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Summary

Ground-motion models (GMMs) are widely used in probabilistic seismic hazard
analysis (PSHA) to estimate the probability distributions of earthquake-induced
ground-motion intensity measures (IMs) at a site, given an earthquake of a cer-
tain magnitude occurring at a nearby location. Accounting for spatial and cross-IM
correlations in earthquake-induced ground motions has important implications on
probabilistic seismic hazard and loss estimates. This study first develops a new Italian
GMM with spatial correlation for 31 amplitude-related IMs, including peak ground
acceleration (PGA), peak ground velocity (PGV) and 5% damped elastic pseudo-
spectral accelerations (PSAs) at 29 periods ranging from 0.01 s to 4 s. The model
estimation is performed through a recently-developed one-stage non-linear regres-
sion algorithm proposed by the authors, known as the Scoring estimation approach.
In fact, current state-of-practice approaches estimate spatial correlation separately
from the GMM estimation, resulting in inconsistent and statistically inefficient esti-
mators of inter- and intraevent variances and parameters in the spatial correlation
model. We test whether this affects the subsequent cross-IM correlation analysis. To
this aim, based on the newly-developed GMM, the empirical correlation coefficients
from inter- and intraevent residuals are investigated. Finally, a set of analytical cor-
relation models between the selected IMs are proposed. This is of special interest as
several correlation models between different IMs have been calibrated and validated
based on advanced GMMs and global datasets, lacking earthquakes in extensional
regions; however, modeling the correlation between different IM types has not been
adequately addressed by current, state-of-the-art GMMs and recent ground-motion
records for Italy.
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1 INTRODUCTION AND MOTIVATIONS

Ground-motion models (GMMs), also known as ground-motion prediction equations or attenuation relationships, are empirical
models describing the probability distributions of intensity measures (IMs) at a site, given an earthquake of a certain magnitude
occurring at a nearby location. GMMs are widely used in probabilistic seismic hazard analysis (PSHA). The dependence between
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various IMs from a single event at multiple sites plays a crucial role for PSHA of spatially-distributed systems (eg, portfolios
of structures and lifelines). Such a dependence is due to common source and wave-traveling paths and to similar distances to
fault asperities1. Several studies2,3 have shown that the spatial correlation in ground-motion IMs has important implications
on seismic hazard and risk estimates of spatially-distributed engineering systems. Moreover, the cross-IM correlation is often
required for the performance-based seismic design and assessment of structures, for instance, in the definition of target IMs to
be used for ground-motion simulation, selection, and modification for engineering applications (eg, the generalized conditional
intensity measure or GCIM4; the conditional spectrum or CS5). Both the spatial correlation and the cross-IM correlation can be
estimated directly during the GMM estimation stage or indirectly, in a subsequent stage, after the GMM is estimated (see Ming
et al6 for a discussion on this aspect).
Numerous GMMs have been developed based on global, national, and regional datasets and an online GMM compendium

has been developed by Douglas7. The GMMs applicable to Italy include, but are not limited to, Ambraseys et al8, Chiou and
Youngs9, Akkar and Bommer10, Bindi et al11, Akkar et al12,13, Chiou and Youngs14, Lanzano et al15, respectively (hereafter,
referred to as ADSS05, CY08, AB10, ITA10, ASB14, CY14 and ITA18, respectively). The characteristics of these GMMs are
summarized in Table 1.
These GMMs are of particular interests in this study for several reasons. In particular, ITA10 is the current state-of-practice

GMM for Italy and ITA18 is an updated version of ITA10 (ie, including ground-motion data of recent earthquakes in Italy and
some global events in the magnitude range 6.1-8.0). The dataset considered in the present study (introduced in the Section 3) is
extracted from the European Strong-Motion (ESM) flatfile16, which is also the main database used in ITA18. However, unlike
ITA18, this study only considered earthquake events occurred in Italy in order to eliminate possible model biases caused by the
different geographic and tectonic setting in other regions.
The GMMs discussed above have been applied in several recent PSHA exercises21; however, these GMMs have been devel-

oped without consideration of the spatial correlation in groundmotions, possibly due to the complexity in the estimation process.
For instance, Jayaram and Baker2 developed spatial correlation models for several global earthquakes using the NGA-West
(Next Generation of Ground-Motion Attenuation Models for the Western US) GMMs (eg, CY08), proposing a predictive model
of the effective range parameter ℎ̃ (ie, the separation distance between stations at which the spatial correlation is about 0.05) as
a function of the structural period T (in seconds). The authors also discussed that the results are insensitive to the choice of the
specific GMM. In a similar manner, Esposito and Iervolino22,23 studied the spatial correlations in Italian and European ground-
motion data and developed a set of predictive models for ℎ̃ using ITA10 and AB10. These predictive models for ℎ̃2,23 will be
used as the reference studies to compare the results in this study.
Jayaram and Baker24 and Ming et al6 have demonstrated that fitting a GMM without spatial correlation to the spatially-

correlated data results in an overestimation of the interevent standard deviation (ie, �, accounting for variability between events)
and an underestimation of the intraevent standard deviation (ie, �, accounting for the variability among observations within an
event), although the estimates of the GMM coefficients are consistent in both cases. Since none of the previously introduced
GMMs accounts for the spatial correlation and may produce biased inter- and intraevent variances, the subsequent analysis of
cross-IM correlation may be (at least in principle) biased too. Thus, it may be important to incorporate the spatial correlation in
the GMM estimation stage and in any further analysis involving the use of the developed GMMs.
To incorporate the spatial correlation in the GMM estimation, Jayaram and Baker24 proposed a multi-stage algorithm adapt-

