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Abstract 

Current methods for the assessment of nanoparticle safety that are based on 2D cell 
culture models and fluorescence-based assays, show limited sensitivity and they lack 
biomimicry. Consequently, the health risks associated with the use of many nanoparticles 
have not yet been established. There is a need to develop in vitro models that mimic 
physiology more accurately and enable high throughput assessment. There is also a need 
to set up new assay that offer high sensitivity and are label-free. Here we developed ‘mini-
liver’ models using scaffold-free bioprinting and used these models together with label-
free nanoscale techniques for the assessment of toxicity of nanodiamond produced by 
laser-assisted technology. Results showed that NDs induced cytotoxicity in a concentration 
and exposure-time dependent manner. The loss of cell function was confirmed by 
increased cell stiffness, decreased cell membrane barrier integrity and reduced cells 
mobility. We further showed that NDs elevated the production of reactive oxygen species 
and reduced cell viability. Our approach that combined mini-liver models with label-free 
high-resolution techniques showed improved sensitivity in toxicity assessment. Notably, 
this approach allowed for label-free semi-high throughput measurements of nanoparticle-
cell interactions thus could be considered as a complementary approach to currently used 
methods.  

Keywords: nanodiamond, nanosafety, atomic force microscopy, 3D liver model, 
mechanobiology, nanomechanics, holotomography.  

 

 

 

 

 



Introduction  

Engineered nanoparticles became an integral component of cosmetics, food, biosensors 

and therapeutics. Nanoparticles are often considered to be ‘safe’, which is defined as ‘not 

causing substantial harm’. However, the negative impact of nanoparticles on human health 

and the environment has been demonstrated in increasing number of reports (Bettini, et 

al., 2017, Peng, et al., 2019, Setyawati, et al., 2013, Setyawati, et al., 2017, Yamashita, et 

al., 2011, Pinget, et al., 2019). Among different classes of engineered nanoparticles, 

nanodiamonds (NDs) have gained significant attention for drug delivery (Alhaddad, et al., 

2011, Li, et al., 2010, Wang, et al., 2013, Zhao, et al., 2014) and bioimaging (Zhang, et al., 

2012, Luo, et al., 2016, Brady, et al., 2015, Manus, et al., 2009, Chao, et al., 2007, Lee, et 

al., 2017). NDs can be manufactured using different methods such as detonation, high-

pressure high-temperature synthesis (HPHT) (Boudou, et al., 2009), laser assisted 

technology (Baidakova, et al., 2013) and plasma assisted chemical vapor deposition. Each 

method results in NDs of varying structure, size and purity. As such, their safety cannot be 

generalised without the assurance that the different manufacturing processes induce 

different physical-chemical properties and thus different biological activity.  

Some studies have suggested that NDs are biocompatible and non-cytotoxic (Moche, et 

al., 2017, Paget, et al., 2014), while Krüger et al. and Mytych et al. showed that HPHT NDs 

is cytotoxic (Krüger, 2006, Mytych, et al., 2014). Through in vivo experiments Yuan et al. 

showed that NDs were stable, non-biodegradable and retained in the body for 28 days 

(experiment end point) (Yuan, et al., 2009). A study by Chu has suggested that the ‘coarse’ 

edges of NDs, allow them to escape the endosomes and reach cytoplasm of cells, which 

may lead to toxicity (Chu, et al., 2015). Hence, the poorly understood interactions of 



nanodiamonds with body fluids, cell and tissues, its long-term stability and non-

degradability have raised major safety concerns.  

With the emergence of conflicting reports, it is clear that there are flaws in the current 

methodologies used for nanotoxicity assessment. Some of the major limitations include 

the lack of biomimicry in the in vitro models, the lack of long term nanoparticle exposure 

studies, the lack of high-throughput in majority of methods used for nanotoxicity 

assessment and the limited spatial resolution of conventional methodologies to evaluate 

the impact of nanoparticles on cells or tissues. Therefore, it is critical to reassess the safety 

of existing and emerging classes of nanoparticles before clinical or commercial use. 

However, achieving this goal will require an update to the regulatory framework and 

protocols used for nanosafety assessment.  

2D vs 3D models for toxicity assessment 

Traditionally, 2D cell culture models have been used for assessing nanoparticle safety. 

Although these models do not mimic in vivo environment (Lee, et al., 2009, Chia, et al., 

2015), they remain in use for chemical safety assessment. 3D tissue-like models have been 

found to bridge the gap between in vitro 2D cell culture models and animal models 

(Yamada and Cukierman, 2007). 3D models replicate the complex multicellular networks 

that support the physiological exchange of nutrients, promote the formation of 

extracellular matrixes and facilitate the retention of cellular polarity for tissue organization 

(Daquinag, et al., 2012). Thus, 3D models are more effective than 2D cell cultures in 

investigating processes such as the translocation of nanoparticles through cellular layers. 

Additionally, 3D models can be prepared in a configuration that allows for high-throughput 



measurements to complement other high-content assessment methods (Collins, et al., 

2017).  

Characterization and assessment methods of toxicity  

The cell cytoskeleton maintains the structural and mechanical integrity of the cell (Cai, et 

al., 2010) and plays a key role in signaling pathways also known as mechanical transduction 

(Haghi, et al., 2015). Changes in cytoskeletal structure regulate the function and 

mechanical properties of cells (Head, et al., 2014). The mechanical properties of cells are 

therefore considered as a biomarker of 

diseases and patho/physiological 

processes (Cross, et al., 2007, Li, et al., 

2012). Hence, by measuring 

mechanical properties of cells we are 

able to assess the toxicity of 

nanoparticles. 

One of the techniques used to measure 

the mechanical properties of cells is 

atomic force microscopy (Fig. 1). Due to its 

high resolution, ability for correlative label-

free imaging and mapping of mechanical 

properties (Kirmizis and Logothetidis, 2010, Butt, et al., 2005, Webb, et al., 2011), AFM is 

well-placed for testing the biological impact of nanoparticle on cells/tissues.  

Conventional techniques such as Fourier transform infrared spectroscopy, Raman 

spectroscopy used for nanotoxicity assessment have limited spatial resolution (micron 

level), which makes them suitable only for ‘bulk’ measurements. Conventional 

Fig.1: Schematics for atomic force 
microscopy based nanoindentation 
technique for biomechanical 
measurement of cell. 



nanotoxicity assays may also utilize fluorescent probes/dyes (Ong, et al., 2014). Since 

nanoparticles can interact with dyes, the results may be biased (Ong, et al., 2014). 

Therefore, it is critical to introduce new label-free techniques, which can characterize 

interactions of individual nanoparticles and cells at nano levels without the need for 

expensive dyes.  

To address the aforementioned limitations, we first developed ‘mini-livers’ (3D liver 

model) using magnetic levitation and bioprinting, which allowed for high throughput 

assessment of nanoparticles toxicity. Next, we used an array of label-free methods 

including real time imaging, impedance spectroscopy and atomic force microscopy (force-

volume mechanical properties measurements), to determine the toxicity of nanodiamond. 

