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Abstract. Royston et al.’s (2011, Trials 12: 81) multiarm, multistage (MAMS)
framework for the design of randomized clinical trials uses intermediate outcomes
to drop research arms early for lack of benefit at interim stages, increasing effi-
ciency in multiarm designs. However, additionally permitting interim evaluation
of efficacy on the primary outcome measure could increase adoption of the de-
sign and result in practical benefits, such as savings in patient numbers and cost,
should any efficacious arm be identified early. The nstage command, which aids
the design of MAMS trial designs, has been updated to support this methodolog-
ical extension. Operating characteristics can now be calculated for a design with
binding or nonbinding stopping rules for lack of benefit and with efficacy stopping
boundaries. An additional option searches for a design that strongly controls the
familywise error rate at the desired level. We illustrate how the new features can
be used to design a trial with the drop-down menu, using the original comparisons
from the MAMS trial STAMPEDE as an example. The new functionality of the
command will serve a broader range of trial objectives and increase efficiency of
the design and thus increase uptake of the MAMS design in practice.
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1 Introduction

Multiarm, multistage (MAMS) clinical trial designs for time-to-event outcomes result in
increased efficiencies in time and resources over traditional two-arm designs (Royston
et al. 2011) and have been successfully implemented in trials investigating therapies in
many disease areas, including oncology (Sydes et al. 2009, 2012; Parmar et al. 2017).
Barthel, Royston, and Parmar (2009) developed the nstage command to assist those
designing such a trial. nstage calculates the required sample size and operating char-
acteristics with an intuitive menu-driven approach. The command was updated in 2015
to increase functionality; the update included new features such as estimation of the
familywise error rate (FWER) and improved estimation of the correlation between the
test statistics of treatment effects (Bratton, Choodari-Oskooei, and Royston 2015).
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The MAMS design compares multiple research arms with one common control arm,
using a staged approach to conduct interim analyses assessing whether each arm is
demonstrating sufficient benefit over the control arm to continue recruitment to sub-
sequent stages. The design allows for early decision making by using an intermediate
outcome that occurs earlier than the definitive outcome measure so that ineffective
experimental arms can be dropped efficiently. The nature of the design results in an
increased probability of a single clinical trial protocol identifying an effective regimen,
saves considerable time and resources, and requires fewer patients compared with mul-
tiple independent two-arm trials (Parmar, Carpenter, and Sydes 2014). Some examples
of internationally known trials designed under the MAMS framework are STAMPEDE,1

which is the largest ever trial conducted in prostate cancer (Sydes et al. 2012), and
RAMPART.2

It is often of interest to measure and sometimes control the probability of at least
one incorrect conclusion of efficacy at the end of a MAMS trial, denoted as a type I error.
The two primary measures reported in trials are the pairwise error rate (PWER), which
is the probability of a type I error on each pairwise comparison of research to control
arm, and the FWER, which is the probability of a type I error on a pairwise comparison
of any of the research arms with the control arm. Regulatory guidelines suggest that
controlling the FWER is sometimes a requirement to restrict the probability an ineffective
treatment or regimen is recommended at the end of a trial, particularly in confirmatory
trials (Committee for Proprietary Medicinal Products 2002).

The nstage command accommodates the specification of boundaries for assessing
lack of benefit at multiple interim analyses on an intermediate outcome measure prior
to the final analysis on the definitive outcome. The existing methodology, however,
has not explored how the interim analysis stages could also formally test for evidence
of efficacy on the definitive (primary) outcome measure. This may be desirable for
both investigators and sponsors because being able to identify effective regimens earlier
increases the efficiency of the design further by reducing resources allocated to these
arms. It may also result in stopping the trial early to progress efficacious arms to
the subsequent phase of the testing process or to seek regulatory approval and thus
expedite uptake of the treatment by patients. Popular stopping boundaries implemented
in alternative designs are the Haybittle–Peto rule (Haybittle 1971) and the O’Brien–
Fleming rule (O’Brien and Fleming 1979). Permitting early assessment of efficacy in the
MAMS design requires an approach to choosing the stopping boundary and evaluation
of the impact on the operating characteristics of the trial to ensure adherence to trial
regulations.

In this article, we have incorporated the methods and programming for this feature to
the nstage command, which allows for the specification of efficacy stopping boundaries
and evaluates the operating characteristics of a trial with early rejection of the null
hypothesis permitted under both binding and nonbinding boundaries. Three different
measures of power are now calculated for multiarm designs, depending on the aim of

1. Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy
(http://www.stampedetrial.org/).

2. Renal Adjuvant MultiPle Arm Randomised Trial (https://www.rampart-trial.org).

http://www.stampedetrial.org/
https://www.rampart-trial.org
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the trial. The user can also indicate whether the trial will continue to the planned end
should an arm cross an efficacy boundary early. Additionally, we present a new option
in nstage that searches for a design that controls the FWER at the desired level.

