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Abstract 
Summary: Standard bioinformatics pipelines for the analysis of bacterial transcriptomic data com-
monly ignore non-coding but functional elements e.g. small RNAs, long antisense RNAs or untrans-
lated regions (UTRs) of mRNA transcripts. The root of this problem is the use of incomplete genome 
annotation files. Here, we present baerhunter, a coverage-based method implemented in R, that au-
tomates the discovery of expressed non-coding RNAs and UTRs from RNA-seq reads mapped to a 
reference genome. The core algorithm is part of a pipeline that facilitates downstream analysis of 
both coding and non-coding features. The method is simple, easy to extend and customize and, in 
limited tests with simulated and real data, compares favourably against the currently most popular 
alternative. 
Availability:	The baerhunter R package is available from: https://github.com/irilenia/baerhunter  
	
Contact:	i.nobeli@bbk.ac.uk  
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 

1 Introduction  
Next-generation sequencing has facilitated global surveys of the tran-
scriptome, largely focused on studying differential expression of genes 
across different conditions. Studies of eukaryotic transcriptomes are 
increasingly embracing the analysis of non-coding transcript expression 
but in bacteria, where intergenic regions tend to be a lot shorter (Thorpe	
et	al.,	2017) and less well annotated, automated differential gene expres-
sion is still largely synonymous with differential expression of the cod-
ing regions (CDS). As the functional importance of bacterial non-coding 
RNAs (ncRNAs - the term used here to cover long antisense RNA, small 
regulatory RNA (sRNA), and untranslated parts of mRNAs) is becoming 
evident (Michaux	 et	 al.,	 2014), so is the need for including them in 
differential expression studies. 

A major obstacle in studying non-coding RNA expression in bacteria 
is that relatively few ncRNAs are reliably annotated and, with the excep-
tion of well-known cases (such as tRNAs, ribosomal RNAs and, more 
recently, some members of the RFAM (Kalvari	et	al.,	2018) families), 

the majority are not included in the standard annotation files required by 
computational pipelines. Requiring the non-coding RNAs to be included 
in the annotation is prohibiting their analysis by methods such as TrBor-
derEx (Wang	et	al.,	2015), which identifies the transcript boundaries but 
does not find new non-coding RNAs. An alternative to waiting for anno-
tations to improve is to identify ncRNAs using the expression data sig-
nal. Early efforts in this direction relied on a combination of manual 
inspection and in-house written scripts to identify clusters of reads fall-
ing outside known CDS regions (Arnvig	 et	 al.,	 2011)(Wilms	 et	 al.,	
2012)(Pfeifer-Sancar	et	al.,	2013). These studies offered great insights 
into the non-coding transcriptome but applying their approach in a dif-
ferent context is time-consuming and prone to errors due to the need for 
recreating the pipelines from scratch. Selected studies have led to public-
ly available software for the study of ncRNAs in bacteria. However, 
some methods are limited to specific species (Pellin	et	al.,	2012) or rely 
on specialized sequencing protocols (Peña-Castillo	et	al.,	2015;	Amman	
et	 al.,	 2014). Two notable exceptions have appeared in recent years. 
DETR'PROK (Toffano-Nioche	et	al.,	2013)  employs the Galaxy plat-
form (Afgan	 et	 al.,	 2018)  to classify clusters of RNA-seq reads not 
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overlapping with annotated genes as sRNAs, antisense RNAs, and 
UTRs. The updated annotation file can be used to carry out differential 
gene expression. However, the DETR'PROK workflow is composed of a 
large number of steps, requires an active user input at several stages and 
depends on access to a Galaxy instance.  Rockhopper (McClure	et	 al.,	
2013), a standalone, Java-based program that allows both identification 
of features in a bacterial transcriptome and differential expression be-
tween conditions, is primarily aimed at non-bioinformaticians. A user-
friendly graphical interface masks a fairly sophisticated set of algorithms 
that are presented as a black box with only a handful of parameters ac-
cessible to the user. Although straightforward to use, the set up is inflex-
ible with little scope for extending or altering the pipeline without expert 
interfering with the code.  Finally, very recently, two more tools have 
been added to aid the discovery of non-coding RNAs in bacterial RNA-
seq data. ANNOgesic (Yu	et	al.,	2018) is an ambitious and comprehen-
sive pipeline that aims to fully characterize non-coding expressed re-
gions in bacterial genomes. It has a large number of dependencies and its 
full potential is likely to be only realized when parameters for all mod-
ules included in the pipeline are suitably optimized. APERO (Leonard	
et	al.), on the other hand, is a method that does not rely directly on read 
coverage, is implemented as an R package, so installation is straight-
forward, and performs well in comparison with many other methods.  
However, it requires paired-end reads and so cannot be used on many of 
the legacy RNA-seq datasets currently present in databases. 

