
Rp Set of pooled runs Rp ⊆ R.
r A run r ∈ R.
O Set of organizations.
o An organization o ∈ O.
Ro Set of runs submitted by o.
D Collection of documents.
d A document d ∈ D.
Dr Set of documents retrieved by r.
J Set of pooled documents (J = J + ∪ J− and

mutually exclusive).
J + Set of relevant documents J + ⊆ J .
J− Set of irrelevant documents J− ⊆ J .
ε A small number� minr∈Rp

(|r|−1).
Functions

[condition] Returns 1 if the condition within the brackets is
verified, 0 otherwise (aka Iverson bracket).

τ@n(R, s) Returns the union of the top N documents re-
trieved by the set of runsR ordered by the function
s.

ρ(d, r) Returns the rank at which d has been retrieved in r
if d ∈ Dr, the highest rank possible otherwise (|D|).

σ(d, r) Returns the score at which d has been retrieved in r
if d ∈ Dr, the lowest score returned by r otherwise.

µ(a, b) Returns a random number in [a, b].
id(r) Returns a natural number n ∈ N unique for every

r ∈ R : 1 ≤ n ≤ |R|.
Sequences
a|n1
n0

Set of elements of the sequence an from n0 to n1,
{ai}n0≤i≤n1

.
Avg(a|n1

n0
) Average of the sequence an for the values from n0

to n1.
Var(a|n1

n0
) Variance of the sequence an for the values from n0

to n1.

3

3 POOLING STRATEGIES

We examine each of the pooling strategies that we empiri-
cally investigate in this article as alternative to the standard
Depth@K strategy. As mentioned in the introduction, in
this paper we are mainly concerned with pools formed by
exactly N documents, but the strategies may be further
generalized to variable-size pools (e.g., by implementing
different stopping criteria; this is left for future work). More-
over, the fair distribution of the N documents across topics
by equally dividing them, may be also further generalized
to variable-size topic pools (e.g., by implementing different
topic allocation strategies, this is also left for future work).

In what follows, we make the effort to unify all the
pooling strategies under the same mathematical framework
in order to be able to formally assess their similarities
and differences. In this framework we define each pooling
strategy as a set-building function (J) that outputs a set of
pooled documents, given as input a set of runs and a scoring
function (s) used to score all candidate documents. Each
pooling strategy is identifiable by the properties of J and s.

These pooling strategies can be classified in different
ways. In this paper we have chosen to do it in two ways,
by their type and by their origin. The classification based on
type arises naturally from the mathematical formalization of
the pooling strategies. This classification by type has led to
the definition of the following classes: non-adaptive, adaptive
with run allocation, and adaptive without run allocation. Where,
in general, by adaptive we refer to those pooling strategies
that adapt their behavior based on knowledge acquired in
the previous selection step(s), and by non-adaptive we refer
to those pooling strategies that do not adapt. By adaptive
with run allocation we refer to an adaptive strategy that, to
select the next document, it first selects a run – allocates
a judgment to be performed to this run – then selects a
document from this run. Adaptive without run allocation refers
to an adaptive strategy that selects a document by aggre-
gating information across runs. About the classification by
origin, the reason of this choice is twofold. First, because
this classification allows us to distinguish between classic
pooling strategies [9] and the more recent multi-armed ban-
dit based strategies [15]. Second, because this classification,
since some of the pooling strategies are relatively new to
IR, allows us to recall their underlying intuitions that have
been extensively investigated in IR, i.e., as retrieval fusion
methods [23], [24], [25] or as IR evaluation measures [16].
This classification by origin has led to the definition of
the following classes: classic pooling, voting systems, retrieval
fusion methods, IR evaluation measures, and multi-armed bandit
models.

3.1 Non-Adaptive Pooling Strategies

Non-adaptive pooling strategies do not modify their behav-
ior based on the current pooled documents, regardless of
whether these documents have been judged or not. The
strategy Depth@K belongs to this category. The following
subsections group the pooling strategies by their origin:
classic pooling, voting systems, retrieval fusion methods, and IR
evaluation measures.

3.1.1 Classic Strategies
Before analyzing the considered pooling strategies, we start
presenting the formalization of the most common strategy:
Depth@K . Then, we present some natural variants, Take@N
and FairTake@N , which consider the number of required
documents (N) as a parameter.

Depth@K (D). This strategy creates, for each topic, a
global ranked list of documents where each document is
scored based on its highest position across all Rp runs.
Given this ranked list, the top ranked documents are se-
lected to form the pool. The Depth@K strategy is specified
by the following definitions of s, which scores every docu-
ment d retrieved by the set of pooled runs Rp:

s(d,Rp) = max
r∈Rp

(−ρ(d, r)) (3)

and J , which determines the set of pooled documents:

JRp
= {d ∈ r : r ∈ Rp, s(d,Rp) ≥ −K} (4)

A primary feature of this pooling strategy is its fairness to
the pooled runs. A strategy is fair when the probability of a
document to be judged at a given position is constant across
runs. This is guarantied by selecting the top K documents
from every run. However, although this pooling strategy
takes into consideration the contribution of all pooled runs,
it has no control on the exact size of the final set of pooled
documents (|J |). It is therefore not a fixed-cost pooling
strategy. Moreover, the number of documents selected per
topic can vary depending on the size of the overlapping
retrieved documents the pooled runs share on a per topic
basis.

Lipani et al. [26] have introduced a natural extension
of Depth@K that guarantees a given number N of pooled
documents, called Take@N , effectively turning Depth@K
into a fixed-cost pooling strategy. We now formalize this
strategy, show its limitation, and introduce a new version
that addresses it.

Take@N (T). This strategy creates, for each query, a
global ranked list of documents using a new definition of
s:

s(d,Rp) = max
r∈Rp

(−ρ(d, r)− ε · id(r)) (5)

This definition of s is similar to the definition in Eq. 3.
However, it differs by the small deterministic contribution
(ε · id(r)) that is used to provide a unique score for every d
in order to break ties. This contribution is small enough to
not change the order defined by the document’s ranks, and
it is deterministic because it is based on the ids of the runs.
The top n ranked documents, fraction of the size of the pool
N , are selected to be pooled as follows:

JRp
= τ@n(Rp, s) (6)

where τ@n is always well defined, i.e. there is no ambiguity
on which documents to return first. Compared to Depth@K ,
this strategy presents a drawback: it does not guarantee
fairness with the pooled runs. With Depth@K all runs
contribute equally to the pool (first K documents). With
Take@N , instead, not all runs may contribute the same.
The contributions are however only slightly unbalanced:
the maximum difference between the number of documents
contributed by two runs is equal to one. This strategy

4

also compared with Depth@K behaves differently across
topics, because while Depth@K can vary based on the size
of the overlapping retrieved documents the pooled runs
share, Take@N distributes the N documents to be judged
uniformly. That is, to every topic is assigned, if possible, the
same fraction of documents to be judged (n · |Q| = N).

FairTake@N (F). This strategy aims to address the lack
of fairness of Take@N by introducing a non-deterministic
selection of the documents to be judged. This strategy
shares some of the characteristics of the Stratified pooling
strategy [22]. The Stratified strategy defines multiple strata,
each characterized by a depth and a sample rate. This
strategy is defined in two steps. First, each document is
assigned to a stratum based on its highest rank across the
pooled runs. Then, documents are sampled based on the
sample rate of the stratum. FairTake@N is akin to having
a stratification composed of two strata, a stratification with
sample rate 1 as deep as the number of documents to be
judged nq,0 does not exceed nq , the fraction of documents to
be judged assigned to the topic q, and a second stratification
of depth 1 with sample rate equal to (nq−nq,0)/|Rp|, which
guaranties eventually to have exactly nq judged documents.
By definition, this strategy is fair with the pooled runs
because any document at a given position has the same
probability to be judged. In this strategy s is defined as:

s(d,Rp) = max
r∈Rp

(−ρ(d, r)− ε · µ(0, 1)) (7)

J is defined as in Eq. 6. Fairness is achieved by introducing
a small random component to the score s. This value breaks
potential ties and is small enough to not influence the
ranking. Its random nature ensures that any document has
equal opportunity to be sampled from any run. In this way,
the strategy selects nq documents to be judged in a fair way
because every run will have in expectation (across topics)
the same number of judged documents.

3.1.2 Voting System-Based Strategies
These strategies are based on the intuitions underlying
voting systems. In general, voting systems take one of two
forms: (1) positional voting systems that rely on the rank at
which a document is retrieved (e.g. to assign a voting score
to that document), and (2) majority voting systems that
assign document weights based on pairwise comparisons
between candidate documents.

BordaTake@N (B). This strategy is a positional voting
strategy in which candidate documents are ranked in order
of preference. For this strategy, s is defined as:

s(d,Rp) =
∑
r∈Rp

B(d, r) + ε · µ(0, 1) (8)

where B defines the particular implementation of the Borda
count. In this case, because we are dealing with truncated
ballots (i.e. not every document is ranked by each run), we
follow the method also used by Aslam and Montague [23]:
Therefore, for a document d, the strategy assigns a score
equal to the size of the collection of documents (|D|) minus
the rank at which d has been retrieved in the r (ρ(d, r)) if d
has been retrieved by r, or else, if d has not been retrieved
by r, the average score the strategy would have assigned to
the documents retrieved between the last ranked document

(equal to the size of the run |r|) and the size of the collection
of documents (|D|). Formally, B is defined as follows:

B(d, r) =

{
|D| − ρ(d, r) if d ∈ Dr
Avg|r|<n≤|D| (|D| − n) if d 6∈ Dr

'

' −
{
ρ(d, r) if d ∈ Dr
|D|+|r|+1

2 if d 6∈ Dr
(9)

where the symbol ' indicates rank equivalence, and the
expression on the right side of ' is a simplified rank
equivalent form of the same strategy. J is defined as in
Eq. 6. Comparing this equation with Eq. 5 we observe that
BordaTake@N is different from Take@N in that it considers
the sum of all ranks at which a document has been retrieved,
while Take@N only considers the highest rank (the earliest
rank).