ing conventional geostatistical tools25. However, this approach may result in an inconsistent estimation of the parameters in the
spatial correlation models, thus, resulting in estimators of the GMM coefficients that, although consistent, are statistically inef-
ficient. Moreover, estimators of � and � may be both inconsistent and statistically inefficient. Also, the multi-stage algorithm
may suffer from slow convergence and it is sensitive to the initial parameter values. In addition, the multi-stage algorithm can-
not account for more advanced (eg, non-stationary) spatial correlation models. The reader can refer to Ming et al6 for a detailed
discussion on those aspects. To address these issues, Ming et al6 introduced a one-stage algorithm for the estimation of GMMs
with spatial correlation, known as the Scoring estimation approach. This method is proved to be statistically rigorous, numeri-
cally stable, and capable of estimating various spatial correlation models. The proposed algorithm will be formally introduced
in Section 2.
Once a given GMM with spatial correlation has been estimated, it can be used to develop correlation models between dif-

ferent IMs. Several cross-IM correlation models have been calibrated and validated based on the NGA-West and NGA-West2
(Enhancement of Next Generation Attenuation Relationships for Western US) databases and advanced GMMs, including Baker
and Jayaram26, Bradley27,28, and Baker and Bradley29 (hereafter, these cross-IM correlation models are referred to as BJ08,
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B11, B12, and BB17, respectively). In addition, Cimellaro30 and Akkar et al31 have studied the cross-IM correlation in Euro-
pean ground-motion data (hereafter, C13 and ASA14). The characteristics of these cross-IM correlation models are presented in
Table 2. It is worth noting that Baker and Cornell32 have observed that the cross-IM correlations are “independent of the ground
motion causal magnitudes and distances”. However, for the sake of completeness, the magnitude range and distance range of
the databases used by the considered studies are also reported in Table 2. These cross-IM correlation models are used as the
reference models for comparison in this study. As shown in Table 2, modeling the correlation between different IM types has
not been adequately addressed by current, state-of-the-art ground-motion models for Italy. As discussed by Scasserra et al33,
Italian data is of special interest because (1) it is principally from earthquakes in extensional regions that are poorly represented
in global databases, and (2) past practice in Italy has used local GMMs based on limited datasets that cannot resolve many sig-
nificant source, path, and site effects. Kotha et al34 have recently quantified the regional differences in the apparent attenuation
of high frequency ground motions with distance between three groups of strong-motion records: (1) Italy; (2) Turkey, and (3)
rest of the Europe-Middle-East region. The authors argue that, although a regionalization based on the tectonic settings could
be more appropriate to explore regional differences in ground motion, a country-based categorization can reflect much better
the data availability and the unbalanced composition of various dataset around Europe. Boore et al35 have stressed that coun-
try names are often used in GMMs as a convenient shorthand to describe regions, realizing that results for the region may well
be applicable beyond the political boundaries of the country and that regional differences of attenuation may occur within the
countries. This also applies to the study presented here. It is usually difficult to obtain enough data to establish the geographic
limits of a given GMM nor to parse the data more finely.
To properly study the cross-IM correlations in Italian strong-motion records, this study first develops a new Italian GMM

with spatial correlation for various amplitude-based IMs. The model estimation is performed through the Scoring estimation
approach recently proposed by the authors. Based on the newly-developed GMM, this study finally proposes a set of empirical
and analytical correlation models between the selected IMs for Italy.

2 METHODOLOGY

2.1 Model specification
A typical GMM is presented as a mixed-effect nonlinear model with a certain spatial correlation structure24 and it can be written
in a vector form as in equation (1),

Yi = f (Xi, b) + �i + "i , i = 1,… , N , (1)

where:

• Yi = log IMi =
(

log IMi1,… , log IMij ,… , log IMini

)⊤ is an ni × 1 vector of logarithmic1 IMs of interest at all sites
j ∈ {1,… , ni} during earthquake i ;

• f (Xi, b) =
(

f (Xi1, b),… , f (Xini , b)
)⊤ is an ni × 1 vector of ground-motion prediction functions f (Xij , b) at all sites

j ∈ {1,… , ni} during earthquake i ;

• Xij represents a vector of predictors (eg, magnitude, source-to-site distance, soil type at site) for site j during earthquake i ;

• b ∈ ℝp is a p × 1 vector of unknown model parameters;

• �i = �i1ni for all i ∈ {1,… , N} and (�i)i=1,…,N are independent and identically distributed inter-event errors with E(�i) =
0 and var(�i) = �2 for all i ∈ {1,… , N} , where 1ni is an ni × 1 vector of ones;

• ("i)i=1,…,N are independent intra-event error vectors of size ni × 1 with E("i) = 0 and cov("i) = �2
i(!) , where 
i(!) is
the correlation matrix corresponding to earthquake i with ! , a vector of unknown parameters;

• (�i)i=1,…,N and ("i)i=1,…,N are assumed to be mutually independent;

• N is the total number of earthquakes;

1It is worth noting that both the decadic logarithm (base 10) and the natural logarithm (base e) are used in common GMMs. However, this choice does not affect the
model assumptions.
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• ni is the number of recording stations during earthquake i.

For consistency with Ming et al6, the functional form of f (Xij , b) is the same as AB10 in equation (2), which can regarded
as a simplified function of ITA10,

f (Xij , b) = b1 + b2Mi + b3M2
i + (b4 + b5Mi) log10

(

√

R2
JB,ij + b

2
6

)

+ b7 SS,j + b8 SA,j + b9 FN,i + b10 FR,i , (2)

where

• Mi is the moment magnitude (Mw) of event i;

• RJB,ij is the Joyner-Boore distance in kilometers at station j during event i;

• SS,j and SA,j are dummy variables determining the soil type at station j according to

(SS,j , SA,j) =

⎧

⎪

⎨

⎪

⎩

(1, 0) , soft soil,
(0, 1) , stiff soil,
(0, 0) , rock;

(3)

• FN,i and FR,i are dummy variables indicating the style-of-faulting of earthquake i according to

(FN,i, FR,i) =

⎧

⎪

⎨

⎪

⎩

(1, 0) , normal fault,
(0, 1) , reverse fault,
(0, 0) , strike-slip fault.

