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Abstract

The structural control of concrete gravity dams is of primary importance. In this

context, numerical models play a fundamental role both to assess the vulnera-

bility of gravity dams and to control their behaviour during normal operativity

and after extreme events. In this regard, data monitoring represents an impor-

tant source of information for numerical model calibrations.

This study proposes a novel probabilistic procedure, defined in the Bayesian

framework, to calibrate the parameters of finite elements models of dams. To

this aim, monitoring data and the results of material tests are used as reference

information. The computational burden is reduced by using a new hybrid-

predictive model of the dam displacements. An application on an Italian dam

shows the feasibility of the proposed procedure.
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1. Introduction

Most of the concrete gravity dams in the world were built before the intro-

duction of seismic regulations or were designed by means of out-of-date analysis

methods which often underestimated seismic actions. In addition, the deterio-

ration levels of these dams may have reached a critical value.5

Due to economic and environmental reasons [1], only a few new dams are now

being built, though dams represent an important resource in energy produc-

tion. Therefore, the evaluation of the seismic vulnerability of the existing dams

is needed, to extend their life expectancy. Those concerns have spurred the

scientific community to pursue a better understanding of the seismic risk of ex-10

isting dams. Furthermore, since no concrete gravity dam failures have occurred

after an earthquake [2, 3], numerical modelling is the only means of predicting

the seismic performance of this type of dams [4]. In this regard, several studies

have addressed the problem in recent years by the methods used in performance-

based earthquake engineering [5, 6, 7].15

Uncertainties in the dam modelling process [8, 9, 10, 11] are a consequence of

the lack of knowledge on the physical data such as material properties, dam

geometry, rock mass profile, and failure modes. In order to achieve model reli-

ability, all available information must be used to reduce the uncertainty of the

analysis results [12].20

Dams are usually monitored during normal operations in order to timely high-

light any undesired structural behaviour. Displacements at different levels due

to both water level variation and thermal variations are monitored in conjunc-

tion with the water level and the water and air temperature values [13], al-

though dynamic measurements are very rare. Monitoring data also offers the25

opportunity to calibrate numerical models. Nevertheless, the common method-

ologies which employ quasi-static displacements under environmental actions

are strongly affected by the subjectivity of the analyst and do not evaluate the

model error [13] as further explained.

In this study, an original probabilistic procedure to build hybrid predictive mod-30
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els of concrete gravity dam displacements is proposed. Indeed, the displacements

due to seasonal storage level are simulated by FE models while those due to

thermal variations are simulated through Fourier series [14]. The proposed pro-

cedure involves a set of explanatory functions that allow further correction of

the model bias, taking into account phenomena that cannot directly enter into35

the model [15]. The FE model unknown parameters, as well as the coefficients

of the Fourier series, are treated as random variables. A Bayesian approach is

adopted for the updating of the unknown parameters and for the model calibra-

tion based on pendulum observations. The computational burden for the model

calibration is reduced using the spectral approach of the general Polynomial40

Chaos Expansion (gPCE) [16].

The adopted Bayesian approach [17] can cope with “ill-conditioning” or no-

uniqueness problems, even assuring model flexibility with inference and confi-

dence intervals not depending on sample estimations.

Therefore, the updated model parameters can be used either as starting point of45

a seismic vulnerability analysis or to control in real time the structural behaviour

after seismic events. This latter is performed by comparing the recorded dis-

placements with the ones calculated through the proposed probabilistic model.

This research work aims to solve two practical open issues in dam engineering

field: a) the calibration of mechanical parameters of static FE dam models, by50

using observations recorded by the monitoring system, and b) the definition

of reliable dam predictive models, which are characterised by high computa-

tional speed, for control purposes. Both of them require FE analyses, thermal

and static ones, which are computationally and time intensive. The common

methodologies used in dam engineering field tackle these issues by splitting the55

components of the observations, and by elaborating each one separately, as ex-

plained below. The novelty of this research work lies in the definition of a

probabilistic procedure, based on the common statistical tools, which allows

updating the parameters of dam displacement predictive models through the

Bayesian inference. The use of meta models allows strongly reducing the com-60

putational burden, so speeding up the procedure and making possible its use
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in an on-line control system. The proposed procedure does not require the pre-

process step of the observations, thus reducing the influence of the analyst and

performing an automatic scheme. Thanks to the meta models and the Bayesian

approach, the final computational speed allows solving the previous open issues65

in dam engineering field.

This paper firstly presents a brief review of the most common methods to in-

terpret the structural behaviour and to calibrate FE and analytical models of

dams by means of displacement monitoring date. The proposed probabilistic

model is then described and the calibration of the unknown parameters is finally70

presented for an about 35-m-high concrete gravity dam built in the ‘50 in Italy.

2. Interpretation of the dam structural behaviour from monitoring

data

The surveillance of a large concrete gravity dam during normal operations

is usually based on the monitoring of displacements caused by the storage level75

and seasonal thermal variations [18]. Upstream-downstream crest movements of

the dam are generally measured by a pendulum system, whether it is direct or

inverted. The opening - closing of the joints is mainly measured by removable

mechanical strain gauges. At the same time, boundary conditions, such as rain-

fall, water and air temperatures and storage level are recored daily, while uplift80

pressures and water losses through seepages are generally recorded weekly.

Safety monitoring of a dam has the dual purpose of highlighting anomalous

operations and understanding structural behaviour. In this context the main

assumption is the linearity of the model and the materials. It allows us to apply

the principle of superposition, so that the upstream-downstream displacement85

δ of a point on a dam can be considered additively composed by the hydrostatic

contribution δH , the thermal contribution δT and a third term δK which takes

into account unexpected behaviors, creep and other phenomena. δH , which

mainly depends on the mechanical characteristics of the materials, both concrete

and foundation rock, is usually represented in the literature by a polynomial se-90
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ries of material parameters [13]. Displacements δT , which mainly depends on

the thermal characteristics of the materials, are simulated by a periodic function

in time, similar to that of the average water and air temperatures. Generally,

they cannot be neglected because they constitute the greatest part of δ.