2 The MAMS design with efficacy stopping bounds

2.1 Design specification

For a MAMS trial with time-to-event outcomes that has K research arms and J stages,
the primary definitive outcome is denoted by D. If an appropriate intermediate (I)
outcome is available (see Royston et al. [2011] for guidelines), the trial benefits from
increased efficiencies because interim analyses can occur earlier by basing sample sizes
on a more quickly observable outcome measure. For example, progression-free survival
may be used as an intermediate outcome for overall survival. Because it is also possible
to use the same outcome measure for all analyses, we denote such trials by I = D, and
I 6= D correspondingly denotes designs where the intermediate and definitive outcomes
differ.

The null and alternative hypotheses for each pairwise comparison on the definitive
outcome for stages 1, . . . , J are defined by

HD
0 : ∆D ≥ 0

HD
1 : ∆D < 0

where ∆D is the log hazard-ratio for assessing efficacy. Subsidiary hypotheses are also
defined for each pairwise comparison on the intermediate outcome for the interim stages
1, . . . , J − 1:

HI
0 : ∆

I ≥ 0

HI
1 : ∆

I < 0

∆I is the log hazard-ratio for assessing which arms demonstrate sufficient promise at
each interim analysis to continue recruitment to subsequent stages. A log hazard-ratio
less than 0 is targeted where the trial is seeking to reduce the hazard compared with the
control arm. In practice, MAMS designs usually target a predefined alternative hazard
ratio for sample-size purposes; see Royston et al. (2011) on how to define target effect
sizes for the I and D outcomes. The global null hypothesis HG is that all K research
arms are ineffective on the definitive outcome.

The original MAMS design defined only one stopping boundary for lack of benefit
at each interim stage of the trial, L = (l1, . . . , lJ−1), corresponding to the one-sided
significance levels α1, . . . , αJ−1. When I 6= D, the boundaries are on the intermediate
outcome measure. However, when I = D, the boundaries are on the same outcome
measure as the final test. For survival outcomes, where the treatment effect is measured
by a hazard ratio, L forms an upper bound because a reduction in hazard compared
with the control arm indicates a beneficial treatment effect.
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When stopping boundaries for efficacy are introduced at the interim stage, they can
be applied only to the definitive outcome measure because it is the primary outcome of
the design. No decision on efficacy can be made on the intermediate outcome measure.
Let B = (b1, b2, . . . , bJ ) be the stopping boundary on the definitive outcome at each
stage, corresponding to the one-sided significance levels defined for overwhelming evi-
dence of efficacy. The two stopping boundaries meet at stage J to ensure a conclusion
can be made at the end of the trial.

At each interim stage, j = 1, . . . , J−1, ZI
jk is the z test statistic comparing research

arm k = 1, . . . ,K with the control arm for the intermediate outcome, and ZD
jk is the

corresponding test statistic for the definitive outcome at stage j = 1, . . . , J . These
follow a normal distribution with mean treatment effect ∆jk and variance σ2 and under

the null hypothesis Z
I/D
jk ∼ N(0, 1). The joint distribution of the z test statistics is

multivariate normal (MVN),

ZI
11, Z

I
12, . . . , Z

D
JK ∼ MVN(∆jk,Σ)

where ∆jk is a vector of mean treatment effects of the Zjk and Σ denotes the correlation
between the J×K test statistics. For designs where I = D, ZI

jk = ZD
jk. Where stopping

boundaries for efficacy are specified and I 6= D, the joint distribution of the z statistics
for the definitive outcome (ZD

11, . . . , Z
D
Jk) are also multivariate normally distributed.

At each interim analysis j = 1, . . . , J − 1, the test statistics for each research arm
are compared with the stopping boundaries, where one of three outcomes can occur
(assuming stopping rules are binding):

• If ZI
jk < lj

⋂
ZD
jk > bj , research arm k continues to the next stage.

• If ZI
jk ≥ lj , research arm k is dropped for lack of benefit.

• If ZD
jk ≤ bj , H0

jk can be rejected early, and recruitment to research arm k is
terminated because of evidence of overwhelming efficacy.

Note that when I = D, the first inequality becomes bj < ZD
jk < lj .

For research arms that pass all interim analyses, at the final stage J , the test statistic
for the definitive outcome measure is compared with the threshold for the final stage bJ
to assess efficacy, where one of two outcomes can occur:

• If ZD
Jk > bJ , the test is unable to reject H0

Jk at level αJ .

• If ZD
Jk ≤ bJ , reject H

0
Jk at level αJ and conclude efficacy for research arm k.

2.2 Stopping early for efficacy

Allowing for early assessment on the definitive outcome measure requires an efficacy
boundary to be defined based on how conservative investigators wish to be with respect
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to rejecting the null hypothesis early. The boundary B = (b1, . . . , bJ ) may be chosen
according to the objective of the trial. One approach is to implement an established
predefined stopping rule (for example, Haybittle [1971]). Alternatively, one may use
a function that determines the boundaries based on the accumulated data, such as an
alpha-spending approach that distributes the overall type I error across the interim
analyses (O’Brien and Fleming 1979; Gordon Lan and DeMets 1983). The p-value re-
quired to declare efficacy early can potentially affect the probability of a type I error,
so a method for choosing boundaries may be desirable.