CondorcetTake@N (C). This majority voting strategy en-
sures that pooled documents are those that, when compared
to not-pooled documents, have been retrieved at higher
ranks by more systems. Strategies that fulfill this condition
satisfy the Condorcet criterion, and it is easy to prove that
Depth@K , Take@N , FairTake@N and BordaTake@N do not
satisfy this condition. Specifically, this strategy starts by
forming a list containing the set of all documents retrieved
by the pooled systems. Then, it sorts the list according to
the following procedure. Each document pair di and dj is
then compared as follows. We iterate through the document
rankings of each system and increment a counter if di is
ranked above dj (or decrement the counter in the converse
situation). When all systems have been considered, if the
counter is positive, then di should be ranked above dj ; if it
is negative, then the opposite ranking should be enforced.
This leads to the definition of the following comparative
function:

C(d0, d1,Rp) =
∑
r∈Rp

sign(ρ(d1, r)− ρ(d0, r)) (10)

This function does not define a total order, leading to the so-
called Condorcet paradox. Imagine three documents, da, db,
and dc, such that da is preferred over db, db over dc, and dc
over da. This cycle is a paradox because the conclusions are
in conflict with each other. A solution is to adopt a method
that still respects the Condorcet condition but that does not
fall in this paradox. In our case we use what is known
as Copeland’s method, which counts the number of times
a document beats the other documents. This leads to the
following definition of s:

s(d,Rp) =
∑
d′∈D

{
1 C(d, d′,Rp) > 0

0 otherwise
+ ε · µ(0, 1) '

'
∑

d′∈
⋃

r∈Rp
Dr

{
1 C(d, d′,Rp) > 0

0 otherwise
+ ε · µ(0, 1) (11)

where the expression on the right side is a simplified rank
equivalent form of the same strategy. This strategy is related
to the Borda voting system. It can be proven that a relaxation
of the Condorcet criterion used in the Copeland method
leads to the Borda strategy (see Electronic Appendix 1). This
observation illustrates why this method is majority-based. It

5

only counts when a document in the majority of the cases,
across runs, has a higher score than another document,
rather than counting its contribution per each individual
run, like in BordaTake@N .

3.1.3 Retrieval Fusion Method-Based Strategies
Another class of non-adaptive pooling strategies is based on
retrieval fusion methods. The main difference with the other
strategies is that these are based on the score each ranker
gives to a document (rather than the rank). To allow the
comparison of scores between runs, score normalization is
required, otherwise the pooling strategy would be biased
towards the runs that produce larger scores. Following
existing practice in fusion for retrieval [23], [27], [28], [29],
we apply the following feature scaling:

σ(d, r) =
σ(d, r)−mind′∈Dr

(σ(d′, r))

maxd′∈Dr (σ(d
′, r))−mind′∈Dr (σ(d

′, r))
(12)

which normalizes all the values into the range [0, 1]. To be
noted that for any document not retrieved by the run r
by the definition of σ, which returns the minimum value
observed in the run, σ returns 0.

CombMAXTake@N (MAX). This strategy assigns to
each document the maximum retrieval score that the doc-
ument has across all systems. In general, a document may
be retrieved by multiple systems, and this likely happens
with different scores. s is therefore defined as:

s(d,Rp) = max
r∈Rp

(σ(d, r)) + ε · µ(0, 1) '

' max
r∈Rp:d∈Dr

(σ(d, r)) + ε · µ(0, 1) (13)

where on the right side of ' we can observe a simplified
rank equivalent form of the same strategy. After construct-
ing a new document ranking with the maximum scores, the
pool is obtained as for FairTake@N , i.e., only the documents
with the highest nq scores are included in the pool J , where
nq is the fraction of documents to be judged assigned to
the topic, as in the definition of J in Eq. 6. The CombMAX
retrieval fusion method, which shares the same underlying
intuition of CombMAXTake@N , is a commonly used strong
baseline in the literature of fusion methods for retrieval.
This strategy minimizes the probability to discover relevant
documents being poorly ranked. This definition of s and
the definition in Eq. 5 are similar, while the former uses
documents’ ranks, the latter documents’ scores.

CombMINTake@N (MIN). While the previous strategy
minimizes the probability to discover relevant documents
being poorly ranked, this strategy minimizes the probability
to discover irrelevant documents ranked at early ranks. This
strategy also combines the scores from different runs (by
extracting the minimum score of each document across all
runs). s is therefore defined as:

s(d,Rp) = min
r∈Rp

(σ(d, r)) + ε · µ(0, 1) (14)

J is defined as in Eq. 6.
CombMEDTake@N (MED). This strategy takes a

middle-ground approach to the selection of pooling doc-
uments based on fusion, by selecting the median score
(as opposed to the maximum or minimum score as in

CombMAXTake@N and CombMINTake@N , respectively).
s is defined as follows:

s(d,Rp) = Med
r∈Rp

(σ(d, r)) + ε · µ(0, 1) (15)

J is defined as in Eq. 6.
CombSUMTake@N (SUM). Instead of selecting a single

score as in CombMAXTake@N , CombMINTake@N , and
CombMEDTake@N , CombSUMTake@N sums all the avail-
able document’s scores. s is therefore defined as:

s(d,Rp) =
∑
r∈Rp

σ(d, r) + ε · µ(0, 1) '

' Avg
r∈Rp

(σ(d, r)) + ε · µ(0, 1) '

'
∑

r∈Rp:d∈Dr

σ(d, r) + ε · µ(0, 1) (16)

where we observe that the expression on the right side
of the first ' demonstrates its rank equivalence of this
strategy with a strategy defined by the arithmetic mean
across runs, because differing only by a constant (1/|Rp|);
and the expression on the right side of the second '
presents a simplified rank equivalence form of the same
strategy. Comparing this equation with Eq. 8, we observe
that CombSUMTake@N is the counterpart of the Borda
strategy, but for scores (Borda uses ranks). J is defined as in
Eq. 6.

CombANZTake@N (ANZ). This strategy computes the
average of the non-zero document scores. This strategy
effectively eliminates the effect of a single run failing to
retrieve a document (and thus assigning a zero score to that
document). s is therefore defined as:

s(d,Rp) =
1

|{r ∈ Rp : σ(d, r) > 0}|
∑
r∈Rp

σ(d, r)+ ε ·µ(0, 1)

(17)
J is defined as in Eq. 6.

CombMNZTake@N (MNZ). This strategy aims to give
higher weights to documents retrieved by multiple systems.
This is achieved by multiplying the sum of scores of a doc-
ument by the number of runs that retrieved that document.
s is defined as:

s(d,Rp) = |{r ∈ Rp : σ(d, r) > 0}|
∑
r∈Rp

σ(d, r) + ε · µ(0, 1)

(18)
J is defined as in Eq. 6.

3.1.4 IR Evaluation Measure-Based Strategies
This section presents several strategies inspired by IR eval-
uation measures. These pooling strategies accumulate evi-
dence of the importance of a document d for a given topic
based on both a) the rank ρ(d, r) at which d has been
retrieved in the pooled run r ∈ Rp, and b) the specific
characteristics of the considered IR evaluation measure.

All the pooling strategies below share the same gener-
alization of s, in which the contribution from every rank
is replaced by a gain function related to the evaluation
measure. s is defined as follows:

s(d,Rp) =
∑

r∈Rp:d∈Dr

G(ρ(d, r)) + ε · µ(0, 1) (19)

6

where G is the gain defined by the evaluation measure. To
simplify the notation, in the following ρ(d, r) will be simply
denoted by ρ.

DCGTake@N (DCG). This strategy uses the gain func-
tion defined in the discounted cumulative gain (DCG) to
rank candidate documents [30]. The gain is characterized
by an inverse log2 decay function, as follows:

G(ρ) =
1

log2(ρ+ 1)
(20)

Candidate documents are ranked in decreasing order of the
sum of values computed by G in s. J is defined as in Eq. 6.

RRFTake@N (RRF). This strategy is rooted in the re-
ciprocal rank (RR) evaluation measure, which is commonly
used to assess system effectiveness in tasks such as known
item search, question answering, or query auto comple-
tion [31]. A variant of RR, the reciprocal rank fusion (RRF),
has been used as retrieval fusion method [32]. RRF makes
use of an additional parameter, α, that controls the decay of
the document contribution score as a function of the rank. In
this pooling strategy we employ the same idea, with α = 60
as in Cormack et al. [32]; other values will be investigated
in future work. Its G is defined as follows:

G(ρ) =
1

ρ+ α
(21)

Candidate documents are ranked in decreasing order of the
sum of values computed by G in s. JRp

is defined as in
Eq. 6.

PPTake@N (PP). This strategy (PP, for perfect precision) is
inspired by the family of measures that count the number
of relevant documents found at rank ρ and divide it by the
number of documents up to rank ρ. Average Precision [33]
and Sakai’s Q-Measure [34] are examples of metrics belong-
ing to this family. To define the G function for this class
of IR evaluation measures, we assume to compute these IR
evaluation measures on a ranked list as if all documents up
to rank ρ are relevant, therefore the rank score attributed to
a document retrieved by runs in Rp is the number of runs
that have retrieved that document:

G(ρ) = 1 (22)

This leads to a set-based majority voting procedure to rank
documents and select the top nq . It is set-based because
the order in which the documents are retrieved does not
count. This can be seen as a relaxation of the Borda strategy.
Candidate documents are ranked in decreasing order of the
sum of values computed by G in s. J is defined as in Eq. 6.

RBPTake@N (RBP). This strategy computes document
scores based on Rank Biased Precision (RBP) [35]. The RBP
formula is characterized by a parameter p that models the
user persistence, i.e. the likelihood that the user examines
a document. The persistence parameter is effectively used
to discount the contribution of a relevant document, simi-
larly to other gain-discount based measures [36]. The gain
function is defined as follows:

G(ρ) = (1− p)pρ−1 (23)

In our experiments we use p = 0.8; this is akin to previous
work that relied on RBP for evaluation [37], [38] and for
pooling [14], [21]. The use of RBP as a document discount

factor in weighting the contribution of documents to the
pool creates a family of 3 pooling strategies [21], one
being RBPTake@N . We present the other two in the next
subsection. Candidate documents are ranked in decreasing
order of the sum of values computed by G in s. J is defined
as in Eq. 6.

3.2 Adaptive Pooling Strategies

So far we have discussed the non-adaptive pooling strate-
gies. These strategies are characterized by first computing a
score for each candidate document, ranking the documents
decreasingly, and selecting the top nq , where nq is the
fraction of documents to be judged assigned to the topic.
They are non-adaptive because the score of a document is
not affected by the previously selected documents.

Another class of pooling strategies are adaptive. These
recompute the scores used by the ranking function s based
on the last document selected. This is formalized by having
s taking as input the current set of pooled documents and
iteratively changing the scores of the documents.

First, the definition of s is expanded to consider the
documents that have already been pooled. The superscript
J indicates that we now receive the pooled documents as
an input. The new definition of s, which will be denoted as
sJ+ , ensures that documents that have been pooled in the
previous iteration are not re-scored:

sJ+(d,Rp) =
{
sJ (d,Rp) d 6∈ J
−∞ d ∈ J (24)

Setting sJ+(d,Rp) to −∞ ensures that already pooled doc-
uments do not get selected again. The specific definition of
sJ (d,Rp) will be determined by each pooling strategy.