On the one hand, the observational approach assumes that the system response95

is stationary. It makes use of statistical procedures which correlate input vari-

ables such as temperature and water level values, with output ones, such as

crest displacement during normal operations. It aims to find the contribution

of external loads to structure deformation and to identify irreversible compo-

nents in the structural response as well. An analytical formulation provides100

the upstream-downstream crest displacement as the sum of the three different

terms defined above regarding temperature change, hydrostatic pressure and

any term which takes into account unexpected behaviour. The model’s param-

eters in this case are the coefficients of the three analytical functions. They can

be determined through regression procedures based on the least square method,105

to obtain a good fit between the recorded measurements and their functional

representation.

On the other hand, understanding the structural functioning requires a model

based on a a-priori scheme which relates input variables and structural re-

sponse. Upstream-downstream displacements reconstruction through FE mod-110

els requires identification procedures in order to provide information on the me-

chanical characteristics of materials. The variables are physical and mechanical

parameters such as density and elastic moduli of the materials. In addition, by

correlating crest displacements with the opening-closing movements of vertical

contraction joints, the actual relationship between adjacent monoliths can be115

deduced and the reliability of the selected geometrical model can be evaluated.

However, displacements reconstruction is a particularly difficult task because

of the large number of unknown parameters and because of the complexity of

thermal analyses whose results depend on the thermal response of dam concrete.

Furthermore, the effects of temperature variations, unlike those of water level120

variations, do not occur simultaneously with the cause. They occur in time
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intervals which depend on the thermal characteristics of concrete, its porosity

and saturation level.

To identify the model’s parameters while avoiding burdensome thermal analy-

ses, it is therefore necessary to separately analyse δH by subtracting δT from δ,125

through appropriate regression procedures. For this purpose, it is necessary to

set the functions that represent the different displacement quotas.

The advantages of this methodology are implementation easiness and the small

number of analyses needed. On the other hand, the result is affected by a high

degree of uncertainty and subjectivity mainly due to the selection of the ana-130

lytical functions describing the output variables.

In the context of SHM and model parameters updating of concrete gravity

dams, the definition of predictive models is needed. In order to correctly simu-

late the structural behaviour, these predictive models must be characterised by

high computational speed and relatively small error as well. For these reasons135

functional approaches are broadly used to define the predictive models of dam

displacements as indicated in the following literature review. Moreover, despite

more complex models which account for the interaction between mechanical and

thermal phenomena could lead to a better approximation, they are not com-

monly used, since local phenomena are of little importance. It is finally worth140

noting that, with regard to the accuracy level required for the structural control

of concrete gravity dams, predictive models based on the functional approxima-

tion are successfully applied.

As reported by Bukenya et al. [19], several different research works available in

the literature have proposed predictive models of dam displacements for struc-145

tural control purposes. The largest part of them was based on the previously

discussed functional approach whose coefficients were calibrated by regression

onto the observations acquired by the monitoring system.

Kao and Loh [20] used Artificial Neural Networks (ANN) to build a predic-

tive model of the dam displacements, whose coefficients were trained with the150

recorded measurements. The authors studied the Fei-Tsui dam by comparing

the use of three different kinds of ANN with an increasing level of non-linearity.
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The authors found that the three versions of ANN were able to accurately ap-

proximate the observed behaviour.

Mata et al. [21] proposed multiple linear regression models to approximate the155

displacements of the Alto Lindoso dam, whose coefficients were calibrated by

regression on the recorded observations. The authors also used different ap-

proaches to approximate the thermal part of the displacement. In particular, a

first approach based on sinusoidal functions and a second approach based on the

real recorded temperatures were used. In the end, the comparison highlighted160

that the latter strategy allowed one to slightly improve the estimation of the

dam behaviour but with a higher computational cost than the former one.

Kang et al. [22] proposed an Extreme Learning Machine-based predictive model

for the displacements of the Fengman dam for structural health monitoring pur-

poses. The authors compared the results of the proposed model with the clas-165

sical ones, as those described at the beginning of this Section, showing that all

of them led to a good agreement between predictions and observations.

Prakash et al. [23] used the idea of principal component analysis to build predic-

tive models of the dam static behaviour, e.g. displacements and strains, whose

coefficients were calibrated by using the least squares method. The study of170

a concrete dam located in Bulgaria showed the applicability of the proposed

procedure to real cases.

Dai et al. [24] studied a RCC gravity dam by applying the statistical model of

the dam displacement and Random Forest Regression (RFR) to determine its

combination coefficients, thus reducing the bias of the prediction.175

Lin et al. [25] proposed a method to split dam displacements into two parts:

the one related to the dam behaviour and the second one related to the founda-

tion. The idea of partitioned FEM was used to define hybrid equations which

allowed one to separate these two contributions. The observations recorded by

the monitoring system were used to obtain the mechanical parameters of the180

materials. The study of a concrete dam was used to assess the validity of the

separation method.

From the literature review two basic concepts can be found in each application:
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the predictive models of the dam displacements are defined through functional

approximations and they are calibrated in a deterministic setting. These two185

widespread assumptions are mainly related to computational aspects. Indeed,

the final aim of a calibrated dam predictive model is to be used within a real-

time SHM, so it must be characterised by a high computational speed. This

important feature is also needed in the calibration process, which requires a

large number of solutions in order to achieve a good quality of the prediction.190

In this context, FE models become prohibitive, as well as probabilistic proce-

dures. One of the biggest drawbacks in the use of functional approximations is

the impossibility to directly link the prediction with the mechanical parameters

of the materials.

