
13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 1 

Toward near real-time flood loss estimation: post-disaster index 

Annibale Vecere 
PhD Candidate, School for Advanced Studies IUSS Pavia, Pavia, Italy  

Mario Martina 
Associate Professor, School for Advanced Studies IUSS Pavia, Pavia, Italy 

Ricardo Monteiro 
Assistant Professor, School for Advanced Studies IUSS Pavia, Pavia, Italy 

Carmine Galasso 
Associate Professor, Dept. of Civil, Environmental & Geomatic Engineering, Univ. College London, 

London, United Kingdom 

ABSTRACT: The increase in the frequency and impact of extreme hydro-meteorological events 

worldwide highlights the need for more effective financial strategies providing coverage against the 

economic consequences of such events, particularly in developing countries. Near Real-Time Loss 

Estimation (NRTLE) models represent a new generation of catastrophe risk models that can serve as a 

basis for the development of innovative parametric insurance schemes. NRTLE models can help to 

estimate the impact of an extreme event, in near real time, for instance, through a Post-Disaster Index 

(PDI), upon which the issued payments depend. This study introduces a new methodology to compute 

such an index for flood events in the Philippines, which relies on satellite precipitation estimates, 

exposure information provided by national censuses issued by the Philippine Statistics Authority (PSA), 

and historic loss data from the EM-DAT International Disaster Loss database. Firstly, the risk model 

components (hazard, exposure and vulnerability) employed to generate the above index are described. 

Then, model performance in terms of number of affected residential buildings, estimated by means of 

the suggested PDI, is analyzed. Finally, an example of parametric insurance coverage based upon the 

designed PDI is illustrated. 

 

Parametric or “trigger-based” insurance 

constitutes a new financial strategy devised to 

ensure enough financial resources before the 

occurrence of a catastrophic event. With this type 

of products, payouts are generally issued once a 

pre-defined threshold of an environmental 

variable (i.e., the trigger), highly correlated with 

losses, is exceeded. This study proposes the use of 

a Post-Disaster Index (PDI) as a trigger, linked to 

the development of the so-called Near Real-Time 

Loss Estimation (NRTLE) models, here applied to 

flood events. 

NRTLE models represent effective tools for 

developing improved parametric insurance 

products where a hazardous event is first 

identified (in near-real time) and then an impact 

index, associated with the insurance payout, can 

be computed. The PDI is an index that can further 

improve the estimation of the impact and 

therefore reduce the uncertainty of the payout. 

These indexes, such the one proposed here, are 

designed to estimate the actual damage associated 

to an event with given characteristics and 

therefore to reduce basis risk, which emerges 

when there is a mismatch between modelled and 

actual losses. 

NRTLE models belong to the category of the 

so called early or rapid loss estimation models 

aiming at providing an estimate of the loss or 

impact (e.g., affected population, casualties) in a 
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given area, as a consequence of a considered 

natural hazard (such as floods or storms, as in this 

context), within few hours or days. These models 

can be classified in two main categories 

depending on the data used to assess losses: 

 

1. Models using observations of effects (e.g., 

flooding) or impacts (direct and/or indirect 

losses) of the event on a given geographic 

area; 

2. Models employing environmental variables 

(e.g. precipitation, wind, etc.) which cause 

(i.e. trigger) an extreme event. 

 

The first type of models utilizes observations 

that are either directly or indirectly related to the 

impact of the event. Typically, these models rely 

on near real-time flood monitoring systems which 

have been widely developed in recent years 

(Lakshmi, 2017). Systems that utilize information 

provided by citizens (Fohringer, Dransch, 

Kreibich, & Schröter, 2015) through the web also 

belong to this first category. Recently, different 

communication technologies, such as social 

media, have also been tested with regards to their 

capabilities to complement disaster information in 

the aftermath of a major extreme event (Poser & 

Dransch, 2010). 

The proposed NRTLE models belong to the 

second category of rapid loss estimation models 

above presented and a notable example, in this 

context, is represented by the models developed 

by the Caribbean Catastrophe Risk Insurance 

Facility Segregated Portfolio Company (CCRIF 

SPC) which offers parametric insurance against 

tropical cyclones, earthquakes and excess rainfall 

events on Caribbean governments (CCRIF SPC, 

2015).  

This paper proposes a newly-developed PDI 

for flood events to be included in a NRTLE model 

and presents its application to the Philippines, one 

of the most flood prone countries in the world. 

The proposed index is based on the use of a model 

to estimate losses and enables the calculation of 

the final payout of a parametric insurance 

coverage for hydro-meteorological events in the 

case-study country. Daily data from satellite 

precipitation estimates, exposure information 

from national censuses issued by the Philippine 

Statistics Authority (PSA), and loss data from the 

EM-DAT International Disaster Loss database are 

combined to develop the proposed PDI. 