The set J grows as documents are pooled. The pooled
documents after the n-th iteration of judgments will be
referred to as Jn . The construction of the Jns is achieved
recursively:

J1 = τ@1(Rp, s∅+)
Jn = Jn−1 ∪ τ@1(Rp, sJn−1

+)

JRp = Jn
(25)

J1 contains the top-ranked document (beginning of the
assessment process), and Jn contains all previously judged
documents (Jn−1) together with a newly selected document
that depends on how s

Jn−1

+ re-scores the documents. This
definition of a pooling strategy generalizes the non-adaptive
definition previously presented in Eq. 6.

There exists another type of adaptive strategy: the adap-
tive with run allocation. These adaptive strategies also
specify which runs should be pooled (e.g., by iteratively
choosing documents from one run or another). This is
formalized by a sequence rn that determines from which
run r the documents have to be pooled.

We have seen that in the adaptive pooling strategies
without run allocation, s is defined by the pooling strat-
egy using as input the previous pooled documents. In the
adaptive pooling strategies with run allocation, s is defined
as follows:

sJn−1(d,Rp) = −ρ(d, rn) (26)

7

where the effect of run pooling strategy is only observed in
the run allocation sequence ({rn}n∈N1

), which is different
for every strategy. This definition of s scores every docu-
ments of the allocated run in order of their retrieved rank
position, and by substituting it into Eq. (24), it allows s+
to re-rank to the end of the list all the documents already
pooled.

Adaptive pooling strategies modify their behavior based
on the current pooled documents. These strategies can be
further divided into two categories based on which kind of
document information is required in the adaptive stage: non
relevance-based, and relevance-based. All the pooling strategies
listed below are relevance-based pooling strategies, except
for RBPAdaptiveTake@N , which is a non relevance-based
one. The adaptive pools are incrementally built using the
recursive definition of JRp

in Eq. 25. We now describe the
pooling strategies that belong to this category, classified
by their origin: classic strategies, IR evaluation measures, and
multi-armed bandit models.

3.2.1 Classic Strategies
This category includes traditional strategies developed in
IR. In this category, two strategies exhibit adaptive behavior,
the Move-To-Front strategy (MTFTake@N), and the Hedge
strategy (HedgeTake@N).

MTFTake@N (MTF). MTF is a heuristic developed by
[9], which associates a priority to each run. Initially, all
runs have maximum priority. At every iteration of Jn, this
strategy selects a random run among the maximum priority
runs. Then, it takes the first document retrieved by this run
and judges it for relevance. At the next iteration, if the docu-
ment was relevant (J +

n−1\Jn−2 6= ∅) then MTFTake@N will
continue selecting and judging documents from the same
run. Otherwise, the priority of the current run is decreased
and the method randomly selects another maximum prior-
ity run. We first define the following function that returns
the number of times a run r has been sampled:

#(r, r|n1) = |{i ∈ {1, 2, 3, . . . , n} : r = ri}| (27)

The run selection sequence is defined as follows:

r1 = argmin
r∈Rp

(µ(0, 1))

rn =

rn−1 ifJ +

n−1 \ Jn−2 6= ∅
argminr∈Rp

(
|{d ∈ Dr :

: ρ(d, r) ≤ #(r, r|n−11)}∩
∩J−n−1|+ ε · µ(0, 1)

)
otherwise

(28)

r1 makes an initial random selection (all runs have the
maximum priority), and rn either continues on the current
run because the last document was relevant (rn−1), or jumps
to another maximum priority run. s is as defined in Eq. 26
and J in Eq. 25.

HedgeTake@N (H). This strategy is an online learning
algorithm proposed by Aslam et al. [39] for metasearch and
pooling. It associates a set of losses to the contributing runs.
These losses depend on the relevance outcomes and the
positions in the runs of the judged documents. For example,
a run’s loss is increased (decreased) if the run retrieved a
non-relevant (relevant) document at a high position. After

each assessment, the run’s losses are updated and the next
pick (next assessed document) depends on the run’s losses
and the positions of the unjudged documents in the runs.
For each document-run pair, the following function takes
the document’s position and estimates the loss we would
obtain if the document is deemed non-relevant:

G(ρ) = ln(|D|/ρ) (29)

This loss needs to be computed for all documents (including
those that do not belong to the run). This is achieved by
extending G as follows:

G∗(d, r) =

{
G(ρ(d, r)) if d ∈ Dr
Avg|r|<i≤|D|G(i) otherwise

(30)

If the document does not belong to the run then the loss
is estimated as the average loss the document would get
if retrieved in positions from |r| + 1 to |D|. As we obtain
relevance assessments, we iteratively accumulate the loss
induced by each run (L(r,J)). These runs’ losses depend
on the relevance outcomes and the positions in the runs of
the judged documents (as defined by G∗). The loss of run r
is defined as follows:

L(r,Jn−1) =
1

2

∑
d∈J−n−1

G∗(d, r)− 1

2

∑
d∈J+

n−1

G∗(d, r) (31)

Next, the loss is normalized by:

L(r,Jn−1) =
βL(r,Jn−1)∑

r′∈Rp
βL(r′,Jn−1)

(32)

This normalization has a parameter β ∈ [0,+∞[that con-
trols the way in which new judgments change the weights.
We set β = 0.1 as in Losada et al. [15]; other values will
be investigated in future work. Finally, s is defined as the
weighted average of the documents’ losses across all runs:

sJn−1(d,Rp) =
∑
r∈Rp

(
L(r,Jn−1) ·G∗(d, r)

)
+ ε · µ(0, 1)

(33)
J is defined as in Eq. 25. It is interesting to observe that this
strategy takes into account also the non-relevant documents.
Now, we make some observations about how this pooling
strategy changes behavior as we vary β. In particular we
analyze three special values of β, when β → 0, β = 1, and
β → +∞ (see Electronic Appendix 2). When β = 1 we ob-
serve that this strategy reduces to a non-adaptive evaluation
measure-based strategy with G defined as follows:

G(ρ) = log

(
1

ρ

)
+

log(|D|!)
|D| (34)

When β tends to +∞, we observe that this strategy reduces
to a MTFTake@N like pooling strategy. This observation de-
rives from the fact that when β tends to +∞ the normaliza-
tion in Eq. 32 will select the run that has the largest L score.
From this run, due to Eq. 33, the document with the highest
rank, not yet pooled, is selected. Now, if the document was
relevant, a new document will be picked from the same
run because it is still the run with the largest score; if the
document is not relevant, the score of the run is reduced,
and a new document will be picked potentially from a run
with a larger score, like the MTFTake@N strategy. However

8

there is a main difference between these two strategies, for
MTFTake@N the run is kept the same every time a picked
document is judged relevant, in this case this is embedded
in the definition of selection of the run by increasing the
score for the run. When β tends to 0, we observe an opposite
behavior than the one observed when β tends to +∞: the
score for a run is increased if the retrieved document is
non-relevant and decreased if the document is relevant.
This generates a pooling strategy that instead of keeping
sampling from runs that retrieved relevant documents like
MTFTake@N , it keeps sampling from runs that retrieved
non-relevant documents.

3.2.2 IR Evaluation Measure-Based Strategies
The next two strategies are extensions of RBPTake@N .
Thanks to the convergent behavior of RBP, Moffat et al. [21]
have naturally extended RBPTake@N to include additional
information into the scoring function s.

RBPAdaptiveTake@N (RBPA). This strategy is an adap-
tive version of RBP, which adds documents to the pool in
an incremental way. For each run r ∈ Rp, it computes its
residual e(r,J), i.e. a value proportional to the number of
not judged documents in the run. The residual is defined as:

e(r,Jn−1) = p|r| + (1− p)
∑

d∈Dr:d6∈Jn−1

pρ(d,r)−1 (35)

where the first term represents the residual obtained by
counting the contribution of every non-retrieved and non-
judged document by r (from its actual depth |r| to the
infinite depth), and the second term represents the residual
obtained counting the contribution of every non-judged
document within the run depth |r|. s is defined as follows:

sJn−1(d,Rp) =
=

∑
r∈Rp:d∈Dr

(GRBP(ρ(d, r)) · e(r,Jn−1)) + ε · µ(0, 1) (36)

With each new selection, the runs’ residuals change and
the score sJn−1(d,Rp) needs to be recomputed (thus, the
adaptive nature of RBPAdaptiveTake@N). J is defined as in
Eq. 25.

RBPAdaptive*Take@N (RBPA*). This pooling strategy is
also an adaptive pooling strategy that uses both the RBP
residuals, as RBPAdaptiveTake@N , and the actual RBP score
b(r,J) of a run r, computed using binary relevance:

b(r,Jn−1) =
∑

d∈Dr:d∈J+
n−1

GRBP(ρ(d, r)) (37)

The candidate documents for pooling are ranked by decreas-
ing:

sJn−1(d,Rp) =

=
∑

r∈Rp:d∈Dr

[
GRBP(ρ(d, r)) · e(r,Jn−1)·

·
(
b(r,Jn−1) +

e(r,Jn−1)
2

)3
]
+ ε · µ(0, 1) (38)

At each iteration n, this strategy uses the information about
the relevance of the last selected document (observe the set
of judged relevant documents J +

n−1 in Eq. 38). Being an
adaptive strategy, J is defined as in Eq. 25.

3.2.3 Multi-Armed Bandit Models-Based Strategies
These strategies model pooling as a multi-armed bandit
problem [15]. The bandit-based strategies are adaptive. As
we select and judge documents, we gain knowledge on the
quality of the contributing runs. Run selection is driven by
the classical exploration versus exploitation dilemma. This
works as follows: At any point, we can opt for exploiting our
current knowledge (i.e. choose the run that has supplied the
highest average number of relevant documents) or, alterna-
tively, we can opt for exploring (i.e. choose a suboptimal run).
Exploitation maximizes the expected reward on the next
pick, but exploration may produce the greater total reward
over a long period of time (the runs that are currently
inferior can eventually become good suppliers of relevant
documents). Every bandit-based strategy implements a spe-
cific bandit allocation method. A bandit allocation method
chooses the next pick (next run) based on past actions and
obtained rewards (relevance of judged documents).