(4)

It is worth noting that the focus of this study is on investigating the ground-motion intensity measure correlations observed
in Italian data. Hence, a fairly simple ground-motion prediction function, f (Xij , b), has been selected for this purpose. As
discussed in Baker and Cornell32 and Baker and Jayaram26, the choice of a particular GMM functional form has an almost
negligible effect on the correlation estimates.
To take the spatial correlation into account, the jj′-th entry, 
i,jj′(!) , of 
i(!) is specified as


i,jj′(!) = k(sij , sij′) = �("ij , "ij′) (5)

for all i ∈ {1,… , N} and j, j′ ∈ {1,… , ni} , where k(sij , sij′) gives the correlation �("ij , "ij′) between "ij and "ij′ at locations
sij and sij′ of sites j and j′ during earthquake i .
There are many options for correlation functions available in the literature36. For spatially independent intra-event errors (ie,

no spatial correlation is modeled),
k(sij , sij′) = 0, (6)

for all sites j ≠ j′ during earthquake i . For stationary and isotropic process of intra-event errors, the correlation �("ij , "ij′) only
depends on di,jj′ = ‖sij − sij′‖2 , the Euclidean distance between sites j and j

′ during earthquake i , such that

k(sij , sij′) = k(di,jj′) . (7)

One of the common choices of this type of correlation functions is the exponential model2,22,23,

k(d) = exp
(

−d
ℎ

)

(8)

where ℎ is a positive range parameter in kilometres, at which the spatial correlation is around 0.37. It is worth noting that
equation (8) is slightly different from the one used by Jayaram and Baker2 and Esposito and Iervolino22,23, which is

k(d) = exp
(

−3d
ℎ̃

)

, (9)

where ℎ̃ is the effective range25, the distance at which the spatial correlation is around 0.05. The relationship between the
effective range ℎ̃ and the range parameter ℎ is

ℎ̃ = 3ℎ . (10)
The GMM is developed for 31 amplitude-based IMs, including, peak ground acceleration (PGA) in cm/s2, peak ground

velocity (PGV) in cm/s, and 5% damped elastic pseudo-spectral accelerations (PSAs) at 29 periods ranging from 0.01 s to 4 s in
cm/s2. The RotD50 IM definition of horizontal components37 is used in this study, consisting of the median single-component
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horizontal ground motion across all non-redundant azimuths. As shown in Table 1, various IM definitions are used in the
literature, however, the difference among them is fairly small37,38.

2.2 Estimation algorithm
The Scoring estimation approach, which is a modified Newton-Raphson algorithm, is briefly described here. Details can be
found in Ming et al6. The unknown parameters in the GMM, � = (b⊤, �⊤)⊤ as the complete vector of model parameters, where
� = (�2, �2, !⊤)⊤ with! being a vector of the parameters in the spatial correlation function (eg, ℎ in equation [8]), are estimated
by maximizing the log-likelihood function, l(�), as follows:

l(�) = −
∑N
i=1 ni
2

ln(2�) − 1
2
ln |C(�)| − 1

2
[Y − f (X, b)]⊤C−1(�)[Y − f (X, b)] (11)

where Y = (Y⊤1 ,⋯ ,Y⊤N )
⊤; f (X, b) =

(

f (X1, b)⊤,⋯ , f (XN , b)⊤
)⊤; covariance matrix C(�) is a block diagonal matrix of Ci,

where Ci = �21ni×ni + �
2
i(!).

The Scoring estimation approach finds the estimate of� that maximizes l(�) in equation (11) via the general updating equation
(12):

�̂(k+1) = �̂(k) + I−1(�̂(k))S(�̂(k)) (12)
where �̂(k) denotes the estimate of � at iteration step k , and

S(�) = )l(�)
)�

and I(�) = E
[

)l(�)
)�

)l(�)
)�⊤

]

. (13)

The updating equation for the Scoring estimation approach are obtained by replacing the negative Hessian matrix in the
Newton-Raphson algorithm, −H(�) , by the Fisher information matrix, I(�) 39.
In summary, the steps of the Scoring estimation approach are as follows:

1. Set initial values �(1);

2. Update the estimates of � by equation (12);

3. Repeat step 2 until the log-likelihood function in equation (11) is maximized and the estimates for the parameters converge.

2.3 Computation of cross-IM correlation
Once the GMM with spatial correlation has been estimated, the cross-IM correlation can be estimated by the empirical Pearson
correlation coefficients. The same method is used by the considered studies in Table 2. This study have applied the following
steps to compute the empirical correlation coefficients:

1. Compute the inter- and intra-event residuals for each IM,

�̂i =
1
�̂2
1⊤ni
i

−1(!̂)[Yi − f (Xi, b̂)]
1
�̂2

+ 1
�̂2
1⊤ni
i

−1(!̂)1ni
, "̂i = Yi − f (Xi, b̂) − �̂i1ni ; (14)

2. Scale the residuals by the estimated standard deviations from the proposed GMM with spatial correlation,

�̃i =
�̂i
�̂
, "̃i =

"̂i
�̂
; (15)

3. Compute the empirical correlation coefficient, as follows,

�(IM1, IM2) =
�(�̃(1), �̃(2))�̂ (1)�̂ (2) + �("̃(1), "̃(2))�̂(1)�̂(2)

�(1)total�
(2)
total

, (16)

where �(�̃(1), �̃(2)) and �("̃(1), "̃(2)) are the correlation coefficients of the inter- and intra-event residuals of a pair of IMs of
interest (ie, IM1 and IM2), respectively; �total =

√

�̂2 + �̂2.
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2.4 Modeling of cross-IM correlation
Following Baker and Cornell32, the analytical correlation model between various IMs is developed through the following steps:

1. Apply the Fisher z transformation to the empirical correlation coefficients, as follows,

z = 1
2
ln
(

1 + �
1 − �

)

, (17)

where z is the transformed data with a constant variance, Var(z) = 1∕
√

∑N
i=1 ni − 3 ;

2. Propose a parametric correlation model �(�);

3. Estimate the parameters � by nonlinear least squares and the objective function is

min
�

K
∑

i=1

K
∑

j=1

(

zij −
1
2
ln
(1 + �ij(�)
1 − �ij(�)

))2

, (18)

where K is the number of IMs considered.