Thanks to the gPCE based meta model to reproduce the outputs of the FEA, the195

predictive model proposed in this work allows one to calibrate the FE model

parameters, thus determining the properties of the materials. Moreover, the

high computational speed of the gPCE allows the use of the proposed predic-

tive model both in real-time SHM and within probabilistic procedure for model

updating.200

The use of Bayesian inference in SHM [26] and, from a broader point of view, in

civil engineering fields has recently gained interest as shown by the high number

of papers [27, 28, 29, 30].

Focusing the attention in dam engineering field, the most interesting examples

aim to determine the model parameters for the risk assessment of earth fill dams205

[31, 32, 33, 34].

3. Development of the proposed probabilistic model

In this section, the general formulation for the probabilistic model adopted

in the following for concrete gravity dam displacements is presented. The model

takes into account both the epistemic and aleatory uncertainties. Moreover, the210

correction of the model bias is performed by including a set of explanatory

functions, providing insight on the underlying behavioural phenomena. The
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Bayesian updating technique used to perform the calibration of the unknown pa-

rameters, e.g. the discussed material parameter identification, and the Markov

Chain Monte Carlo (MCMC) adopted for the inverse problem resolution are215

finally described.

3.1. General formulation of the probabilistic model

Referring to [15, 35], an additive corrected form is adopted for the probabilis-

tic model, which is characterised by the presence of a correction term, described

below, to further reduce the model bias. In this section the general formulation

of the probabilistic model is introduced in its univariate version. By defining:

x as the vector of measurable model variables, θθθm as the vector of the unknown

model parameters and θθθγ = (θ0, ...,θj , ...,θp)
T

as the vector of combination

coefficients of the explanatory functions which constitute the correction term,

the probabilistic model can be written as:

C (x,θθθm,θθθγ , σ) = ĉ (x,θθθm) + γ (x,θθθγ) + σε, (1)

where

γ (x,θθθγ) = θ0 +

p∑
j=1

θjhj (x) . (2)

In this context C (x,θθθm,θθθγ , σ) is the quantity of interest or a transformation

of that, ĉ (x,θθθm) is the deterministic model output or a transformation of that

and γ (x,θθθγ) is the correction term reducing the bias through the combination220

of the p explanatory functions hj . Finally, ε is a normal random variable with

zero mean and unit variance, while σ represents the standard deviation of the

model error.

It is well known that the additive model is based on three assumptions:

• Normality: the global error ε is normally distributed.225

• Homoscedasticity: the model error standard deviation σ is independent

from x.

• Additivity: the model error can be added to the probabilistic model.
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Since these three assumptions are generally not satisfied in real problems, a

variance stabilizing transformation is used to approximately satisfy these as-

sumptions within the selected range of data [36].

In the context of the present work, the reference measurement is a displacement,

which could be positive or negative. In order to use a natural logarithm form,

a translation of the reference system which makes it possible to obtain only

positive values is needed:

Ci = ln (yi + l) (3)

where Ci is the transformation of the i-th measurement, yi is the i-th measure-

ment and l is the translation.230

3.2. Bayesian Updating via Markov Chain Monte Carlo

The unknown model parameters are estimated through a Bayesian approach

following the updating rule [37]. By defining the vector of the parameters which

will be updated, ΘΘΘ = [θθθm,θθθγ , σ]
T

, the updating rule becomes:

p (ΘΘΘ|y) = κL (ΘΘΘ|y) p (ΘΘΘ) . (4)

Where p (ΘΘΘ|y) is the posterior distribution which represents the updated state of

knowledge on the random variables ΘΘΘ, L (ΘΘΘ|y) is the likelihood function which

transforms the prior distribution to a posterior distribution by updating the

model parameters once the new n data, collected in y, are gathered. Finally,

p (ΘΘΘ) is the prior distribution which represents the state of the knowledge before

the introduction of new data y, and κ =
[∫
L (ΘΘΘ|y) p (ΘΘΘ) dΘΘΘ

]−1
is the normalis-

ing factor. Since the model error is normally distributed, the likelihood function

can be written as [37, 15]:

L (x,ΘΘΘ) ∝
n∏
i=1

{
1

σ
ϕ

[
ri (x,θθθm,θθθγ)

σ

]}
. (5)

Where ri (x,θθθm,θθθγ), is the i-th residual which represents the discrepancy be-

tween the measurement and its prediction

ri (x,θθθm,θθθγ) = Ci − ĉi (x,θθθm)− γ (x,θθθγ) (6)
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and ϕ (·) is the probability density function of a standard normal distribution.

The determination of the likelihood and the posterior distribution of random

variables is a challenging task in real cases. Generally, this problem can not be

solved in a closed form, so numerical techniques are needed. The Markov Chain

Monte Carlo (MCMC) method [38] is one of the most common techniques when

stochastic FE are involved. In this paper, the Metropolis-Hastings algorithm

is used. In the Metropolis-Hastings algorithm, a sequence of samples ΘΘΘs is

generated for each step s. The value of ΘΘΘs depends only on the previous sample

in the chain, while the value of the new state ΘΘΘs+1 is generated according to the

proposal distribution gk
(
ΘΘΘs+1|ΘΘΘs

)
. For several practical reasons, a symmetric

distribution is often chosen as proposal [39]

q
(
ΘΘΘs+1|ΘΘΘs

)
= q

(
ΘΘΘs|ΘΘΘs+1

)
. (7)

Once the new sample is generated, it can be accepted with probability r or re-

jected with probability 1−r. As explained in [40], when the regularity conditions

of aperiodicity, irreducibility, and positive recurrence of the Markov Chain [41]

are satisfied, the distribution of sampling sequence ΘΘΘs converges to the target235

posterior distribution, regardless of the starting point. Nevertheless, checking

the compliance with the previous conditions can be very difficult in real prob-

lems, so convergence diagnostics are applied.