There are two approaches that may be adopted should a research arm demonstrate
early evidence of efficacy during the course of the trial. A separate stopping rule
(Urach and Posch 2016) denotes that the trial continues recruitment to the remaining
research arms until the planned end of the trial. This may be of interest in trials testing
arms with combination therapies, for example, in STAMPEDE. Alternatively, adopting a
simultaneous stopping rule indicates the trial should terminate as soon as an efficacious
arm is found.

In the next section, we present the updated nstage syntax.

3 Updates to nstage

3.1 Syntax

The updated syntax is described below. The last four options are the additions to the
latest update.

nstage, nstage(#) accrue(numlist) alpha(numlist) omega(numlist)

arms(numlist) hr0(#
[
#
]
) hr1(#

[
#
]
) t(#

[
#
]
)
[
s(#

[
#
]
)

aratio(#) tunit(#) tstop(#) probs nofwer simcorr(#) corr(#)

esb(string
[
, stop

]
) nonbinding fwercontrol(#) fwerreps(#)

]

Note that the number of values given in each numlist must be equal to the number
of stages specified in nstage(#).
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3.2 New options

For details of the existing options, see Bratton, Choodari-Oskooei, and Royston (2015).
For an example of how these are specified, see section 4.

esb(string
[
, stop

]
) specifies that each interim stage be assessed against efficacy

bounds. The efficacy stopping rules available are as follows:

esb(hp) specifies the Haybittle–Peto rule and applies a constant one-sided p-value
(p = 0.0005) at each interim stage for assessing efficacy (Haybittle 1971).

esb(hp=#) specifies an alternative one-sided p-value for the Haybittle–Peto rule.

esb(obf=#) defines a one-sided p-value available to spend across the interim anal-
yses per research arm. The program uses an alpha-spending function to ap-
proximate the O’Brien–Fleming boundaries (O’Brien and Fleming 1979) for each
interim stage, proposed by Gordon Lan and DeMets (1983).

esb(custom=#...#) specifies a custom efficacy stopping rule, which allows greater
flexibility when selecting the efficacy boundary for each interim stage. The input
must provide a one-sided p-value for stages 1 to J − 1, separated by spaces
that must be strictly decreasing. The p-values could also be generated by some
function of information time, such as Whitehead and Stratton’s (1983) triangular
boundaries, and then input manually for each stage using the custom option.

stop specifies a suboption after the chosen stopping rule, in which the user chooses
the planned course of action should at least one arm cross the efficacy boundary
at any stage from 1 to J − 1. The default option is to follow a separate stopping
approach. Alternatively, if the trial should be terminated as soon as the first null
hypothesis is rejected in favor of efficacy, this option should be specified to adopt
a simultaneous stopping approach.

nonbinding specifies that nstage should assume nonbinding stopping boundaries for
lack of benefit when estimating the operating characteristics of the design. By
default, nstage assumes the stopping boundaries are binding when I = D. When
I 6= D, futility boundaries for I are assumed to be nonbinding by default (see
Bratton, Choodari-Oskooei, and Royston [2015]).

fwercontrol(#) instructs nstage to perform an iterative search to identify the value
of alpha at stage J , which will control the FWER at the user-specified value #.
nstage then calculates the sample size and operating characteristics of the design
that controls the FWER.

fwerreps(#) indicates the number of replicates carried out by the simulation procedure
to calculate the FWER. The default is fwerreps(250000) for designs stopping early
only for lack of benefit and fwerreps(1000000) for designs that also stop early for
efficacy. Reducing the number of replicates will result in a faster procedure but at
the cost of precision.
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3.3 New stored results

We have updated the stored results to include additional useful information based on
the new options and additional calculations that are carried out. We describe two
alternative measures of power now estimated by nstage in section 3.5. While these
measures of power are not presented in the main output, they are stored and can be
obtained by the user if required. The stagewise p-values for efficacy are also stored in
addition to the expected number of events accrued on the definitive outcome at each
stage because the main output shows sample sizes based on the intermediate outcome
when I 6= D. This may be helpful if deciding whether efficacy boundaries are reasonable
and feasible based on the amount of data collected on the primary outcome at interim
analyses. The PWER under binding boundaries has been removed from the main output
when I 6= D because the operating characteristics assume nonbinding boundaries (see
section 3.5) but are still obtainable from the stored results when the design stops only
for lack of benefit. The following defines the new stored results.