Although the current practice estimates the GMM for each IM individually and then assess the cross-IM correlation coeffi-
cients/models separately, several studies40,41 have shown that it is possible but challenging to incorporate the spatial cross-IM
(ie, considering both spatial correlation and cross-IM correlation at the same time) in the GMM estimation process, requiring
often stricter assumptions. The developed one-stage estimation approach can also account for the cross-IM correlation and this
feature is currently under investigation by the authors, especially in terms of implications on the GMM estimates.

3 GROUND-MOTION DATABASE

As briefly mentioned in the previous section, the considered dataset is extracted from the ESM flatfile16 and the following
selection criteria are applied,

• events occurred within Italy, with moment magnitudeMw ≥ 4 and with at least two recording sites are considered;

• recording stations with Joyner-Boore distance2 (ie, the closest distance to the surface projection of the rupture plane)
RJB ≤ 250 km are considered;

• recording stations are free-field;

• records without information ofMw, fault types, or VS30 (ie, the average shear-wave velocity in the upper 30 m of the soil)
are removed;

• recording stations with redundant site information (eg, co-located sites) are removed.

The final dataset includes 7843 records from 233 earthquakes in the magnitude range 4 ≤ Mw ≤ 6.9 in Italy from 1976 to
2016. The geographical distribution of the selected dataset is shown in Figure 1, together with theMw − RJB distribution and
the site classifications of selected data according to Eurocode 843. 66% of the selected ground-motion records are caused by
the rupture of normal faults, 23% of the selected ground-motion records are caused by reverse faults and 11% of the records are
caused by strike-slip faults. Most data is collected from stations of site class B/stiff soil and the median VS30 across stations is
about 637 m/s.

4 RESULTS AND DISCUSSIONS

4.1 GMM with spatial correlation
The estimated parameters of the proposed GMM with spatial correlation are presented in Table 3. For illustrative purposes, the
median predictions for PGA, PGV, PSA(T=1.0), and PSA spectra are shown in Figure 2, in comparison with the GMMs in

2If the finite-fault model is available, RJB is computed based on the fault geometry by ESM; if not, forMw > 5.5, RJB is estimated from epicenter distance Repi by
empirical correlation 42, otherwise the earthquake source is assumed to be a point source and RJB = Repi.



Huang and Galasso 9

(b)

FIGURE 1 (a) Geographical distribution of considered earthquakes, classified according to focal mechanisms; (b) Mw-RJB
distribution with the Eurocode 8 site classification. The color version of this figure is available only in the electronic edition.

Table 1, for stiff soil assuming VS30 = 580 m/s for aMw 5.5 normal fault event3. The observations of normal fault events with
magnitudeMw 5.5 ± 0.3 are also presented to assess the general performance of the considered GMMs.

It is shown that the proposed GMM for PGA, PGV, and spectral ordinates is generally consistent with the reference GMMs
and are in line with the observations, as the reference GMMs and the observed data generally lie within ±1 �total of the derived
models. As discussed earlier, the incorporation of spatial correlation has little impact on the estimate of b and the considered
GMMs are expected to have consistent median predictions. Moreover, the obtained results also confirm the faster attenuation of
Italian strong ground-motion data compared to the global data, as also observed in Scasserra et al33 and Zimmaro et al44.
However, the incorporation of spatial correlation, in comparison with the model estimated without spatial correlation, results

in a reduction of the interevent variance and an increase of the intraevent variance. The estimated parameters and the corre-
sponding 95% confidence interval (CI) of GMMs with and without spatial correlations for PGA, PGV, and PSA(T = 1s) derived
in this study are presented in Table 4, which confirms this statement and the same conclusions hold for all the other IMs.
To compare the performances of the GMMs with and without spatial correlation, the Akaike Information Criteria (AIC)45

and the Bayesian Information Criteria (BIC)46, which deal with the trade-off between the goodness of fit of the model and the
simplicity of the model (ie, whether or not to include the spatial correlation), are reported in Table 4. The model with lower
AIC or BIC value would be the preferred one. It is shown that the GMM with spatial correlation has about 10% lower AIC
and BIC than the GMM without spatial correlation, implying that the GMM with spatial correlation model provides a better
representation of the considered dataset over those without spatial correlation.
Furthermore, it is also shown in Table 4 whether the estimated parameters are significantly different from zeros assuming a

5% significance level (ie, whether zero is included within the 95% CI). The range parameter ℎ is significantly different from zero
as its 95% CI does not include zero, which implies that the spatial correlation is a non-negligible feature of ground motions.
However, the parameters b2 and b3 for magnitude scaling and b9 and b10 for style-of-faulting scaling may be zeros (ie, these
terms may not be significant in capturing the ground-motion features), since the null hypothesis that these parameters equal to
zeros cannot be rejected assuming a 5% significance level. These findings are consistent with the observations in Bommer et
al47 and Lanzano et al15. However, these results do not mean that these physical parameters are not important in the GMM but,
rather, they imply that the functional form involving these parameters is not a good representation of that feature. Lanzano et
al15 have suggested that the failure to reject null hypothesis regarding the magnitude scaling may be because the large variability
in magnitude scaling and uncertainty in the estimation of some predefined parameters (eg, Mℎ hinge magnitude in ITA18).