In the following, the procedure for the 

identification of flood events, the primary step in 

parametric insurance, is presented first and the 

risk model components (i.e. hazard, exposure and 

vulnerability) are described. The procedure for the 

calibration of a vulnerability function using data 

from the EM-DAT disaster loss database (Guha-

Sapir, 2018) is then presented. Finally, the results 

provided by the devised index in terms of 

Occupied Housing Units (OHUs) affected by 

historical floods in the Philippines and the 

proposed parametric coverage are illustrated. 

1. STUDY AREA 

1.1. The Philippines’ risk profile 

The Philippines is an archipelago of 7,107 islands 

(1,000 of which are inhabitable) whose total area 

is approx. 300,000 Km2. It is among the top global 

disaster hotspots worldwide and is exposed to a 

wide range of natural hazards. Located in the 

Pacific Ring of Fire, it is highly exposed to 

earthquakes, volcanic eruptions, and other 

geological hazards, as well as to multiple 

typhoons and monsoon rains causing several 

types of floods, which had a severe impact in the 

past (Figure 1). For instance, in the 2014 

Germanwatch Climate Risk Index, the Philippines 

ranked 2nd worldwide among the most affected 

countries by disasters, with 85% of GDP in areas 

at risk. 

Floods and windstorms (typhoons) have 

produced the highest economic damages in the 

country’s history among all extreme event types 

(Table 1). The year 2013 was a devastating year 

for the country. A significant M7.2 earthquake 

and super Typhoon Yolanda (international 

codename: Haiyan) caused major damage and a 

significant increase in poverty levels in affected 

areas. In particular, Yolanda, a Category 5-

equivalent typhoon with wind speeds over 300 
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km/h, struck the central Philippines, affecting an 

estimated 12.2 million people. 
 

Table 1: Top 10 most damaging hydro-meteorological 

events in the Philippines, from EM-DAT (2018). 

Philippines’ top 10 hydro-meteorological events 

Disaster No Type Date 
Total damage  

('000 US$) 

2013-0433 Storm 08-11-2013 10,000,000 

2013-0274 Flood 13-08-2013 2,190,000 

2015-0244 Storm 12-07-2015 1,500,000 

2012-0500 Storm 04-12-2012 898,352 

2014-0227 Storm 15-07-2014 820,576 

1995-0209 Flood 04-09-1995 700,300 

2009-0422 Storm 29-09-2009 585,379 

1990-0122 Storm 12-11-1990 388,500 

1990-0040 Earthquake 16-07-1990 369,600 

2011-0379 Storm 24-09-2011 344,173 

 

Nine of the country’s 17 administrative 

regions were affected by the typhoon, covering 

12,122 barangays (villages) in 44 provinces, 591 

municipalities, and 57 cities. The typhoon caused 

over 6,200 reported fatalities and almost 1,800 

people missing. In recognition of the high risk of 

the country due to natural hazards, the enactment 

of the Philippine Disaster Risk Reduction and 

Management (DRRM) Act in 2010 (Republic Act 

10121) is enabling substantial progress in shifting 

the emphasis from emergency response to 

preparedness, mitigation and prevention. 

2. MODEL COMPONENTS 

As discussed above, the main aim of this study is 

to develop a PDI to provide an estimate of direct 

losses due to hydro-meteorological events in the 

Philippines. This index can serve as a basis for the 

computation of the parametric coverage payout, 

which will be described in Section 2.2. 

Consistently with conventional risk models, three 

main components, namely hazard, exposure, and 

vulnerability, are used to compute the PDI and 

will be investigated in the following sub-sections. 

2.1. Hazard 

The hazard component consists of a procedure for 

the identification of hydro-meteorological events 

over the Philippines based on the daily 

precipitation derived from the CMORPH (CPC 

MORPHing technique) satellite precipitation 

estimates (SPEs). 

 

 
Figure 1: Total damage and total population affected 

due to different types of floods in the Philippines, from 

EM-DAT (2018). 

 

This dataset was selected as it satisfies the 

requirements for a trigger to be used in NRTLE 

models for floods: low latency (18 hours), at least 

20 years of temporal coverage (from 1998 to July 

2017), suitable temporal (30 minutes) and spatial 

(approximately 8 km) resolution. 

The procedure for the identification of flood 

events in the Philippines can be summarized in 

four main steps and is thoroughly described in 

(Vecere, Martina, Monteiro, & Galasso, 2019): 

1. Computation of the number of cells with 

precipitation above a given threshold (Thr.) - 

Thr.1 - (active cells), over the Philippines; 

2. Definition of days in which the number of 

active cells exceeds a given percentage of the 

country’s cells - Thr.2 - (active days) within 

the investigated period; 

3. Definition of event start and end dates; 
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Figure 2: 2015 Census of Philippines’ Population: Housing Units and Occupied Housing Units from [PSA, 2018]. 