Scalars
r(allomega) all-pairs power: the probability of rejecting the null for all research

arms under the target effect size for all comparisons
r(fwomega) any-pair power: the probability of rejecting the null for at least one

research arm under the target effect size for all comparisons
r(bindingomega) pairwise power under binding stopping boundaries (I 6= D only)
r(bindingpwer) PWER under binding stopping boundaries (I 6= D only, see

Royston et al. [2011])
r(Ej) efficacy stopping boundary (stage j)
r(Dj) expected events on definitive outcome (stage j, I 6= D only)

3.4 Dialog box

The dialog box approach to using the nstage command can be activated by nstagemenu

on in the command line and has been updated with the new options (see figure 1).
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Figure 1. Screenshots of the updated tabs of the nstage dialog box showing the new
options

For a design with more than one stage, the Primary outcome tab in the dialog
box displays an Assess primary outcome for efficacy at interim stage analyses option
to assess the primary outcome D for efficacy at stages 1 to J − 1. After selecting this
option, the user is presented with a drop-down menu for the efficacy stopping rule.
The Haybittle–Peto rule has a default one-sided p-value of 0.0005 for all interim looks,
which can be modified in the menu to a custom value if desired. The O’Brien–Fleming-
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type rule generates the p-values at each stage, with the user specifying the overall alpha
to be spent across the stages for each pairwise comparison. Custom rules can also be
specified, with the user defining J − 1 p-values separated by spaces. A Stop trial once

any arm is dropped for efficacy option, located below the stopping rule, can be selected
to indicate that a simultaneous stopping rule should be assumed. Otherwise, a separate
stopping rule is implemented by default.

The Design parameters tab has been updated to include a Control the FWER

at level: option to control the FWER at the level defined by the user using the value
entry box. Another option, Assume non-binding stopping boundaries for lack-of-benefit,
designates that the calculation of the error rates of the design should be carried out
under nonbinding futility boundaries.

3.5 Operating characteristics

In this section, we first define the operating characteristics evaluated by nstage and
then briefly describe how the command computes these quantities. For details of the
simulation procedure and the statistical theory, see the appendix. The operating char-
acteristics of a trial may be calculated under both a separate or simultaneous stopping
rule when implementing an efficacy stopping boundary. They may also be calculated
assuming both binding and nonbinding boundaries for lack of benefit. Nonbinding rules
are sometimes favored at the design stage because they are more flexible, result in more
conservative error rates (Chen, DeMets, and Gordon Lan 2010), and are sometimes a re-
quirement by regulatory agencies. However, in designs with limited resources, for exam-
ple, designs implementing treatment selection to meet budget constraints, binding stop-
ping boundaries for lack of benefit might be more feasible (Crouch, Dodd, and Proschan
2017). Hence, this option covers a range of designs.

Type I error rate

In general, a type I error occurs when a research arm is declared as efficacious under
the null hypothesis of no treatment effect. The PWER of a MAMS trial measures the
probability of a type I error for a particular research arm. On the other hand, the FWER

is the probability that a type I error is made on at least one research arm. The FWER is
strongly controlled if the maximum value it can take is restricted to a predefined limit
under any possible combination of treatment effects. Both measures are calculated
empirically by nstage using simulation, but analytical approaches are described in the
appendix.

Guaranteeing strong control of the FWER, while not always required, is likely to
be of interest to those designing MAMS trials. If strong control of the type I error
rate is desired, any design that controls the maximum FWER (assuming nonbinding
boundaries) will control the FWER under any combination of treatment effects of the K
arms. Control of the FWER will typically require an increase in sample size and thus trial
duration (Blenkinsop, Parmar, and Choodari-Oskooei 2019). The new fwercontrol()
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option of nstage uses a combination of linear interpolation and incremental adjustment
to search for a value of αJ that strongly controls the maximum FWER at the specified
level.

Intermediate and definitive outcome are the same (I=D). The PWER is calculated
from the simulation procedure as the average proportion of trials that reject H0 for the
definitive outcome at any stage for a research arm under the global null, HG. The FWER

is calculated by counting the proportion of simulated trials with at least one rejection
of H0 across any of the pairwise comparisons on the D outcome.

Intermediate and definitive outcome differ (I 6=D). In this case, nonbinding boundaries
are assumed for lack of benefit such that the maximum possible type I error rates
(maximum PWER and FWER) on the D outcome are calculated (see Bratton, Choodari-
Oskooei, and Royston [2015]). This approach reflects the probability that under the
null hypothesis, every treatment regimen is sufficiently effective on I such that each
research arm passes all interim stages and at least one type I error is made at the final
analyses or at one of the interim analyses when early rejection of H0 on the D outcome
is permitted. This is evaluated by simulation in nstage when efficacy boundaries are
specified.

The maximum PWER is evaluated as the average proportion of trials that reject H0

for a pairwise comparison of a research arm on the D outcome at any stage of the trial
under the global null, HG. For the maximum FWER, nstage counts the proportion of
simulated trials with at least one rejection of H0 for any pairwise comparison on the
definitive outcome.

