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Abstract 

Central apneas occurring in the aftermath of epileptic seizures may lead to sudden death. The 
contact-sensors currently used to detect apneas are not always suitable or tolerated. We developed 
a robust automated non-contact algorithm for real-time detection of central apneas using video 
cameras. One video recording with simulated apneas and nine with real-life apneas associated with 
epileptic seizures, each recorded from 3-4 angles, were used to develop the algorithm. Videos were 
preprocessed using optical flow, from which translation, dilatation and shear rates were extracted. 
Presence of breathing motions was quantified in the dominant time-frequency spectrum by 
calculating the relative power in the respiratory range (0.1-1 Hz). Sigmoid modulation was calculated 
over different scales to quantify sigmoid-like drops in the respiratory range power. Each sigmoid 
modulation maximum constitutes a possible apnea event. Two event features were calculated to 
enable distinction between apnea events and movements: modulation maximum amplitude and 
total spectral power modulation at the time of the event. An ensemble support vector machine was 
trained to classify events using a bagging procedure and validated in a leave-one-subject-out cross 
validation procedure. All apnea episodes were detected in the signals from at least one camera 
angle. Integrating camera inputs capturing different angles increased overall detection sensitivity 
(>90%). Overall detection specificity of >99% was achieved with both individual cameras and 
integrated camera inputs. These results suggest that it is feasible to detect central apneas 
automatically in video, using this algorithm. When validated, the algorithm might be used as an 
online remote apnea detector for safety monitoring. 
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1. Introduction 

Central apneas occurring during epileptic seizures are usually self-limiting [1], but when occurring in 
the aftermath of a seizure may lead to asystole and could trigger Sudden Unexpected Death in 
Epilepsy (SUDEP) [2]. Observed fatal SUDEP cases occurred within minutes after a convulsive seizure 
[2], but not all known cases were preceded by a seizure [3]. Interventions such as repositioning or 
clearing of airways may have a protective effect preventing SUDEP [4,5] and automated seizure 
detection may help alert carers. If a seizure was not detected or intervention could not prevent 
apnea, carers should be alerted to apneas to enable timely resuscitation. 
 
Currently apneas are detected by a respiratory inductance plethysmogram (RIP), an impedance 
pneumogram, or a blood oxygen saturation measurement [6]. These contact-sensors are, however, 
not always suitable or tolerated. They would need to be worn continuously, may be uncomfortable 
and sensors could come loose during seizures [7]. Some populations such as children or people with 
intellectual disability may not tolerate wearable devices and may try to dislodge them. An alternative 
solution would be apnea detection using remote sensors. 
 
There are several modes of remote respiratory monitoring using different sensors, but there are few 
to detect apneas. Algorithms aiming at remote apnea detection use radar [8], sonar [9], capacitance 
sensors [10], infrared sensors [11,12], depth sensors [13–15], and video [16–19]. Video cameras are 
suitable for safety monitoring, as they are relatively cheap and sensitive to movement, even at longer 
distance, provided they have suitable resolution.  
 
Respiration can be quantified in video by using the breathing motions of the trunk or the respiratory 
modulation of the photoplethysmogram (PPG). PPG techniques are unsuitable for our application, as 
they need skin regions that may not always be visible (covered or turned away from the camera), and 
color video, which cannot be used at night. Trunk breathing motions may be quantified, for example, 
by calculating translation rates with optical flow [20], tracking image points over time [21], or 
comparing breathing motion templates [16]. Most published algorithms aim to detect obstructive 
sleep apneas (OSA), often using the characteristic sounds and movements that conclude OSA for 
classification. These algorithms are unsuitable to detect central apneas; in which such sounds and 
movements are absent. 
 
There is no algorithm available that can detect central apneas in video and is suitable for (postictal) 
monitoring. This algorithm needs to be 1) able to work near real-time, providing minimal time delay 
between apnea onset and its detection, 2) able to distinguish between apnea and gross body motion 
when breathing motions cease, 3) independent of camera imaging mode to enable daytime and 
nighttime use, and 4) independent of skin or chest visibility and tracking.  
 
In this proof of concept study, we present a robust automated algorithm for real-time non-contact 
detection of central apneas in video registrations. Our algorithm detects cessation of the measured 
oscillatory movements of breathing, in the absence of gross body motion. Recordings of simulated 
apneas and real-life, seizure-related central apneas were used to develop and test the algorithm in a 
leave-one-subject-out cross-validation scheme. We investigated detection performance in a single-
camera setup from different angles and propose two different strategies to combine signals from 
multiple cameras to improve performance. 
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2. Methods 

The algorithm consists of three parts: preprocessing of the video signals, event detection and event 
classification. Video signals from multiple-camera setups were integrated in two ways: early, during 
preprocessing, or late, after classification. An overview of the algorithm is shown in Fig. 1. An 
example of algorithm output after different video processing steps is shown in Fig. 2. 
 