3Mw is set to 5.5, which is the median of the applicable magnitude range of this study; for CY08 and CY14, the rake angle is set to -90◦ and dip angle is set to 0◦ to
represent normal fault geometry, no aftershock/hanging-wall effect/basin effect is considered.
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TABLE 3 Estimated parameters for the ground-motion models proposed in this study

IM b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 � � ℎ (km)

PGA 3.524 0.247 -0.020 -3.936 0.351 12.417 0.228 0.160 -0.060 0.080 0.247 0.370 8.476
PGV 0.742 0.188 0.015 -3.089 0.286 8.529 0.308 0.144 -0.021 0.037 0.261 0.301 3.788
0.010 3.544 0.244 -0.019 -3.943 0.352 12.438 0.228 0.160 -0.060 0.080 0.247 0.370 8.333
0.025 3.770 0.191 -0.016 -3.995 0.359 12.220 0.224 0.156 -0.059 0.082 0.248 0.372 7.730
0.040 4.340 0.099 -0.014 -4.198 0.387 11.956 0.212 0.148 -0.054 0.091 0.249 0.385 7.596
0.050 4.668 0.048 -0.013 -4.303 0.399 11.931 0.211 0.155 -0.055 0.096 0.243 0.401 9.919
0.070 4.975 0.034 -0.013 -4.401 0.404 12.404 0.215 0.157 -0.070 0.092 0.237 0.420 12.964
0.100 4.941 0.099 -0.015 -4.345 0.379 14.067 0.212 0.163 -0.088 0.090 0.244 0.430 12.816
0.150 3.667 0.445 -0.032 -3.867 0.290 15.633 0.192 0.160 -0.087 0.099 0.248 0.416 9.761
0.200 2.584 0.687 -0.042 -3.454 0.225 16.378 0.190 0.162 -0.088 0.094 0.251 0.394 6.343
0.250 1.710 0.793 -0.039 -3.011 0.165 15.061 0.195 0.132 -0.076 0.083 0.260 0.366 2.080
0.300 1.214 0.808 -0.034 -2.748 0.137 13.969 0.220 0.140 -0.076 0.059 0.257 0.357 2.396
0.350 0.867 0.802 -0.026 -2.538 0.109 13.637 0.246 0.141 -0.071 0.048 0.255 0.346 1.927
0.400 0.573 0.786 -0.019 -2.387 0.096 12.917 0.260 0.138 -0.068 0.042 0.258 0.337 1.360
0.450 0.170 0.834 -0.021 -2.274 0.090 12.086 0.280 0.146 -0.068 0.031 0.261 0.333 1.375
0.500 -0.131 0.861 -0.020 -2.174 0.081 11.509 0.293 0.149 -0.069 0.025 0.265 0.329 1.405
0.600 -0.481 0.838 -0.012 -2.020 0.068 10.626 0.312 0.151 -0.053 0.015 0.269 0.324 2.227
0.700 -0.648 0.764 -0.002 -1.913 0.066 9.487 0.319 0.153 -0.038 0.010 0.276 0.316 2.922
0.750 -0.844 0.785 -0.002 -1.869 0.063 9.292 0.323 0.152 -0.032 0.006 0.278 0.314 3.375
0.800 -0.884 0.753 0.002 -1.850 0.066 8.990 0.326 0.151 -0.031 -0.001 0.281 0.312 3.823
0.900 -1.235 0.798 0.000 -1.786 0.064 8.238 0.331 0.145 -0.024 -0.007 0.286 0.310 3.682
1.000 -1.329 0.754 0.006 -1.753 0.068 7.660 0.343 0.144 -0.013 -0.006 0.291 0.307 3.877
1.200 -1.602 0.744 0.008 -1.720 0.076 7.043 0.355 0.143 -0.002 -0.017 0.298 0.305 4.463
1.400 -1.827 0.726 0.013 -1.670 0.077 6.393 0.356 0.137 0.004 -0.020 0.301 0.303 5.485
1.600 -1.869 0.684 0.016 -1.714 0.091 6.070 0.365 0.133 0.008 -0.022 0.304 0.300 5.599
1.800 -1.782 0.580 0.029 -1.692 0.089 5.903 0.358 0.129 0.011 -0.026 0.306 0.300 6.547
2.000 -1.887 0.572 0.030 -1.689 0.091 5.858 0.345 0.127 0.021 -0.020 0.308 0.299 7.921
2.500 -2.114 0.596 0.026 -1.785 0.114 5.873 0.324 0.115 0.042 -0.014 0.320 0.298 9.095
3.000 -2.113 0.531 0.032 -1.822 0.122 6.108 0.314 0.112 0.061 -0.017 0.330 0.298 8.906
3.500 -2.166 0.500 0.035 -1.843 0.126 6.275 0.304 0.101 0.081 -0.010 0.337 0.298 9.585
4.000 -2.088 0.438 0.039 -1.914 0.141 6.361 0.305 0.101 0.094 0.000 0.340 0.301 9.688

Regarding the style-of-faulting scaling, the failure to reject null hypothesis may be because of the limited difference between
amplitudes of motions from normal faulting earthquakes (the majority in the considered dataset), with respect to those from
strike-slip events47. However, it is decided here to keep the functional form as in equation (2), although some parameters may
have limited impact on model performance.
An illustrative example of residual analysis is shown in Figure 3, in which the interevent residuals are presented with respect

to magnitude and the intraevent residuals with respect to distance. It is shown that there is no major bias in the residuals with
respect to distance or magnitude, which implies an overall good fitting of the derived models to the Italian data.