Type II error rate

The power of a trial is a measure of the probability the null hypothesis is rejected for
a research arm under the target effect size. nstage currently estimates the power of a
design as the probability of identifying a particular research arm as effective, analogous
to the PWER. However, in a multiarm design, it may be of interest to estimate the
power that reflects the objective of the trial. For example, dose-selection trials need to
identify only one of the research arms as effective, but trials testing several independent
treatments may be concerned with identifying all effective research arms. As defined by
Ramsey (1978), all-pairs power is the probability of rejecting the null hypothesis for all
research arms that have the target effect size, and any-pair power is the probability of
rejection for at least one of several research arms with the target effect size (analogous
to the FWER). nstage evaluates the three measures by counting the proportion of trials
rejecting H0 for one, any, or all research arms under the global alternative hypothesis
HA, depending on the measure being considered (see appendix for more details).

The pairwise power is presented in the main output. The other two measures are
stored by the program; their standard errors can be calculated easily using the formula√
{Ω× (1− Ω)}/N , where Ω is the calculated power andN is the number of simulations.
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Binding stopping rules are assumed for designs in which I = D unless the nonbinding

option is specified. Again, nonbinding rules are assumed for designs in which I 6= D.

Correlation structure

There are three sources of correlation in the MAMS design. The first source is through
the repeated analyses of the same pairwise comparisons between each research arm
and the control arm at multiple stages, with the events accruing cumulatively. The
second source is through the shared control arm for each of the research arms. For the
third source, where an intermediate outcome is used, correlation is induced between the
outcome measures at different stages. The theoretical calculation or estimation of these
three sources of correlation has been derived by others and is provided in the appendix
(Royston et al. 2011; Bratton, Choodari-Oskooei, and Royston 2015).

When efficacy boundaries are implemented in trials using an intermediate (I) out-
come, the calculation of the maximum FWER quantifies the probability of rejecting the
null hypothesis for arms on the definitive (D) outcome for early evidence of efficacy at
interim stages and at the end of the trial. The simulation procedure generates arm-
level trial data and counts the trials that would drop arms for efficacy based on the D
outcome when lack of benefit is assessed on the I outcome. To obtain these quantities
under the correct correlation structure, nstage estimates the between-stage correlation
for the treatment effects on the D outcome when efficacy boundaries are specified. The
simulation routine extracts the number of D events observed when the interim stage is
triggered by the required number of I events. The average number of events across the
simulation repetitions for two stages i and j is then fed into the correlation matrix using
the formula for element Rij given in Royston et al. (2011). The empirical calculation of
the type I error is then dependent only on the correlation between the treatment effects
on the D outcome.

4 Example

To illustrate the updates and demonstrate how the new output from nstage can be
interpreted, we present an example below that uses the design specification for the
original comparisons in the STAMPEDE trial, which started as a six-arm four-stage MAMS

design with I 6= D (Sydes et al. 2012; Parmar et al. 2008). The stopping boundaries for
lack of benefit are defined by alpha(numlist), and the target power for the sample-size
calculation of each stage is defined by omega(numlist). The treatment effects under
the null and alternative hypotheses are given by hr0(# #) and hr1(# #), where
the first value denotes the hazard ratio on the intermediate outcome and progression-
free survival and the second value indicates the hazard ratio on the definitive outcome
and overall survival. accrue(numlist) specifies the expected recruitment rates over
the course of the trial, arms(numlist) is the number of arms recruiting per stage, and
aratio(#) is the randomization ratio between control and research arms. t(# #)

is the time corresponding to the survival probability of an intermediate and definitive
outcome measure event, respectively. simcorr(#) and corr(#) are used to simulate
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the correlation structure between the survival times of the intermediate and definitive
outcomes with the specified number of replicates. It is assumed that all six arms can
progress to the end of the trial conditional on passing assessments for lack of benefit.

In the first command, an efficacy stopping boundary is hypothetically implemented
in retrospect using the option esb(hp). The second column of the operating character-
istics table in the output reports the p-values required for stopping for efficacy at each
stage. In this example, under the Haybittle–Peto rule, each stage requires p ≤ 0.0005 to
declare efficacy early, shown under the column Alpha (ESB). The efficacy boundary for
the final stage equals the final stage boundary for lack of benefit, denoted in the column
Alpha (LOB), to ensure a conclusion to the trial. Because the STAMPEDE trial uses an
intermediate outcome for assessing lack of benefit at interim, the output presents the
maximum FWER, as defined in section 3.5, as the type I error measure of interest. This
is calculated to be 10.6%. The design has an overall pairwise power of 90.0%. The all-
pairs and any-pair power are 66.7% and 99.8%, respectively, obtained with the return
list command (output not shown). We note that the pairwise power differs from the
83% presented in the previous publication (Bratton, Choodari-Oskooei, and Royston
2015) because the latest software update considers nonbinding stopping boundaries (see
section 3.5). However, it can still be obtained using the return list command.