 
Fig. 1. Apnea detection algorithm workflow. Total power modulation is only calculated at the time of a detected event, i.e., a 
positive mean sigmoid modulation maximum. 
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Fig. 2. Example of the output from different analysis steps in the apnea detection algorithm. A 90-second video fragment with 
a movement (at t≈15 s) and an apnea (starting at t≈49 s) is shown (subject SIM1, camera 1). (a) Normalized Gabor time-
frequency spectrum, showing the dominant component from the five group velocity spectra. (b) Relative power in the 
respiratory range (ReP) plotted together with the total power. (c) Sigmoid modulation of the ReP, showing high power at 
significant signal amplitude drops. (d) Mean sigmoid power modulation, calculated over relevant sigmoid scales that fit 
apneas. Total power is scaled logarithmically here. Events were detected at positive mean sigmoid power modulation 
maxima. 
 

2.1. Video recordings 

One healthy subject, and nine subjects with epilepsy (but otherwise healthy), who had seizure-
related apneas, were included in this study. The subjects with epilepsy were selected from a 
database which was prospectively collected (2016-2017) in an epilepsy monitoring unit for the 
development of seizure detection algorithms. Next to the standard long-term (≥24 h) synchronized 
electro-encephalogram, video, sound, and electrocardiogram, respiration was quantified for this 
dataset using RIP belts. The study protocol was approved by the ethics committee of University 
Medical Center Utrecht and written informed consent was given by all participants or their 
guardians. All data were handled anonymously. 
 
Subjects were registered with three or four cameras positioned around the room, so the face could 
be brought in view from at least one angle (important for epilepsy diagnostics). Subjects were not 
always in view of all cameras. Depending on the position of the subject moving freely in the room, 
subject-to-camera distance ranges 1-5 m. Camera rotation, zoom and pan could be controlled by 
nurses in a monitoring room. The registration system started a new video automatically after 
approximately 26 minutes, for storage purposes. Cameras were equipped with an infrared 
illuminator for night-time recordings. Videos were registered using a frame rate of 25 frames per 
second. Each frame, with a total resolution of 1080x1920 pixels, contains bordered sub-frames from 
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the four cameras, with a 535x959 pixel resolution. Sub-frames were separated after reading for 
further analyses. 

2.1.1. Simulations  

To be able to investigate the influence of different breathing patterns on apnea detection 
performance, one recording involved a healthy subject simulating different respiratory frequencies 
and depths leading up to apneas. 
 

2.2. Data selection 

As peri-ictal central apneas are common [1], the minutes around the seizures of each subject in the 
database were analyzed for the occurrence of apneas. During this screening, the signals from the 
respiratory belts were used to locate apneas visually. We presume peri-ictal apneas to be of central 
origin, as has been described in literature [1]. We did not confirm this with other sensors. For each 
subject that had peri-ictal apneas, one video was included in the dataset in which one or more 
apneas occurred. Recording information is shown in Table 1. For one subject (PAT9), more than one 
video recording was available for inclusion; we chose the video in which the subject was the only 
person in view of the cameras. One of the subjects was 16 years old at the time of registration, the 
remaining subjects were adults (mean age 38.3 years, SD: 15.8).  
 
Table 1. Dataset information. Relevant apneas (duration ≥8 s, no gross body movement or other persons in view) were used 
for training and considered essential to detect. One (unique) apnea occurring in a subject may have been captured in multiple 
recordings, i.e. filmed from different angles with different cameras. 
 

ID Age Sex 
Recording 

length 
(min) 

N 
cameras 

N apneas  
(unique) 

N relevant 
apneas 

(unique) 

SIM1 29 F 16.0 4 36 (9) 30 (8) 
PAT1 66 M 6.00 3 2 (1) 0 (0) 
PAT2 45 F 17.7 3 3 (1) 0 (0) 
PAT3 53 F 26.6 4 4 (1) 0 (0) 
PAT4 45 F 26.6 4 3 (1) 2 (1) 
PAT5 18 F 26.6 3 27 (9) 4 (2) 
PAT6 38 M 26.6 4 3 (1) 2 (1) 
PAT7 46 M 26.6 3 6 (2) 0 (0) 
PAT8 27 F 19.9 4 4 (1) 3 (1) 
PAT9 16 M 26.6 4 4 (1) 2 (1) 

Total   219 36 92 (27) 43 (14) 

 

2.3. Annotations 

To provide ground truth information on the presence and timing of apnea, the beginning and end of 
each apnea was annotated. Annotations were based on the signals from one, or if available, both RIP 
belts. For each apnea we noted in which of the cameras the subject was visible, if the subject was 
moving at apnea onset, and whether there were other persons in view of one of the cameras. 
Apneas without gross subject movement or other persons in view, and a duration of ≥8 s were 
considered ‘relevant apneas’. Relevant apneas were used during algorithm training and were 
considered essential to detect during algorithm testing. An apnea may be considered relevant in a 
subset of the 3 or 4 cameras used in the registration, and non-relevant in other cameras; gross body 
movement or a second person may only be visible in a subset of camera views. 
 