The parameters in the spatial correlation are estimated by the Scoring estimation approach developed by the authors as a by-
product of the GMM estimation and are reported in Table 3. To compare the results with existing studies, the effective range ℎ̃
computed from ℎ (ie, equation [10]) is compared to the predictive models of Jayaram and Baker2 for cluster site scenario (ie,
VS30 values show that there are clusters of sites in which the geologic conditions of the soil are similar) and the model of Esposito
and Iervolino23 for Italy, as shown in Figure 4. It is shown that the overall trend of ℎ̃ obtained in this study is consistent with
the two reference models. However, the effective range ℎ̃ derived in this study is generally smaller than the reference models.
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(a) (b)

(c) (d)

FIGURE 2Median predictions for (a) PGA, (b) PGV, (c) PSA(T=1.0), and (d) PSA spectra in comparison with existing GMMs
for Italy, for stiff soil assuming VS30 = 580 m/s for a Mw 5.5 normal fault event. The color version of this figure is available
only in the electronic edition.

This may be due to the use of the classical geostatistical method, which generally tends to overestimate the parameters in spatial
correlation6.
It is worth pointing out that, in addition to the inclusion of spatial correlation, other factors also have impacts on the estimations

of interevent and intraevent variances, such as, model assumptions, functional forms, estimation algorithms, and dataset etc. As
shown in Figure 5, the inter- and intraevent standard deviations (in log10 unit) are slightly higher than the considered studies.
This study takes into account a larger number of events among most of the considered study as shown in Table 1 while the
functional form is simple compared to the other studies, as discussed above. Thus, the inter-event variance is slightly higher
than others. Regarding the intraevent variance, as expected, the inclusion of spatial correlation increases the intraevent variance
compared to models without spatial correlation. In general, the total standard deviations in this study are slightly higher than the
considered study, which may be partially due to the inclusion of spatial correlation and partially because of the larger dataset
used in this study.

4.2 The empirical correlation coefficient
The contours of the empirical PSA correlation coefficients as a function of T1 and T2 (ie, period pairs ranging 0.01 s and 4
s) are shown in Figure 6, which are compared to the cross-IM correlation models listed in Table 2. The empirical correlation
coefficients are also available in Table A1 to A3 in Appendix. The visual comparison of Figure 6 shows that the general trends
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TABLE 4 Estimated parameters for PGA, PGV, PSA(T=1) GMM with and without spatial correlation (denoted by S and NS)

� PGA PGV PSA(T = 1s)

S ±CI† NS ±CI S ±CI NS ±CI S ±CI NS ±CI

b1 3.524 2.188 3.429 2.242 0.742 2.174 0.621 2.197 -1.329 2.384 -1.275 2.411
b2 0.247 0.868 0.292 0.894 0.188 0.871 0.205 0.881 0.754 0.962 0.715 0.976
b3 -0.020 0.087 -0.021 0.090 0.015 0.087 0.017 0.088 0.006 0.096 0.011 0.098
b4 -3.936 0.307 -3.878 0.315 -3.089 0.239 -2.993 0.250 -1.753 0.178 -1.693 0.158
b5 0.351 0.056 0.333 0.043 0.286 0.037 0.268 0.032 0.068 0.034 0.059 0.030
b6 12.417 1.176 12.789 0.868 8.529 0.875 8.158 0.722 7.660 1.019 7.215 0.836
b7 0.228 0.026 0.202 0.026 0.308 0.023 0.304 0.023 0.343 0.023 0.333 0.023
b8 0.160 0.014 0.110 0.017 0.144 0.013 0.122 0.015 0.144 0.014 0.119 0.015
b9 -0.060 0.097 -0.058 0.100 -0.021 0.098 -0.026 0.099 -0.013 0.108 -0.024 0.109
b10 0.080 0.113 0.076 0.117 0.037 0.114 0.035 0.116 -0.006 0.126 -0.013 0.127
�2 0.061 0.014 0.070 0.015 0.068 0.014 0.071 0.014 0.085 0.017 0.089 0.018
�2 0.137 0.005 0.119 0.004 0.090 0.003 0.086 0.003 0.094 0.003 0.090 0.003
ℎ 8.476 0.600 - - 3.788 0.384 - - 3.877 0.389 - -

AIC 5601 - 6169 - 3356 - 3665 - 3680 - 4089 -
BIC 5692 - 6253 - 3447 - 3749 - 3771 - 4173 -

†CI: confidence interval.

(c)(d)(e)(f)(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Left: Interevent residuals versus magnitude. Right: Intraevent residuals versus distance. (a)(b) for PGA, (c)(d) for
PGV, (e)(f) for PSA(T=1.0). The color version of this figure is available only in the electronic edition.
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FIGURE 4 Comparison of the effective range ℎ̃ observed in this study with the models of Jayaram and Baker2 and Esposito
and Iervolino23. The dashed line represents the extrapolation of Esposito and Iervolino23 model. The color version of this figure
is available only in the electronic edition.

(a) (b)

FIGURE 5 (a) Intra-event standard deviation �; (b) Inter-event standard deviation �. The color version of this figure is available
only in the electronic edition.

of PSA correlation observed in this study are similar to the considered studies, although some differences can be observed when
|T1 − T2| is large.
Figure 7 shows the empirical correlation coefficients of PSA at two representative periods (ie, T2 = 0.1 s and 1.0 s) versus T1

ranging from 0.01 s and 4 s. It is shown that the C13model is significantly different from the other three models and may produce
negative correlations for some period pairs, which may “have a numerical error” according to Baker and Bradley29. Compared
to the worldwide models (excluding the C13 model), there is higher PSA correlation observed in the Italian data, particularly,
when the separation between T1 and T2 is large (eg, 0.01 s and 4 s). The observed difference may be because the extensional
(normal fault) earthquakes are not well represented in the dataset used by the considered studies. Over 66% ground-motion data
used in this study are caused by the rupture of normal faults in Italy. In the contrast, the NGA-West database has only about 5%
records from events caused by the normal fault rupture48, the RESORCE dataset used by ASB14 has around 31% records of
normal faults49, and the dataset used in C1330 has about 32% records corresponding to normal fault events (estimated from the
graph). These results may imply that the correlations observed in Italian data have special features which are not well captured
by the considered studies. Moreover, Figure 7 also shows that the difference between the empirical correlation coefficients of
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(a) (b)

(c) (d)

FIGURE 6 Contours of empirical PSA-PSA correlation coefficients as a function of T1 and T2 (ie, period pairs ranging 0.01
s and 4 s): (a) observations in the dataset considered; (b) model of Cimellaro (2013)30 for Europe; (c) models of Akkar et al.
(2014)31 for Europe and the Middle East; (d) models of Baker and Jayaram (2008)26 for worldwide shallow crustal regions. The
color version of this figure is available only in the electronic edition.