. nstage, nstage(4) alpha(0.5 0.25 0.1 0.025) omega(0.95 0.95 0.95 0.9) hr0(1 1)
> hr1(0.75 0.75) accrue(500 500 500 500) arms(6 6 6 6) t(2 4) aratio(0.5)
> simcorr(250) corr(0.6) esb(hp)
Simulations are carried out to estimate the correlation structure.
Depending on the number of replicates, the results might take some minutes to
> appear.
Progress is shown below.
....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%

n-stage trial design version 4.0.1, 2 Nov 2018

Sample size for a 6-arm 4-stage trial with time-to-event outcome
based on Royston et al. (2011) Trials 12:81 and Blenkinsop et al.
(2019) Clinical Trials

Median survival time (I-outcome): 2 time units
Median survival time (D-outcome): 4 time units

Operating characteristics

Stage Alpha Alpha Power HR H0 HR H1 Crit.HR Crit.HR Length** Time**
(LOB)* (ESB)* (LOB) (ESB)

1 0.5000 0.0005 0.950 1.000 0.750 1.000 0.439 2.436 2.436
2 0.2500 0.0005 0.951 1.000 0.750 0.924 0.509 1.120 3.556
3 0.1000 0.0005 0.951 1.000 0.750 0.886 0.549 1.091 4.647
4 0.0250 . 0.900 1.000 0.750 0.844 . 2.176 6.823

Max. Pairwise Error Rate 0.0258 Pairwise Power 0.9001
Max. Familywise Error Rate (SE) 0.1062 (0.0003)

* All alphas are one-sided
** Length (duration of each stage) is expressed in periods and

assumes survival times are exponentially distributed. Time is
expressed in cumulative periods.
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Sample size and number of events
Stage 1

Overall Control Exper.
Arms 6 1 5
Acc. rate 500 143 357
Patients* 1218 348 870
Events** 343 113 230

Stage 2
Overall Control Exper.

Arms 6 1 5
Acc. rate 500 143 357
Patients* 1778 508 1270
Events** 661 216 445

Stage 3
Overall Control Exper.

Arms 6 1 5
Acc. rate 500 143 357
Patients* 2324 664 1660
Events** 1034 334 700

Stage 4
Overall Control Exper.

Arms 6 1 5
Acc. rate 500 143 357
Patients* 3412 975 2437
Events** 1228 403 825

.5 patients allocated to each E arm for every 1 to control arm.
* Patients are cumulative across stages
** Events are cumulative across stages, but are only displayed

for those arms to which patients are still being recruited
** Events are for I-outcome at stages 1 to 3, D-outcome at stage 4

END OF NSTAGE

Although the focus of the STAMPEDE trial was on strong control of the PWER, we
demonstrate how the FWER could be controlled for this design. The following command
specifies that interim analyses should assess for efficacy on the definitive outcome and
the program should search for a design that controls the FWER at a maximum of 2.5%.
The design parameters and options remain the same.

. nstage, nstage(4) alpha(0.5 0.25 0.1 0.025) omega(0.95 0.95 0.95 0.9) hr0(1 1)
> hr1(0.75 0.75) accrue(500 500 500 500) arms(6 6 6 6) t(2 4) aratio(0.5)
> simcorr(250) corr(0.6) esb(hp) fwercontrol(0.025)
Simulations are carried out to estimate the correlation structure.
Depending on the number of replicates, the results might take some minutes to
> appear.
Progress is shown below.
....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%
Searching for design which controls the FWER at 2.5%
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n-stage trial design version 4.0.1, 2 Nov 2018

Sample size for a 6-arm 4-stage trial with time-to-event outcome
based on Royston et al. (2011) Trials 12:81 and Blenkinsop et al.
(2019) Clinical Trials

(output omitted )
Stage 4

Overall Control Exper.
Arms 6 1 5
Acc. rate 500 143 357
Patients* 4264 1218 3046
Events** 1787 582 1205

.5 patients allocated to each E arm for every 1 to control arm.
* Patients are cumulative across stages
** Events are cumulative across stages, but are only displayed

for those arms to which patients are still being recruited
** Events are for I-outcome at stages 1 to 3, D-outcome at stage 4

END OF NSTAGE

The option for controlling the FWER identified the final stage α required to ensure
a maximum FWER of 2.5% as 0.0043. The output has been reduced to show only the
sample sizes required for the final stage of the design, which has changed to achieve
control of the FWER. The number of control-arm events required for the stage 4 anal-
ysis should be increased from 403 to 582 to ensure control of the FWER at the desired
level. This 44% increase in the number of events required would require substantially
greater resources; for this reason, investigators should carefully consider at the de-
sign stage whether control of the FWER or the PWER is the focus of the design. See
Blenkinsop, Parmar, and Choodari-Oskooei (2019) for further examples of how other
stopping boundaries might affect the FWER.

5 Implementing the new features

A simulation study into the impact of implementing efficacy stopping boundaries in
a MAMS design has indicated that increasing the number of stages in the design will
inflate the relative FWER when early rejection of the null is allowed, compared with de-
signs dropping arms only for lack of benefit (Blenkinsop, Parmar, and Choodari-Oskooei
2019). Designs with three or more stages are more susceptible to inflation of the FWER,
with relative inflation up to 2% for four-stage designs when I = D and 4% when I 6= D
under a Haybittle–Peto stopping rule.