The internalization, aggregation and accumulation of NDs in cells were measured using 3D 

holotomography, dark field hyperspectral imaging and scanning electron microscopy. For 

control experiments, we used 2D cell culture models and measured cell growth, quantified 

DNA and reactive oxygen species (ROS) production as measures of cytotoxicity.  

The work presented here is significant because it provided a new approach for a 

comprehensive assessment of nanoparticle toxicity using nanoscale-resolution label-free 

methodologies and also demonstrated that 3D cell culture model – ‘mini-livers’ – were 

effective in rapid and semi high-throughput assessment of toxicity. Taken together, 

methodological advances presented here formed a framework for label-free, high-

sensitivity nanotoxicity assessment. Our approach complements traditional 

methodologies and improves their sensitivity for the assessment of impact of 

nanoparticles on health. 

 



Materials and Methods  

Nanodiamond particle preparation and physico-chemical characterization 

Nanodiamond particles (NDs) with nominal size 5 nm produced by laser-assisted 

technology (Ray Techniques Ltd., Israel) were sonicated in sterile deionized water (DI) at a 

concentration of 1 mg·mL-1  (DI) for 30 min at 60% amplitude using an ultrasonic probe. ND 

dispersions were UV sterilized and then characterized using atomic force microscopy 

(AFM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and 

X-ray diffractometry (XRD) to ascertain nanoparticle size, shape, crystallographic structure 

and morphology. Surface chemical composition was investigated using Fourier transform 

infrared spectrophotometry (FTIR) and X-ray photoelectron spectroscopy (XPS).  

Atomic Force Microscopy 

ND were immobilized on a mica disc functionalized with 0.1% poly-L-lysine and scanned 

using AFM (Multimode VIII, Bruker, UK) in tapping mode at 0.5 Hz scan rate, using 

ultrasharp silicone tip (AppNano, ACTA-SS-10; resonance frequency 300 kHz and spring 

constant 37 Nm-1).  

Transmission electron microscopy 

ND dispersions were drop casted onto carbon-coated copper grids (Ted Pella Inc., USA) 

and dried in desiccator before imaging. Images were acquired using TEM (Carl Zeiss Libra 

120) with an accelerating voltage of 120 kV, magnification 80,000´. 

Nanoparticle tracking analysis (NTA) 

NDs were diluted to 5 μg·mL-1 in cell culture medium (see cell based assays) and vortexed 

for 5 minutes prior to evaluation for size distribution on a Nanosight NS300 (Malvern, UK) 



at 488 nm. Measurements were performed in triplicates; see supplemental materials for 

full protocol. 

 X-ray diffractometry (XRD) 

XRD of NDs was performed on a D8 Advance Bruker diffractometer (Bruker, UK) in a flat 

plate geometry using Ni-filtered Cu Kα radiation and a Bruker Lynx eye detector. X-ray 

diffraction patterns were collected from 10 to 100 2θ with a step size of 0.02° and a count 

time of 0.1s. 

Fourier transform infrared spectrophotometry (FTIR) 

FTIR spectra were recorded by the attenuated total reflectance (ATR) technique using a 

FTIR7000 series spectrometer (Digilab, USA) with Germanium ATR crystal of 45 ° incident 

angle and globar source of IR irradiation.  Absorbance spectra were recorded in mid IR 

(infrared) range from 4000 to 400 cm-1, taking average of 500 scans with a resolution of 4 

cm-1. 

X-ray photoelectron spectroscopy (XPS) 

Elemental composition of NDs was analyzed using XPS (PHI 5000 Versaprobe II, Japan) 

using an Al-Ka monochromator X-ray source. Survey scan was acquired at 100 eV pass 

energy between 0 and 1400 eV. High resolution spectra for carbon, oxygen and nitrogen 

were collected at 20 eV pass energy. The elemental composition was calculated from the 

high-resolution spectra using CasaXPS.  

Cell based assays  

Rat hepatoma cells (Fao), which stably express a large set of functions specific to 

hepatocytes, including secretion of serum proteins and synthesis of hepatic neonatal 

enzymes, were used in this study. They have also been validated in previous studies on 



liver toxicity (Chaya, et al., 1997, Cassio and Weiss, 1979, Deschatrette, et al., 1985). Fao 

cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

4.5 g/L D-glucose, 2 mM L-glutamine (Sigma-Aldrich, Australia), 1% Pen-Strep (Gibco, 

ThermoFisher SCIENTIFIC, Australia) and 10% Fetal Bovine Serum (Sera Laboratories). Fao 

cells were used to prepare both two-dimensional (2D) and ‘mini-livers’ – three-

dimensional (3D) liver cell culture models. Cytotoxicity of NDs was determined by 

measuring ROS level, metabolic dehydrogenase activity, DNA concentration, impedance 

measurement and changes to the cytoskeleton organization. Cellular uptake and 

localization of NDs was determined using label-free methods: holotomography, dark field 

hyperspectral imaging, scanning electron microscopy (SEM) and AFM. 

Quantification of ROS 

Fao cells were seeded in 96-well white walled plates (1 × 104 cells/100µL) and incubated 

overnight for attachment. The cells were treated for 24 h with preconditioned media 

containing NDs at concentrations 10, 25, 50, and 100 μg·mL-1. Menandione (20 μM) was 

used as a positive control. The production of ROS was measured using the ROS-Glo™ 

H2O2 Assay (Promega, Australia). As ROS generated during exposure is short lived, ND 

treatment   was limited to 24 h.  

Real-time cytotoxicity assay (RTCA) 

Cells were seeded at a density of 2,000 cells/250 μL per well. Cell attachment was 

monitored using impedance measurement on an xCELLigence instrument (Roche, 

Germany). A stabilized impedance value indicated cell attachment (approximately 20 h 

post seeding). ND preconditioned media (2.5, 5, 10, 15 and 25 μg·mL-1) was added to wells 

and impedance measurements were performed every 15 min for 126 h. Impedance 



measurements were also conducted for 168 h. However, significant differences in cell 

membrane integrity were observed within 126 h of exposure. At day 7, cells were over 

confluent and started detaching from the electrodes. Thus, the results obtained only up to 

126 h were more representative of true proliferation of the cells and were reported below. 

Changes in electrical impedance were expressed as a dimensionless cell index value, 

obtained from the relative impedance changes corresponding to cellular coverage of the 

electrode sensors present in the wells. Before the cells were treated with nanodiamond, 

all impedance values were normalised to the values obtained from control cells (cells 

cultured in media only) at the time of exposure. 

