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Abstract

Purpose

NODDI is widely used in parameterizing microstructural brain properties. The model

includes three signal compartments: intracellular, extracellular, and free water. The neurite

compartment intrinsic parallel diffusivity (dk) is set to 1.7 μm2�ms−1, though the effects of this

assumption have not been extensively explored. This work investigates the optimality of

dk = 1.7 μm2�ms−1 under varying imaging protocol, age groups, sex, and tissue type in com-

parison to other biologically plausible values of dk.

Methods

Model residuals were used as the optimality criterion. The model residuals were evaluated

in function of dk over the range from 0.5 to 3.0 μm2�ms−1. This was done with respect to tis-

sue type (i.e., white matter versus gray matter), sex, age (infancy to late adulthood), and dif-

fusion-weighting protocol (maximum b-value). Variation in the estimated parameters with

respect to dk was also explored.

Results

Results show dk = 1.7 μm2�ms−1 is appropriate for adult brain white matter but it is subopti-

mal for gray matter with optimal values being significantly lower. dk = 1.7 μm2�ms−1 was also

suboptimal in the infant brain for both white and gray matter with optimal values being signifi-

cantly lower. Minor optimum dk differences were observed versus diffusion protocol. No sig-

nificant sex effects were observed. Additionally, changes in dk resulted in significant

changes to the estimated NODDI parameters.

Conclusion

The default (dk) of 1.7 μm2�ms−1 is suboptimal in gray matter and infant brains.
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Introduction

In diffusion weighted magnetic resonance imaging (dMRI), biophysical models are used for

relating the dMRI signal to microstructural properties in white and gray matter [1–7]. Neurite

orientation dispersion and density imaging (NODDI) [7], separates the brain tissue micro-

structure landscape into three compartments: intracellular space or neurites (axons, den-

drites), extracellular tissue matrix, and a free water compartment. In spite of its shortcomings,

much like the case of other techniques such as diffusion tensor imaging (DTI), NODDI offers

useful information and has been widely used in the investigation of brain tissue microstructure

as a function of early development, cognitive function and aging as well as a number of neuro-

logical conditions [8–13].

Biophysical modeling relies on simplifying assumptions about the tissue properties.

Besides the separation of tissue into three compartments, the NODDI model is characterized

by the following features or assumptions. Each compartment is represented by its own nor-

malized signal and volume fraction. Water exchange between compartments is assumed

negligible. Neurites are modeled as sticks (cylinders of zero radius) for capturing highly

anisotropic architecture of neuronal tissue. Diffusion inside the neurites is described by a dif-

fusivity parallel to the sticks, which is referred to as the intrinsic diffusivity, dk, and zero diffu-

sivity perpendicular to them. The orientation distribution function (ODF) of the sticks at

each voxel is modeled by an axially symmetric Watson distribution, W [14], which itself is

characterized by a concentration parameter κ and mean orientation μ. Highly aligned sticks

like those seen in white matter bundles are reflected by high κ values, while highly dispersed

sticks like those seen in gray matter fibers are reflected by low κ. The extra-neurite compart-

ment is directionally correlated with the neurite ODF, and modeled as a Gaussian anisotropic

compartment.

The local parallel diffusivity of the extracellular space is set equal to the intra-neurite intrin-

sic diffusivity, dk, whereas the perpendicular diffusivity d? is related to the neurite water frac-

tion, fic, and dk by the mean-field tortuosity model [15] as d? = (1 − fic)dk. The free-water

compartment is modeled as having isotropic diffusion with free diffusivity diso = 3 μm2 �ms−1

and volume fraction fiso. The intrinsic diffusivity dk for NODDI is assumed to be 1.7

μm2�ms−1. This is selected to be a biologically reasonable value, which approximates the mean

parallel diffusivity from DTI in a healthy coherent white matter region [1]. The parameters

that are estimated from acquired data using non-linear gradient descent and heuristic initiali-

zations are the water fraction of the neurite compartment fic, the concentration (κ) and mean

orientation (μ) of the Watson distribution. The signal S(b, g) from the unit diffusion gradient

direction g for sticks oriented along unit vector n and b-matrix (bggt) is given by