FIGURE 7 Empirical PSA-PSA correlation coefficients at two representative periods (ie, T2 = 0.1 s and 1.0 s) versus T1 ranging
from 0.01 s and 4 s, in comparison of cross-IM correlation models applicable to Italy. The color version of this figure is available
only in the electronic edition.
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(a) (b)

FIGURE 8 Empirical correlation coefficients for (a) PGA-PSA, (b) PGV-PSA versus T ranging from 0.01 s and 4 s, in compar-
ison of cross-IM correlation models applicable to Italy. The color version of this figure is available only in the electronic edition.

this study and those computed from the ITA18 model are less than 0.5 (5%) for most period pairs, which seems to confirm
the findings of Baker and Cornell32 and Baker and Jayaram26 that the GMM functional forms have little impact on correlation
estimates (It is worth noting that ITA18 uses a slightly more complex functional form than the one used in this study).
The empirical correlation coefficients computed from the GMM without spatial correlation are also presented in Figure 7.

Interestingly, Figure 7 shows that accounting for the spatial correlation in the GMM estimation has a negligible effect on the
subsequent cross-IM correlation analysis, at least for the considered ground-motion IMs. As pointed out above, fitting a GMM
without spatial correlation to the spatially correlated data results in an overestimation of the interevent standard deviation and an
underestimation of the intraevent standard deviation; both these quantities enter in the definition of the IM correlation (Eq. 16).
However, the differences in those quantities between the model with spatial correlation and that without spatial correlation are
less than 10% for most of the spectral ordinates considered here, reaching about 15-20% in the case of PGA (e.g., Table 4) -
similar results can be found in Jayaram and Baker24. On the other hand, these differences can become much larger when the
correlation in the underlying data becomes higher (i.e., higher range parameter ℎ; see for instance Ming et al.6 for a detailed
analysis on this aspect). Hence, one should not expect a significant bias in the existing cross-IM correlation model (based on
GMM estimated without accounting for the spatial correlation), at least for the IM considered here.
The empirical PGA-PSA and PGV-PSA correlation coefficients are shown in Figure 8. The results are compared to the cross-

IM correlation models in Table 2. As shown in Figure 8, the PGA-PSA and PGV-PSA correlations are similar to the considered
studies, though the derived correlation coefficients are slightly higher than the reference models. Furthermore, the empirical
PGA-PGV correlation coefficient is 0.861 in this study, which, again, is slightly higher than 0.733 obtained in Bradley28. The
empirical correlation coefficients computed from the GMMwithout spatial correlation are also presented in Figure 8, confirming
the above findings for the cross-PSA correlations.
These results show that the correlations observed in this study are generally higher (in terms of absolute value) than the

considered models, which implies different features in the Italian data from that in the global dataset and may be possibly due
to the poor representation of normal fault events in NGA-West2 dataset (19% normal fault events and 7% of total records)50.

4.3 The cross-IM correlation models
The results in the previous section show that there is a need for correlationmodels specifically calibrated based on the Italian data.
In this section, a set of analytical correlation models between the selected IMs is developed. Following Baker and Jayaram26,
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the PSA-PSA correlation model is proposed as follows,

if Tmax ≤ 0.1, �̃ = C2 = 1 − 0.0617
(

1 − 1
1 + exp(100Tmax − 5)

)(

Tmax − Tmin

Tmax − 0.0099

)

; (19)

else if Tmin > 0.1, �̃ = C1 = 1 − cos
[

�
2
− 0.2351 ln(Tmax∕Tmin)

]

; (20)

else if Tmax ≤ 0.2, �̃ = min(C2, C3) ; (21)

else �̃ = C3 = C1 + 0.3131(
√

C1 − C1)
[

1 + cos
(

�Tmin

0.1

)]

. (22)

where Tmax = max(T1, T2), Tmin = min(T1, T2).
Following Bradley27,28, the analytical correlation models between PGA/PGV and structural period T are as follows,

�̃ =
(�1 + �2)

2
−

(�1 − �2)
2

tanh
[

�4 ln
(

T
�3

)]

for tn−1 ≤ T < tn . (23)

where the parameters �n are shown in Table 5.
It is worth noting that, as also discussed in Baker and Jayaram26, there is no physical interpretation of the proposed functional

forms in equations (19) to (23), which is only a fitting of the observed data and therefore should not be extrapolated.
The analytical PSA-PSA, PGA-PSA, and PGV-PSA correlation models are compared with the considered studies, as shown

in Figure 9 and 10. These proposed correlation models are consistent with the empirical correlations observed in the Italian
data. Moreover it accounts for the features observed in the Italian data that is not well captured in the considered studies.

TABLE 5 The estimated parameters in equation (23).