To speed up the procedure, the FEM response can be simulated by a proxy

model. So, the error term of Equation 1 accounts also for the difference be-240

tween the FEM response and the proxy model [42].

3.3. Convergence Diagnostics

Convergence diagnostics allow us to check whether the samples generated

by MCMC are representative of the underlying equilibrium distribution. In this

paper, the widely used diagnostics metric proposed by Brooks and Gelman [43]

is employed. The convergence of the Markov Chain simulation has been reached

when inferences for quantities of interest do not depend on the starting point.

Therefore, monitoring convergence is performed by comparing several inferences
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performed with different starting points. The diagnostics metric is based on the

calculation of the Multivariate Potential Scale Reduction Factor (MPSRF) R̂p

in the multivariate case. In general, MPSRF is defined as the ratio between

total variance and within-sequence variance and it represents the upper bound

of the maximum of the univariate Potential Scale Reduction Factor (PSRF)

statistics R̂ among ΘΘΘ variables. When the convergence is reached, the between-

sequence variance should be negligible obtaining R̂p = 1. Usually, R̂p = 1.1 is

considered as acceptable [44], but when the dimension of the problem increases,

a convergence criterion R̂p = 1.5 is allowed.

R̂p = max
a

aT V̂a

aTWa
, (8)

where V̂ is the total variance extended to the multivariate case, W is the within-

sequence variance extended to the multivariate case and a is the vector used to

achieve the maximum value of the ratio in equation 8.245

4. Formulation of probabilistic model for existing concrete gravity

dams

In this section, a probabilistic model for mechanical parameters identification

in concrete gravity dam analysis is described. Due to the large amount of mon-

itoring data available, model identification procedures based on the Bayesian250

statistic are successfully applied. Generally, environmental data are recorded

together with the displacements of the structure due to seasonal temperature

variations and changes in the level of the reservoir. Since displacements vary

slowly, the problem can be approached as static. The presence of both thermal

and mechanical actions requires performing coupled analyses, which are compu-255

tationally demanding, in particular when complex FE models are involved. For

this reason, a spectral approach based on gPCE is used to approximate the FE

model response for the water level variation δHi . Following the same idea, ther-

mal displacements are approximated through a Fourier series, in order to avoid

expensive thermal analyses [45]. In the next sections, the proposed procedure is260
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described. This way, the set of unknown parameters θθθm can be thought as com-

posed by the gPCE random variables, collected in θθθgPCE, and the combination

coefficients of the Fourier analysis θθθFA, that is θθθm = [θθθgPCE,θθθFA]
T

.

4.1. Definition of the proxy model for hydrostatic displacements through general

Polynomial Chaos Expansion (gPCE)265

Orthogonal polynomials are often used to approximate a continuous function

[46]. The general Polynomial Chaos Expansion (gPCE) is a spectral method

based on the representation of the random variable θθθgPCE through a series of

orthogonal polynomials. It allows us to define the response surface fK (θθθgPCE)

of the model output f (θθθgPCE). This way, statistics can be calculated from

integrals over the probability space which is defined by the distributions of the

variables collected in θθθgPCE.

In the D-variate case, θθθgPCE = (θgPCE,1, ...,θgPCE,d, ...,θgPCE,D)
T

is composed

of mutual independent components. Moreover, by defining {φk (θgPCE,d)}Kk=0 ∈

PK (θgPCE,d) as the univariate gPC basis functions of θgPCE,d, in the space of

polynomials whose degree is up to K, with 1 < d < D, and ααα = (α1, ..., αD) ∈

ND0 as multi-index, with |ααα| = α1 + ... + αD, the D-variate Kth degree gPC

basis functions Φααα (θθθgPCE) are obtained as a product among the univariate

gPC polynomials Φαd
(θθθgPCE). Therefore, the orthogonality condition can be

written as:

E [Φααα (θθθgPCE) Φβββ (θθθgPCE)] =

∫
Φααα (θθθgPCE) Φβββ (θθθgPCE) dFθgPCE

= ηαααδαααβββ , (9)

where ηααα = E
[
Φ2
ααα

]
are the normalization factors and δαααβββ is the d-variate Kro-

necker delta function.

Once the proxy model is defined, all the statistics can be retrieved from gPCE

in a straightforward manner. In the general case of Kth degree gPC approxi-

mation, f (θθθgPCE) can be written as:

fK (θθθgPCE) =
∑
|ααα|≤K

aαααΦααα (θθθgPCE) ∈ PDK (10)
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where aααα is the matrix of the combination coefficients of the basis of functions

and may be calculated using different techniques, e.g. the colocation method,

regression, the orthogonal projection and the Galerkin projection [16]. In this

paper, a regression method is used, then the response of the model is calculated

in more points, of the random variables space, than the number of the basis

functions.

The mean value of f can be approximated as:

µf
∆
= E [f (θθθgPCE)] ≈ E [fK (θθθgPCE)] =

∫  ∑
|ααα|≤K

aαααΦααα (θθθgPCE)

 dFθθθgPCE
= a0

(11)

Other statistics can also be readily approximated by applying their definitions

directly to the gPC approximation fK . The family of polynomials may be

selected on the basis of the probability distribution functions of the random

variables [16], while the maximum degree of polynomials must be chosen in

such a way as to reduce the approximation of the gPCE.