Sðb; gÞ ¼ S0ðð1 � fisoÞðficAic þ ð1 � ficÞAecÞ þ fisoAisoÞ; ð1Þ

where

Aic ¼ E½e� bdkðgtnÞ
2

�;

Aec ¼ e� bE½gtDeðnÞg�;

Aiso ¼ e� bdiso ;

8
>>><

>>>:

E½x� ¼
I

S2

xWðn;μ; kÞdn; such that g;n;μ 2 S2
:
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Aic, Aec, and Aiso, are the intra-cellular, extra-cellular, and free-water isotropic compart-

ments signal contributions respectively. W(n, μ; κ) is the Watson distribution with κ concen-

tration and oriented along μ. S0 is the un-attenuated signal i.e. S(0, 1), and De(n) = ficdknnt +

(1 − fic) dkI3 is the axially symmetric extra-cellular apparent diffusion tensor.

Recently, the model assumptions have become a topic of discussion in the field. The more

relevant discussions have focused around the fixed parallel intrinsic diffusivity and equality

between parallel intrinsic diffusivity of the extra- and intra-cellular compartment [16]. Of the

two, the equality assumption is the more difficult to assess, but has been explored in several

reports. While no consensus has been reached, most reports suggest that the intra-cellular par-

allel intrinsic diffusivity is larger than the extra-cellular one [17–20]. Yet, this may depend on

tissue type [21] and most studies have focused on white matter. Also, some sustain that the dif-

ferences may not be substantial and independent validation experiments are needed [16].

With respect to the fixed diffusivity assumption, [22] proposed a framework for relaxing

the fixed constraints. The study reported that microscopic parallel diffusivities varied across

the brain, and that white matter values where considerably larger than that assumed by

NODDI. It is important to note, however, that the ability to “estimate intrinsic diffusivity” in

[22] comes at a cost, which is the reduction to two-compartment model. In this sense, then,

the model in [22] is not fully comparable to the model in NODDI, since the former gives up

on estimating the CSF volume fraction. Others [23, 24] have also relaxed the fixed diffusivity

constraint and made it a free parameter. However, this resulted in unwanted effects on the

other parameters in the form of unstable and degenerate estimates. Originally, it was consid-

ered unlikely that variation in dk across regions and subjects was significant enough to remove

trends in the estimated parameters [1]. Additionally, the fixing of dk is necessary for stability in

the parameter estimates and for speeding up convergence of the fitting procedure. Plus, the

value that was chosen was the value that minimized the fitting errors for voxels in the midsagit-

tal plane of the corpus callosum [1].

Taking into consideration the non-consensus on the equality assumption and the still

widespread use of the technique, here we choose to build on earlier work [25] which investi-

gated the assumption of fixed diffusivity. This consisted of looking at optimal values of the

parallel intrinsic diffusivity according to the model residuals. Results suggested that the

default value was reasonable in white matter, but it was sub-optimal in gray matter. While

recent publications have found our method useful [26, 27], this earlier work only considered a

single axial slice from three age matched participants and dMRI data acquired with the same

imaging protocol. For this reason, we propose a more extensive investigation that considers a

diverse array of data in terms of age populations, imaging protocols, and is conducted across

the full brain.

We choose to do this only for the case of the original NODDI technique and not for its vari-

ants [28, 29], as the vast majority of applications have implemented the original version.

Materials and methods

Data

Datasets acquired with multiple b-value sequences (suitable for implementing the NODDI

technique [7]) were readily available for use in this work from a number of existing neuroim-

aging studies. These include imaging data from individuals with a broad range of ages and

acquired with imaging protocols that vary in regards to number and magnitude of b values as

well as number of diffusion encoding directions. dMRI sets include infants, adolescents, young

adults, adults, and aging adults. All dMRI sets were collected on a 3T MR750 Discovery scan-

ner (General Electric, Waukesha, WI). A brief description of each study is provided below and
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details are summarized in Table 1. All procedures for the included studies were approved by

the University of Wisconsin—Madison Institutional Review Board.

Neonates study (Neonates). Participants are from a study of neonatal white matter

microstructure. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion

encoded along 63 directions. Other imaging parameters include: TR/TE = 8400/94ms, 2mm

isotropic resolution.