 

4. Identification of events within a control period 

(i.e. 3 days). 

 

As a result of the event identification process, 

almost 170 hydro-meteorological events were 

detected in the period 1998 – July 2017. 

Subsequently, for each event, the highest 

precipitation value above Thr.1 (in accordance 

with event definition procedure) on every 

country’s affected cell between the start and end 

date was used as hazard variable. 

2.2. Exposure 

Exposure information was collected using official 

housing data by city/municipality, which the 

Philippines Statistics Authority makes publicly 

available (Philippines Statistics Authority (PSA), 

2018). Housing characteristics in the Philippines 

were collected in the context of the 2015 national 

census of population. The 2015 national census 

provides several types of housing information, 

either related to previous censuses or specific for 

the 2015 census: number of OHUs for censuses 

from 1960 to 2015, number of households, ratio 

of household and household population to OHUs 

by type of building, etc. In addition, also 

information on construction material of outer 

walls and roof, occupancy types (e.g., single 

house, multi-units residential, duplex house, etc.) 

and tenure status is provided. The collected data 

reveals a higher absolute number of housing units 

but lower occupancy rate with respect to the 

previous censuses (Figure 2). Interestingly, 

around 80% of the total OHUs is classified as 

single house, in contrast with western countries 

(e.g., Europe) where the majority of residential 

buildings can be classified as multi-unit 

residential type. 

For the present study, the number of OHUs 

from the censuses overlapping the period covered 

by the CMORPH dataset (i.e., from 1998 to 2017) 

were used. Specifically, the 2000, 2007, 2010, 

2015 housing data was employed to calibrate the 

vulnerability functions with respect to historical 

data, as it will be presented in the next sub-

section. 

Data on OHUs from censuses was first linked 

to a shapefile of the Philippines’ municipalities 

(downloaded from the National Mapping and 

Resource Information Authority (NAMRIA) of 

the republic of the Philippines (OCHA 

Philippines, 2018)). Then, the resulting shapefiles 

were converted to a raster matching CMORPH 

resolution (Figure 3) through a code developed in 

the R programming language (R version 3.5.1 and 

RStudio 1.1.453). 

2.3. Vulnerability 

The proposed vulnerability curve envisages a link 

between the daily precipitation and the percentage 

of affected OHUs as a result of a flood event. To 

this end, a generalized beta distribution with 

parameters α and β was utilized (Figure 4). The 

number of affected OHUs on every cell is 

computed using daily precipitation as independent 

variable (Figure 4). An upper limit of 75% for the 
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        (a)         (b) 

  
        (c)          (d) 

 
Figure 3: Rasterized OHU with CMORPH’s resolution from Philippines’s Statistics Authority’s 2000 (a), 2007 

(b), 2010 (c), 2015 (d) censuses. 

 

estimated affected OHUs ratio was assumed, 

considering that, even for extremely high daily 

precipitation values, it is unlikely that a higher 

percentage of buildings is hit by a flood on each 

cell, because of the presence of buildings which 

are less vulnerable or not damaged by floods 

thanks to their characteristics (e.g. high buildings) 

or location (e.g. on top of hills). In order to 

calibrate the vulnerability curve, the procedure 

was repeated for 100 different combinations of the 

coefficients α and β by recursively assuming a 

value between 1 and 10 for each of them. The 

criterion adopted to identify the best configuration 

of the vulnerability curve was to evaluate the R2 
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coefficient of a series of two arrays, the modelled 

affected OHUs and the affected buildings from 

EM-DAT (historical data). The first array was 

represented by the affected OHUs at the national 

level (i.e. resulting by the sum of affected OHUs 

on every cell where at least 65mm/day fell, based 

on CMORPH SPEs), computed for every 

historical event detected through the methodology 

for flood event identification described above. A 

hundred different arrays of modelled affected 

OHUs were produced, one for each combination 

of α and β coefficients. Each of these arrays was 

assessed (by means of the R2 coefficient) with 

respect to the one of the affected buildings, 

computed by using EM-DAT displaced 

population reported in correspondence of the 

detected events, through an assumption on the 

average family. 

 
Figure 4: Vulnerability function relating affected 

OHUs and daily precipitation (generalized beta 

distribution α=3 and β=2). 

 

EM-DAT contains two different types of 

impact measures for flood and storms in the 

Philippines (Guha-Sapir, 2018): total estimated 

damage and total population affected. The number 

of affected people is a good indicator to calibrate 

the above vulnerability function, linking the 

precipitation (i.e. SPEs) and the physical damage 

on residential buildings. Furthermore, EM-DAT 

follows the recommendations of the UNDP 

country classification, according to which the 

average size of a family in developing countries is 

equal to five, therefore, the number of EM-DAT 

affected buildings was computed by dividing the 

number of total affected people by five. 