When one chooses an efficacy boundary, the Haybittle–Peto rule with the default
one-sided p-value of 0.0005 at each stage can be implemented with minimal penalty
on the FWER irrespective of the design parameters (the default rule implemented in
nstage). However, because the thresholds are independent of the timing of interim
analyses, the rule may be considered too conservative at late-stage interim analyses. In
such cases, the user can compare the operating characteristics for more liberal custom
stopping rules using nstage to choose the stopping boundaries. Allowing early rejection
of the null has been shown to have negligible impact on power.
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The FWER is unaffected by whether the trial terminates early, and the PWER de-
creases only marginally with a simultaneous stopping rule, compared with a separate
stopping rule, by up to 0.001 for a four-stage design with four arms.

6 Discussion

At the time of publication, no other software has the capability to perform sample-size
calculations and estimate the operating characteristics of a MAMS design that can as-
sess efficacy on a primary outcome while assessing lack of benefit on a more quickly
observable intermediate outcome measure for time-to-event data. Some examples of
alternatives to the nstage command are the MAMS package in R and the commercial
EAST6 software. However, these programs cannot accommodate the use of interme-
diate outcome measures at interim analyses for trials with time-to-event endpoints,
making the design here highly efficient compared with alternative designs by allow-
ing earlier decision making. Additionally, both the MAMS package and EAST6 assume
a simultaneous stopping rule. However, nstage can also perform the calculations for
the operating characteristics assuming the trial continues to the planned end once an
arm stops recruitment after the null is rejected at an interim analysis (a separate stop-
ping rule). Blenkinsop, Parmar, and Choodari-Oskooei (2019) have described different
design strategies one might consider, given the nature of treatments and research ques-
tions under consideration. Because there are situations where both approaches may be
appropriate, we allow a broad application of efficacy stopping boundaries in practice.

Considering estimation, early rejection of the null hypothesis may risk overstating
treatment effects (Whitehead and Stratton 1983). It has been shown that following
up patients in arms dropped early for lack of benefit reduces bias in point estimates
(Choodari-Oskooei et al. 2013). We recommend that any research arms that may ter-
minate recruitment early because of an early signal of efficacy should also be reanalyzed
at the planned end of the trial to reduce bias in the estimated treatment effect.

The speed of nstage compares favorably against other freely available software and
programs, completing within a reasonable time frame even for complex designs. This al-
lows users to compare the properties of different design specifications easily and quickly.
A maximum runtime of 10 minutes was observed for a design based on STAMPEDE that
used an intermediate outcome, implemented efficacy stopping boundaries, and strongly
controlled the FWER. This is reduced to under three minutes without FWER control.
Note that many comparable designs do not have the complexities of STAMPEDE because
of either the number of stages or the multiple outcome measures used in the design.

While the approach to controlling the FWER described in this article adjusts the
final stage significance level, users of nstage may also adjust the interim efficacy bound-
aries to be more conservative with the custom option to address any inflation of the
FWER. Alternative approaches have been proposed for MAMS designs with I = D
to meet the FWER restrictions imposed (for example, Magirr, Jaki, and Whitehead
[2012]; Wason and Jaki [2012]; Proschan and Dodd [2014]; Crouch, Dodd, and Proschan
[2017]). However, our approach does not adjust the early stopping boundaries to be more
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conservative, ensuring high power at early stages of the trial, and FWER control holds
under nonbinding stopping boundaries for lack of benefit.

Efficacy-stopping rules can easily be implemented for alternative outcome measures
in MAMS designs with intermediate outcome measures, such as in the corresponding
command nstagebin (Bratton 2014) for designing MAMS trials with binary outcomes
using the same principles applied here. This is an area for future work.

7 Conclusion

We have demonstrated in this article how the nstage command allows easy specifica-
tion and implementation of efficacy stopping boundaries to a MAMS design and gives the
investigator the appropriate information required to calculate and control the relevant
operating characteristics of the design with minimal computation. The manual input
to the command is to consider which error rates are of interest to the trial, whether the
FWER should be controlled by modifying the design parameters, and whether the trial
should be terminated as soon as a treatment comparison crosses the efficacy bound.
The updated nstage command can calculate the FWER or maximum FWER with the
implementation of efficacy stopping boundaries, and a new option can be used to de-
sign a MAMS trial that strongly controls the FWER at the desired level. We have also
provided guidance on which stopping rules should be chosen in practice and which
design characteristics can make the trial vulnerable to inflation of the FWER when ef-
ficacy boundaries are implemented. Finally, we have illustrated how to implement the
command in practice using a real MAMS trial as an example.
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9 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-4

. net install st0175 2 (to install program files, if available)

. net get st0175 2 (to install ancillary files, if available)
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A Appendix