MABGreedyTake@N (BG). This strategy is based on the
ε-greedy bandit allocation method. A greedy approach con-
sists of always selecting the run with the largest average of
judged relevant documents. This greedy approach, which is
similar to MTFTake@N , has been shown to be sub-optimal.
A simple variant consists of behaving greedily most of the
time and sometimes selecting a random (suboptimal) run. A
simple strategy that implements this idea is εn-greedy [40].
At any point, εn-greedy plays with probability 1 − εn the
run with the highest average of judged relevant documents,
and with probability εn a randomly chosen run. εn is known
as the exploration probability. It is good practice setting εn
such that it decreases with the number of picks (n). This is
because estimates become more accurate as more evidence
is encountered and, therefore, the exploration probability
should decrease. We employ the following definition of
εn = min(1, c0|Rp|/(c21(n − 1))), where c0 and c1 are pa-
rameters. Following Losada et al. [15], we set c0 to 0.01, and
c1 to 0.1. For each run, we first compute the proportion of
the run’s judged documents that were deemed as relevant:

P (r, r|n1 ,Jn) =
{
1/2 #(r, r|n1) = 0
|{d∈Dr:ρ(d,r)≤#(r,r|n1)}∩J

+
n |

#(r,r|n1)
otherwise

(39)
following the run succession used by s as defined in Eq. 26:

rn =

argmaxr∈Rp
(µ(0, 1)) µ(0, 1) <

< min
(
1,

c0|Rp|
c21(n−1)

)
argmaxr∈Rp

(

P (r, r|n−11 ,Jn−1)+
+ε · µ(0, 1)) otherwise

(40)

The second line of the equation above encodes the greedy
action, which selects the run with the highest average (ε ·
µ(0, 1), again, is incorporated here to break the ties), while
the first line encodes the exploration action (random run
selection). J is defined as in Eq. 25.

MABUCBTake@N (UCB). This strategy implements the
UCB1-Tuned method [41]. UCB associates an upper confi-
dence index to each run. This index estimates the uncer-
tainty about the quality of the run (average relevance of
documents from the run). After n rounds of judgment, we

9

would like to sample from the leading run (the one with the
largest proportion of judged relevant documents). However,
we need to be sure that the other runs have been sampled
enough. Otherwise, we cannot be sure that they are indeed
inferior. MABUCBTake@N (UCB) computes upper confi-
dence bounds for the proportions of relevant documents
supplied by the runs and compares the upper confidence
bounds of apparently inferior runs with the estimated mean
of the leading run. The index of the UCB1 strategy is the
sum of two components: the current estimated mean and a
quantity related to the size of the one-sided confidence in-
terval for the estimated mean. UCB1-Tuned is an evolution
of UCB1 that takes into account the variance of each run.
In this strategy we use the probability of extracting relevant
documents as defined in Eq. 39, and we define its average by
renaming the function P in Eq. (39) defined in the previous
strategy as follows:

Pµ(r, r|n1 ,Jn) = P (r, r|n1 ,Jn) (41)

The definition of its variance is:

Pσ2(r, r|n1 ,Jn) = P (r, r|n1 ,Jn)(1− P (r, r|n1 ,Jn)) (42)

S defines the reward to maximize:

S(r,Jn−1, r|n−11) = Pµ(r, r|n−11 ,Jn−1) +
√

ln(n− 1)

#(r, r|n−11)
·

·

√√√√min

(
1

4
, Pσ2(r, r|n−11 ,Jn−1) +

√
2 ln(n− 1)

#(r, r|n−11)

)
+

+ ε · µ(0, 1) (43)

Here, we observe that, for the reward to be properly defined,
#(r, r|n−11) must always be ≥ 1. To guarantee this, all the
runs get the first document evaluated. Therefore, in the
definition of P in Eq. (39) used to define Pµ and Pσ2 , we can
ignore the first case when #(r, r|n1) = 0. The initialization is
achieved by defining F as follows:

F (r,J) = max
d∈Dr: d 6∈J

(−ρ(d, r)) + ε · µ(0, 1) (44)

and the run allocation policy is defined as:

rn =

argmaxr∈Rp

(F (r,Jn−1)) if ∃ r ∈ Rp,
∃ d ∈ Dr : ρ(d, r) = 1

argmaxr∈Rp
(

S(r,Jn−1, r|n−11)) otherwise
(45)

J is defined as Eq. 25.
MABBetaTake@N (BB). This strategy is based on a

heuristic called Thompson sampling [42]. It represents each
run with a probability of supplying a relevant document,
and each run’s probability is associated with a probabil-
ity distribution under a Bayesian framework. The process
begins with no knowledge of these probabilities. This is
encoded by applying a uniform prior for each run. This
uniform initialization, which is equivalent to the Beta dis-
tribution when assigning its shape parameters α = 1 and
β = 1 (Beta(1, 1)), represents the lack of knowledge about
the chances of extracting relevant documents from each run.
Run selection is done by extracting a sample from each
distribution (|Rp| samples, one from each Beta distribution)

and the run yielding the largest sample is chosen. This
selection approach tends to select runs that have a high
mean (i.e. high likelihood of yielding relevant documents).
Next, the top ranked unjudged document of the chosen run
is judged for relevance, and the relevance outcome is used
for updating the run’s Beta distributions. With binary rele-
vance, the relevance outcome can be modeled as a Bernoulli
variable. This is a mathematical convenience because it
guarantees that the update leads to posterior distributions
(after incorporating the new evidence) that are also Beta
distributed. So, we iteratively update the parameters of the
Beta distributions based on the relevance of the judged
documents. The run allocation sequence used by s in Eq. 26
is defined as follows:

rn = argmax
r∈Rp

(Beta(1 + |r ∩ J +
n−1|,

1 + |r ∩ J−n−1|))
(46)

J is defined as Eq. 25. To be noted that here the small
random component (ε · µ(0, 1)), useful to break the ties, is
not necessary since it is already a stochastic process.

MABMaxMeanTake@N (MM). This is another Bayesian
solution that represents the runs with Beta probabilities and
updates the probability distributions based on the relevance
assessments. The difference between MABBetaTake@N and
MABMaxMeanTake@N is that MABMaxMeanTake@N does
not make run selection by sampling from the Beta dis-
tributions. The run selected by MABMaxMeanTake@N is
simply the one that has the maximum mean of the Beta
distributions. The run allocation sequence, used in s as in
Eq. 26, is defined as:

rn = argmax
r∈Rp

(
1 + |r ∩ J +

n−1|
2 + |r ∩ J−n−1|

+ ε · µ(0, 1)
)

(47)

J is defined as in Eq. 25.
Losada et al. [15] also describe a non-adaptive version

of a multi-armed bandit based-strategy, which randomly
allocates the runs from which to select the documents to be
pooled. However, this strategy, as expected, performs simi-
larly to FairTake@N , therefore it has not been considered in
this article.

4 EXPERIMENTS & RESULTS

We do a large-scale evaluation in terms of pool bias of the
22 pooling strategies presented above on 9 test collections
using 3 measures of bias and 3 IR evaluation measures. In
this section we first present the experimental design. Next,
we present the material and experiment setup. We then
introduce the measures of bias; and finally, we present the
results.

4.1 Experimental Design

In the introduction we have presented that the pooling
method is used to build test collections in evaluation efforts
like TREC. In these evaluation efforts, an evaluation chal-
lenge is instantiated and the set of topics Q to be evaluated
defined. Next, participating organizations O are invited to
submit a set of runs of a given size, of which a subset per
O is then used to form the set of pooled runs Rp. Next, a

10

pooling strategy is used to pool the documents to be judged
by human relevance assessors. At the end of this building
process, a test collection is released that is then used in
laboratory experiments that, unavoidably, will suffer from
pool bias.

In order to compare the effectiveness of the pooling
strategies presented above in mitigating the effect of pool
bias, we run a series of simulation experiments in which
we simulate the process of building a test collection. One
simulation consists in, given a set O, building a test col-
lection with the runs submitted by |O| − 1 organizations
and measure the bias on the runs submitted by the leftover
organization. This can be formally expressed as follows:
Given a set of organizations O, a set of runs Rp submitted
by O, and an ideal set of judgments I that has a relevance
value for each document, we can compute an ideal mean
absolute error for a pooling strategy J as follows:

1

|Rp|
∑
r∈Rp

∣∣f(r, JRp\{r′∈Rp:or′=or})− f(r, I)
∣∣ =

=
1

|Rp|
∑
r∈Rp

∣∣b(r, JRp\{r′∈Rp:or′=or})
∣∣ (48)

where the right-hand side is obtained by substituting the
definition of pool bias from Section 1. This is referred to
in the literature as a leave-one organization-out approach.
This approach is preferred to a leave-one run-out approach
because it better simulates the case that the retrieval model
used by the organization has not contributed to the pool.
However, due to the presence (in Eq. (48)) of the ideal set
of judgments I , which in reality does not exist, this error
cannot be computed. Instead, in IR we usually dispose
of an approximation of this set I , which in the following
we indicate as the ground-truth G. The use of G in the
measurement introduces a random error in the observed
measurement f(r, JRp

), which we define as follows:
Definition 2. We define as the random error, the difference

we would observe on a measure f applied on a run r
between the actual measurement and the true measure-
ment:

ε = f(r,G)− f(r, I) (49)

where I is the ideal set of judgments, therefore making
f(r, I) the true measurement and G the actual ground-
truth, therefore making f(r,G) the actual measurement.

This difference is defined as the random error because we
have no means of control over it. By its definition, the
random error goes to zero, if f(r,G) tends to f(r, I) when
the number of judged documents |G| tends to |I|. By using
this definition we can define the actual Mean Absolute Error
(MAE) as:

MAE(JRp
) =

=
1

|Rp|
∑
r∈Rp

∣∣f(r, JRp\{r′∈Rp:or′=or})− f(r,G)
∣∣ =

=
1

|Rp|
∑
r∈Rp

∣∣b(r, JRp\{r′∈Rp:or′=or}) + ε
∣∣ (50)

Therefore, when usingG in the simulations that calculate
MAE, the absolute value we are measuring is a composition

of the pool bias and random error. However, we claim
that this random error is not an issue for our comparison
because: (1) this is an error measured between G and I ,
which makes it independent and constant across the set of
tested pooling strategies Js; (2) the presence of this error is
in line with standard evaluation praxis in IR, because this is
the same error we would observe every time we test a run
on an existing test collection; (3) the random error is 0 for
some combination of f and G, e.g. this happens when f is
P@n and at least the first n documents retrieved by r are
contained in G.

In order to measure the difference in pool bias we must
have perfect knowledge of all the documents that appear
in any of the runs. The objective of these experiments is to
quantify the effect of missing information (introduced by
the pooling strategy) — therefore, we cannot allow missing
information to exist at the onset of the experimental process.
In this context, the best test collections are those originally
built with Depth@K , because this requirement is easily
satisfiable by using the pooled runs Rp and resizing them
to a depth equal to |r| = K .