Cell viability assays  

Cell viability was measured using CCK-8 assay (Dojindo Molecular Technologies Inc., Japan) 

which corresponds to WST-8 tetrazolium salt to assess mitochondrial dehydrogenase 

activity. Fao cells were seeded at a density of 2000 cells/well on 96-well plates and were 

allowed to attach overnight. Media was aspirated and replaced with ND-conditioned 

media containing 10, 25, 50 and 100 µg·mL-1 of NDs. At each predetermined time point 

(days 2, 4 and 7), cells were washed with PBS once and 100 μL of fresh media containing 

10% CCK-8 reagent was added to each well. After three hours of incubation in the dark, 

the media was transferred to a new 96 well plate, and the optical density (OD) of each well 

was measured using a microplate reader at 450 nm (Victor x4 multilabel plate reader, 

Perkin Elmer, USA). 

For DNA quantification, media was removed at day 2, 4 and 7 and each well was washed 

with PBS once followed by addition of 75 μL of CyQUANT NF® assay dye reaction mix 

(ThermoFisher Scientific, Australia). Plates were incubated in the dark for 45 min before 



measuring fluorescence at excitation and emission wavelengths of 485 and 535 nm 

respectively using microplate reader (Victor X4, multilabel plate reader, Perkin Elmer, 

USA). 

Cytotoxicity of ND in 3D mini-liver model 

The effect of NDs on cell growth and function in a 3D mini-liver model was quantified using 

ring closure and dot assays following previously published methodology (Khanal, et al., 

2017, Hau, et al., 2016, Timm, et al., 2013, Tseng, et al., 2015). In brief, cells were cultured 

overnight with magnetic nanoparticles (NanoShuttle−PL; Greiner Bio-One, USA) at a 

concentration of 8 μL/cm2. After trypsinization, magnetized cells were levitated overnight 

using magnetic drives to form a ‘cluster’ of cells, which were then bioprinted in the shape 

of rings (2 × 105 cells per ring) and spheroids (1 × 105 cells per spheroid) using a set of 

magnetic drives. Mini-liver models in a form of rings and spheroids were treated with NDs 

at a concentration of 10, 25, 50 and 100 μg·mL-1 (Fig. S5 and S6). Both internal and external 

diameters were monitored in real-time for 48 h. Based on recorded images, the percentage 

rate of diameter and area change was calculated using Cytox® software, a custom-built 

software to estimate IC50 concentrations of NDs. See supplemental materials for full 

protocol and analysis. 

Nanoparticle uptake and visualization 

3D holotomography 

Fao cells were seeded (5 ´ 104 cells) onto plasma treated glass bottom dishes (35 mm, 

Ibidi®, Denmark) and allowed to attach overnight. Media was replaced with ND 

preconditioned media at concentrations of 10, 25, 50 and 100 μg· mL-1. Cells were exposed 

to NDs for up to 7 days and ND uptake and localization was determined after 2 and 7 days 



using a 3D CellExplorer (NanoLive, Switzerland). The images were analyzed with STEVE® 

software (NanoLive, Switzerland). 

Dark field hyperspectral imaging 

Plasma treated glass coverslips were individually transferred to 6-well plate and seeded 

with 2.5 ´ 104 Fao cells. After overnight culture that allowed cells to attach, media was 

replaced with ND preconditioned media at concentrations of 10 and 25 μg·mL-1. Cells were 

exposed to NDs for up to 7 days and dark field hyperspectral imaging was done using 

CytoViva microscope (CytoViva, USA); see supplemental materials for full protocol.  

SEM 

Fao cells were treated with ND preconditioned media (25 μg· mL-1) for 24 h to allow ND 

internalization. Treated cells were washed, harvested, fixed, dehydrated and embedded in 

Spurr’s resin (ProScitech, Australia) to obtain microtomed ultrathin (70 nm) sections for 

SEM imaging, using formvar coated TEM grids. SEM images were captured using a Sigma 

VP Zeiss field emission SEM in Gatan back scattered mode, maintaining a working distance 

of 5.1 mm with an electronic high-tension value of 1.60 kV. See supplemental materials for 

full protocol. 

AFM imaging 

Fao cells treated with NDs were imaged using a nanoIR (AnasysInstruments, USA), using 

silicon nitride cantilever probes with a nominal spring constant of 40 Nm-1 (EXT125, 

AppNano, Mountain View, CA) operating in tapping mode at a scan rate of 0.3 Hz.  

Effect of nanodiamond on cytoskeleton 

Cytoskeleton organization (actin fiber network) was analyzed through fluorescent imaging 

of phalloidin (f-actin)-stained samples using inverted fluorescent microscope (Nikon 



TE2000-U, Japan). See supplemental materials for full protocol. 

Fao cell morphology and stiffness measurements 

To investigate the influence of NDs on cell stiffness, cell mechanical properties were 

measured using Molecular Force Probe (MF3D-Bio, Asylum Research, USA) operating in 

force-volume mode. See supplemental materials for full protocol. 

Statistical analysis 

All statistical analysis was carried out using GraphPad Prism software. Results were 

statistically compared using Student’s t test, one way ANOVA and two way ANOVA with 

Tukeys multiple comparison test). Statistical significance was established at p < 0.05.  

Results 

Physico-chemical characterization 

The XRD diffraction pattern for NDs had a two diffraction maxima at 2q of 43.9 and 75.4, 

which correspond to diamond (Baidakova, et al., 2013). The average crystal size of the NDs 

was 5 nm based on the Scherrer formula (Fig. 2a).  

Bulk chemical analysis (FTIR) revealed peaks at 1107 cm−1, 1177 cm−1, and 1256 cm−1, which 

are typical for ND and associated with stretching vibration of C−O group (Baidakova, et al., 

2013). Additionally, we observed low intensity peaks at 1384 cm−1 and 1436 cm−1 that 

corresponded to aceto-group and C−H (SP3) bending vibration. Aceto-groups are likely to 

be related to the manufacturing process of NDs and they stabilize NDs structure  

(Mochalin, et al., 2012). Furthermore, peak at 1760 cm−1 (C=O) confirmed partial oxidation 

of NDs, while peaks at 1630 cm−1 (bending vibration) and 3400 cm−1 (O-H stretching 

vibration) corresponded to adsorbed water (Khanal, et al., 2016).  



Nanoscale imaging and particle size analysis (Fig. 2c, d) showed that NDs were partly 

agglomerated and the size of individual particles was between 3-5 nm, while the average 

size of ND aggregates was between 22 and 233 nm (Fig. 2e). ND particles were negatively 

charged with a zeta potential of -24.2 mV. 