2.4. Preprocessing 

Video recordings were preprocessed in order to extract: 1) respiratory range oscillatory power, which 
quantifies the presence of a breathing motion signal, and 2) total power, to quantify the presence of 
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gross body movement. The preprocessing procedure used here is similar to the procedure used in a 
convulsive seizure detection algorithm previously developed by our group [22]. A detailed 
description of the preprocessing procedure is provided in the referred paper. The main difference in 
the current preprocessing procedure is the focus on the presence of oscillatory motions in the 
frequency range of respiration, instead of the frequency range of oscillatory motions in convulsive 
seizures. We intend to combine our seizure and apnea detection algorithms into one safety 
monitoring system in the future. Similar preprocessing procedures for both algorithms allow 
computationally heavy analysis steps, such as optical flow calculation, to be executed once, 
presumably saving calculation time.  All calculations were made with Matlab version 2018a on an 
Intel Core i7 2.50 GHZ processor with 8 GB RAM. 
 
First, subject movement in the video was quantified with optical flow, using the Horn-Schunck 
method [23], implemented as standard in Matlab (version 2018a). From the resulting velocity fields 
five timeseries were derived, representing the spatial transformations, or group velocities; 
translation rates along the two image axes, dilatation rates and shear rates. Here, we chose to omit 
rotation, originally the sixth group velocity, for its lack of quantifying the respiratory signal. 
 
Next, the time-dependent spectral content in each of the five group velocities was calculated using 
convolutions with200 Gabor filters, or wavelet templates, with exponentially spaced central 
frequencies, 𝑣, in the range [0.08,5] Hz, and with 𝛼 = 0.5 ∗ 𝑣 as filter bandwidth. The Gabor filters 
are defined as: 

𝑔(𝑡 − 𝑡′, 𝑣) = (𝑒−𝜋2𝛼2𝑣2(𝑡−𝑡′)2−𝑖2𝜋𝑣(𝑡−𝑡′) − 𝑂𝑣)/𝑁𝑣 . (1) 

The normalization factor 𝑁 and the offset factor 𝑂 are chosen so that the functions have zero mean 
and unit 1-norm.  
 
In order to obtain the dominant component of the group velocities (𝑄), we take the maximum of the 
five Gabor time-frequency spectra (𝐺𝑐): 

𝑄(𝑡, 𝑣) = 𝑚𝑎𝑥𝑐(𝐺𝑐(𝑡, 𝑣)) , 𝑐 = 1, … ,5, (2) 

Where 𝑡 is defined as time and 𝑐 defines the corresponding group velocity. An example of the 𝑄(𝑡, 𝑣) 
spectrum at the time of breathing, movement, and apnea is illustrated in Fig. 2a. When early 
integration of video-signals was applied, the maximum in (2) was taken over the (15 or 20) group 
velocities from all cameras. 
 
Relative power in the respiratory frequency band (𝑅𝑒𝑃) was calculated as the power in the 0.1-1 Hz 
band relative to the total Gabor power (0.08-5 Hz): 

𝑅𝑒𝑃(𝑡) =
∑ 𝑄(𝑡,𝑣)1

𝑣=0.1

∑ 𝑄(𝑡,𝑣)𝑣
 (3) 

In video segments without gross body movement but with the presence of breathing motions, the 
𝑅𝑒𝑃 quantity will presumably be close to one. Note that we do not aim to quantify the respiration 
frequency with this quantity, but only the presence (and cessation) of respiration. Mean total power 
(𝑇𝑜𝑃) is calculated over all measured frequencies: 

𝑇𝑜𝑃(𝑡) = 〈𝑄(𝑡, 𝑣)〉𝑣 . (4) 

An example of the 𝑅𝑒𝑃(𝑡) and 𝑇𝑜𝑃(𝑡) signals at the time of breathing, movement, and apnea is 
illustrated in Fig. 2b. Both the 𝑅𝑒𝑃 and 𝑇𝑜𝑃 signals were scaled logarithmically before further 
calculations. 
 

2.5. Event detection 
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Apneas manifest as sigmoid-like amplitude drops in the 𝑅𝑒𝑃(𝑡) signal. To quantify drop occurrence 
we calculated sigmoid modulation for different scales to detect drop events of different slopes and 
amplitudes in 𝑅𝑒𝑃(𝑡). This technique is analogous to computing a wavelet time-frequency spectrum. 
Here, we compute a sigmoid time-scale spectrum instead, using an aperture sigmoid as the 
generating wavelet template. In this way, the slope (scale) of the drop of 𝑅𝑒𝑃(𝑡) and its amplitude 
(relative to the mean value) can be estimated. The technique is described in detail below. 
 