In this work the gPCE has been used to approximate the displacements of the

dam due to the reservoir level variation, calculated through a FE model of the

structure. Materials during the normal operation of a dam may be considered

linear elastic. The mechanical behaviour of elastic material is described by

the elastic constitutive matrix C [47], whose components, in the most general

cases of anisotropic material, may be treated as random variables in a Bayesian

updating procedure. Modelling materials as anisotropic is convenient only when

it is strictly necessary and there are measurements which are able to infer all

the components of the constitutive matrix C. In the case of dams, it would

be worthwhile to update the parameters of an orthotropic material by using

a multivariate probabilistic model only if the measurements in the upstream-

downstream direction and in the cross-valley direction were available.

Conversely, when only upstream-downstream measurements are available, an

isotropic material is the best choice. For an elastic isotropic material, matrix C
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is as follows

C =



K + 4G/3 K − 2G/3 K − 2G/3 0 0 0

K − 2G/3 K + 4G/3 K − 2G/3 0 0 0

K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


. (12)

Uncertainties parametrization for elastic materials done by selecting the bulk

modulus K and the shear modulus G as random variables is a particularly conve-

nient choice, since they are physically and statistically independent. Therefore,

in this context the bulk and the shear modulus of the materials are respectively

collected in θθθgPCE,K and θθθgPCE,G, then θθθgPCE = [θθθgPCE,K ,θθθgPCE,G]
T

.270

4.2. Definition of the proxy model for thermal displacements through Fourier

analysis (FA)

The aim of this work is to identify the model mechanical parameters in or-

der to perform a static twin model of the structure for control purpose. The

response of the structure due to the reservoir level variation is related to the

values of materials mechanical parameters, while the response of the structure

due to thermal effects is related to thermal materials parameters and it is rel-

atively unaffected by mechanical parameters variation. Thermal displacement

is the largest part of the total displacement, so it cannot be neglected. Ther-

mal displacements are approximated through a Fourier analysis (FA) because

their variation is similar to that of measured temperatures having a periodic

behaviour over one year [48]. Using the Fourier series, and by defining the vec-

tor of the combination coefficients θθθFA = [θθθFA,a,θθθFA,b]
T

, the target function

s (t,θθθFA) is approximated by sM (t,θθθFA), which is the sum of simple waves [14].

Usually, it is expressed as

sM (t,θθθFA) =

M∑
m=1

[θFA,am cos (2πmtω) + θFA,bm sin (2πmtω)] , (13)
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where the combination coefficients θFA,am and θFA,bm are respectively collected

in the vectors θθθFA,a and θθθFA,b. Moreover, t is the time and ω is the frequency

of the wave. In this paper, all combination coefficients are treated as random275

variables in the same way as the mechanical parameters, while the number of

harmonics is chosen in order to reach the best fitting between recorded and

simulated behaviour.

4.3. Definition of the probabilistic model for total displacements

The way to handle the various components of the displacement is described

in the previous paragraphs. In this section, the probabilistic model response

ĉ (x,θθθm) (equation 1), written in the case of concrete gravity dams, is defined.

In this context, the i-th simulated displacement of a point on the dam can be

written as

δ̂i (x,θθθm) = δ̂gPCEi (x,θθθgPCE) + δ̂FAi (θθθFA) , (14)

where δ̂i (x,θθθm) is the i-th simulated total displacement, δ̂gPCEi (x,θθθgPCE) is

the part related to the basin level variation approximated through the gPCE,

and δ̂FAi (θθθFA) is the thermal term approximated by the Fourier analysis. As re-

ported in paragraph 3.1, a transformation of the reference quantity is needed to

satisfy the assumption at the base of the additive model. Specifically, the normal

logarithmic function is used to define C (x,ΘΘΘ) and ĉ (x,θθθm), and a translation

of the reference system is needed to obtain positive values of displacements,

ĉ (x,θθθm) = ln
(
δ̂i (x,θθθm) + l

)
. (15)

Finally, the proposed probabilistic model for the static displacements of a con-

crete gravity dams can be determined by combining equations 1, 14 and 15,

obtaining:

ln (δi (x,ΘΘΘ) + l) = ln
(
δ̂i (x,θθθm) + l

)
+ γ (x,θθθγ) + σε =

= ln
(
δ̂gPCEi (x,θθθgPCE) + δ̂FAi (θθθFA) + l

)
+ γ (x,θθθγ) + σε.

(16)

The predictive model presented in this section reproduces the displacements280

of a single point in only one direction. As mentioned before, more than one
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point or one direction can be considered by extending the proposed predictive

model to the multi-variate case. In particular, every direction of every point

would be a component of the multi-variate model, which would be a function

of the position of the point itself. oreover, the error terms would be correlated285

through a covariance matrix, thus defining a random field. With regard to the

model proposed in this section, from the practical view point, the coefficient

of the polynomial expansion aααα, the combination coefficients of the Fourier

series θθθFA,a and θθθFA,b, and the error term σε would be functions of the point

coordinates.290

Another important assumption of the predictive model defined in this section

is that there is no statistical correlation in time among displacements. This

assumption is based on the quasi-static nature of the dam displacements during

normal operations. Therefore, the distribution of the error term does not vary

during time and thus it is possible to sample from the same error distribution.295

From the physical point of view, the thermal component is the only one which

varies during time (section 4.2).

4.4. Model correction

Other kinds of uncertainties are involved in the static analysis of concrete

gravity dams. The greatest uncertainty source is the time interval between cause300

and effect for the different measured quantities, i.e. temperature variation and

thermal displacement. Other phenomena can be considered, such as the un-

known behaviour of vertical joints whose opening-closing is related to thermal

variations, time-dependent phenomena of mechanical parameters and the accu-

racy of measuring instruments.305

Explanatory functions γ (x,θθθγ) (equation 1) are introduced to reduce the bias,

by taking into account phenomena which cannot be directly accounted for in

the model.