Here, we present baerhunter (“baer” stands for bacterial expressed 
regions), a new coverage-based method implemented in R (R Core 
Team, 2018), for automating the detection and quantification of ex-
pressed putative non-coding RNAs (including UTRs) in bacterial strand-
specific RNA-seq data. At the core of the baerhunter pipeline is a simple 
but effective method of capturing expressed intergenic regions across 
sets of RNA-seq data samples. The method is designed to provide pre-
dictions of approximate locations of non-coding elements, reflecting our 
belief that accurate definitions of transcript ends are best achieved by 
targeted experimental methods rather than computational predictions 
from noisy data. We refer to these predictions as either “UTRs”, if they 
are thought to be the untranslated part of a coding mRNA, or putative 
sRNAs, which in this context encompasses all other types of non-coding 
RNA in bacteria, including long antisense RNAs. The pipeline built 
around this method facilitates the analysis of differential expression of 
these regions in parallel with the more traditional protein-coding-focused 
analysis. Below, we describe our method and present the results of test-
ing its performance both on simulated and real data from Mycobacterium 
tuberculosis (Mtb). In addition, we compare baerhunter to Rockhopper, 
chosen as the most widely used alternative method, as well as to AN-
NOgesic and APERO, chosen as the most recently developed methods. 

2 Methods 
The core algorithm of baerhunter carries out a search for intergenic 

features on each strand, displaying a minimum length and coverage 
depth in the RNA-seq signal (see Supplementary Methods for details). 
The algorithm is wrapped within a “driver” R script that can be easily 
edited to include, exclude or modify steps, depending on the user’s re-
quirements. Individual functions of baerhunter can also be used in isola-
tion or incorporated within different pipelines. In the default mode, 
baerhunter reads in a set of Binary Alignment Map (BAM) files with 
RNA-seq reads mapped to a reference genome and an annotation file in 
the Generic Feature Format (GFF3) for the same genome. It will then 
identify expressed intergenic regions on each strand (“features”) and 
combine overlapping features across multiple BAM files to create a full 

set of non-overlapping genomic features. In addition, baerhunter allows 
for new transcripts to be filtered by their expression level (normalised to 
transcripts per million (TPM) values), as many very low-expression 
features are likely to be the result of transcriptional noise or ambiguous 
read mapping. Finally, differential expression analysis, including all 
newly annotated putative features, is facilitated by a wrapper script that 
utilizes the DESeq2 method (Love et al., 2014).  

To test baerhunter, a simulated RNA-seq dataset was created using the 
package polyester (Frazee et al., 2015). In addition, RNA-seq data from 
the study of (Cortes et al., 2013), six samples from exponentially grow-
ing and starved cultures of Mtb, were downloaded from Array Express 
(E-MTAB-1616) and processed as detailed in Supplementary Methods. 
Following analysis with baerhunter, the sRNA/UTR predictions were 
compared to a set of experimentally confirmed and predicted mycobacte-
rial sRNAs from the comprehensive review of (Haning et al., 2014). 
Transcription start sites reported by (Cortes et al., 2013) for the same 
samples were also used to assess the accuracy of our predictions. The 
genome browser Artemis (version 17.0.1) (Carver et al., 2012) was used 
for visualization. 

Rockhopper was used with default parameters, except for the mini-
mum transcript length that was set to 40 nucleotides to match the 
baerhunter settings. Two minimum expression thresholds were tested 
(0.5, the default, and 0.2, to increase sensitivity).  