Elemental analysis of NDs revealed the presence of three elements: carbon  

(C 1s), oxygen (O 1s) and nitrogen (N 1s). Deconvolution of the carbon (C 1s) spectra 

showed three characteristic peaks attributed to carbon in sp2 (hybridized carbon species; 

EB = 283.95 eV), carbon in sp3 hybridization (diamond; EB = 284.96 eV), and oxygen-

containing groups (C−O; EB = 286.23 eV) (Fig. 2f) (Xie, et al., 2010). Deconvolution of the 

oxygen (O 1s) peak evidenced peak associated with (C−O−C) and water adsorbed to the 

ND surface (EB = 532.9 eV). The presence of oxygen (8%) in NDs confirmed the partial 

oxidation of NDs. Additionally, a small amount of nitrogen (1.7%) was detected on ND 

surface. Nitrogen spectra had two main peaks that correspond to N-C (EB = 400.6 eV) and 

Fig.2: Physicochemical characterization of nanodiamond particles (NDs). (a) XRD graph showing key 
diamond peaks at 2θ of 111, 220, and 311. (b) FTIR spectra collected from the bulk of NDs indicated 
the presence of key diamond peaks in the region of 1117−1256 cm−1. (c) TEM image of NDs (d) AFM 
height image of NDs. (e) Nanoparticle tracking analysis confirmed the presence of individual and 
aggregated NDs (f) XPS spectra collected from NDs showed peaks related to carbon, oxygen, and 
nitrogen. 



N2 (EB = 404.1 eV). Nitrogen at the concentration up to 3% is a common impurity found in 

ND (Mochalin, et al., 2012). 

 Real time cytotoxicity assay  

The impedance measurements showed that NDs decreased cell growth rate after 48 h of 

exposure when compared to control, untreated cells. Notably, after 90 h, cell impedance 

decreased substantially for cells treated with NDs and the drop was concentration-

dependent (Fig. 3a). After 126 h, the cell growth dropped by approximately 80, 60 and 40% 

respectively for samples treated with ND at the concentration of 25, 15, and 10 µg mL-1 

(Fig. 3a). These results evidenced that ND substantially reduced the barrier integrity of cells 

and/or inhibited cell proliferation.  

 

Fig. 3: Viability measurements of cells exposed to nanodiamond. (a) Real time impedance measurement 
of ND treated cells. (b) WST-8 assay of cells exposed to NDs. (c) Reactive oxygen species assay (ROS). (d) 
DNA quantification assay. (e) Phase contrast images along with the corresponding immunostaining 
images of cells with actin (phalloidin) and nucleus (DAPI) staining of cells exposed to NDs at day 7. All 
data presented as mean±SD, n=3. P<0.05 two way ANOVA with Tukeys multiple comparison (WST-8 and 
DNA quantification assay, P<0.05 students t-test (ROS assay).  



Cell viability assays 

Both the WST-8 and DNA quantification assay demonstrated that the NDs did not induce 

major changes to the amount of DNA and mitochondrial dehydrogenase activity for up to 

48 h (Fig. 3 a, b, c and d). However, after 48 h mitochondrial dehydrogenase activity and 

DNA content sharply declined for samples treated with ND at and above 25 µg·mL-1, and 

the drop was concentration and exposure time dependent (Fig. 3b & d). At day 7, the 

metabolic dehydrogenase activity was reduced to 30%, 36% and 41% for sampled treated 

with 25, 50 and 100 µg·mL-1 of NDs when compared to control samples. These results 

indicates that prolonged exposure of cells to NDs, decreased the mitochondrial 

dehydrogenase activity of cells and led to cell death as evidenced by substantial decrease 

in DNA content; P <0.0001. The decrease in cell viability was further confirmed by phase 

contrast imaging (Fig. 3e). 

Furthermore, we showed that NDs distorted the organization of cytoskeleton, which was 

poorly defined and randomly distributed for all ND treated cells. In addition, ND treated 

cells were larger than control cells, indicating giant cell formation (Fig. 3e, white arrows). 

Measurement of reactive oxygen species 

Cells treated with 10, 25, 50 and 100 µg·mL-1 of NDs displayed a 13%, 9%, 22% and 40% 

increase in ROS over untreated cells (Fig. 3c, p<0.05), as measured using ROS-Glo™ H2O2 

assay. The increase in ROS was ND concentration-dependent for concentrations 

 ³25 µg mL-1. Since increased ROS production corresponds to oxidative stress, these results 

confirmed that NDs induce cell injury upon internalization. 

 

 



3D semi-high throughput ring closure and dot assay for toxicity assessment 

The rate of closure of both mini-organ models (rings and dots) were used to determine the 

cytotoxicity of NDs (Timm, et al., 2013, Tseng, et al., 2015). Changes to the diameters and 

surface areas of both mini-organ models showed concentration-dependent cytotoxicity. 

Notably, cytotoxicity was detected within the first 48 h, which suggested higher sensitivity 

of mini-organ models than 2D culture models. For untreated mini-organ models, the 

internal diameter of the ring was reduced to almost zero (fully enclosed ring). In contrast, 

internal ring remained open for mini-organ models treated with ND (Fig. 4 a, b). 

The closure of the ring was statistically significant for samples treated with NDs at and 

Fig. 4: 3D-ring closure assay. (a) Phase contrast image of the rings exposed to NDs, higher 
concentrations of ND led to decreased cell migration and cell functionality. (b) Corresponding 
images of the rings along with the outer contour acquired by the mobile device and analyzed 
using a custom built Cytox® software. (c) Graph showing the rate of decrease of the ring’s area 
over a period of 48 h (each image frame was acquired at 30 minutes interval). (d) Comparison 
of ring area at the experiment end point. All data presented as mean±SD, n=3;P<0.05 students 
t-test. 

 



above the concentration of 25 µg·mL-1 (Fig. 4 a, b).  

Importantly, the surface area of the rings exposed to NDs was substantially greater (20% 

and 35% for 50 and 100 µg mL-1) than that of the untreated rings (Fig. 4 c and d).   

Similarly, the rate of the spheroid shrinkage, which is a measure of cytotoxicity (Tseng, et 

al., 2015) was affected by NDs (Fig. S1 a,b,c). The spheroids exposed to NDs contracted 

considerably less than untreated spheroids. The surface area of spheroids exposed to 50 

and 100 µg mL-1 of NDs was 49 and 54% larger than the surface area of untreated spheroids 

(Fig. S1d). Therefore, the results confirmed that NDs reduce the ability of cells to migrate 

that could be associated to the arrest of cell proliferation, drop in cell viability or 

disturbance of cytoskeletal organization (Tseng, et al., 2015) – cytotoxicity. 

 

 

Fig.5: The assessment of nanodiamond (ND) uptake. Holotomography images of (a) control cell, (b) 
cells exposed to ND at day 2, black arrows indicate the region of ND localization, (c) cells exposed 
to ND at day 7, white arrows indicate the ND localization, (d) phase contrast image of control cells 
and (e) cells exposed to ND at day 4; internalized ND (white arrows). (f – g) Scanning electron 
micrographs of ND treated cell sections (ND white arrows). (h) High resolution 3D image of cell 
treated with ND. 

 



Analysis of the ND uptake in 3D 

3D holotomography, dark field hyperspectral imaging and SEM showed that NDs were 

readily internalized by cells and were distributed within entire cell structure. 3D images of 

cells treated with NDs for 2, 4 and 7 days showed the presence of substantial amount of 

NDs within cells (Fig. 5 a, b, c, d & e & Fig. S2 a & b; black stain; black and white arrows). 