Teen study (Teen-I). Participants in this cohort were drawn from a study of emotion in

adolescents. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion encoded

along 62 non-collinear directions. Other imaging parameters include: TR/TE = 8400/94 ms

and 2 mm isotropic resolution.

Twin teen study (Teen-II). Participants are from a cohort of 130 adolescent twins. Diffu-

sion scans contain 6 non-diffusion weighted volumes and diffusion encoded along 57 direc-

tions. Other parameters include 2.0 mm isotropic resolution and TR/TE = 8000/66.2 ms.

Midlife meditation study (Midlife-I). Participants in this cohort were drawn from a

study of emotion regulation, asthma, and sleep part of the National Center for Complementary

and Alternative Medicine (NCCAM). Diffusion scans contain 6 non-diffusion weighted vol-

umes and diffusion encoded along 57 directions. Other parameters include 2.0 mm isotropic

resolution and TR/TE = 8000/66.2 ms.

Preclinical Alzheimer’s disease risk study (AD-Risk). Participants were cognitively

unimpaired individuals with and without increased risk for Alzheimer’s disease recruited

from the Wisconsin Registry for Alzheimer’s Prevention and Wisconsin Alzheimer’s

Disease Research Center. Diffusion scans contain 7 non-diffusion weighted volumes and

diffusion encoded along 105 non-collinear directions. Other imaging parameters include:

TR/TE = 6500/102 ms, sagittal slices 3mm thick, and in-plane resolution of 2.5 mm × 2.5

mm.

Intrinsic diffusivity optimization

Optimality of dk = 1.7 μm2�ms−1 was considered by minimizing the model residuals as in [1].

Other biologically plausible values were considered for comparison in the interval [0.5, 3.0]

μm2�ms−1 in increments of 0.1 μm2�ms−1. For each of the 26 values, the model was fitted to the

measured dMRI signal voxel by voxel using the Matlab (The MathWorks, Inc., Natick, MA)

NODDI toolbox (http://nitrc.org/projects/noddi_toolbox). Predictions of the signal were then

calculated at each voxel from the estimated parameters. With the measured and predicted sig-

nals for each dk setting, the root mean squared (RMS) residual was computed at each voxel. A

linear search across the 26 different points was then performed for locating the value of dk cor-

responding to the lowest RMS residual value per voxel. This was done in order to generate a

brain map of optimum dk and for looking at the optimality of dk = 1.7 μm2�ms−1 across brain

regions.

Table 1. Relevant characteristics of studies from which data were used for this work.

Study Sex Age b-values [ms�μm−2] Directions

Neonates 50 males 54 females 1 month 0.35, 0.8, 1.5 63

Teen-I 24 males 168 females 11-15 years 0.32, 0.8, 2.5 62

Teen-II 51 males 79 females 14-20 years 0.5, 0.8, 2.0 57

Midlife-I 57 males 89 females 25-65 years 0.5, 0.8, 2.0 57

AD-risk 18 males 53 females 47-76 years 0.3, 1.2, 2.7, 4.8, 7.5 105

https://doi.org/10.1371/journal.pone.0217118.t001
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Tissue type segmentations

White matter (WM) and gray matter (GM) masks were obtained for each individual in order

to probe the influence of tissue type on the fitting residuals. This was conducted by running

FSL’s [30] FAST tool [31] with meand diffusivity (MD) and fractional anisotropy (FA) maps

as input channels. FA and MD maps were obtained from tensor fits using a weighted least

squares method. For the AD-risk study, the shells with b values of 4.8 and 7.5 ms�μm−2 were

excluded in the tensor fitting.

Influences of age, sex, and protocol

The availability of data from the various studies allowed for selection of several subgroups that

were organized according to age, sex, and protocol. With the data sets organized this way, the

residual analysis was performed for the following three cases:

Groups for age analysis. Subgroups of 16 participants (roughly half male and half

female) were selected from three studies as follows: One group of 16 subjects age approxi-

mately one month from the Neonates study. One group of 16 subjects ages between 10 and

19 from the Teen-II study. Six groups, 16 subjects each, extracted from the Midlife-I study,

for the six age categories of: 20-29, 30-39, 40-49, 50-59, and 60-65 years. Note that, except

for the neonates, these data sets have matching protocols so that the main difference per cat-

egory was age. In order to help disambiguate protocol from age influences, two additional

scans were obtained for one adult: one with the infant protocol and one with the adult

protocol.