To capture the potential bias which is independent of the parameters x and θθθm,

the function h1 = 1 is considered. In this case, θ1 represents the previously310

discussed shift between the reference systems. When using more than one ex-
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planatory functions [35, 31], a stepwise deletion process can be performed in

order to identify those functions which really contribute reducing the bias.

4.5. Prior distribution definition

Prior distributions represent the state of knowledge before the acquisition

of new information. When using a probabilistic model based on a Bayesian

framework, the choice of the prior distributions is a fundamental step because

it influences the rate of convergence and the accuracy of the results. This

fact is particularly evident when the amount of new information y is small

compared to the state of prior knowledge [37]. Usually, the results of in-situ and

laboratory tests on the dam’s concrete and on the ground rock are available. The

prior distributions of the model parameters θθθgPCE, θθθgPCE,K and θθθgPCE,G can

be therefore deduced from these data. The other random variables, collected in

the vector θθθFA and θθθγ , have no physical meaning in this case, except for θ1, and

there is no prior information about them. The same consideration is valid for

the global error standard deviation σ. For this reason, a set of non-informative

prior distributions are selected. Referring to Box 1992 [37], it is possible to prove

that a non-informative prior distribution is locally uniform near the likelihood

function. In this way, the inference is not affected by information external to

the observations. In the univariate case, the parameters collected in θθθFA, θθθγ

and σ are considered approximately independent [44], then:

p (θθθFA,θθθγ , σ) ∼= p (θθθFA) p (θθθγ) p (σ) . (17)

Moreover, by assuming a parametrization of θθθFA and θθθγ such that is appropriate

to take θθθFA and θθθγ locally uniform, the non informative prior distribution of

the global error standard deviation becomes:

p (σ) ∝ σ−1. (18)

Therefore, the other prior distributions become:

p (θθθFA,θθθγ) ∝ p (θθθFA) p (θθθγ)

σ
. (19)
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Thus, given the large amount of data observed in this case, any reasonable315

choice of prior estimate has little influence on the posterior estimates of the

parameters.

4.6. Calibration Procedure

The presented procedure uses the Metropolis-Hastings algorithm which re-

quires, as previously described, the definition of the proposal distributions and320

the starting point. In this paper, normal distributions with zero mean have

been used as proposals. Their variances have been empirically defined in order

to find a good agreement between calculation time and solution accuracy. The

initial values of the random variables have been selected in order to maximize

the likelihood function [49].325

The convergence of the probabilistic analysis has been checked as explained in

section 3.3, by performing two chains for each problem starting from different

initial values. Every chain was stopped when the acceptance ratio reached an

appropriate value, as indicated in literature [44]. The flow chart of the procedure

is shown in figure 1.

Figure 1: Procedure flow chart.

330
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5. Case Study

5.1. Dam description and recorded measurements

In this paragraph, an application of the probabilistic model for a large dam in

north-centre Italy is presented. Daily environmental measurements such as tem-

peratures and reservoir levels are available as well as recorded displacements of335

the dam at different heights and the results of in-situ tests. With a crest length

of 96 m, the dam is made up of 11 monoliths with a maximum height of 37

m from the base and a downstream slope of 0.75. The structure, whose shape

in plan is perfectly straight, is inserted in a canyon with monoliths separated

by trapezoidal key joints. The shape of the vertical joints suggests a complete340

and monolithic 3D model. Finally, a sensitivity analysis on the influence of the

Fourier series degree on the results is performed.

The displacements are recorded by two inverted pendulums, one is installed

in the central spillway monolith and the other is installed on the non-overflow

monolith as shown in figure 2, in the period from 2004 to 2011. This latter345

pendulum is fixed at the rock foundation at 534 m a.s.l. and measures dis-

placements in both up-stream/down-stream and cross-valley direction at three

different heights: the dam crest at 604 m a.s.l. (P3), the upper tunnel at 593 m

a.s.l. (P4) and the lower tunnel at 574 m a.s.l. (P5). Only P4 displacements,

shown in figure 3, have been considered in the present work. Vertical joints350

opening-closing displacements are monitored by removable mechanical strain

gauges located inside the two horizontal tunnels and shown in figure 2.

The highest mean annual variations of the upstream-downstream displace-

ments hover around 3.5 mm at the dam crest, whereas the lowest mean annual

variations are of about 0.5 mm in the lower tunnel. The opening - closing dis-355

placements of contraction joints in both tunnels show average annual oscillations

that are well correlated and hence with water and air thermal variations.

Moreover, basin level, water and air temperatures are recorded in the same pe-

riod (figures 4 and 5). In this work the observations recorded from 2004 to 2008

are used to update the model parameters, while the records from 2008 to 2011360
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Figure 2: Static monitoring system layout.

Figure 3: Displacements of the point P04.

are used for validation purpose.
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Figure 4: Recorded reservoir levels.

Figure 5: Recorded temperatures.

5.2. Prior distributions of the mechanical parameters

The mechanical parameters to be identified are the bulk modulus θθθgPCE,K

and the shear modulus θθθgPCE,G of both the concrete and foundation rock. The

results of the in-situ and laboratory tests, reported in table 1, are given in terms

of Young modulus E and Poisson’s coefficient ν, where subscript C indicates

the concrete parameters and the subscript G indicates the ground parameters.

Therefore, the well known equations
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Table 1: Results of materials tests.

EC [Mpa] νC EG [Mpa] νG

Mean 17543 0.176 29653 0.313

s.d. 4870 0.072 18873 0.075

K =
E

3 (1− 2ν)

G =
E

2 (1 + ν)
,

(20)

are used to determine the prior distributions of the mechanical parameters of

both materials in terms of K and G. Log-normal distributions are used for K

and G and their parameters are shown in table 2 [50]. The prior distributions

Table 2: Prior distributions of the mechanical parameters.