Comparison with APERO and ANNOgesic was limited to the use of 
two datasets available in the corresponding publications.  Baerhunter was 
run with default settings on a single file of mapped reads derived from 
the Salmonella enterica SRA dataset SRX1036363 (sample 
SRR2149882, paired-end data) and kindly provided to us by the APERO 
developers. We followed APERO’s approach and assessed the accuracy 
of our ncRNA predictions using the Jaccard index (the fraction of the 
overlap over the union of intervals) for each predicted ncRNA with 
known coordinates.  We then compared our predictions to predictions 
listed for both APERO and ANNOgesic in the Supplementary File S2 of 
the APERO publication. For a fairer comparison to ANNOgesic, we 
processed the Campylobacter jejuni GEO dataset GSE38883 used in the 
ANNOgesic publication  (4 samples of single-end reads) and ran 
baerhunter on the mapped reads files with default settings. We then 
compared our overall predictions to the list of known sRNAs available 
from the ANNOgesic authors and to ANNOgesic results, as presented in 
their publication. In addition, we assessed the accuracy of the baerhunter 
5’ UTR predictions using the manually annotated subset of TSS availa-
ble from the ANNOgesic authors. 

All code and data required to reproduce this analysis are available 
from Zenodo: 

(scripts) http://doi.org/10.5281/zenodo.3353102 
(data) http://doi.org/10.5281/zenodo.3352787 
 

The baerhunter code version used here is archived at Zenodo: 
http://doi.org/10.5281/zenodo.3253339 

The latest version of baerhunter is available from: 
https://github.com/irilenia/baerhunter 
 
 

3 Results 

3.1 Simulated dataset 
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We tested the ability of baerhunter to recover expressed intergenic re-
gions and UTRs using simulated data. 1000 genomic features were ran-
domly selected from the Mtb genome, including twenty-four short RNAs 
included in the original annotation (see Supplemental Methods). As the 
genome annotation file does not include UTR information for Mtb, arti-
ficial UTRs were added to a random subset of 200 genes. These 1000 
features were simulated in 10 samples belonging to two groups (with 
fold changes between 1 and 5 applied to 20% of the features). Our pipe-
line applied to paired-end read simulations recovered all short RNAs and 
all UTRs, with exact predictions for the start and end coordinates of all 
24 sRNAs and over half of the UTRs (the remaining being in their vast 
majority within 5 nucleotides of the true range). Results were relatively 
insensitive to small changes in the program parameters (Supp Table 1). 
Rockhopper performed similarly on sRNAs, recovering 23 of 24 when 
run at default sensitivity (22 of the 23 sRNAs had their coordinates ex-
actly predicted) but was less successful in the prediction of UTRs, miss-
ing 4 of the 200 and estimating the lengths of approximately a quarter of 
the ones it predicted to be at least 20 nucleotides shorter than expected 
(Supp Figure 4).  
 

Fig. 1. 	Comparison of baerhunter’s predictions with Rockhopper, APERO and 
ANNOgesic. A. In all three figures (i, ii and iii), the panels arranged in rows are: TSS: 
reads from the 5’ sensitive sequencing data used to derive the TSS (shown as arrows 
pointing to the direction of transcription) are shown as blue (+ strand) and red (- minus) 
coverage lines based on normalised counts per base from the Cortes et al. (Cortes et al., 
2013) dataset; RH (sRNA) and RH (UTR): sRNA and UTR predictions from Rockhopper 
run with default sensitivity, 0.5; RH_0.2 (sRNA) and RH_0.2 (UTR): sRNA and UTR 
predictions from Rockhopper run with increased sensitivity, 0.2; RH_wig+ and RH_wig- 
: RNA-seq trace from Rockhopper mapping of reads for sample ERR262980 (blue: 
positive strand, red: negative strand);  and BH_bam:  the RNA-seq trace corresponding to 
read coverage in sample ERR262980 mapped by our own pipeline (see supplemental 
Methods). Filled pink rectangles in row “BH_bam” highlight the putative UTR region as 
predicted by baerhunter. Transparent blue rectangles (panels ii and iii) highlight the two 
short RNAs predicted by baerhunter on the negative strand. (i). The experimentally 
detected TSS (arrow in row “TSS”) supports a 90 nt 5’ UTR for the uncharacterized 