Groups for sex analysis. From the Teen-I study, two subgroups one of 30 females and

one of 30 males were selected. The two groups were matched by age (13 years old), so that the

main difference between the groups was sex.

Groups for protocol analysis. Two groups of 16 subjects (roughly half females and half

males) with ages ranging from 50-59 years were selected, one from the Midlife-I study and one

from the AD-risk study. In this case, the assumed main difference between the groups was the

acquisition protocol.

Results

The results are organized as follows. (1) We first show how variation in dk translates to vari-

ability in the estimated parameters. (2) Then, the model RMS residuals, with respect to dk are

shown to differ between tissue types. (3) This is followed by the presentation of voxel-wise

optimized dkmaps and the ways in which the optimality of dk = 1.7 μm2�ms−1 is influenced by

age, sex, protocol and tissue type.

Estimated model parameters and dk
Upon completion of the various model fits, the dependence of the estimated model parameters

to variations in dk was explored. For all model parameter maps, mean values were calculated

over WM and GM regions. Fig 1 shows these values plotted with respect to dk. This analysis

reveals a dependence on dk for all three parameters irrespective of the study as well as variation

in the comparison of parameters among the studies. For example, for gray matter values of dk
that are lower than the assumed value would weaken variation of the neurite density across the

teen and adult subjects. On the other hand, lower values of dk in gray matter would enhance

differences in the ODF concentration parameter across all studies.

Optimizing the intrinsic parallel diffusivity in NODDI
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Model residuals with respect to dk
The values of dk that result in the closest agreement between the measured and predicted sig-

nals as dictated by the RMS residuals were explored next. For each of the resulting 26 RMS

residual maps, mean values across WM and GM were calculated. These are plotted with

respect to dk in Fig 2. These plots reveal that dk values in GM that achieve minimum RMS

residuals deviate from the default setting (1.7 μm2�ms−1) for all studies. For WM, the lowest

values in the RMS residual curves occur in the neighborhood of the default setting. Notably,

most WM curves, with the exception of the Neonate study, exhibit broad ranges of lowest val-

ues as compared to the majority of GM curves. The better defined minima in WM for the

infants could be related to a maximum b value that better matches the characteristics of the

young brain tissue (i.e. longer T2, higher water content) such that diffusion weighting in the

signal is more adequate. This is in line with the AD-risk study, which used a max b-value of 7.5

ms�μm−2 and the WM RMS residual curves are noticeably more convex. The remaining stud-

ies have maximum b values that are likely on the low end of the optimal range for capturing

effects of more restrictive intra-neurite environment, which could help explain the shallower

curves in WM.

Optimized dkmaps. Optimum intrinsic diffusivity whole brain maps were created by

selecting at each voxel the value that corresponded to the smallest RMS residual. Resulting

optimal dkmaps were median filtered using a box kernel (size 3x3x3 in voxels). The filtering

Fig 1. NODDI parameter trajectories with respect to dk. For each parameter (Intra-cellular compartment volume fraction, fic, isotropic compartment volume

fraction, fiso, orientation concentration parameter, κ), the analysis is broken by white matter (WM) and gray matter (GM) regions. Each point on the curves represents

the mean parameter over WM or GM at the specific dk value. The default operating point is marked by the blue dashed vertical line.

https://doi.org/10.1371/journal.pone.0217118.g001
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helps to enhance the underlying structure in the distribution of values between white and gray

matter. The pattern is spatially consistent before filtering, but it is more difficult to appreciate

due to the shallowness of the residual curves for white matter for some of the studies (i.e.

Teen-I, Teen-II, Midlife-I). Fig 3 shows optimum dkmaps for one subject selected randomly

from each of the six studies. These maps reveal moderate to substantial contrast between WM

and GM regions. The non-uniformly distributed dk in these maps suggests that dk = 1.7

μm2�ms−1 may not be appropriate for all brain regions and all populations.