First, we define a range of 200 scales 𝑠𝑘  (𝑘 = 1,2, … 200), with exponentially spaced values in the 
range [25,500]. For each scale, an aperture sigmoid template is defined for window 𝜏: 

𝑆(𝜏, 𝑘) = 𝑁𝑘
𝑆−1 𝑒𝜏 𝑠𝑘⁄ −𝑒−𝜏 𝑠𝑘⁄

𝑒𝜏 𝑠𝑘⁄ +𝑒−𝜏 𝑠𝑘⁄ 𝑒−|𝜏|2 𝑠𝑘
2⁄  , 𝜏 = [−3𝑠𝑘: 3𝑠𝑘],        (5) 

together with the Gaussian aperture template: 

𝐺(𝜏, 𝑘) = 𝑁𝑘
𝐺 −1

𝑒−|𝜏|2 𝑠𝑘
2⁄ . (6)  

In Equations (5) and (6) L2 normalization was applied through the coefficients 𝑁𝑘
𝑆,𝐺−1

, with 𝑁𝑘  

defined as the squared sum of the kth aperture template. The time window in (5) and (6) is chosen to 
be of three scale lengths, as values outside this range are suppressed by the Gaussian aperture 
factor. Sigmoid time-scale modulation 𝑚 can then be obtained using the convolutions between the 
filters and the 𝑅𝑒𝑃 signal: 

𝑚(𝑡, 𝑘) =
∫ 𝑆(𝑡−𝜏)𝑅𝑒𝑃(𝜏)𝑑𝜏

∞
𝜏

∫ 𝐺(𝑡−𝜏)𝑅𝑒𝑃(𝜏)𝑑𝜏
∞

𝜏

  (7) 

An example of the sigmoid modulation at the time of breathing, movement, and apnea is illustrated 
in Fig. 2c. 
 
To quantify the presence of significant respiratory range power drops, we calculated the mean 
sigmoid modulation M over the scales that correspond to observed drop times:  

𝑀(𝑡) = 〈𝑚(𝑡, 𝑘)〉𝑘∈𝑠𝑑𝑟𝑜𝑝
 (8) 

Drop times were observed to be between 4.0 and 8.2 seconds (in the SIM1 recording), and 
correspond to filters 𝑠𝑑𝑟𝑜𝑝 = [𝑠70, 𝑠129]. A positive mean sigmoid modulation maximum corresponds 

to a significant respiratory range power drop. Its amplitude constitutes our first event feature, to be 
used in classification. As the 𝑀(𝑡) signal fluctuates, many positive maxima and thus events will be 
detected. High maximum values are however only found when there is a significant respiratory 
power drop. For the positive local maxima of 𝑀 we define the set of time points 𝑡𝑀 as:  

𝑡𝑀 = {𝑡: 𝑀(𝑡) > 𝑚𝑎𝑥(𝑀(𝑡 − 1), 𝑀(𝑡 + 1)); 𝑀(𝑡) > 0}      (9) 

For each event, the sigmoid modulation maximum amplitude is defined as: 

𝑆𝑀𝑀(𝑡𝑀) = 𝑀(𝑡𝑀). (10) 

An example of the mean sigmoid modulation and its positive maxima forming the events, is shown in 
Fig. 2d. 
 
When an apnea occurs, the total power stays low, or decreases from a low to an even lower value. At 
the time of events due to gross body movement on the other hand, the total power either increases 
(movement onset) or drops from a high to a lower value (movement end). An example of the total 
power change at the time of movement and apnea events is shown in Fig. 2d. A second classification 
feature quantifying the change of total power at the time of events may distinguish events due to 
apneas from events due to gross body movements. For each event we therefore calculated the total 
power modulation (𝑇𝑃𝑀), comparing the 2 s before, to the 2 s after the 𝑀 maximum: 
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𝑇𝑃𝑀(𝑡𝑀) =
〈𝑇𝑜𝑃〉𝑎−〈𝑇𝑜𝑃〉𝑏

〈𝑇𝑜𝑃〉𝑎+〈𝑇𝑜𝑃〉𝑏
 , 

    𝑏 = [𝑡𝑀 − 2𝑠, 𝑡𝑀], 𝑎 = [𝑡𝑀 , 𝑡𝑀 + 2𝑠]. (11) 

Presumably, the 𝑇𝑃𝑀 feature has a small and often negative value for apnea events, and a high 
value (positive of negative) for gross body movement events. 
 