The amount of ND within cells dropped with the time of exposure. Hyperspectral imaging 

confirmed the same trend (Fig. S3). At days 2 and 4, a substantial amount of NDs were 

found to persist within cell structure (Fig. S3b, white arrows). At day 7, the amount of 

intracellular NDs was reduced (Fig. S3d, white arrows). 

The overall drop of the amount of NDs within individual cells at day 7 could be due to 

exocytosis or repartition of NDs between cells or during cell division. 

Spectral profiles (Fig. S3e) collected from control and ND treated cells confirmed that 

‘bright’ features on the cell surface as well as inside the cells were NDs (Fig. S3, f to h, 

white arrows). The uptake of NDs was further confirmed by SEM imaging (Fig. 5f & g).  

Fig.6: The effect of nanodiamonds (NDs) on the morphology of Fao cell. (a) High resolution 
atomic force microscopic image of control cells from day 2 to 7 (left to right). (b) AFM images 
of the cells exposed to ND.  



While a small amount of internalized NDs were seen within the endosomal vesicles, a large 

proportion of NDs escaped the endosomes (breakage of the endosomal sac, white arrows) 

and were found within the cytoplasm (Fig. 5g). The uptake of NDs into the cells induced 

the formation of lipid droplets (Fig. 5f, red arrows) in the cytoplasm of the cells, which 

corresponds with stress or injury (Sarhan and Hussein, 2014) and was in agreement with 

ROS production results. 

SEM and AFM images of the cells treated with NDs indicated that the uptake of NDs 

occurred by a combination of endocytic pathways (formation of endocytic vesicles on the 

cell membrane Fig. 5g, red dotted box and white arrows) and filopodia mediated 

micropinocytosis (Fig. 5h, black circle). These pathways were previously reported to be 

primary pathways for the uptake of other classes of NDs (Solarska, et al., 2012). 

Nanoscale imaging of cell morphology and cell stiffness measurements  

The analysis of cell surface by AFM showed that untreated cells were relatively smooth 

and had ‘dense’ morphology (Fig. 6a). Cells treated with NDs had granular morphology and 

were more flattened (Fig. 6b) probably due to the presence of ND on the surface.  

The median stiffness of untreated cells was 24 to 30 kPa and stiffness was uniformly 

distributed across each of the cells. After 2 days of treatment with NDs (50 µg·mL-1), the 

median stiffness increased to ~92 kPa. Several zones of substantially greater stiffness were 

observed across cells (Fig. 7 a, b and S7). The shift in cell stiffness was also affected by the 

duration of exposure; the longer the exposure to NDs, the higher the stiffness was.  

At day 7, the median stiffness of control cells remained 24 kPa, while for cells treated with 

Fig.7: Distribution of stiffness; apparent Young’s modulus maps of Fao cells before and after exposure 
to nanodiamonds (NDs): (a) maps for control cell demonstrates regions of high and low stiffness; no 
significant changes in stiffness were observed at day 2 and 7; (b) maps for cell exposed to 10 µg·mL-1 of 
NDs confirmed increased stiffness that was correlated to the duration of the exposure.  



NDs, it increased depending on ND concentration to 76 kPa for 10 µg·mL-1 and 298 kPa for  

50 µg·mL-1.   

Detailed analysis of stiffness using log normal regression (Fig. 8 a, b; Fig. S4 a, b) confirmed 

that NDs led to increase in cell stiffness that was dependent on the duration of the 

exposure. Similarly, box whisker plots confirmed that cell stiffness increased with the 

exposure time to NDs and the increase was not dose dependent  (Fig. 8 a,b).  Interestingly, 

we found that short term exposure to high concentration (50 µg·mL-1) of NDs led to 

significant increase in cell stiffness at day 2 (Fig. 8 b), highlighting the negative effect of 

NDs at relatively high concentration.  

Furthermore, we calculated the geometric standard deviation (GSD) of the stiffness 

distribution using 16th and 84th percentile values from the cumulative data. GSD increased 

from ~1.5 for untreated cells to ~3.52 for ND-treated cells (10 µg·mL-1).  

 

Fig. 8: Box and whiskers plot for apparent Young’s modulus distribution. (a) Comparison of cell stiffness 
of control cell and cells exposed to 10 µg·mL-1 ND from day 2 to 7.  Stiffness of cell exposed to NDs 
showed significant increase in cell stiffness in comparison to control cells from day 4 onwards. (b) 
Comparison of cell stiffness between the control cells and cells exposed to 10, 25 and 50 µg·mL-1 ND at 
day 2 and 7. (One-way ANOVA, Tukey’s multiple comparison).  

 



Discussion 

Constraints in the tools and assays commonly used for measuring effects of nanoparticles 

on cell function, limit the accuracy of nanotoxicity assessment. An exponentially growing 

number of reports on toxicity of nanoparticles (Bettini, et al., 2017, Peng, et al., 2019, 

Setyawati, et al., 2013, Setyawati, et al., 2017, Yamashita, et al., 2011, Pinget, et al., 2019  

and the recalls of common nanoparticles used for medical imaging (Wei, et al., 2017) 

confirms that more accurate nanotoxicity testing approaches are needed.  

Despite contradicting safety records, NDs are being currently re-explored for magnetic 

resonance imaging. Our previous study confirmed that NDs can lead to denaturation and 

conformational changes of intra- and extracellular proteins and lead to the formation of 

fibrillary amyloid-like proteins (Khanal, et al., 2016). It is therefore necessary to determine 

safety of NDs using high-resolution methods before NDs progress to clinical trials.  

The primary objective of this work was to demonstrate difference in NDs toxicity 

depending on cell culture model, 2D vs. 3D (mini-livers), by applying label-free, high-

resolution and high-throughput approach.  

NDs induce ROS-mediated, concentration- and time-dependent cytotoxicity in liver cells 

Our results showed that the exposure of cells to NDs for 48 h at the concentrations of 25 

µg·mL-1 and above led to substantial drop in Fao cell viability in 2D cell culture model. The 

drop could be associated with an inability of cells to excrete NDs. We confirmed that NDs 

were internalized within 24 h (Fig. 5b) and persisted within cell cytosol (Fig. 5f and g). NDs 

were able to rupture the endosomal membrane and spread inside the cell cytosol, where 

they may potentially induce protein damage (Khanal, et al., 2016). The lack of measurable 

cytotoxicity in the first 24 h could also be related to sedimentation time of NDs and 



progressively increasing number of NDs that reached cells (Cohen, et al., 2013). Therefore, 

short-term experiments which are conducted for 24 h or less may not be conclusive and 

effective in testing NDs cytotoxicity (Khanal, et al., 2017, Yu, et al., 2005, Liu, et al., 2007, 

Schrand, et al., 2007). One solution could be measurements of intracellular concentrations 

of NDs that may provide additional insights into the toxicity of NDs. 