Optimized dk and age. Optimal dkmaps were computed for the cohort organized by age

group. These maps were further masked into WM and GM regions and average optimal dk
values were obtained for each region. Fig 4A shows the distributions of average optimal dk val-

ues according to age group. These plots show distinct distributions between WM and GM

average optimal dk for all age groups greater than 10 years. The majority of WM optimal dk
values are distributed around the default operating point (1.7 μm2�ms−1), while all GM optimal

dk values are reduced by at least 0.4 μm2�ms−1. These trends are fairly consistent for all distri-

butions corresponding to ages 10 years and above. For the group of less than 1 year (i.e.

infants) there is a greater degree of closeness between the WM and GM distributions of

Fig 2. Model residuals with respect to dk. Average root-mean-square (RMS) residual with respect to dk for all subjects in each study. Each of the small

size dots represents the mean RMS residual over white matter (A) or gray matter (B) at the specific dk value. The large size dots represent the median

value over all the subjects in the study at the specific dk value. The default operating point is marked by the blue dashed vertical line.

https://doi.org/10.1371/journal.pone.0217118.g002
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average optimal dk in comparison to the rest of the age groups. In this case, optimal dk values

fall approximately between 1.4 and 1.5 μm2�ms−1 for WM and 1.2 and 1.3 μm2�ms−1 for GM.

For each age group, a pairwise t-test was conducted in order to assess statistical significance of

the tissue-wise difference in average optimal dk. The testing showed that for all groups the opti-

mum dk for GM and WM were significantly different (p< 0.01). A multiple group test

revealed that average optimal dk is significantly different between the infant and the rest of the

older age groups in both WM and GM, while no significant differences were found between

any of the other groups. The mean optimum dk values for the two additional scans on one

adult, Fig 4B, are in agreement with those values from same age group for both the infant and

adult protocols, pointing to the fact that the observed trends are more a result of differences in

age rather than in protocol.

Optimized dk and sex. Optimal dkmaps were also computed for the cohort organized

according to sex. Average optimal dk values were obtained across WM and GM regions. The

distributions of average optimal dk values according to sex category revealed significantly dif-

ferent values between WM and GM with ranges that are consistent with the same age group

(10-19 years) from the age-dependence analysis. Yet, no significant effects of sex were

observed, a result that is compatible with the age-dependent analysis, which also showed no

obvious split in optimal dk between the male and female participants.

Optimized dk and acquisition protocol. Finally, optimal dkmaps were also computed for

the cohort of subjects with data acquired under differing imaging protocols. Based on the

observation that the age dependence analysis revealed no obvious age effects for ages 10 and

above, data from the Teen-I study was also included in this cohort despite the unmatched age.

Fig 3. Optimum dkmaps. (C) Axial view of optimum dkmap for one subject selected from each of the studies.

https://doi.org/10.1371/journal.pone.0217118.g003

Optimizing the intrinsic parallel diffusivity in NODDI

PLOS ONE | https://doi.org/10.1371/journal.pone.0217118 September 25, 2019 8 / 17

https://doi.org/10.1371/journal.pone.0217118.g003
https://doi.org/10.1371/journal.pone.0217118


Fig 4. Optimized dk as function of age group and tissue type. (A) Mean value of optimal dk as function of age group and tissue type. The scanning

protocol for the<1 year group is slightly different than that of the rest of the groups (Table 1). The numbers from scanning one adult with the two

protocols are shown in B. The dashed horizontal line marks the default dk value.

https://doi.org/10.1371/journal.pone.0217118.g004
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This resulted in 3 protocol categories. Fig 5 shows the distribution of WM and GM average

optimal dk values according to imaging protocol.

The data sets from the groups with the highest b value protocol show optimal dk values that

are lower than dk = 1.7 μm2�ms−1. In GM, this analysis reveals a seemingly decaying trend in

optimal dk distributions with respect to maximum b value. Pair-wise t-tests revealed all distri-

butions in GM are significantly shifted down compared to WM distributions, consistent with

the observed trend in the previous age and sex comparisons.

Discussion

In this work we studied the implications of diverse multi-shell dMRI data on the optimality

of the NODDI parallel intrinsic diffusivity dk = 1.7 μm2�ms−1. The results suggests model

assumptions for dkmay be suboptimal for specific ages (i.e., infants) and also in gray matter.