All events received a ground truth label according to the apnea annotations: 1 (apnea) or 0 (not an 
apnea). A five second annotation margin allowed detections slightly earlier than the annotated apnea 
onset. If multiple events were detected within an apnea period, the first event was labelled as the 
apnea event. Other events during the apnea period were disregarded; an apnea can only be detected 
once, but an extra detection during an apnea should not be considered a false detection. Relevant 
apneas were also labelled separately. If no events were found during an apnea, the apnea was 
missed, but as only events received a ground truth label, such a false negative would not be counted. 
We therefore corrected performance results by hand to make sure any missed apneas without an 
event are counted as a false negative. 

2.6. Classification 

To automatically classify detected events as “apnea” or “not an apnea”, we used a support vector 
machine (SVM) with a radial basis function (RBF) kernel. Optimization of the SVM’s hyperparameters 
was followed by training, which provides SVM model parameters. During both hyperparameter and 
model parameter setting, precision and accuracy were optimized while ensuring 90% sensitivity for 
apnea events. Each time an SVM model was trained, the misclassification cost for a false negative 
was increased with 0.1 steps until 90% sensitivity on its training data was achieved.  
 

2.6.1. Hyperparameter optimization 

We found the SVM hyperparameters that provided high performance while generalizing well, using a 
grid-search. The soft margin constant and the RBF kernel scale were tuned to the combination (0.1 
and 2, respectively) that performed best in cross validation. 
 

2.6.2. Training and cross validation 

A leave-one-subject-out (LOSO) cross validation procedure was used to train the event classifier and 
test its performance on new data not used for training. Test results from LOSO cross validation 
reflect real-life algorithm performance, when the algorithm would be applied on a new subject. In 
each of the ten folds the classifier is trained on data from nine/ten subjects and tested on the 
remaining subject. The training and testing procedure is depicted in Fig. 3. 
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Fig. 3. Leave-one-subject-out cross validation procedure. In each of the subject-folds training is performed 100 times with a 
bag of randomly selected training events from 9/10 subjects, resulting in an ensemble of 100 trained SVM models. Testing 
on the data from the remaining subject is done either 1) on all events per camera, providing predictions per camera, which 
may be integrated later, or 2) on the events from the early integrated camera inputs. 

 
In each fold, an ensemble classifier was trained using a bagging (i.e. bootstrap aggregating) 
procedure. Applying a bagging procedure prevents overrepresentation of recurring events from a 
recording in the training set and helps to reduce variance, thus increasing classifier stability and 
accuracy. A sample, with replacement, from the training events (bag) was used to train a classifier. 
Each bag sample consisted of a random selection of 50% (with a minimum of one) of the relevant 
apnea events and 10 non-apnea events, selected from each camera recording in the training set 
separately. This process was repeated 100 times in each fold to obtain an ensemble classifier.  
 
The classifier is subsequently tested on the recordings of the remaining subject of the fold, with two 
different sets of input events: the events found in the video signals from each individual camera, and 
the events found in the early integrated video signals. A prediction from an ensemble model was 
formed by the majority vote of the 100 predicted labels. Late integration of outputs was performed 
by combining synchronous events, i.e., the maximum output label was obtained for events that 
occurred within 5 s over two or more cameras. In practice, one camera providing a detection is 
enough to get a detection from a late integrated camera system. 
 

2.7. Performance evaluation 

Comparison of predicted labels with ground truth labels yielded the following counts: true positives 
(𝑇𝑃); detected apneas, true negatives (𝑇𝑁); events that were correctly classified as not an apnea, 
false positives (𝐹𝑃); events incorrectly classified as an apnea, and false negatives (𝐹𝑁); events that 
were incorrectly classified as not an apnea. With these counts we calculated apnea detection 
sensitivity, false positive rate (FPR), and precision, as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , (12)  

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐷
 , (13)  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . (14) 
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with 𝐷 defined as the recording duration in hours. Sensitivity for relevant apneas was analyzed 
separately. We also inspected algorithm output and video recordings at times of false positives to 
investigate their causes. 
 
Grouped results were obtained by concatenating all events and comparing the predicted labels with 
the ground truth. Results from all individual cameras estimate the predicted performance when a 
random camera angle would be chosen. We also compared found performance with the 
performance using best and worst camera choices, determined post-hoc per subject according to 1) 
sensitivity and 2) false positive rate. Thus, we estimate performance when we would have known 
beforehand the best and worst camera positions to capture apneas. This is done for comparison, and 
does not pose a realistic situation. 
 
We calculated detection latency for relevant apneas, defined as the time between the annotated 
start of the apnea and the detection. To estimate real-time latency, Gabor filter windows for 
respiratory frequencies need to be taken into account. These are calculated in the center of windows 
of 75-745 frames, effectively adding 1.5 to 15 seconds to real-time latency. 
 