protein Rv1065. The baerhunter’s prediction is 84 nt long (region highlighted with pink in 
row “BH_ham”), closely following the RNA-seq trace. Rockhopper’s prediction is similar 
when run with the more sensitive detection threshold of 0.2 (dark pink rectangle, row 
“RH_0.2 sRNA”) but run at the default 0.5, it splits the prediction to a “non-coding RNA” 
(green rectangle, row “RH sRNA”) and a much shorter 5’ UTR (bright pink, row “RH 
UTR”) that is not supported by TSS data. (ii).  The baerhunter program predicts a long 
(178 nt) 5’ UTR ahead of the Rv0282 gene and an antisense RNA (90nt) partially over-
lapping this UTR. Both predictions are supported by experimentally detected TSS (black 
arrows pointing in opposite directions; row “TSS”). Rockhopper, run with default preci-
sion parameters, predicts a non-coding RNA (light green; panel “RH sRNA”) and no 5’ 
UTR (row “RH UTR”), whereas when run at higher sensitivity, it predicts a non-coding 
RNA further downstream (dark green, row “RH_0.2 sRNA”) as well as a short 5’ UTR 
(dark pink, row “RH_0.2 UTR”), corresponding to a weaker TSS just ahead of the coding 
region of the gene (small blue peak, row “TSS”). In both cases, Rockhopper misses the 
antisense RNA that is clearly seen in the RNA-seq trace of the exponentially growing 
bacteria (black trace on the negative strand, row “BH_bam” and red-fill trace, row 
“RH_wig-“).(iii).The baerhunter program discovers both the 5’UTR ahead of the Rv1009 
(rpfB) gene and the antisense RNA overlapping it on the negative strand (both of which 
have experimental TSS support).  Rockhopper does not predict any ncRNA features in the 
same region, although its own mapping of reads results in clear expression on both 
strands (rows “RH_wig+” and “RH_wig-“). The similarities between read coverage as 
reported by Rockhopper (rows “RH_wig+” and “RH_wig-“) and our own pipeline (row 
“BH_bam”) indicate that differences between the Rockhopper and baerhunter predictions 
are not due to differences in the way the reads were mapped to the reference genome but 
instead are due to the different ways the programs identify expressed regions. B. The 
heatmap represents Jaccard index values for coordinate predictions of a list of known S. 
enterica sRNAs. A Jaccard index ranges from 0 (no overlap between predicted and 
known sRNA transcripts) to 1 (predicted and known transcripts overlap fully and are on 
the same strand). Only the first 30 sRNAs from the list of 208 available in the APERO 
paper (Leonard et al.) are shown in this figure (full heatmap can be seen in Supp. Fig. 9 
and a table of binned Jaccard indices is given in Supp. Table 3). The column labeled 
“baerhunter.all” includes predictions of transcripts that have been classified as putative 
UTRs by baerhunter but overlap known sRNA transcripts. It is clear that some of the 
UTR predictions contain known sRNAs but as they are found adjacent to gene features, 
they are considered UTRs by baerhunter. The full heatmap (Supp Figure 9 and Supp. 
Table 3) indicates that baerhunter’s and APERO’s predictions are more accurate than 
ANNOgesic’s on this dataset (Wilcoxon signed-rank (paired) test, testing the hypothesis 
that the baerhunter and APERO Jaccard indices are greater than ANNOgesic’s; p-value = 

A	 B	

TSS	

RH	
(sRNA)	

RH_0.2	
(UTR)	

RH_0.2	
(sRNA)	

RH	
(UTR)	

RH_wig+	

RH_wig-	

BH_bam	

1127876	 1127955	 1128048	341976	
342006	1187351	

(i)	 (ii)	 (iii)	
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0.00608 and 0.00046 respectively). APERO is marginally better than baerhunter (Wil-
coxon signed-rank (paired) test, p-value = 0.039) but if UTR predictions are included in 
baerhunter’s predictions of these known sRNAs, then the APERO and baerhunter distri-
butions of Jaccard indices show significant overlap (Wilcoxon signed-rank (paired) test, 
alternative hypothesis = “two sided”, p-value = 0.078).   

 

3.2 Real datasets 

Comparison with Rockhopper 

In addition to using simulated data, we applied baerhunter to the RNA-
seq data from starved and exponentially grown cultures of Mtb (Cortes et 
al., 2013). In this case, the true number of non-coding RNAs is un-
known, so baerhunter was benchmarked against transcription start-site 
data from the same samples, as well as lists of known and predicted non-
coding RNAs (Haning et al., 2014) in order to assess the likely accuracy 
of our predictions.  