IMs n tn �1 �2 �3 �4

0 0.01 - - - -
PGA 1 0.2 1.000 0.950 0.045 2.225

2 4 1.000 0.344 0.783 0.824
0 0.01 - - - -

PGV 1 0.1 0.859 0.722 0.045 2.533
2 0.5 0.711 0.912 0.203 1.681
3 4 0.917 0.686 1.450 1.306

(a) (b)

FIGURE9 (a) Contour of analytical PSA-PSA correlationmodel at multiple period pairs ranging from 0.01 s to 4 s; (b) analytical
PSA correlationmodel at two representative periods (ie, T2 = 0.1 s and 1.0 s) versus T1 ranging from 0.01 s and 4 s, in comparison
of cross-IM correlation models applicable to Italy. The color version of this figure is available only in the electronic edition.
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(a) (b)

FIGURE 10Analytical correlation models for (a) PGA-PSA, (b) PGV-PSA versus T ranging from 0.01 s and 4 s, in comparison
of cross-IM correlation models applicable to Italy. The color version of this figure is available only in the electronic edition.

5 DEPENDENCE OF CORRELATIONS ON MAGNITUDE AND DISTANCE

Following the study of Baker and Bradley29, this section investigates the dependence of the cross-IM correlation on magnitude
and distance by evaluating a set of empirical correlation coefficients computed from ground motions within varying magnitude
and distance ranges and comparing them with the analytical models proposed in the previous section.
Figure 11 shows the empirical cross-IM correlation values for ground-motion records with RJB ≤ 100 km and RJB > 100

km and magnitude Mw ≤ 4.5 and Mw ≥ 6.0 for several IM pairs compared with analytical correlation models. Regarding
the PSA-PSA and PGA-PSA correlation, the empirical correlation coefficients for large magnitude (ie, Mw ≥ 6.0) and small
magnitude (ie,Mw ≤ 4.5) are consistent with the analytical estimates, implying no significant magnitude dependence in these
correlation values. These results are in line with the findings of Baker and Bradley29.
Regarding the PGV-PSA correlation, the empirical correlation coefficients for ground motions from small magnitude events

are generally consistent with the analytical estimates while those coming from large-magnitude events differ from the analytical
ones, particularly at periods less than 0.5 s.
To further investigate the potential dependence on magnitude and distance, the cross-IM correlations are presented as a

function of magnitude and distance of the input ground motions in Figure 12. The left panels in Figure 12 (a), (c) and (e) present
the cross-IM correlations computed from ground motions with RJB ≤ 100 km and binned magnitude (±0.3 unit around the
target value). It is shown that there is no notable trend for PSA-PSA and PGA-PSA correlation against magnitude. Regarding
the PGV-PSA correlations, the empirical correlation coefficients for small magnitude values are consistent with the analytical
estimates, however, those corresponding to large magnitude values deviate from the analytical estimates. The correlation for
PGV-PSA with short periods (ie, T ≤ 0.5) tends to decrease and the correlation for PGV-PSA with long periods (ie, T ≥ 1.0)
tends to increase when magnitude increases, which is consistent with Figure 11 (c).
The right panels in Figure 12 (b), (d) and (f) show the cross-IM correlations computed from ground motions with 4.5 ≤

Mw ≤ 6 (well-represented magnitude range in the considered dataset) and binned distance (±15 km around the target value). It
is shown that there is no notable trend for PSA-PSA and PGA-PSA correlation against distance. The PGV-PSA correlations for
large distance (ie,RJB ≥ 100 km) are consistent with the analytical estimates while those for near-fault distance (ie,RJB ≤ 100
km) fluctuate around the analytical results.
In summary, it seems that the PSA-PSA and PGA-PSA correlations have no significant dependence on magnitude or distance,

confirming the findings of Baker and Bradley29. However, there is some dependence of PGV-PSA correlation on magnitude and
distance, particularly at periods less than 0.5 s.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 11 Empirical correlation coefficients for ground motions from Mw ≥ 6.0 and Mw ≤ 4.5 for (a) (b) PSA-PSA
correlation at two representative periods, (c) (d) PGA-PSA correlation, and (e) (f) PGV-PSA correlation. Left panels are for
RJB ≤ 100 km and right panels are forRJB > 100 km. The color version of this figure is available only in the electronic edition.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 12 Cross-IM correlation coefficients for ground motions with a narrow range of magnitude (left panels) and distance
(right panels) for (a) (b) PSA-PSA correlations, (c) (d) PGA-PSA correlations, (e) (f) PGV-PSA correlations. Solid lines are the
empirical correlation coefficients and the dashed lines are the analytical correlation coefficients. The color version of this figure
is available only in the electronic edition.

6 CONCLUSIONS

This study has investigated the ground-motion IM correlation observed in Italian data. To this aim, this paper first used Italian
strong-motion records to develop a newGMMwith spatial correlation for 31 amplitude-based IMs, including PGA, PGV and 5%
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damped elastic PSA at 29 periods ranging from 0.01 s to 4 s, by a recently-developed one-stage non-linear regression algorithm
proposed by the authors. The median predictions of the proposed GMM is generally consistent with the existing GMMs for
Europe and Italy. This study demonstrated that the inclusion of spatial correlation in GMM estimation reduces the interevent
variance and increases the intraevent variance. The residual analysis showed that there is no bias in interevent residuals with
respect to magnitude or in intraevent residuals with respect to distance, implying an overall good fitting of the proposedmodels to
the Italian data. The estimated effective range of the spatial correlation function in this study was lower than that of the literature,
which may be due to the use of the classical geostatistical method, which generally tends to overestimate the parameters in spatial
correlation6. The total standard deviations in this study were slightly higher than the existing models in the literature, which
may be partially because of the inclusion of spatial correlation and partially because of the larger dataset used in this study.
Based on the newly-developed GMM, the empirical correlation between various IMs observed in the considered dataset were
computed and compared to the existing correlation models, showing that the correlation features in the Italian data have not been
adequately addressed by the literature. Finally, this study proposed a set of analytical correlation models between the selected
IMs for the considered Italian ground-motion data. The PSA-PSA and PGA-PSA correlation have no significant dependence
on magnitude and distance while the PGV-PSA correlation has notable dependence on large magnitude and short distance. The
results of this study can be used to improve hazard/risk assessment exercises in Italy.
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