If only a single camera is available, it is important to know beforehand which camera placement gives 
the highest detection sensitivity. To answer this question, we analyzed the influence of camera 
perspectives with respect to the subject (as shown in Fig. 4) on apnea detection sensitivity. 
 

 
Fig. 4. Probable camera angles when monitoring a subject. Opposite camera positions form a combination (indicated with an 
equal color), as they may represent the same view when the subject turns. Adapted from “Sleep by Gan Khoon Lay from the 
Noun Project”. 

3. Results 

Grouped algorithm cross validation test results using predicted labels from the ensemble SVMs are 
shown in Table 2. Detailed results per subject and camera can be found in Supplementary Table 1 in 
the Appendix. All relevant apneas from all subjects were detected in the signals from at least one of 
the used cameras. In three subjects relevant apneas were not detected in all cameras in which they 
were annotated. The apnea in the video of PAT9 was detected in camera signals without, but also 
with a second person in view (who was quietly sleeping in the background). With the best camera 
angles determined post-hoc, 100% sensitivity would have been achieved with a false positive rate of 
1.09 per hour. Mean detection latency for detected relevant apneas was 1.7 s (SD: 1.4 s). Mean 
online latency is estimated to be in the range of 2.7-16 s. 
 
Table 2. Grouped algorithm test results, using majority vote labels from the trained ensemble models. 
 

Camera / 
integration 

method 

Sensitivity (%) 
relevant 

apneas (N) 

Sensitivity (%) 
all apneas (N) 

False 
positive 
rate (/h) 

Specificity 
(%) for 
events 
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All individual 
cameras 

83.7 (43) 46.7 (92) 2.17 99.1 

best choice 100 (14) 63.0 (27) 1.09 99.5 

worst choice 80.0 (10) 37.0 (27) 3.28 98.5 

late integrated 100 (14) 66.7 (27) 6.57 97.6 

early 
integrated 

92.9 (14) 51.9 (27) 1.64 99.3 

 
With late camera input integration 100% sensitivity was achieved, with a FPR of 6.6 per hour. Late 
integration resulted in a higher FPR than found with randomly chosen cameras, and also higher than 
found with the post-hoc determined worst camera choices. With early camera input integration, 
13/14 unique relevant apneas were detected. Closer inspection of the signals at the time of the 
missed apnea (PAT6) revealed a slight movement at apnea onset, mainly visible in one of the 
cameras. For this reason the apnea presumably was detected in the single-camera signals (and in the 
late integrated outputs), but not in the early integrated video signals, which included the movement 
as a dominant component.  
 
Best single-camera sensitivity was achieved with angle combination frontocaudal-dorsocaudal 
(100%). Sensitivity was also high for the combination frontal-dorsal (92%). Three/six frontal view 
detections involved apneas of awake subjects sitting upright. Sensitivity was lower when the subject 
was registered from a more rostral view; 84% for the combination dorsorostral-frontorostral, and 
50% from a rostral viewpoint. No recordings were made from a caudal view.  
 
Inspection of algorithm output at times of false detections showed several causes for false 
detections. Coincidental detections, in which a very small movement precedes a larger movement 
that causes the respiratory power to drop, caused 68% of single-camera false detections. Of the 13 
coincidental false detections, 3 were also in the early integrated results. When inspecting the 
respiratory belt signals, three “false” detections turned out to be short apneas (~5 s) and one was 
caused by a respiratory frequency drop to 0.1 Hz. In one camera recording providing a closeup of the 
subject’s face during sleep, eyelid myoclonias caused two false detections. These false detections 
were also seen in the results from the early integrated signal. 

4. Discussion 

Our algorithm detected all apneas in all subjects in the signals of at least one camera, with 
acceptable false detection rates. The algorithm can quickly detect cessation of the breathing motion 
signal, while distinguishing cessations due to apneas from cessations due to gross body movements. 
Apneas were detected regardless of the breathing pattern (frequency, depth) preceding them. The 
algorithm functions with color and intensity video and does not need uncovered body regions in view 
to quantify breathing motions and detect apneas. The hardware that would be used in application of 
our algorithm needs to be able to acquire image sequences, and not necessarily record them, which 
favors privacy. 
 
When multiple cameras are available, integrating their signals early and late in the algorithm 
improves detection sensitivity, as respiration movements can be captured from different angles. Late 
integration, i.e., combining any synchronous detections over cameras, may, however, induce a high 
false detection rate: an event causing a false detection in any camera will inevitably cause a false 
detection in the late integrated results. Early integration, i.e., combining video time-frequency signals 
before event detection and classification, typically results in less false detections: coincidental false 
detections are less likely, because small movements that cause the total power signal to fit the apnea 
model can be cancelled out during signal integration. Detection sensitivity with early signal 
integration may however be affected by gross body movement at apnea onset in one of the camera 
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signals. If further study verifies that (near) SUDEP-related apneas do not involve subject movements 
at apnea onset, early integration may be preferred over late integration.  
 