This process of test collection transformation is depicted
in Figure 2. Essentially, the newly created test collections
are “clean” in the sense that no information is kept for any
of the runs for ranks above K . This cleaning is essential in
order to ensure the validity of the experiments with different
pooling strategies. If we were not to do this cleaning, when
using f(r,G) to observe the pool bias resulting of the use
of a particular pooling strategy we would be confounding it
with the pool bias of the original test collection.

r

K

ρ ρ

ρ

Original Test Collection Cleaned Test Collection

r

r

nmax

h = nmax

h

h = nmax

Fig. 2. In the top left corner we illustrate the shape and setup of the
original test collection. The y-axis indicates the runs, the x-axis the rank,
every block represents a pooled document, which color indicates its
status: green if relevant, red if irrelevant, and white for unjudged. K
indicates the depth of the pooling strategy used to build the original
test collection; h indicates the horizon of the pooling strategy; and nmax
the maximum evaluation depth available. In the right corner we present
the shape and setup of the three experiments. At the top, the shape
and setup used to compare the performance of the different pooling
strategies and compare the expected number of judged documents. At
the bottom, the shape and setup used to verify the consistency of the
results of the first experiment varying h.

This experimental design raises two potential issues:
1) the selection of too few documents to be judged (low

11

N) may cause the reduction of the number of judged
documents per topic at the level that makes any analysis
based on this judgments inconclusive; 2) the resizing of
the runs may have unexpected effects on the conclusion
of the simulation experiments, i.e., would a certain pooling
strategy be preferred for a lower runs’ size and another one
for a higher one?

To address these questions we design two additional
experiments. In the first, for every pooling strategy J , we
measure the average number of judged documents (AJ) for
the pair run-topic, which we define as follows:

AJ(JRp
) =

1

|Rp|
∑
r∈Rp

∣∣{d ∈ Dr : d ∈ JRp\{r′∈Rp:or′=or}
}∣∣

(51)
this is then average across topics. AJ measures the expected
number of judged documents we would expect on a new
run. In the second experiment we verify the consistency of
the results when used in a real setting. To do this with the
same test collections we test the same case but reducing
what we call the horizon of the pooling strategies. The
horizon (h) is defined as the depth of the runs available to
the pooling strategy. If the results found are not consistent
with the ones found by the designed experiment, we have to
reconsider our previous conclusions, if they are consistent,
it means that the horizon effect is a negligible effect in our
comparison. To illustrate our methodology we provide a
graphical representation of both experiments, the designed
one and this new one in Figure 2.

4.2 Material
To test the effectiveness of the different pooling strategies we
selected 9 test collections from TREC [1]: Ad Hoc 3 [43], Ad
Hoc 8 [44], Web 9 [45], Web 23 [46], Robust 14 [47], Genomics
14 [48], Legal 15 [49], Blog 15 [50], and Microblog 20 [51].
These test collections are named by concatenating the name
of the track and the edition of TREC in which they have
been built. We selected these test collections because of: 1)
the diverse origin – in fact they cover 6 different domains:
News, Web, Genomics, Legal, Blog, and Microblog; 2) the
large number of judged documents in the collections; 3) the
large number of organizations that contributed to the pools
– we assume that the number of participating organizations
is directly proportional to the variety of the submitted runs,
and 4) the pooling strategy used to build the collections, i.e.,
fixed depth at cut-off K pooling strategy (Depth@K). The last
point makes the collections suitable for testing new pooling
strategies. As explained in the sample design, these test
collections require to be normalized to a clean Depth@K .
In addition, due to the prototypical nature of the tracks
organized to build the test collections, we filtered out the
25% of lowest performing runs from our experimentation.
This filtering is done to remove those runs that are likely to
contain bugs or very exploratory methods. This procedure
is in line with standard practices in the IR field [52].

4.3 Measures of Pool Bias
The measures of pool bias take as input an IR evaluation
measure f . We have already presented the first measure of
bias in Eq. 50, the mean absolute error (MAE). This measure

estimates the expected observed pool bias plus random
error on the score of a non-pooled run. This is done by
averaging the difference in score of the every r ∈ Rp when
pooled with the ground truth G, and when non-pooled,
together with the runs submitted by its same organization,
with a fixed-cost pooling strategy (J). A low MAE means
that the score obtained by a run with J strategy when
not pooled is close to the score obtained by the run when
evaluated with the ground-truth.

The second measure of bias we present is system rank er-
ror (SRE). This measure counts the number of rank positions
lost or gained by runs in the system ranking with respect
to when it is pooled with the ground truth G, defined by
the test collection, and not pooled with a fixed-cost pooling
strategy (J). We define SRE as:

SRE(JRp) =
∑
r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

: f(r, JRp\{r′′∈Rp:or′′=or}) ≤ f(r
′, G) < f(r, JRp)∨

∨ f(r, JRp
) < f(r′, G) ≤ f(r, JRp\{r′′∈Rp:or′′=or})

}∣∣∣ (52)

A low SRE means that the rank position of the runs when
not pooled using J is close to the rank position of the runs
when pooled with the ground-truth. In IR when comparing
ranking of runs, it is common practice to evaluate their sig-
nificance. We implemented this in the next measure named
system rank error with statistical significance (SRE*). SRE*
is similar to SRE but instead of counting all the position
differences of a run against all the other runs, it counts
only if significant according to a paired t-test with p < 0.05
calculated on the ground-truth. SRE* is defined as follows:

SRE∗(JRp) =
∑
r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

:
(
f(r, JRp\{r′′∈Rp:or′′=or}) ≤ f(r

′, G) < f(r, JRp)∨

∨ f(r, JRp
) < f(r′, G) ≤ f(r, JRp\{r′′∈Rp:or′′=or})

)
∧

∧ t-testpaired(r, r
′, G) < 0.05

}∣∣∣ (53)

Juxtaposing these measures of bias we can observe that a
zero MAE value implies that SRE and SRE* are also equal to
zero. However, the contrary is not true. We can also observe
that this is true between SRE and SRE*, where a zero SRE
corresponds to a zero SRE*, but not vice versa.

4.4 Experimental Setup
In this paragraph we present the setup of the first two
experiments, the first, designed to compare the pooling
strategies, and the second, where we measure the expecta-
tion of the number of judged documents per run. For these
two experiments, each pooling strategy takes as parameter
the pool size, i.e., the number of judged documents. To test
how the different strategies behave for different values of
this parameter, we repeated the experiment varying the pool
size from 5,000 in steps of 5,000 till all the judgments of the
test collection were used. We did this for Ad Hoc 3, Ad Hoc
8, and Web 9. For Blog 15 we varied the pool size from 2,000
in steps of 2,000, and for Genomics 14, Legal 15, Microblog
20, Robust 14, and Web 23 we varied the pool size from

12

1,000 in steps of 1,000 due to the smaller size of these test
collections.

In the third experiment, when we verify the stability
of the first experiment, for each pooling strategy we fix
N = 10, 000 we then repeated the experiment varying the
horizon h from 10, in steps of 10 till the size of the original
test collection K . We did this for all the test collections.

In all three experiments, the pool size N , when possible,
is equally divided across the topics. Due to an imbalance
of documents judged in the original Depth@K strategy
among the topics, for big Ns and for some topics we
would not find enough documents to cover the number of
allocated judgments for these topics, N/|Q|, where |Q| is
the number of topics. In this case the number of judged
documents available per topic can vary. Therefore, the ag-
gregated number of documents to be judged for a fixed-cost
pooling strategy would not equal the desired pool size of N
judged documents. To avoid this, we implement a heuristic
that redistributes the remaining judgments, when needed,
fairly across the rest of the topics that still have available
documents. Given as input the set of pooled runs (Rp) this
heuristic does, in order to achieve the prefixed N pooled
documents across topics, a search on the space of possible
per-topic sizes. This search space is constrained by the fact
that every per-topic size cannot be greater than the number
of available judged documents per topic. The heuristic first
starts by assigning to each topic q a per-topic size nq equal
to N divided by the number of topics (N/|Q|). So for
example, if we have a N of 10,000 documents for 50 topics
the heuristic assigns to every topic an nq = 200,∀q ∈ Q.
Now, if for some topics the assigned nqs are too large, for
example there is a lack of documents to be judged for these
topics the heuristic then reduces the nqs of these topics
to the maximum allowed (that is of course smaller than
N/|Q|) and reassigns the remaining judgments to the other
topics for which there are still available documents. The
reassignment is done by incrementing by 1 each topic nq
until one of the two conditions is verified: 1) the topic has
been exhausted, that is no more documents are available,
in this case the topic is excluded and the algorithm con-
tinues with the other topics, or 2) the sum of the nqs has
reached N (n1 + ... + n|Q| = N), in this case the algorithm
stops returning the found solution. However if this second
condition is not verified before all the topics get exhausted
the heuristic returns an error. This means that there are not
enough documents already judged in the original pool to
achieve a solution of size N .

The IR evaluation measures we selected for this study
are AP, NDCG, and P@10. The reason for this selection is
twofold: (a) these measures are widely used in IR, and (b)
they encompass common features of most IR measures: top-
heaviness, precision based, recall based, and utility based.

The software used in this article to evaluate the proposed
pooling strategies is available on the website of the first
author.

4.5 Results

In Figure 3 we show the bias evaluation obtained using the
non-adaptive pooling strategies and in Figure 4 the bias
evaluation obtained using the adaptive ones for the Ad

TABLE 1
Performance comparison for the Ad Hoc 8 and N = 10, 000.