Although not examined, the optimality of dk = 1.7 μm2�ms−1 may also vary with pathology.

We also observed that suboptimal dk leads to biases in the estimated NODDI parameters. Of

Fig 5. Optimized dk as function of imaging protocol. Mean value of optimal dk as function of imaging protocol and tissue type. The dashed horizontal line marks the

default dk value.

https://doi.org/10.1371/journal.pone.0217118.g005
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particular interest would be a drop of neurite density in gray matter, a result that is consistent

with findings in a recent study [32].

For gray matter, the optimal dk is significantly lower than 1.7 μm2�ms−1. In white matter of

the adult brain, values of the optimal dk hover around the default dk = 1.7 μm2�ms−1 and just

below the range [1.9, 2.2] μm2�ms−1 of intra-axonal diffusivities in white matter reported else-

where [33], though, further analysis (see below) suggested high FA regions in the adult brain

contained average optimal dk that falls in this range. It is important to note, however, that the

ranges of residual minima in white matter were broad and shallow.

Further, a finer grain analysis indicates that protocol and age also have an impact on the

optimality of dk = 1.7 μm2�ms−1, both in white and gray matter. The age-dependence analysis

revealed that the newborn brain optimum dk in white and gray matter are closer in value com-

pared to those in the adult brains. Both WM and GM values of optimum dk are different, how-

ever, from that used in recent studies [24, 34] that have implemented NODDI in the infant

brain. The value in these studies was set to 2.0 μm2�ms−1, likely because average DTI axial dif-

fusivity in high FA regions (see below) of newborns is close to this number. Interestingly, at

this setting, and using the 1.7 μm2�ms−1 for the adult brain, nearly any difference between the

infants ODF concentration parameter and that of the older age brains would be removed in

gray matter. Using the optimal setting for dk, would result in appreciable differences in ODF

concentration parameter between the adults and the infants. On the other hand, using the

optimal settings for dk, would weaken the differences in intra-cellular volume fraction between

the infant and the older subjects.

This analysis also showed that in the adult brain optimum intrinsic diffusivity values do not

vary appreciably with age. However, optimum dk values in GM are much lower than those in

WM and different from the default dk = 1.7 μm2�ms−1. With regards to imaging protocol, high

b value and more diffusion weighted volumes appeared to yield less noisy and more stable

optimal intrinsic diffusivity and NODDI parameter estimates.

In hindsight, the sub-optimality of the assumed dk = 1.7 μm2�ms−1 in gray matter is not sur-

prising since this value was originally estimated in the adult corpus callosum [1]. Also, sub-

optimality of the current state of the model in gray matter might be related to the idea that the

impermeable ‘stick’ representation of neurites is only adequate for myelinated axons but not

for dendrites or non-myelinated axons, as others have suggested [35]. In general, however, the

variation of optimal intrinsic diffusivity across tissue types is in agreement with findings of

axial diffusivity variation across the brain reported in [32].

Studies have reported decreasing DTI axial diffusivity with age [36–38]. Thus, the trend of

increasing optimum dk with age in WM seen in Fig 4A prompted further investigation. For

comparison, averages of DTI axial diffusivity over WM and GM were computed for all subjects

in all age groups, Fig 6A and 6B. The resulting axial diffusivity age trajectories are in agreement

with previous studies [36–38]. However, while these numbers pertain to the whole of white

matter, regional differences in developmental trajectories of DTI quantities in the neonate

brain have been observed [39]. In the infants, a further look into high FA (>0.5) regions, which

reduce to portions of the corpus callosum and the internal capsule, revealed that average opti-

mal dk in these regions is comparable to that seen in the adult global WM. These regions in the

infant are thought to be myelinated by one month after birth and to have higher fiber coher-

ence than other white matter areas [39]. The lower FA regions (not shown) in the infant brain,

which presumably reflect less or not-yet myelinated axons and or lower fiber coherence, exhibit

values of average optimal dk that are similar to those of whole WM. For the older age groups,

the axial diffusivity distributions in gray matter mimic those of the optimal dk. For the infants,

this is true for both the WM and GM distributions. Also, the optimal dk distribution separation

between WM and GM is less for the infants than for the rest of the older age groups. Based on
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all this, it could be speculated that the neonatal gray matter neurites and white matter neurites

are more similar than they are in the adults. Therefore, the model fit for less coherent, non-

myelinated fibers in neonatal white matter would be more similar to the fit in the neonatal gray

matter than to the fit in the adult whole WM, as it is illustrated in Fig 4A.