When only a single camera is used, detection sensitivity depends on the ability to capture respiratory 
movements, to detect their arrest. Best perspectives have camera axes perpendicular to 
craniocaudal and dorsoventral directions, as trunk oscillatory movements of breathing are largest in 
these directions [24]. Cameras should be placed high enough to get a good overview of the subject. 
Our results indicate that using a frontocaudal-dorsocaudal camera angle combination likely results in 
the best performance. Dorsal-frontal and dorsorostral-frontorostral viewpoints may also provide 
good detection sensitivity when the camera is placed high enough. Rostral views provided only 
mediocre apnea detection performance, and should be avoided. Closeup views of the subject’s face 
and shoulder regions may provide a good respiratory signal, but false detections might be caused by 
small muscle twitches.  
 
An apnea was detected with a second person in view of the camera, which suggests that apneas are 
not necessarily missed when there is a second person in view of the camera. The second person’s 
breathing movements add to the respiratory range power, but if only one of the persons stops 
breathing, respiratory power will drop nonetheless. To detect an apnea, the second person should 
not be showing gross body movements and it will probably help if the subject to monitor is closest to 
the camera, as the subject’s respiration will then influence respiratory range power the most. Four of 
ten subjects were covered by blankets when their apneas occurred, which did not prevent apnea 
detection. This suggests that apnea detection is not hampered by the subject being covered. The 
influence of covers on detection should be further investigated, as this is a likely occurrence in 
practice. 
 
To our knowledge, there are no other central apnea detection algorithms that meet all requirements 
to be applicable for safety monitoring (near real-time detection, distinguish between apnea and body 
motion, day and nighttime use, independent of skin visibility and tracking). One reported algorithm 
meets three/four requirements [19]. Our approaches are similar; quantifying the presence of 
periodicity to detect apneas (periodicity cessation). In a dataset with 17 apneas, the algorithm 
detected 90% of apneas with a latency of 30 s and a specificity of 78%, which translates to an FPR of 
79 /h with their windowing procedure. The lower specificity compared to our algorithm might be 
explained by the algorithm’s inability to distinguish between gross body motion and apneas. 
 
Our algorithm enables fast detection of apneas, with online detection latencies estimated to be 
between 3 and 16 seconds, while latencies of >20 s are common in other studies [18,19]. The 
difference in detection delay can be explained by the respiration-free signal window needed by most 
other algorithms to measure the absence of periodicity and detect an apnea. Our algorithm detects 
the moment of cessation of breathing motions, and does not need an large signal window free of 
breathing motions before it detects an apnea.  
 
A possible limitation of our algorithm is that it can only detect apneas at their onset. If 
something/someone in view of the camera causes a gross motion during apnea onset, the apnea 
might be missed. Such movement influences might be prevented by confining camera view as much 
as possible to the subject. Subject segmentation before quantifying the presence of breathing 
motions may also improve algorithm performance. Segmentation may, however, also make the 
algorithm more sensitive to occlusions and heavier computationally. 
 
Obstructive apneas occurring during sleep, possibly indicating an obstructive sleep apnea (OSA) 
disorder, may cause algorithm detections. These apnea detections could be considered true 
positives, and may help classify undiagnosed OSA cases. OSA is a common disorder, however, and 
people with the disorder can have frequent apneas throughout the night (severe cases have >30 /h) 
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[25], which may result in alarm fatigue. OSA detection with our algorithm was not studied, and 
should be further investigated. 
 
A possible solution for high false detection rates due to OSA or other causes might be switching on 
apnea detection only after detection of a convulsive seizure (automatically, e.g. using [26], or by a 
carer). Apnea monitoring during the half hour following each convulsive seizure might suffice to 
prevent SUDEP, as virtually all known cases of sudden death followed within 11 minutes after a 
convulsive seizure [2].  
 
Future work should focus on further improvement and validation of the algorithm. A larger dataset 
with central apneas captured from appropriate camera angles may improve algorithm performance 
and enable algorithm validation. Using flexible posterior probability outputs (prediction ranging from 
0 to 1) from the SVM instead of label outputs might further optimize sensitivity, but this may also 
increase the false detection rate. Higher false detection rates might be acceptable if alerts can be 
easily verified by a caregiver who is close by, monitoring the video stream. Validation data should 
include central apneas occurring after convulsive seizures, to verify that these apneas indeed do not 
involve gross body movements. Long-term unselected recordings should be used to demonstrate 
robustness to the variety of (normal) breathing patterns and real-life false detection rates. Other 
application areas for the algorithm might also be explored, such as remote neonatal monitoring in 
the intensive care. 