KC [Mpa] GC [Mpa] KG [Mpa] GG [Mpa]

Distr. Log-Normal Log-Normal Log-Normal Log-Normal

Mean 9024 7458 26429 11292

s.d. 5028 2073 16352 7608

365

of the other parameters with no physical meaning, such as the combination

coefficients of the Fourier series and the error standard deviation, are defined as

non-informative (section 4.5).

5.3. Forward problem solution and response surfaces

In order to build the proxy model of the structure with the gPCE technique,370

four random variables, θgPCE,KC
= KC , θgPCE,KG

= KG, θgPCE,GC
= GC ,

θgPCE,GG
= GG, and the deterministic variable of the water level were selected.

Three trials are performed by changing the polynomial expansion degree in order

to check the error and to find the best compromise between solution accuracy

and computational burden.375

The FE model represents the whole structure and a sufficiently wide portion of

the ground around it, as indicated in the literature [51]. The geometry of the

structure and the shape of the ground are built in a CAD program, based on
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the original drawings of the dam and the orographic map of the region. The

geometry is imported in ANSYS r.17 [52]. The mesh is composed by 231254380

quadratic hexahedral elements, for a total of 870787 nodes, as shown in figure 6.

Hertzian bonded contacts are introduced between the monoliths and the con-

stitutive law of the materials concrete and rock are linear elastic.
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Figure 6: Finite elements model.

Figure 7 shows the maximum relative error in terms of different displace-385

ments between FEM and the proxy model, by varying the expansion degree. A

polynomial degree of three allows us to obtain the best agreement between the

number of analyses and the error value. The maximum error is less than 1%
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of the displacement which is considered acceptable. The number of analyses to

build the proxy model, depending on the selected random variables and on the390

degree of the polynomial expansion, is 1024 [16]. The tools for the probabilis-

tic analysis and Bayesian updating are developed in MATLAB R2017 [53]. The

gPCE technique provides the response surfaces. Figure 8(a) shows displacement

due to the hydrostatic load by varying the bulk moduli K of both materials. It

can be observed that the variation of the concrete elastic modulus provides a395

strong variation of the displacement, i.e. for a selected value of KG the result

ranges between 0.5 and 0.7 mm. Finally, the response surface involving KC and

GC is shown in figure 8(b).

Figure 7: gPCE error.
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(a) Model output response surface versus KC and KG for a reservoir level

equal to 30 m.

(b) Model output response surface versus KC and GC for a reservoir level

equal to 30 m.

Figure 8: Response surfaces.

5.4. The Fourier analysis

Three analyses are performed with different numbers of harmonics in order400

to evaluate the error related to the degree of expansion of the Fourier series.

The number of harmonics considered in the first analysis are two, three in the

second and four in the last analysis. The combination coefficients of the Fourier
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series are treated as random variables.

5.5. The Bayesian updating and the posterior statistics of the unknown param-405

eters

Bayesian updating of the probabilistic model is performed using the displace-

ment data of the point placed in the upper part of the central spillway monolith

(figure 3), together with the data of water and air temperatures and reservoir

levels (figures 4 and 5), recorded from 2004 to 2008. The results of the updating410

procedure for the three analyses are reported in tables 3, 4 and 5. The posterior

mean values of the bulk moduli of concrete and ground soil, KC and KG, have

a very small variance. The reason for this can be found in the response surface

in Figure 8, which shows the stronger influence of KC and KG on the dam’s

response in comparison to the shear modules of both materials. Moreover, the415

posterior mean values of θ1 have a small variation in every case, proving that

they are little influenced by the variation in the harmonics number.

Regarding the combination coefficients of the Fourier series, the mean values

of the first two coefficients of the first harmonic are higher with respect to the

others and a small variation is observed in the three cases. In Figure 9, prior420

and posterior distributions of the model parameters are represented in the case

of 2, 3 and 4 harmonics. One can observe that the mean values of the error

standard deviations σ are around 0.039 in all cases. The substantial invariance

of σ suggests that there are many possible solutions in terms of posterior distri-

butions for different choices related to the Fourier series order. The mean values425

of the output parameters are different for each case, but they nevertheless do

not exceed 10% of their average value. Since no further references are available

to calibrate the result, a second order Fourier series seems to be the best choice

to simulate the thermal displacements of the structure, while adding only two

random variables to the probabilistic problem. Moreover, for practical reasons,430

engineers usually work with E and ν, then the comparison between prior and

posterior distributions is reported also with regard to these parameters. Figure

10 shows the results in terms of E and ν, in accordance to the results indicated
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in figure 9 the mean values of the parameters do not show notable changes, while

the standard deviation values are strongly reduced. In this case of study only435

the mean values of the distributions are updated, thus in Figure 9 and Figure

10 the prior distributions are compared with the posterior distributions of the

mean values.

Figure 9: Comparison between prior and posterior distributions in terms of K and G.
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Figure 10: Comparison between prior and posterior distributions in terms of E and ν.

The numerical algorithm has been set up in order to interrupt the analysis

when R̂p attains a value within the range 1 - 1.4. According to section 3.3 this440

value endorses the convergence of the analyses. Figure 11 shows both recorded

and calculated displacements. One can note the agreement between them for

every value of the Fourier series order.

Figures 12 shows the relationship between recorded and calculated displace-

ments at every phase of the procedure for both two and four harmonics of the445

Fourier series. At the end of the procedure, the agreement between recorded
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and calculated displacements is notable in both cases.

Figure 11: Comparison between recorded and calculated displacements.

(a) Thermal displacements calculated with 2

harmonics.

(b) Thermal displacements calculated with 4

harmonics.

Figure 12: Effects of the updating procedure in terms of residual.