At the more stringent parameter values (5-20), 74-83% of the predict-
ed sRNA features in samples from either condition are supported by the 
presence of a TSS, even at one-nucleotide resolution (Supp Figure 5A & 
Supp Table 2). Relaxation of the cut-off (to 5-10) increases false posi-
tives but, importantly it also increases true predictions, thus allowing 
more transcripts to be discovered at the cost of a more noisy output 
(Supp Fig. 5B & Supp Table 2).  Although more than half of the 
baerhunter-predicted sRNAs do not correspond to sRNAs in the pub-
lished list of (Haning et al., 2014), visual examination of the RNA-seq 
signal confirms expression at these loci (Supp Figure 6), usually from a 
very weak TSS that has not passed the inclusion cut-off in the original 
study by (Cortes et al., 2013). These transcripts are often expressed at 
very low levels and can be easily filtered out using expression strength. 
Rockhopper, run at default expression cut-offs, not only predicts fewer 
sRNAs but also a smaller percentage of these predictions (~50-75%) are 
supported by TSS evidence (Supp Figure 5C&D). The prediction of 
UTRs is harder to assess. In the absence of ground truth for 3’ UTRs, we 
compared the start of the 5’ UTR predictions to TSS data. Differences 
were generally small when default parameters were used (Supp Figure 
7). Rockhopper run at increased sensitivity predicted more of the 5’ 
UTRs backed by TSS evidence but this increase was accompanied by an 
increase in the number of predictions without a match to a known TSS.  
 

Comparison with APERO and ANNOgesic 

To compare baerhunter to the more recently developed APERO and 
ANNOgesic methods, we used two datasets included in the publications 
describing these methods. Baerhunter’s predictions of known sRNAs in 
S. enterica are comparable in accuracy to results from APERO and better 
than results from ANNOgesic on the same data (see Figure 1B and Supp 
Figure 9). As some of the sRNAs border CDS regions, baerhunter by 
design will label these as putative UTRs. Hence, if UTR predictions are 
also taken into account then baerhunter’s accuracy is even higher (the 
number of sRNA transcripts predicted with some overlap to known 
transcripts goes up from 125 to 147 (out of a total of 208) and the medi-
an Jaccard index goes up from 0.49 to 0.62; the corresponding numbers 
for APERO are 125 and 0.56; for ANNOgesic they are 128 and 0.44). 

Results for the C. jejuni dataset are less accurate but remain compara-
ble to ANNOgesic for sRNA (see Supp Figure 10). Baerhunter predicts 
transcripts overlapping 22 of the 31 C. jejuni known sRNAs but this 

number goes up to 29, if UTR predictions are included. Hence, 
baerhunter recovers more of the transcripts in this list than the number 
reported by ANNOgesic (26 of 31). However, baerhunter’s predictions 
of the transcript limits are a lot less accurate for this dataset than all 
others examined. The reason is that 9 of the 31 transcripts are incompati-
ble with baerhunter’s algorithm (one falls within the limits of a genomic 
feature in the original annotation file and is missed by design; the re-
maining eight would be too short to pass baerhunter filtering on mini-
mum length and would have been missed entirely, had it not been for the 
fact that they form a cluster in the genome with overlapping expression 
peaks; these are seen by baerhunter’s naïve algorithm as one long tran-
script). Nevertheless, the median Jaccard index for the set of both pre-
dicted sRNAs and UTRs is reasonable (0.53) and indicates that even in 
difficult cases, baerhunter’s predictions can be a useful starting point for 
further exploration.  

Baerhunter is much less sensitive in predicting 5’ UTRs in the C. je-
juni dataset, when benchmarked against the manually annotated subset of 
TSS on which ANNOgesic TSS prediction was trained. In this region 
where 162 5’ UTRs (of length greater than 50 bases) are expected given 
the TSS list, baerhunter predicts only 33 5’ UTRs (23 of which are with-
in 10 bases of a TSS and the rest are associated with a clear signal in 
RNA-seq). Visual examination of missed cases suggests that the low 
sensitivity is due to two facts: a) baerhunter cannot detect 5’ UTRs that 
are preceded by signal above the noise level (as is the case in intergenic 
regions of operons) and b) many TSS in the curated list do not corre-
spond to significant read coverage in the RNA-seq signal. Although (a) 
can be addressed with future improvements to the software, we believe 
that baerhunter behaves correctly in cases covered by (b), as it was not 
designed to detect TSS but to report expressed UTR regions. 
 

4 Conclusions 
Our new method, baerhunter, allows the extraction of bacterial putative 
non-coding expressed regions directly from RNA-seq data and facilitates 
the integration of differential expression studies of coding and non-
coding elements in bacterial transcriptomes. Importantly, baerhunter’s 
results are of similar accuracy to two recent, more sophisticated methods 
and compare favourably with the most popular alternative method in 
tests with both simulated and real data. 
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