J |J+| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

F 1681 .0655 1104 423 .0961 1229 579 .0265 190 34
B 2193 .0541 974 309 .0858 1150 503 .0150 46 9
C 2193 .0542 976 311 .0860 1148 501 .0150 47 9

MAX 1939 .0456 905 238 .0694 1052 409 .0348 305 47
MIN 557 .1333 2066 1356 .1823 1987 1313 .3728 2481 1697

MED 1221 .0828 1203 520 .1126 1314 659 .0601 664 185
SUM 2328 .0475 912 252 .0726 1059 416 .0134 48 9
ANZ 675 .0716 1267 583 .0413 802 267 .1929 1834 1051
MNZ 2258 .0494 928 268 .0779 1103 458 .0128 38 9
DCG 2195 .0536 972 307 .0841 1142 495 .0140 40 9
RRF 2205 .0530 961 296 .0834 1136 490 .0140 41 9

PP 2188 .0545 976 311 .0864 1153 506 .0154 50 9
RBP 1782 .0628 1080 402 .0932 1206 556 .0219 120 22

RBPA 1690 .0649 1097 417 .0954 1220 570 .0255 171 34
RBPA∗ 2084 .0511 959 294 .0761 1100 453 .0182 91 10

H 2635 .0229 528 28 .0345 651 76 .0285 254 9
MTF 2464 .0386 819 168 .0590 957 317 .0162 87 9

BG 2053 .0515 974 305 .0776 1102 455 .0219 140 17
UCB 1903 .0576 1039 361 .0856 1171 521 .0236 157 23

BB 3019 .0210 503 19 .0323 622 55 .0197 157 9
MM 3267 .0160 391 5 .0247 520 25 .0179 147 9

Hoc 8 test collection. In the figures, each column is an IR
evaluation measure while each row is a measure of bias.
The x-axis in each of the plots is the number of judged
documents, while the y-axis is the scale of the respective
measure bias. Every line is a pooling strategy. In Figures 5
and 6 we show for 3 other test collections but measuring
MAE on the evaluation measure AP. Similar patterns of
behavior were observed for the other test collections.

In these figures we can observe that all lines converge
to a pool bias value of the test collection for large pool size
values. This is because all the pooling strategies are con-
strained to select documents for which we have relevance
assessments. This is done as explained previously by only
including in the analysis pooled runs and by resizing them
to the same depth of the Depth@K pooling strategy used
to build the test collection. Thereby, all alternative pooling
strategies will reduce to the original Depth@K strategy with
K defined by the original test collection.

In Tables 1 we show the performance of each pooling
strategy for N = 10, 000 for Ad Hoc 8. Similar results are
observed for the other test collections.

In Figure 7, we show the expected number of judged
documents across runs and topics (JD) for Ad Hoc 8. Sim-
ilar patterns of behavior were observed for the other test
collections. The JD values give us an estimate of how many
documents we should expect to be judged for a non pooled
run and for a single topic. Every line is a pooling strategy,
and the x-axis in both plots is the total number of judged
documents, while the y-axis is the scale of JD.

In Figure 8, we show the stability of the results when
varying the horizon of the pooling strategies for a fixed pool
size N = 10, 000 for Ad Hoc 8. Every line is a pooling
strategy, and the x-axis in both plots is the horizon, while the
y-axis is MAE measured on AP. Similar patterns of behavior
were observed for the other test collections, IR evaluation
measures, measure of bias, and N values.

5 DISCUSSION

In the following we discuss the results reported above. We
consider the FairTake@N strategy as our baseline. While
this strategy is slightly different from Depth@K (see Sec-
tion 3), FairTake@N is the strategy closest to Depth@K that

13

0.00

0.05

0.10

0.15

0

500

1000

1500

0

200

400

600

800

AP NDCG P@10

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

Pool Size

B

ANZ

MAX

MED

MNZ

SUM

C

DCG

F

PP

RBP

RRF

M
A

E
SR

E
SR

E*

Fig. 3. Pool bias measured for the non-adaptive pooling strategies in terms of the measures of bias (row): MAE, SRE, and SRE*, and IR evaluation
measures (columns): AP, NDCG, and P@10. This is plot by using the Ad Hoc 8 test collection, and for different pool sizes (i.e. aggregated number
per topic of documents that require relevance judgment). The lines in gray are the adaptive pooling strategies (in Fig. 4) for comparison.

14

0.00

0.05

0.10

0.15

0

500

1000

1500

0

200

400

600

800

AP NDCG P@10

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

Pool Size

F

H

BB

BG

MM

UCB

MTF

RBPA

RBPA*

M
A

E
SR

E
SR

E*

Fig. 4. Pool bias measured for the adaptive pooling strategies in terms of the measures of bias (row): MAE, SRE, and SRE*, and IR evaluation
measures (columns): AP, NDCG, and P@10. This is plot by using the Ad Hoc 8 test collection, and for different pool sizes (i.e. aggregated number
per topic of documents that require relevance judgment). The lines in gray are the non-adaptive pooling strategies (in Fig. 3) for comparison.

15

Blog 15 Genomics 14 Legal 15

0 10000 20000 30000 40000 50000 4000 8000 12000 4000 8000 12000

0.030

0.035

0.040

0.045

0.050

0.03

0.06

0.09

0.12

0.02

0.04

0.06

0.08

Pool Size

M
A

E

B

ANZ

MAX

MED

MNZ

SUM

C

DCG

F

PP

RBP

RRF

Fig. 5. Pool bias measured for the non-adaptive pooling strategies in terms of the measure of bias MAE and IR evaluation measure AP, and for
different pool sizes (i.e. aggregated number per topic of documents that require relevance judgment). The lines in gray are the adaptive pooling
strategies (in Fig. 6) for comparison.

Blog 15 Genomics 14 Legal 15

0 10000 20000 30000 40000 50000 4000 8000 12000 4000 8000 12000

0.030

0.035

0.040

0.045

0.050

0.03

0.06

0.09

0.12

0.02

0.04

0.06

0.08

Pool Size

M
A

E

F

H

BB

BG

MM

UCB

MTF

RBPA

RBPA*

Fig. 6. Pool bias measured for the adaptive pooling strategies in terms of the measure of bias MAE and IR evaluation measure AP, and for different
pool sizes (i.e. aggregated number per topic of documents that require relevance judgment). The lines in gray are the non-adaptive pooling strategies
(in Fig. 5) for comparison.

16

Non-Adaptive

20000 40000 60000 80000
0

20

40

60

80

Pool Size

A
J

B

ANZ

MAX

MED

MNZ

SUM

C

DCG

F

PP

RBP

RRF

Adaptive

20000 40000 60000 80000
0

20

40

60

80

Pool Size

A
J

H

BB

BG

MM

UCB

MTF

RBPA

RBPA*

Fig. 7. Expected number of judged documents for the pair run-topic (AJ), for non pooled runs tested on Ad Hoc 8 test collection against all adaptive
pooling strategies (on the right) and against all non-adaptive pooling strategies. Similar results are observed for the rest of the test collections. This
plot is in function of the different pool sizes (i.e. aggregated number per topic of documents that require relevance judgment). The lines in gray are,
on the left, the adaptive pooling strategies and, on the right, the non-adaptive pooling strategies for comparison.

0.00

0.03

0.06

0.09

25 50 75 100

h

M
A

E

B ANZ MAX MED MNZ SUM

C DCG F PP RBP RRF

Non-Adaptive

0.00

0.03

0.06

0.09

25 50 75 100

h

M
A

E

F

H

BB

BG

MM

UCB

MTF

RBPA

RBPA*

Adaptive

Fig. 8. Pool bias measured, for the non-adaptive pooling strategies on the left, and adaptive pooling strategies on the right, in terms of the measure
of bias MAE and IR evaluation measure AP, for a fixed pool size N = 10, 000 and for different horizons (i.e. the size of the runs available to
the pooling strategies) for the test collection Ad Hoc 8. The lines in gray are, on the left, the adaptive pooling strategies and, on the right, the
non-adaptive pooling strategies for comparison.

17

guarantees full control over the number of documents to
be assessed. However, a direct comparison between these
two pooling strategies has shown little difference in term of
pool bias for the IR evaluation measures investigated in this
paper.

We start our discussion analyzing the operationability
of a pooling strategy. Next, we make a general observation
about the results. Then, we focus on the non-adaptive strate-
gies. Following that, we analyze the adaptive ones. Finally,
we compare them to each other.

5.1 Pooling Operationability

The operationalization of a pooling strategy refers to the
flexibility that a strategy gives to the test collection builder
in gathering the relevance assessments. If a pooling strat-
egy does not impose a constraint on how to gather this
information, then we say that this pooling strategy is op-
erationalizable. The advantage of such strategies is that the
two processes, pooling and assessing of the documents,
are independent. This lack of interdependency, since the
assessments are performed by human beings, makes it
easier to tackle the cognitive biases that may affect the
assessors while performing the judgments. The standard
way to address these biases is to make the assessors judge
a randomized sample of the pooled documents. In general
we identify the following operationability properties of a
pooling strategy: aggregable, ordinable, and parallelizable.
In the following discussion we will be primarily concerned
with distinguishing those pooling strategies that do not
have one or more of these properties.

A pooling strategy is aggregable when the collection
builder is able to aggregate relevance assessments for a
document across judgments from multiple assessors. Pooling
strategies that do not present this quality put an additional
burden on the collection builder. This is because these strate-
gies require information about the relevance of documents
already assessed to decide which documents to pool next.
Thereby a non aggregable strategy requires that the assess-
ment process is coordinated such that the assessment and
selection of the next document to assess cannot start until
all assessors have judged the current document: this may
happen at different times due to different assessor cognitive
abilities, workload, and work scheduling.

A pooling strategy is ordinable when the collection
builder is able to control in which order the relevance
assessments are performed. The absence of such a property
may introduce cognitive biases. For example, some pooling
strategies may favor such a bias because it requires the judg-
ment of documents in order of their predicted relevance.
This bias is instead usually overcome by the ordinable
pooling strategies by randomizing the pooled documents
before presenting them to the assessors.

For the parallelizable property of a pooling strategy we
can distinguish two parallelization forms, cross-topic and
per-topic parallelizations. The former refers to parallelizing
the assessments by judging at the same time multiple topics,
i.e. exclusively assign each topic to an assessor, but assigning
different topics to different assessors. The latter refers to
parallelizing, given a topic, the assessments for this topic,
i.e., distributing documents that are retrieved for the same

topic across multiple assessors to speed up the assessment
process. While the former is often possible, the latter, always
preferable, is sometimes difficult to obtain.

In general, all non-adaptive pooling strategies are aggre-
gable, ordinable, and fully parallelizable; for the adaptive
pooling strategies, all but RBPAdaptiveTake@N are only
cross-topic parallelizable.

5.2 General Observation about the Results
In Figures 5 and 6 we can observe that for some test
collections like Blog 15 and Legal 15 (and also for the omit-
ted Web 23), the measured bias increases when increasing
the number of judged documents N , notably also for the
FairTake@N . This behavior does not exist when tested on
P@10, and it has to be because of the recall component of
the measures AP and NDCG. While this is apparently dis-
turbing, in fact, for the purposes of selecting which strategy
to apply in the future, it does not change our conclusions.