Only events featuring non-zero values and a 

reported displaced population lower than their 

average plus two times the standard deviation 

were used here (i.e. to exclude outliers). The 

vulnerability function with α and β equal to 4 was 

the one that produced the best agreement with 

respect to EM-DAT. 

3. RESULTS AND DISCUSSION 

3.1. PDI computation 

Flood impact estimation was performed using the 

described approach and considering OHUs from 

the 2015 census exclusively. In this way, the 

impact of historical events was estimated by 

assuming the current exposure (“as if” analysis). 

The comparison between modelled and historical 

affected OHUs, shows that, in general - more 

specifically up to the 90th percentile of the two 

distributions - the proposed model tends to 

overestimate the number of affected housing units 

with respect to the same data derived from EM-

DAT affected population. This is probably due to 

the higher number of exposed assets of the 2015 

census with a registered increase above 50% with 

respect to the 2000 census, for example. On the 

other hand, the underestimated results for 

catastrophic events (above the 90th percentile) 

indicate that the proposed model is not able to 

capture some factors that exacerbate the physical 

impact of hydro-meteorological events, such as 

wind-induced damage, for instance, in the case of 

storms. The relative error between the two 

distributions of modelled and historical OHUs 

values was equal to 13.7%. 

3.2. Parametric coverage 

As model presented above is designed to be linked 

to a parametric insurance policy. In the present 

study, the payout is directly associated to a PDI 

estimate, which is intended to better reproduce the 
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physical damage (i.e., direct economic losses). 

Typically, in parametric insurance, the 

relationship between the payout and the observed 

environmental variable is named payout curve. 

This function, which, in this case, relates the 

number of affected OHUs (i.e. the PDI) with the 

insurance payout, is linear: the so-called 

attachment (i.e. PDI value after which a payout is 

issued, 35,000) and exhaustion (PDI value 

corresponding to the coverage limit, that is 

maximum amount that can be paid out under a 

policy, 14 M) points and the coverage limit ($ 

20M) define the proposed parametric contract. 

Attachment and exhaustion points were 

determined according to financial criteria (i.e. 

level of damage that can be retained by the insured 

party and an acceptable ratio between premium 

and coverage limit, as discussed below) and to 

optimize the number of detected events with an 

associated non-zero payout. The coverage limit 

was arbitrarily set to $20,000,000 per year, a level 

comparable to the one used to for similar policies 

(ASEAN, GFDRR, & UNISDR, 2012; CCRIF 

SPC, 2016). In this case, the mean annual payout 

was approximately $1,950,000 corresponding to 

less than 10% of the coverage limit (Figure 5).  

 
Figure 5: Yearly payout and mean annual payout. 

 

Premiums are typically computed as the 

average annual payout plus the insurer profit and 

their ratio with respect to the bond principal (i.e. 

bond financial capital), which can be greater than 

or equal to the yearly coverage limit, typically 

ranges between 3% and 10% (Cummins, 2008). 

Such relationship between the average payout 

(premium) and coverage limit is justified by the 

cost efficiency of the proposed cat bond for both 

the reinsurance party, which is generally 

interested in offering a profitable and financially 

sustainable product, and the insured country, 

which looks for an advantageous coverage at a 

reasonable price. 

4. CONCLUSIONS 

This paper presents a PDI providing a near 

real-time estimate of the OHUs affected by hydro-

meteorological events in the Philippines. The 

model makes use of CMORPH SPEs, a product 

freely available with a global coverage. An ad hoc 

developed methodology to capture hydro-

meteorological events in the Philippines based on 

CMORPH daily precipitation estimates was used 

as input hazard. Occupied housing data from the 

country’s national censuses was employed to 

model the exposure. A generalized beta 

distribution with α and β coefficients calibrated 

with respect to EM-DAT affected population data 

(conveniently translated as affected OHUs) was 

developed and adopted as vulnerability function 

to compute the PDI here proposed. Future 

developments of the work could envisage the use 

of detailed building information (e.g., presence of 

basement, number of floors, etc.) or even the 

inclusion of a secondary trigger, such as wind 

speed, which is another cause of direct damages 

in the case of storms. Even if the proposed impact 

index seemed to overestimate the historical event 

impacts, as consequence of the larger exposure 

resulting from the 2015 census, (and to 

underestimate the catastrophic ones) the 

suggested PDI proved to be a promising index for 

the development of a cost-effective parametric 

coverage for hydro-meteorological events in the 

Philippines for both parties involved in an 

insurance contract. This is illustrated in terms of 

reported average annual payout and its ratio with 

respect to the policy coverage limit (below 10%). 
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