5. Conclusions 

We present a novel automated algorithm to detect central apneas in video, based on the arrest of 
oscillatory breathing motions. The algorithm meets important applicability requirements for safety 
monitoring; detecting apneas quickly, able to distinguish apneas from gross body motion, usable 
during day and nighttime, and independent of skin visibility and body tracking. Our results suggest 
that it is feasible to detect apneas automatically in video, using this algorithm. When fully validated, 
it might be used as an online remote apnea detector, avoiding the use of contact sensors. Further 
studies are warranted. 
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Appendix 
Supplementary Table 1. Algorithm test results per camera for each subject. A dash in both sensitivity columns for relevant 
and all apneas means that the subject was not in view of that camera during the apnea(s). A dash in only the relevant apneas 
column implies that the apnea(s) registered from that camera angle were non-relevant. Cameras in which performance was 
best are underlined per subject. 
 

ID Camera 
Sensitivity (%) 

relevant apneas 
(N apneas) 

Sensitivity (%) 
all apneas 
(N apneas) 

False 
positive rate 

(/hour) 

Specificity  
for events 

(%) 

SIM1 1 87.5 (8) 77.8 (9) 0 100 
 2 87.5 (8) 77.8 (9) 0 100 
 3 100 (8) 88.9 (9) 0 100 
 4 33.3 (6) 22.2 (9) 0 100 
 late integrated 100 (8) 88.9 (9) 0 100 
 early integrated 100 (8) 88.9 (9) 0 100 

PAT1 1 - (0) - (0) 0 100 
 2 - (0) 0 (1) 0 100 
 3 - (0) 0 (1) 0 100 
 late integrated - (0) 0 (1) 0 100 
 early integrated - (0) 0 (1) 0 100 

PAT2 1 - (0) 0 (1) 3.4 98.6 
 2 - (0) 0 (1) 3.4 98.7 
 3 - (0) 0 (1) 3.4 98.6 
 late integrated - (0) 0 (1) 3.4 98.9 
 early integrated - (0) 0 (1) 3.4 98.7 

PAT3 1 - (0) 0 (1) 0 100 
 2 - (0) 0 (1) 2.3 99.0 
 3 - (0) 0 (1) 0 100 
 4 - (0) 0 (1) 2.3 99.0 
 late integrated - (0) 0 (1) 4.5 98.5 
 early integrated - (0) 0 (1) 2.3 99.0 

PAT4 1 100 (1) 100 (1) 6.8 97.2 
 2 0 (1) 0 (1) 2.3 99.1 
 3 - (0) 0 (1) 9.0 96.5 
 4 - (0) - (0) 6.8 97.1 
 late integrated 100 (1) 100 (1) 22.6 92.5 
 early integrated 100 (1) 100 (1) 0 100 

PAT5 1 100 (2) 33.3 (9) 2.3 99.0 
 2 100 (2) 33.3 (9) 0 100 
 3 - (0) 0 (9) 2.3 99.0 
 late integrated 100 (2) 44.4 (9) 4.5 98.3 
 early integrated 100 (2) 33.3 (9) 2.3 98.9 

PAT6 1 - (0) - (0) 0 100 
 2 100 (1) 100 (1) 0 100 
 3 100 (1) 100 (1) 0 100 
 4 - (0) 0 (1) 0 100 
 late integrated 100 (1) 100 (1) 0 100 
 early integrated 0 (1) 0 (1) 0 100 

PAT7 1 - (0) 0 (2) 0 100 
 2 - (0) 100 (2) 0 100 
 3 - (0) 100 (2) 6.8 97.0 
 late integrated - (0) 100 (2) 6.8 97.4 
 early integrated - (0) 0 (2) 0 100 

PAT8 1 100 (1) 100 (1) 9.0 96.2 
 2 100 (1) 100 (1) 0 100 
 3 100 (1) 100 (1) 0 100 
 4 - (0) 0 (1) 0 100 
 late integrated 100 (1) 100 (1) 9.0 96.7 
 early integrated 100 (1) 100 (1) 9.0 96.2 

PAT9 1 100 (1) 100 (1) 0 100 
 2 - (0) 0 (1) 4.5 98.2 
 3 - (0) 100 (1) 4.5 98.1 
 4 100 (1) 100 (1) 2.3 99.1 
 late integrated 100 (1) 100 (1) 6.8 97.7 
 early integrated 100 (1) 100 (1) 0 100 

Grouped 
all individual 

cameras 
83.7 (43) 46.7 (92) 2.2 99.1 

 best choice 100 (14) 63.0 (27) 1.1 99.5 
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 worst choice 80.0 (10) 37.0 (27) 3.3 98.5 
 late integrated 100 (14) 66.7 (27) 6.6 97.6 
 early integrated 92.9 (14) 51.9 (27) 1.6 99.3 

 