Next, we confirmed the effects of NDs on cell function using long-term studies and real-

time impedance measurements. Since impedance measurements provide a direct 

measure of cell growth and membrane integrity, the drop in impedance is associated with 

the damage to the cell membrane, cell detachment (loss of biological function) and the 

inhibition of cell proliferation (Peper, et al., 2014). Indeed, we observed a substantial drop 

in impedance after 90 h of ND exposure at the concentration as low as 10 µg·mL-1 (Fig. 3a), 

which indicated that NDs induced cytotoxicity. The decrease in cell membrane integrity 

was further confirmed by the evaluating the cytoskeletal structure (f-actin) (Fig. 3e) and 

the assessment of cell morphology in 3D (Fig. 5b). Image of cell cytoskeleton and 3D 

morphology of cells confirmed that the organization of cytoskeleton (f-actin) was 

negatively affected by NDs and led to the formation of giant cells. The formation of giant 

cells after exposure to NDs may be due to the disorganization of cytoskeleton (f-actin) 

leading to arrest of cells division and proliferation (Holt, et al., 2010).  

Notably, NDs induced the overproduction of ROS (Fig. 3c). Since, intracellular ROS leads to 

the generation of protein radicals, lipid peroxidation and alteration of gene expression, we 

concluded that NDs impaired cellular function and led to cell death and to the loss of 

membrane integrity. Similar effects have been observed for human endothelial cell 

exposed to detonation NDs (Solarska, et al., 2012, Setyawati, et al., 2016).  



Semi-high throughput label-free real-time assay accelerates toxicity assessment  

Our results demonstrated that mini-liver models (ring closure and dot assays) that 

represent 3D multicellular environment, allow for faster and effective assessment of 

cytotoxicity. The ring closure and dot assays are wound healing and migration assays 

conducted in 3D. Similar assays conducted in 2D (aka scratch assays), where the cells 

migrate to close a mechanically or electrically induced hole or a linear scratch are widely 

used to assess toxicity associated with drugs and chemicals (Timm, et al., 2013, Tseng, et 

al., 2015). Both dot (Fig. S1) and ring closure assays (Fig. 4) confirmed that NDs reduced 

the ability of cells to migrate as indicated by slower rate of ring closure and dot shrinkage. 

This could also be due to the arrest of cell proliferation after exposure to NDs. This result 

was not in full agreement with the 2D viability assays where substantial differences in the 

cytotoxicity of NDs was not demonstrated until 48 h of exposure. However, both the ring 

closure and dot assays were able to detect the effects of NDs within 48 h of exposure. 

These results suggest mini-liver models mimic the extracellular environment more 

precisely and are more sensitive for testing nanotoxicity. While we could expect lower 

toxicity when using 3D models, our study showed opposite, which is likely to be due to 

direct cell-cell contact and shorter path for intracellular communication as it is observed 

in physiological conditions. The lower cytotoxicity observed in 2D cell culture models could 

be due to more rapid proliferation of cells in 2D environment compared to the cells 

cultured in 3D (Edmondson, et al., 2014). Another consideration could be that 

nanoparticles are known to induce oxidation of tetrazolium salt (WST-8) which may 

overestimate the viability of cells in the 2D culture models specifically.   

Since mini-liver models were magnetically bioprinted using cells pretreated with magnetic 

nanoparticles, it was essential to establish control experiments using magnetic 



nanoparticle only. Control experiments allowed us to decouple the influence of magnetic 

nanoparticles from the influence of nanodiamond on final results. Theoretically, all types 

of nanoparticles have an impact on cell function and there is a likelihood that magnetic 

nanoparticles might have interfered with the measurements conducted here. However, to 

reduce the risk of interference we used commercially available nanoparticles that were 

previously demonstrated to have no or minimal impact on cell function (Timm, et al., 2013, 

Tseng, et al., 2015). Additionally, in the result interpretation we compared the results for 

nanodiamond treated samples to control experiments to avoid any bias potentially 

introduced by magnetic nanoparticles. It is also well-established that impact of 

nanoparticles on cells is concentration-dependent. Therefore, in our study we used 

minimum concentration of magnetic nanoparticles (8 μL/cm2 ) and the magnetic force (30-

500 G) to allow effective bioprinting of the models. These conditions for magnetic 

bioprinting were previously validated and shown to have insignificant effect on cell 

proliferation, metabolism or inflammatory response in multiple cell culture models (Timm, 

et al., 2013, Tseng, et al., 2015). Nevertheless, similarly to fluorescent probes, potential 

additive effects of magnetic nanoparticles and nanodiamond on cells cannot be completely 

excluded, therefore we conducted a wide range of assays in both 2 and 3D configuration 

to validate the results and ensure their robustness.  

Mechanobiological properties of cell as a biomarker for toxicity assessment 

Mechanical properties are key markers of cell function, motility, proliferation, rigidity 

(stiffness), contractility, tissue organization and many other vital biological processes (Cai, 

et al., 2010, Haghi, et al., 2015, Berntsen, et al., 2010). Our results confirmed that NDs 

induced increased stiffness of cells depending on the concentration of NDs and the 

duration of exposure. When NDs are internalized by cells and retained in the cytoplasm, 



there is a possibility of ND particles interacting with cytoskeleton and biomolecules that 

are present within cell cytoplasm. This interaction could lead to cytoskeletal disruption and 

increase in cell stiffness (Fig. 7). The increase in cell stiffness after the exposure to NDs 

could also be associated with the increased production of ROS (Dong, et al., 2013, Subbiah, 

et al., 2013, Buyukhatipoglu and Clyne, 2011). In general, nanoparticles that are 

internalized by cells may interact with the key proteins responsible for cytoskeleton 

organization. Cytoskeleton reorganization is often controlled by small GTP-binding 

proteins such as Ras, Rho and Rac proteins. Ras proteins regulates membrane ruffling, 

pinocytosis and formation of stress fibers. Rac is involved only in the formation of ruffles, 

whereas Rho regulates the formation of stress fibers (Gupta and Curtis, 2004). Hence, if 

these proteins interact with nanoparticles, they may undergo conformational changes. 

Subsequently, changes to the protein conformation (i.e. denaturation) will dysregulate 

fundamental signaling pathways for cytoskeletal organization and are likely to compromise 

cell function or even cause cell death (Khanal, et al., 2016).   

To reduce the uncertainty and variations in stiffness measurements between the samples, 

all the cells were fixed at a similar point of cell cycle following the established protocol 

(Haghi, et al., 2015, Jaffar, et al., 2018). All cells had to be fixed to conduct the high-

resolution mechanical mapping on cells which usually takes 4 to 5 hours. Since, living cells 

are motile they may move during the experiment, which is further stimulated by 

indentations. This makes it nearly impossible to conduct high resolution mapping 

especially during cell migration, because the cytoskeleton of the cells contracts and thus 

significantly impacts cell stiffness. As a result, only high speed or low resolution mapping 

can be conducted on live cells. High speed imaging distorts the stiffness values due to the 

friction between the tip and the cell and the dynamic, viscoelastic reaction of the cell 



membrane. Previous studies have also confirmed that fixation of cells allow to obtain 

reproducible results for the apparent Young’s modulus of cells (Jaffar, et al., 2018).  