A.1 Empirical calculation of operating characteristics

In nstage, the operating characteristics are estimated via simulation for designs with
lack of benefit and efficacy stopping boundaries. Correlated arm-level data are generated
for each stage under the global null hypothesis HG for measures of the type I error.
The lack-of-benefit boundaries are used as probabilities with which arms pass to the
subsequent stage by comparing the standardized test statistic with the critical value
corresponding to αj . Arms for which the simulated test statistic crosses the stopping
boundary at stage j are dropped for lack of benefit and are no longer eligible for testing
at the subsequent stage under binding stopping rules. Alternatively, if nonbinding
stopping rules are specified, arms are assumed to proceed to subsequent stages after
crossing the lack-of-benefit boundary. Each interim analysis also compares the test
statistics for the D outcome for every pairwise comparison against the critical value
for efficacy at stage j. Those arms that cross the stopping boundary reject the null
hypothesis H0 and are dropped from subsequent stages for demonstrating evidence of
overwhelming efficacy. However, they are added to the rejections made at the final stage
to estimate the overall error rates. A similar approach is taken to calculate power under
the global alternative HA.

A.2 Analytical calculation of operating characteristics

Type I error

I=D setting. The PWER can be evaluated under a separate stopping rule and binding
futility boundaries by summing the probability that the z test statistic for arm k (ZD

jk)
crosses the efficacy boundary at each stage j (j = 1, . . . , J), conditional on arm k
not crossing either stopping bound at each of the previous stages. This is the sum
of J integrals under the correlation structure between the test statistics for arm k at
different stages as shown in (1). Correspondingly, the FWER is evaluated by considering
all permutations of type I errors made on each pairwise comparison made on D at
each stage, conditional on arms passing all previous assessments for lack of benefit.
Under a simultaneous stopping rule, analytical solutions have been derived by others
(Magirr, Jaki, and Whitehead 2012; Ghosh et al. 2017).
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PWER = P (RejectHk
0 |Hk

0 ) =

J⋃

j=1

(Zjk < bj , b1 < Z1k < l1, b2 < Z2k < l2, . . . ,

bj−1 < Z(j−1)k < lj−1|Hk
0 )

=
J∑

j=1

∫ l1

b1

· · ·
∫ bj

−∞

f
{
(z1k, . . . , zjk);Σj |Hk

0

}

dzjk . . . dz1k

(1)

where (z1k, . . . , zjk) is a realization of the (Z1k, . . . , ZJk) and follows a multivariate nor-
mal distribution with mean ∆D

jk and correlation matrix Σ. l1, . . . , lj−1 are the binding
futility boundaries, and b1, . . . , bj−1 are the efficacy boundaries. When boundaries are
nonbinding or when I 6= D, the l1, . . . , lj−1 are set to ∞. Hk

0 is the null hypothesis for
comparison k; that is, ∆D

jk = 0.

I 6=D setting. When lack of benefit and efficacy are assessed on two different outcomes
at interim stages (that is, I 6=D), the approach using (1) can be modified to reflect the
calculation of the maximum PWER. The boundaries for lack of benefit are replaced with
infinity to denote nonbinding boundaries, and the correlation structure Σ is based on
the correlation between the treatment effects on the definitive outcomes at each stage.

Type II error

The empirical estimates of the three measures of power are obtained based on definitions
by Ramsey (1978). Per-pair power counts the average proportion of trials that success-
fully reject H0 for a pairwise comparison of a research arm on the definitive outcome at
any stage of the trial under the global alternative, HA. This measure is presented in the
output table of nstage. All-pairs power counts the proportion of simulated trials that
successfully reject H0 for all research arms on any of the pairwise comparisons made
on the D outcome. Note that this measure may only be meaningful under a separate
stopping rule. Any-pairs power counts the proportion of trials that successfully reject
H0 for at least one research arm at any pairwise comparison made on D.

When efficacy bounds are implemented, per-pair power can also be evaluated ana-
lytically using a generalized form of (1) under the alternative hypothesis.
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Correlation structure. The correlation due to the shared control arm can be calculated
by A/(A+ 1), where A is the allocation ratio of experimental to control arm.

The correlation structure of the treatment effects across different stages takes the
form

Σ =




R11 R12 · · · R1J

R21 R22 · · · R2J

...
. . .

RI1 RI2 · · · RIJ




where Rij is the correlation between the log hazard-ratios of the intermediate and
definitive outcome measures at stages i and j. Note that while overlapping events may
increase the degree of correlation between stages for trials using survival outcomes such
as progression-free and overall survival, I may not necessarily be a composite outcome
of D. For this reason, it is the correlation between treatment effects that is estimated
and accounted for.

When I 6= D, a heuristic approximation to the correlation between stage i and the
final stage J is given by

RiJ ≃ c

√
ei
eJ

where c is a constant independent of interim stage i. However, it has been shown
that simulation results in a better approximation to the correlation structure (Bratton,
Choodari-Oskooei, and Royston 2015). An analytical derivation (Follmann, Proschan,
and Geller 1994) can also be applied to the MAMS design when I = D.