5.3 Non-Adaptive Strategies
Among the voting system-based strategies, we observe
that BordaTake@N performs slightly better than the
CondorcetTake@N in all evaluation measures, although
BordaTake@N is a relaxation of CondorcetTake@N . Both
strategies are better than FairTake@N when used with P@10
and only initially worse when used for AP and NDCG. In a
previous work [53], the pooling strategy CondorcetTake@N
was poorly performing and as stated in this work it was
not as easily predictable. CondorcetTake@N has the issue
that when comparing pairs of documents, if the two are
not in the top K of the run, it neither adds nor subtracts
anything from the value this strategy computes for the
pair. This may lead to situations where it is impossible to
compute a complete ordering of documents, e.g., in the
situation where a document di is preferred to dj , dj to dk,
and also dk to di. To bypass this theoretical limitation, Lipani
et al. [53] followed the work of Montague and Aslam [24]
by implementing a sorting method that avoids this limit
case, but also does not guarantee an optimal result (compare
Algorithms 3 and 2 in Montague and Aslam [24] paper),
while in this article a better solution was found by using
Copeland’s method.

Among the retrieval fusion based-pooling strategies,
as expected, we observe a poor performance of the
CombMINTake@N strategy. In fact it clearly performs
worse than the FairTake@N baseline across all IR evalua-
tion measures and measures of bias for all test collections.
The strategy CombMINTake@N prefers the lowest scor-
ing documents and is therefore likely to identify mostly
non-relevant items, making the final (evaluation) scores
highly unstable. This happens also to CombMEDTake@N
for all but one test collection (Microblog 20). The strat-
egy CombANZTake@N usually performs poorly with all
measures of bias except when computed on the IR eval-
uation measure NDCG. The strategy CombMAXTake@N
performs consistently better than the baseline with all
the IR evaluation measures but one, P@10. The strategies
CombMNZTake@N and CombSUMTake@N behave simi-
larly across both evaluation and bias measures. These strate-
gies are better than FairTake@N when used with P@10 and
only initially worse when used for AP and NDCG.

18

Among the evaluation measure based-pooling strategies,
DCGTake@N , PPTake@N , and RRFTake@N correlate with
each other, while RBPTake@N does not. They all tend to be
better than the baseline only for P@10 and worse initially
for NDCG and AP. RBPTake@N is the most conservative.
The linear and logarithmic discounts remove the rank in-
formation from the documents rewarding more popular
documents amongst the runs. The relationship between the
discount and the top-heaviness of the evaluation measures
AP and NDCG also explains the twist in preference, where
FairTake@N is preferred for low N , then for higher N
almost all non-adaptive methods outperform it, before they
all converge to the same value. For P@10 we observe that
DCGTake@N , RRFTake@N , and PPTake@N are the best,
followed by RBPTake@N .

Juxtaposing all the non-adaptive strategies we observe
that the voting system-based strategy BordaTake@N be-
haves similarly to the retrieval fusion method-based strat-
egy CombMNZTake@N ; and voting system-based strate-
gies and IR evaluation measure-based strategies partially
correlate with the retrieval fusion method-based strategy
CombSUMTake@N .

For the non-adaptive pooling strategies we can conclude
that most stable strategy is CombMAXTake@N . However,
if the measure to be optimized is only P@10 DCGTake@N
should be preferred. This is clearly visible in Figure 3 and in
Table 1. However, although a selected non-adaptive pooling
strategy performs better than the baseline, the collection
builder, at the cost of losing some operationability proper-
ties, can move to lesser biased pooling strategies in the next
category, the adaptive ones.

5.4 Adaptive Pooling Strategies

Between the two classic pooling strategies we observe that
the traditional MTFTake@N pooling strategy outperforms
the baseline in every evaluation measure and test collec-
tions. This strategy is one of the most stable pooling strate-
gies across IR evaluation measures, and on average discov-
ers over 25% of relevant documents more than the base-
line. The HedgeTake@N strategy outperforms MTFTake@N
in all IR evaluation measures but P@10, and in all test
collections but Blog 15 where HedgeTake@N fails for AP
and NDCG when compared against FairTake@N . We can
observe that although HedgeTake@N discovers on average
27% more relevant documents than the baseline, it not
effective in reducing the bias. This happens in the case of
Blog 15 where the strategy is worse than the baseline. The
reason for this failure has to be found in the parameter β
that has been trained using test collections with a lower rate
of relevant documents. In fact we predicted that increasing
β from 0.1 to 0.9 would have increased the performance
of HedgeTake@N to become higher than the baseline. This
can be observed by the fact that when β = 1 this strategy
reduces to an unbounded RRFTake@N like strategy (see
Electronic Appendix 2), whose performance for AP is better
than the baseline.

Between the two IR evaluation measure-based pool-
ing strategies we observe that the performance of
the RBPAdaptiveTake@N strategy is comparable to the
FairTake@N . The RBPAdaptive*Take@N strategy outper-

forms the baseline in every evaluation measure and test
collection.

Among the multi-armed bandit-based strategies the
MABUCBTake@N strategy performs comparably to the
FairTake@N strategy. Among MABGreedyTake@N ,
MABBetaTake@N , MABMaxMeanTake@N , they all
outperform the baseline for all IR evaluation measures
and bias measures. In particular MABMaxMeanTake@N is
the best performing pooling strategy in terms of bias.

Comparing all the adaptive pooling strategies, we
observe that RBPAdaptive*Take@N , MTFTake@N ,
MABGreedyTake@N , and MABMaxMeanTake@N are
always better than the baseline for every IR evaluation
measure. For the adaptive pooling strategies we can draw
the following conclusion: the least biased pooling strategy
is MABMaxMeanTake@N . It is interesting to observe that
this pooling strategy is the one that discovers the highest
number of relevant documents, above 45% more than the
baseline.

5.5 Non-adaptive vs. Adaptive Pooling Strategies
We now consider all the tested pooling strategies
together. We observe that the best pooling strat-
egy is MABMaxMeanTake@N for all test collections.
However if some operationalization properties are re-
quired, the CombMAXTake@N should be preferred. Over-
all the adaptive pooling strategies demonstrate to be
more stable across IR evaluation measures. In fact
RBPAdaptive*Take@N , MTFTake@N , MABGreedyTake@N ,
and MABMaxMeanTake@N always perform better than the
baseline.

5.6 Accuracy and Stability of the Results
As discussed in Section 4.1, this experimental design raises
two potential issues.

About the inconclusiveness of the results due to having
too few documents judged in the non-pooled runs, Figure 7
tells us, indeed, about the accuracy of the computation of
the term, f(r, JRp\{r′∈Rp:or′=or}), which is present in all
three bias measures. For example, if we consider the non-
adaptive pooling strategy CombANZTake@N , we observe
that for Ad Hoc 8, with a pool size N = 5, 000, the expected
number of documents judged per run per topic is around
2.10, which means that when computing an IR evaluation
measure on these non pooled runs, their accuracy is proba-
bly compromised. However, because such pool sizes are still
used, and there are no available guidelines in the literature
on how many judged documents are really necessary, we
chose to provide these plots to let the readers assess the
results by themselves.

About the stability of the results when changing the
horizon of the pooling strategies, Figure 8 shows that all
the best pooling strategies but two are consistent with
the results discussed above. In fact, the best strategies
continue to be the best also when changing horizon. The
two pooling strategies that show an unstable behavior are
CombMEDTake@N and CombANZTake@N , which favor
lower horizons. This experiment shows that the pooling
strategies are stable when increasing their horizon. Based
on this observation, we expect them to be consistent when
increasing their horizon beyond the tested one.

19

5.7 Limitations
There are still a number of limitations and possible exten-
sions to this work. First and foremost, we are constrained
by the data available to us. As we have detailed in the
beginning of Section 4, we do not see an alternative to a
proper investigation of pool bias without “cleaning” the
test collections and generating runs that have no documents
beyond what we know to be evaluated. Nevertheless, this
does significantly reduce the “knowledge” available to us
as we have to discard a non-negligible percentage of the
ground-truth. We see addressing this as a significant effort,
to be perhaps undertaken as a new evaluation effort in
TREC. Our study would hopefully serve as a initial step,
to identify those pooling strategies that should be further
tested in the context of such a large scale evaluation exercise.

Beyond this, a limitation that has appeared as we were
presenting the various pooling strategies is the setting of
their parameters. Throughout the paper we have consid-
ered only parameters that have been published in previous
works, but often enough these parameters were used for
different purposes (retrieval fusion methods, IR evaluation
measures) and maybe different values would be better fitted
for pooling strategies.

There are a number of decisions that are taken in every
evaluation campaign, that complement the pooling strategy
itself. The number of runs, the number of topics, the distri-
bution of evaluation effort over topics are all elements that
are worth further investigation in relation to the pooling
strategy. Finally, as the title clearly indicates, we focus here
on pools of a fixed size. While this is often a real-world
constraint, the study of variable-sized pools and the balance
between the effort to assess another document and the
bias reduction expected from this effort is equally worth
pursuing.

6 CONCLUSION

In this article we have explored a large array of pooling
strategies, from the standard Depth@K (closely approx-
imated here by FairTake@N in the context of fixed-cost
pooling) to recent strategies based on voting systems, re-
trieval fusion methods, IR evaluation measures, and multi-
armed bandits methods. In doing so, we have observed
parallels between strategies that had been developed in-
dependently (e.g. BordaTake@N and CondorcetTake@N ,
or HedgeTake@N and RRFTake@N) and distinguished be-
tween adaptive and non-adaptive pooling strategies, with
their different operationalizations.

The baseline, FairTake@N remains a solid candidate,
but it can be improved upon. If we have constraints on
operationalization and are therefore mandated to use a non-
adaptive method, then CombMAXTake@N (using the max-
imum score obtained by a document across the runs) would
be recommended, particularly when top-heavy measures
like AP and NDCG are the target evaluation measures.
There is one exception, the Blog 15 test collection, where
the RBPTake@N provided better results. However, the Blog
15 collection is quite unusual: compared to all other test
collections, it has an extremely high percentage of relevant
documents being judged and the runs are very diverse
(because topical relevance was not the main objective of the

evaluation in that collection). However, for all test collec-
tions, if the measure to be optimized is P@10, DCGTake@N
should be preferred.

If, however, adaptive pool generation is operationaliz-
able (i.e. including feedback from assessors in the pool
generation process), we should use a multi-armed bandit-
based method, MABMaxMeanTake@N , which is the least
biased among all the tested pooling strategies; moreover, it
is the strategy that discovers the highest number of relevant
documents, on average 45% more than the baseline.

In the course of this study we have also observed that the
ability of a pooling strategy in discovering a high number
of relevant documents is somewhat correlated with the less
biased ones, but not completely, e.g. the best non-adaptive
strategy, CombMAXTake@N , discovers a number of rele-
vant documents comparable to the baseline but performs
better in terms of bias than other non-adaptive strategies
that discover on average even more than 15% relevant
documents than the baseline. This verifies the statement
made by Spärck Jones about the aim of the pooling strategy:
a pooling strategy’s objective is not to discover the highest
number of relevant documents, but to discover an unbiased
set of relevant documents [7].