Our results demonstrated that mechanobiological properties of cells can be used as a 

biomarker in evaluating impact of nanoparticles on cell function.  

Conclusion  

In this study, we demonstrated that ND particles induced ROS mediated cytotoxicity (Fao 

cells), which was both concentration and exposure-time dependent. Specifically, NDs 

reduced cell viability and impaired cell membrane integrity. Furthermore, NDs decreased 

the ability of cells to migrate and substantially increased cell stiffness.  Cumulatively, these 

results confirmed that NDs adversely impact overall cell function at concentrations above 

25 μg· mL-1.  

Interestingly, our results showed that mini-livers were able to detect the cytotoxicity of 

NDs within 48 h while 2D cell culture models did not reveal substantial differences in cell 

growth and viability between control and treated samples in the first 48 h.  

In conclusion, to test nanotoxicity, we applied a new approach that utilized label-free and 

high-resolution methods including impedance spectroscopy, molecular force probe, 3D 

holotomography, dark field hyperspectral imaging and semi-high throughput ring and dot 

assays. We demonstrated that this approach offers ultra-high sensitivity and allows for 

rapid and effective nanotoxicity assessment. These capabilities complement traditional 

experimental approaches.  
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 7 
Methods  8 
 9 

Nanoparticle tracking analysis (NTA) 10 

NTA measurements were performed to measure the size distribution of ND dispersion with a 11 

Nanosight NS300 (NanoSight, Amesbury, United Kingdom), equipped with a sample chamber 12 

with a 488 nm laser. ND dispersion (1 mg·mL-1) sonicated for 30 min in DI water was diluted in 13 

cell culture medium to a concentration of 5 μg·mL-1 followed by vortexing for 5 minutes prior to 14 

NTA measurements. The advanced script controls options were used for the analysis which 15 

comprised of an 80 µL syringe pump driven chamber priming interval, a 30 second pause to 16 

minimize vibration artifact, three 60 second video capture periods with constant syringe pump 17 

driven sample delivery, and automated laser and pump shutdown after video acquisition. An 18 

average of three measurement runs were taken for the data analysis. 19 

Cell viability assays  20 

Fao cells were seeded at a density of 2000 cells/well on 96-well plates and were allowed to attach 21 

overnight. Media was aspirated and replaced with particle-conditioned media containing 10, 25, 22 
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50 and 100 µg·mL-1. At each predetermined time point (days 2, 4 and 7), cells were washed with 23 

PBS once and 100 μL of fresh media containing 10% CCK-8 reagent was added to each well. After 24 

three hours of incubation in the dark, the media was transferred to a new 96 well plate, and the 25 

optical density (OD) of each well was measured using a microplate reader at 450 nm (Victor x4 26 

multilabel plate reader, Perkin Elmer, USA). 27 

For DNA quantification, media was removed at day 2, 4 and 7 and each well was washed with 28 

PBS once followed by addition of 75 μL of Cyquant NF dye reaction mix. Plates were incubated in 29 

the dark for 45 min before measuring fluorescence at excitation and emission wavelengths of 30 

485 and 535 nm respectively using microplate reader (Victor X4, multilabel plate reader, Perkin 31 

Elmer, USA). 32 

Cytotoxicity of ND in 3D mini-liver model 33 

The effect of NDs on cell growth and function in a 3D environment was quantified using 3D ring 34 

closure and dot assays following previously published methodology (Timm, et al., 2013) (Tseng, 35 

et al., 2015). In brief, cells were cultured in T-75 flasks and incubated with magnetic nanoparticles 36 

(NanoShuttle−PL; Greiner Bio-One, USA) at a concentration of 8 μL.cm−2 overnight. After 37 

trypsinization magnetized cells were levitated overnight using magnetic drives to form a ‘cluster’ 38 

of cells which were then bioprinted in the shape of rings (2 × 105 cells per ring) and spheroids  39 

(1 × 105 cells per spheroid) using a set of magnetic drives. NDs at a concentration of 10, 25, 50 40 

and 100 µg·mL-1 were added onto the rings and spheroids (Fig. S5). Both internal and external 41 

diameters were monitored for 48 h. Images of rings and spheroids were recorded using a mobile 42 

device (iPod) and the rate of diameter change (shrinkage and closure of ring), which correlates 43 

with the loss of cell function/ mobility, was calculated using a custom-built software Cytox®.  44 
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The software embeds the algorithms that can automatically differentiate the foreground (cell) 45 

and background (medium) objects from the input video data and compute the diameter(s) of the 46 

cell. Briefly, the software takes an input video data, where each frame provides the cell shape at 47 

a certain time point. For each frame, the Otsu's method (Otsu, 1979) is used to perform image 48 

thresholding to detect the foreground cell regions according to the image pixel information. Next, 49 

the contour(s) of the cell is/are detected with morphological processing: an inner contour and an 50 

outer contour for ring-shape cell; only an outer contour for dot-shape cell (Fig. S6). The diameter 51 

of a contour is then computed based on the area of the contour. Therefore, a diameter variation 52 

curve is obtained based on the consecutive frames from the input video data. The diameters 53 

obtained were used to calculate the areas of both ring and spheroids. These areas were further 54 

analyzed to determine the percentage change in area over the 48 h period to estimate IC50 55 

concentrations of NDs.  56 

Dark field hyperspectral imaging 57 

Label-free high-resolution hyperspectral imaging was used to investigate the uptake and 58 

interaction of NDs with Fao cells which were plated on glass coverslips functionalized using 59 

plasma treatment. Each of the coverslips were transferred to a six well plate. Fao cells at a density 60 

of 2.5´104 cells were plated onto the coverslips and allowed to attach overnight. Next, media 61 

was replaced with ND conditioned media at a concentration of 10 and 25 µg·mL-1 and cells were 62 

cultured for up to 7 days. At day 2 and 7 coverslips were taken out and washed with PBS twice 63 

followed by fixing with 4% paraformaldehyde (PFA) for 15 min. Fixed cells were washed with PBS 64 

three times before mounting onto a glass slide containing fluormount mounting media. 65 

Coverslips were sealed with nail polish before dark field hyperspectral imaging using CytoViva 66 
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microscope (CytoViva, Auburn, AL, USA). The spectra of cells and NDs were obtained and used to 67 

identify ND localization within the cells. 68 

SEM 69 

Fao cells were cultured in complete media on a T75 flask until 70 to 80 % confluency. Media was 70 

replaced with media containing 25 µg·mL-1 of NDs and culture continued for 24 h to allow ND 71 

internalization. Next, cells were washed with PBS three times to remove remaining nanoparticles 72 

and trypsinised (Tryple™) to collect cells. Cells were transferred to Eppendorf tubes and were 73 

centrifuged at 1500 RPM for 5 min to yield cell pellets. Pellets were fixed with 2.5% 74 

glutaraldehyde 0.1 M phosphate buffer (pH 7.4) for 15 min followed by post-fixation in 1% 75 

osmium tetroxide (OsO4) in the same buffer. All the samples were further dehydrated with 76 

graded ethanol, starting with 30 % to 100 % ethanol. Dehydrated samples were embedded in 77 