Limitations

Assumed equal intra- and extra-cellular dk
As mentioned in the introduction, another important assumption of the model is that of equal

dk in the intra- and extra-cellular compartments. Thus, one of the limitations of this work is

that it was carried out while maintaining this and other assumptions of the model.

Fig 6. NODDI and DTI. Comparison of age trajectories between NODDI optimum parallel intrinsic diffusivity and DTI axial diffusivity in global white matter (A),

global gray matter (B), and high FA white matter (C). The dashed horizontal line marks the NODDI default dk = 1.7 μm2�ms−1 value.

https://doi.org/10.1371/journal.pone.0217118.g006
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In order to glimpse at the appropriateness of this assumption as it pertains to this work, a

similar model residual optimization was done for the case where the extra- to intra-cellular

parallel diffusivity ratio took on values different than 1. In this case, the model was adjusted so

that the extra-cellular diffusivity was expressed as a fraction of the intra-cellular diffusivity

value. The ratios ranged from 0.1 to 1.3 in 0.1 increments. In this case the number of fits

increases dramatically for each subject (26x13 = 338), as do the memory and time require-

ments. Therefore, the analysis was restricted to two subjects, one infant and one adult, and for

a single axial slice. Additionally, in order to circumvent the long fitting times using the Matlab

tool box, for this part of the analysis the AMICO NODDI toolbox [40] was used instead.

Model RMS residuals were calculated for each of the 26 intra-cellular dk values in [0.5

μm2�ms−1, 3.0 μm2�ms−1] and each of the 13 extra- to intra-cellular dk ratio values in [0.1,1.3].

Average RMS residuals over WM and GM were plotted with respect to both, the intra-cellular

dk and the ratio of extra- to intra-cellular dk. These results are shown by the contour plots in

Fig 7. Both in white and in gray matter, the regions of minimum residual values extend over

several values in the two dimensions of the graphs. These poorly defined minima point to a

multiplicity of solutions when constraints on the model diffusivities are not imposed. Similar

Fig 7. Model residuals and non-equal diffusivities. Fit errors (RMS residuals) of NODDI model with respect to both variation in intra-cellular dk and variation in the

ratio of extra- to intra-cellular dk. (A) Infant subject average fit errors over white matter. (B) Infant subject average fit errors over gray matter. (C) Adult subject

average fit errors over white matter. (D) Adult subject average fit errors over gray matter.

https://doi.org/10.1371/journal.pone.0217118.g007
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results have been presented by other reports [23, 32], which show that unconstrained multi-

compartment biophysical models lead to issues in parameter estimation. Particularly, the

shape of the lowest residual regions in these contour plots is evocative the pipe-like structures

for the fitting cost function landscapes of non-constrained multi-compartment models

reported in [32] and [23].

Generalizability

Great effort was made in order to make this as an exhaustive analysis as possible in terms of

the diversity of the data that was used. Yet, we acknowledge it is not fully generalizable to the

wider scope of neuroimaging biophysical modeling diffusion research, for which it should

consider, among others, conditions of pathology and ex-vivo experiments. Nonetheless, we

believe that these results are highly informative considering the broad range of ages and imag-

ing protocols investigated. Finally, this analysis was performed for Watson-NODDI only, not

for other flavors of the technique which include Bingham-NODDI [28] or NODDIx [29].

Conclusion

In this work, dependence of the estimated NODDI parameters on the parallel intrinsic diffu-

sivity dk was observed. Optimum dk in white matter of the adult brain is similar to the cur-

rently used value dk = 1.7 μm2�ms−1 but significantly lower in gray matter. Optimal dk is also

lower than the default value for the newborn brain in white and gray matter. Effects of imaging

protocol on the optimum dk were also observed. Finally, it is important to consider that,

despite its limitations, recent analysis suggests that NODDI metrics provide information that

is congruent with histologically equivalent metrics [41].
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