ACKNOWLEDGMENTS

Aldo Lipani is funded by the EPSRC Fellowship
(EP/P024289/1). David E. Losada thanks the financial sup-
port obtained from (i) the ”Ministerio de Ciencia, In-
novación y Universidades” (”Agencia Estatal de Inves-
tigación”) of the Government of Spain (research grant
RTI2018-093336-B-C21) and the (ii) ”Consellerı́a de Ed-
ucación, Universidade e Formación Profesional”, Xunta
de Galicia (grants ED431C 2018/29 and ED431G/08). All
grants were co-funded by the European Regional Devel-
opment Fund (ERDF/FEDER program). Mihai Lupu is
partially funded by the Data Market Austria Project (FFG
Project Number 855404).

REFERENCES

[1] E. Voorhees and D. Harman, “Overview of the eighth text retrieval
conference,” in Proc. of TREC-8.

[2] B. Koopman and G. Zuccon, in Medical Information Retrieval Work-
shop at SIGIR ’14.

[3] E. M. Voorhees and D. K. Harman, TREC: Experiment and Evalua-
tion in Information Retrieval. The MIT Press.

[4] T. Sakai, Laboratory Experiments in Information Retrieval, 2018.
[5] K. Spärck Jones and C. J. van Rijsbergen, “Report on the need for

and provision of an “ideal” information retrieval test collection,”
University of Cambridge, Tech. Rep.

[6] D. Harman, “Overview of the first trec conference,” in Proc. of
SIGIR ’93.

[7] K. Spärck Jones, “Letter to the editor,” Information Processing &
Management, vol. 39.

[8] M. Sanderson, “Test collection based evaluation of information re-
trieval systems,” Foundations and Trends R© in Information Retrieval.

[9] G. V. Cormack, C. R. Palmer, and C. L. A. Clarke, “Efficient
construction of large test collections,” in Proc. of SIGIR ’98.

[10] S. Büttcher, C. L. A. Clarke, P. C. K. Yeung, and I. Soboroff,
“Reliable information retrieval evaluation with incomplete and
biased judgements,” in Proc. of SIGIR ’07.

[11] W. Webber and L. A. F. Park, “Score adjustment for correction of
pooling bias,” in Proc. of SIGIR ’09.

[12] A. Lipani, M. Lupu, and A. Hanbury, “Splitting water: Precision
and anti-precision to reduce pool bias,” in Proc. of SIGIR ’15.

20

[13] A. Lipani, M. Lupu, E. Kanoulas, and A. Hanbury, “The solitude
of relevant documents in the pool,” in Proc. of CIKM ’16.

[14] A. Lipani, G. Zuccon, M. Lupu, B. Koopman, and A. Hanbury,
“The impact of fixed-cost pooling strategies on test collection
bias,” in Proc. of ICTIR ’16.

[15] D. E. Losada, J. Parapar, and A. Barreiro, “Feeling lucky?: Multi-
armed bandits for ordering judgements in pooling-based evalua-
tion,” in Proc. of SAC ’16.

[16] A. Lipani, J. Palotti, M. Lupu, F. Piroi, G. Zuccon, and A. Hanbury,
Fixed-Cost Pooling Strategies Based on IR Evaluation Measures.

[17] S. Robertson, “On the history of evaluation in ir,” Journal of
Information Science.

[18] C. Buckley, D. Dimmick, I. Soboroff, and E. Voorhees, “Bias and
the limits of pooling for large collections,” Information Retrieval,
2007.

[19] J. Zobel, “How reliable are the results of large-scale information
retrieval experiments?” in Proc. of SIGIR ’98.

[20] A. Lipani, “Fairness in information retrieval,” in Proc. of SIGIR ’16.
[21] A. Moffat, W. Webber, and J. Zobel, “Strategic system comparisons

via targeted relevance judgments,” in Proc. of SIGIR ’07.
[22] E. Yilmaz, E. Kanoulas, and J. A. Aslam, “A simple and efficient

sampling method for estimating ap and ndcg,” in Proc. of SIGIR
’08.

[23] J. A. Aslam and M. Montague, “Models for metasearch,” in Proc. of
SIGIR ’01.

[24] M. Montague and J. A. Aslam, “Condorcet fusion for improved
retrieval,” in Proc. of CIKM ’02.

[25] C. Macdonald, “The voting model for people search,” SIGIR
Forum.

[26] A. Lipani, M. Lupu, and A. Hanbury, The Curious Incidence of Bias
Corrections in the Pool.

[27] W. B. Croft, Combining Approaches to Information Retrieval, 2000.
[28] J. H. Lee, “Analyses of multiple evidence combination,” in Proc. of

SIGIR ’97.
[29] M. Montague and J. A. Aslam, “Relevance score normalization for

metasearch,” in Proc. of CIKM ’01.
[30] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation

of ir techniques,” ACM Trans. Inf. Syst.
[31] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng, “Web question

answering: Is more always better?” in Proc. of SIGIR ’02.
[32] G. V. Cormack, C. L. A. Clarke, and S. Buettcher, “Reciprocal

rank fusion outperforms condorcet and individual rank learning
methods,” in Proc. of SIGIR ’09.

[33] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure
stability,” in Proc. of SIGIR ’00.

[34] T. Sakai, “New performance metrics based on multigrade rele-
vance: Their application to question answering.” in Proc. of NTCIR
’04.

[35] A. Moffat and J. Zobel, “Rank-biased precision for measurement
of retrieval effectiveness,” ACM Trans. Inf. Syst., 2008.

[36] B. Carterette, “System effectiveness, user models, and user utility:
A conceptual framework for investigation,” in Proc. of SIGIR ’11.

[37] L. A. Park and Y. Zhang, “On the distribution of user persistence
for rank-biased precision,” in Proceedings of the 12th Australasian
document computing symposium, 2007.

[38] Y. Zhang, L. A. F. Park, and A. Moffat, “Click-based evidence
for decaying weight distributions in search effectiveness metrics,”
Information Retrieval.

[39] J. A. Aslam, V. Pavlu, and R. Savell, “A unified model for
metasearch, pooling, and system evaluation,” in Proc. of CIKM ’03.

[40] R. S. Sutton and A. G. Barto, “Reinforcement learning: An intro-
duction,” IEEE Transactions on Neural Networks.

[41] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn.

[42] W. R. Thompson, “On the likelihood that one unknown proba-
bility exceeds another in view of the evidence of two samples,”
Biometrika, 1933.

[43] D. Harman, “Overview of the third text retrieval conference
(TREC-3),” in Proc. of TREC ’94.

[44] E. M. Voorhees and D. Harman, “Overview of the eight text
retrieval conference (TREC-8),” in Proc. of TREC ’99.

[45] D. Hawking, “Overview of the trec-9 web track,” in Proc. of TREC
’00.

[46] K. Collins-Thompson, C. Macdonald, P. Bennett, F. Diaz, and E. M.
Voorhees, “Trec 2014 web track overview.”

[47] E. M. Voorhees, “Overview of the TREC 2005 robust retrieval
track.”

[48] W. Hersh, A. Cohen, J. Yang, R. T. Bhupatiraju, P. Roberts, and
M. Hearst, “TREC 2005 genomics track overview.”

[49] J. R. Baron, D. D. Lewis, and D. W. Oard, “TREC 2006 legal track
overview,” in Proc. of TREC ’06.

[50] I. Ounis, M. de Rijke, C. Macdonald, G. Mishne, and I. Soboroff,
“Overview of the TREC-2006 blog track,” in Proc. of TREC ’06.

[51] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff, “Overview of the
TREC-2011 microblog track,” in Proc. of TREC ’11.

[52] E. M. Voorhees and C. Buckley, “The effect of topic set size on
retrieval experiment error,” in Proc. of SIGIR ’02.

[53] A. Lipani, M. Lupu, J. Palotti, G. Zuccon, and A. Hanbury, “Fixed
budget pooling strategies based on fusion methods,” in Proc. of
SAC ’17.

Aldo Lipani is a Lecturer in Machine Learning
at the University College London (UCL). Previ-
ously, he was, also at UCL, a Postdoctoral Re-
search Associate in the group of Prof. Emine
Yilmaz. He holds a BSc from the University of
Catania, Italy and an MSc from the University
of Bologna, Italy both in Computer Engineering.
He earned his Ph.D. in Computer Science at
the TU Wien, Austria, under the supervision of
Prof. Allan Hanbury and Dr. Mihai Lupu. Aldo
has furthered his studies at the National Insti-

tute of Standard and Technologies (NIST) in Gaithersburg, Microsoft
Research Cambridge, University of Glasgow, University of Amsterdam,
and National Institute of Informatics (NII) in Tokyo.

David E. Losada is an Associate Professor
in Computer Science & Artificial Intelligence at
CiTIUS (University of Santiago de Compostela,
Spain). His current research interests include
a wide range of Information Retrieval (IR) and
related areas such as: early risk detection, text
mining, IR evaluation, IR probabilistic models,
summarization, novelty detection, and sentence
retrieval. Losada is an active member of the IR
community and he regularly serves in the Pro-
gramme Committee of prestigious international

conferences such as SIGIR or ECIR. In 2011, Losada was recognized
with an ACM senior member award.

Guido Zuccon is a Senior Lecturer in Informa-
tion Retrieval in the School of Information Tech-
nology and Electrican Engineering, at the Uni-
versity of Queensland (Australia), and an ARC
Discovery Early Career Researcher Award Fel-
low and a Google Faculty Award recipient. Guido
received his B.Eng. and M.Eng. (summa cum
laude) at the University of Padua (Italy) and a
Ph.D. in Computing Science from the University
of Glasgow (U.K.). Before joining the University
of Queensland, Guido was a senior lecturer at

the Queensland University of Technology (Australia) and a postdoctoral
research fellow at the Australian E-Health Research Centre, CSIRO
(Australia). His research interests include formal models of search and
evaluation methods, in particular applied to health search.

Mihai Lupu is, since January 2018, the Studio
Director of the Data Science Studio at Research
Studios Austria Forschungsgesellchaft. Before
that he has been a researcher at the TUWien as
well as a private entrepreneur, consulting small
and large companies on search technology, with
focus on search in the intellectual property do-
main. He graduated from the Singapore-MIT Al-
liance in 2008 and since then has published
over 100 publications and three books on search
technology. He is now the co-coordinator of Data

Market Austria and the Coordinator of the H2020 Safe-DEED project.