Spurr’s embedding kit (ProScitech, Australia). Ultrathin (70 nm) sections of the cells were the cut 78 

on a Leica UltraCut S ultramicrotome (Leica Microsystem GmbH, Vienna, Austria), transferred to 79 

formavar coated TEM grids and stained with 2% uranyl acetate and 0.05% aqueous solution of 80 

lead citrate. Finally, they were imaged in Gatan back scattered mode with Sigma VP Zeiss field 81 

emission SEM maintaining a working distance of 5.1 mm with an electronic high-tension value of 82 

1.60 kV.  83 

Effect of nanodiamond on cytoskeleton 84 

The effect of NDs on cytoskeletal organization was investigated using immunostaining of f-actin. 85 

Fao cells were seeded at a density of 2.5 × 103 cells in 2 mL of complete medium in a 6 well plate 86 

(Corning, USA). Cells were exposed to NDs at concentrations of 10, 25, 50 and 100 µg·mL-1 for 4 87 

days. At the end of day 4, the media was aspirated, and cells were washed twice with PBS, 88 
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followed by fixation with paraformaldehyde (PFA) for 15 minutes. Cells were permeabilised with 89 

Triton x for 15 minutes followed by washing with PBS twice followed by staining with Phalloidin 90 

CruzFluor 514 for 30 minutes and DAPI 300 nM for 5 minutes (all reagents from Thermo Fisher 91 

Scientific). Images were taken using the Nikon eclipse TE2000-U inverted fluorescent microscope.  92 

Fao cell morphology and stiffness measurements 93 

Fao cells were seeded on to plasma treated 50 × 9 mm petri dish (Bacteriological petri dish, 94 

Falcon®, Corning, USA) at a density of 5 × 104 cells in 2 mL of complete medium and were allowed 95 

to grow overnight. Media was replaced the next day with the ND conditioned media at 96 

concentrations of 10, 25 and 50 µg·mL-1. Cells were exposed to NDs for up to 7 days. At day 2, 4 97 

and 7, media was aspirated and cells were washed with PBS twice followed by fixing with 4% PFA 98 

for 15 minutes. Fixed cells were washed with PBS three times and fresh PBS was added to each 99 

Petri dish.  To investigate the influence of NDs on cell stiffness, cells were probed using Molecular 100 

Force Probe (MF3D-Bio, Asylum Research, USA) operating in force-volume mode. The cells were 101 

first located using a light microscope and imaged in contact mode using a silicon-nitride cantilever 102 

with reflex side gold coating (HYDRA-ALL-G-50, AppNano, CA, USA). Spring constant of each 103 

probe was determined using thermal method and were typically around ~65 pN Nm-1. Next, the 104 

probe was lowered at a speed of 400 nm s-1 onto the cells and cell was indented until the 105 

threshold cantilever deflection of 200 nm was reached. The deflection of the cantilever was 106 

plotted against the displacement in the z-direction, which gave the force-distance curves. For 107 

each sample (control and ND incubated), a minimum of five different cells were scanned and on 108 

each sample 50 ´ 50 µm region was selected for scanning and probing of nanomechanics. For 109 

each cell 4900 points were probed (70 × 70 points). Stiffness (apparent elastic modulus, Ea) was 110 
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calculated using  Hertz model assuming uniform Poisson’s ratio of 0.5 (Hertz, 1881). Stiffness 111 

values across the surface for all the samples were exported as an array and processed to generate 112 

histograms (percent stiffness values within defined bins) as shown in the inserts to stiffness maps 113 

shown in Fig. S4. Furthermore, the generated data were processed and presented as lognormal 114 

cumulative stiffness plots and as box whisker plots to enable statistical analysis and 115 

representation of the changes in cell nanomechanical properties.  116 

 117 
Supplementary Images  118 

 119 

Fig.S1: Spheroid shrinkage assay. (a) Phase contrast image of spheroids exposed to nanodiamond (ND); with 
increased concentrations of ND, rate of shrinkage decreased significantly. (b) Corresponding images of 
spheroids along with their contours captured using a mobile device and analyzed by Cytox® software. (c) 
Graph representing rates of spheroid shrinkage compared to the initial area of the spheroids; increased 
concentrations of ND led to significant drop in spheroid shrinkage confirming concentration-dependent 
toxicity of ND. (d) Comparison of spheroid area at the end point of experiment (48 h) confirmed that 
spheroids exposed to ND had significantly larger area than control spheroids (data presented as mean ± SD, 
student t-test was used for statistical analysis taking *p<0.05 as significant difference). 
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 132 

  133 

Fig.S2: Unstained holographic tomography images of cells treated with nanodiamond (ND) at day LHS at 2 
and RHS at day 7 of exposure. (a) ND (white arrows) are distributed on the surface as well as are internalized. 
(b) At day 7 lower number of ND (white arrows) can be observed inside the cell possibly due to exocytosis 
of ND.  
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 146 

  147 

Fig.S3: Dark field hyperspectral imaging of cells before and after exposure to NDs. (a) Control cells show 
typical morphology of cell with distinct intracellular membrane structures. (b) Cell exposed to ND  
(10 µg·mL-1) at day 2 showing the presence of majority of ND on the surface of cell (white arrow) with few 
internalized ND (red arrows). (c) Cell exposed to ND for 4 days show more ND internalized (white arrows). 
(d) At day 7 few internalized ND can be visualized inside the cell (white arrow). (e) Spectra collected from 
NDs and control cell show clear difference in refractive index confirming the presence of ND in the cells (f to 
h). Cells exposed to 25 µg·mL-1 for days 2, 4 and 7, show similar trends to the cells exposed to 10 µg·mL-1  
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  149 

Fig.S4: Log-normal cumulative stiffness plots. (a) Cells exposed to ND showed duration-dependent shift in 
stiffness. (b) Control cells had no significant shift in apparent Young’s modulus with longer exposure.  

  

Fig.S5: Schematic for fabricating magnetically bioprinted 3D liver rings and spheroid model and set-up of 
mobile device for imaging of the rings and spheroids for assessment of toxic effect of nanodiamond. 
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 151 

Fig.S6: Evaluation of spheroid shrinkage with custom build Cytox® software 

Fig.S7: Distribution of stiffness; apparent Young’s modulus maps of Fao cells after exposure to 25 µg·mL-1 of 
NDs nanodiamond (ND): maps for cell exposed to 25 µg·mL-1 of NDs confirmed shift in the cell stiffness after 
exposure to NDs for 48 h (day 2).  
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