In order to assess the validity of the proposed procedure, the calibrated pro-

posed predictive model is compared to a regressive predictive model commonly

used in the literature [13, 18]. By following the indications of the literature, and
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Table 3: Posterior statistics 2 harmonics.

θgPCE,KC θgPCE,GC θgPCE,KG θgPCE,GG θ1

[MPa] [MPa] [MPa] [MPa]

Mean 7960 6788 17206 7987 -0.117

s.d. 20.14 469.23 33.89 5057 0.006

θFA,a1 θFA,b1 θFA,a2 θFA,b2 σ

Mean 0.837 0.417 -0.102 -0.117 0.039

s.d. 0.045 0.041 0.045 0.038 0.002

Table 4: Posterior statistics 3 harmonics.

θgPCE,KC θgPCE,GC θgPCE,KG θgPCE,GG θ1 θFA,a1

[MPa] [MPa] [MPa] [MPa]

Mean 8437 6275 15302 7722 -0.121 0.841

s.d. 17.28 629.13 61.64 10687 0.003 0.052

θFA,b1 θFA,a2 θFA,b2 θFA,a3 θFA,b3 σ

Mean 0.443 -0.112 -0.104 0.055 -0.037 0.039

s.d. 0.046 0.047 0.039 0.050 0.0391 0.002

Table 5: Posterior statistics 4 harmonics.

θgPCE,KC θgPCE,GC θgPCE,KG θgPCE,GG θ1 θFA,a1 θFA,b1

[MPa] [MPa] [MPa] [MPa]

Mean 10067 7425 21008 9808 -0.110 0.831 0.436

s.d. 30.44 1154 41.18 8247 0.004 0.038 0.045

θFA,a2 θFA,b2 θFA,a3 θFA,b3 θFA,a4 θFA,b4 σ

Mean -0.108 -0.104 0.054 -0.039 -0.018 0.017 0.040

s.d. 0.039 0.042 0.040 0.043 0.039 0.034 0.002

summarised in Section 2, the i-th value of the displacement obtained through

the regressive predictive model is,

δi = δHi + δTi + δKi =

= a+ bQi + cQ2
i + dQ3

i + e sin (ωti) + f cos (ωti) + gti.
(21)

Where, a, b, c, d, e, f, g are the combination coefficients of the regressive predic-
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tive model, Qi is the i-th value of the basin level, ti is the i-th time step and ω is

the value of the assumed period. The resulting combination coefficients and the450

coefficient of determination R2 are reported in Table 6, while Figure 13 shows

the comparison between the predictions obtained with the proposed model and

those obtained with the regressive one (indicated as REG). Figure 13 shows

Table 6: Combination coefficients and R2 of the regressive predictive model.

a b c d e f g R2

-85.4755 9.0582 -0.3244 0.0039 0.7416 0.3710 0.0001 0.8390

Figure 13: Comparison between the proposed predictive model and the regressive one.

that the displacements obtained through the two different predictive models in

the calibration period provide comparable results. Indeed, both of them allow455

one to obtain a good agreement between records and predictions.

5.6. Procedure validation

In this section, a possible use of the procedure for the displacement moni-

toring of the dam structure during its regular use is presented. The proposed

calibrated model with two harmonics is used to predict the crest displacement460

in the period within 2008 to 2011. Such predictions are then compared with
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the displacements recorded by the monitoring system. Results are illustrated in

figure 14, showing a good agreement between recorded and calculated displace-

ments. Recorded displacement curve almost totally falls in the interval between

the prediction plus and minus standard deviation of the probabilistic model.465

The calibrated probabilistic model for the dam displacement could be used for

a real time structural control, due to its calculation speed. The proposed model

allows evaluating the global error standard deviation, which can be used to de-

fine a threshold.

Figure 14: Comparison between recorded and calculated displacements of P04.

In Figure 14 also the prediction obtained with the regressive model is shown.470

By comparing the proposed predictive model with the regressive one it may be

observe that the two predictions provide comparable results. Nevertheless, the

proposed predictive model shows better performance since it is closer to the

recorded displacements than the regressive one.

It is worth noting that, unlike the common approaches, the proposed hybrid475

predictive model allows one to calibrate the mechanical parameters of the ma-

terials thanks to the gPCE based meta model. Moreover, the definition of the

procedure in the Bayesian setting allows estimating the error of the prediction

itself and improving the reliability of the structural control every time new

measurements are available.480
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6. Concluding remarks

The evaluation of the seismic safety of existing dams, and their control after

earthquakes, are important and challenging tasks for the scientific community.

The main issues are the uncertainties and the complexity of the system. In order

to obtain reliable models, all the information around the dam can be used to485

improve our knowledge. In this regard, monitoring data recorded during normal

operations offer the opportunity to calibrate the numerical model.

The present study has adequately employed advanced techniques based on

Bayesian updating to reduce model uncertainties related to material proper-

ties and the geometry of concrete gravity dams. The procedure proposed in this490

paper makes use of proxy models simulating the response of the dam in order to

significantly reduce the computational burden due to the large number of analy-

ses required by the MCMC technique. More specifically, the FE model response

related to water level variation is approximated through the general polynomial

chaos expansion technique which creates a response surface depending on the se-495

lected parameters, thus making the uncertainties propagation computationally

simple. The structural response to thermal variations is instead simulated by a

Fourier analysis. The application of the procedure to the case study of a large

Italian dam shows the advantages of the method. The procedure can be used

not only to update model parameters but also to identify the most significant500

ones and to select the best model, also evaluating the posterior error standard

deviation. Finally, the procedure validation proofs the possibility to directly use

the updated proposed probabilistic model to control the structural behaviour

after seismic events. In fact, by comparing the recorded displacements with

those predicted with the proposed model, in real time, abnormal behaviours505

can be detected.
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