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Abstract

The intriguing properties of organic semiconductors in various optoelectronic

applications, ranging from molecular wires for integrated circuits, to organic

photovoltaics (OPV), organic transistors (OFET) and organic light-emitting

diodes (OLEDs) have motivated the work presented in this thesis. More precisely,

this thesis focuses on narrow energy gap materials, suitable for OLEDs emitting

in the red and near-infrared (NIR) regions. Conjugated materials emitting at low

energies face great challenges to have efficient light emission. This thesis proposes

two very interesting and novel strategies to cope with the limiting factors of

efficient light-emission from conjugated compounds.

Firstly, a series of porphyrin oligomers is presented. With emission ranging

from red to pure NIR, three architectures of these oligomers were studied. Zinc

oligomers at various length that allowed for fine tuning of the emission, five

hexamers with different coordinating metals at the centre of each unit, allowing

for phosphorescence emission, and a pentamer, with single acetylene instead

of butadiyne bonds connecting porphyrin units, resulting in a shorter oligomer

with an extended π-conjugation and a bathochromic shift of the emission. Two

limitations can be identified for efficient NIR emission, the so-called “energy-

gap law” and aggregation quenching. Both limitations are addressed, resulting

in unprecedented external quantum efficiencies when the oligomers are used in

OLEDs and remarkable devices lifetimes, considering the non-optimised diodes.

Secondly, three diketopyrrolopyrrole-based copolymers are presented and their

photophysical properties discussed. These polymers represent a different strategy

to prevent aggregation; by engineering covalent bonds, the conjugated core is

sheathed within its cyclic sidechains. The strategy is proven highly successful

and the three polymers are compared with their unprotected counterparts,

where emission is severely quenched. The advantages of the encapsulation are

more pronounced when the polymers are incorporated in OLEDs, where the

encapsulated ones achieved up to 16 times higher external quantum efficiencies

compared to the unprotected ones.
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Impact Statement

The present thesis is focused on novel organic semiconductors, suitable for

applications in organic light-emitting diodes (OLEDs) emitting in the lower

energies of the electromagnetic spectrum, i.e. near-infrared (NIR). OLEDs are

well studied devices, and are used in commercial applications for over two decades,

primarily in digital displays such as TVs and smartphones, mainly utilising

materials emitting in the red, green and blue, i.e. visible, to make the pixels.

However, NIR OLEDs are attracting significant attention thanks to a

wide range of applications, ranging from biomedical, in photodynamic therapy

and blood oxymetry, to defence and security, in night-vision applications, to

communications, as a candidate for the substitute of Wi-Fi. Further to these,

the organic NIR emitters offer flexibility, conformability and bio-compatibility

compared to inorganic ones, expanding the range of their applications.

There are two main limitations in achieving efficient NIR emitters, the so-

called “energy-gap law” and aggregation quenching. The energy-gap law for

radiationless transitions predicts an exponential increase of the rate of non-

radiative transitions with a decreasing energy gap. Secondly, to achieve a

sufficiently small energy gap as to have NIR emission, an extended conjugation is

required that dictates a very planar molecular conformation, which favours π-π

stacking and the formation of non-emissive aggregates.

In this thesis two different approaches are presented in overcoming the

limitations mentioned above. Firstly, the effects of the so-called “energy-gap

law” are suppressed by modifying the length of the molecule. By increasing the

length of the porphyrin oligomers, intersystem crossing is reduced by increasing

the mismatch of the spatial extent of singlet and triplet excitons. Further to this,

the radiative rate is increased by enhancing the strength of the oscillator strength.

Secondly, the detrimental intermolecular interactions can be minimised and

suppressed by molecular engineering the materials. Two approaches of different

molecular engineering were studied, the use of bulky sidechains and sheathing

the conjugated core within cyclic sidechains. The porphyrin oligomers limit the

xv



formation of dark aggregates thanks to steric hindrance by the bulky sidechains,

while the diketopyrrolopyrrole-based (DPP) polymers are encapsulated using

covalently-linked cyclic sidechains that protect the conjugated core.

The result of the aforementioned approaches is unprecedented external

quantum efficiencies for NIR OLEDs, emitting at wavelengths > 850 nm with

efficiencies > 4 %, while the encapsulated DPP OLEDs showed 16 times

higher efficiencies than the non-encapsulated ones. Fabricated NIR OLEDs

based on porphyrin oligomers, while not optimised for long lifetimes, showed

impressive performance under continuous operation, remaining > 80 % of the

initial performance for > 30 h.

These results pave the way for efficient NIR emitters and are a proof of concept

that conjugated polymers and oligomers, that omit the use of toxic, heavy metals,

are feasible.
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1 |Organic semiconductors

“Physics is like sex: Sure, it may

give some practical results, but

that’s not why we do it.”

R. P. Feynman

In this chapter, a short review of the history of the general field of organic

semiconductors is presented and the forces that drive the research carried out in

this field. What are the emerging technologies and how do they influence every

day lives.
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Introduction - why Organics?

1.1 Introduction - why Organics?

We can define as organic semiconductors (OS) the class of materials that are

based on carbon, ranging from small molecules to polymers, and are able to

conduct electricity. Organic semiconductors have attracted significant interest

since the second half of the 20th century. Among the long list of advantages

of OS are found the ease of handling and low cost of manufacturing, the

possibility to cover large surfaces and substrates that are mechanically flexible

and conformable, the fact that their energy gap sits well in the visible spectrum as

to allow for applications such displays, the facts that they can create, transmit,

modulate and detect light when embedded in low-cost and light architectures

and also that they can be inkjet printed, all contribute to the infiltration in

the field of optoelectronics, traditionally dominated by inorganic III-V and II-IV

materials. [1–3] Techniques and architectures that are typically oriented towards

optoelectronic applications have also been proved to be biocompatible, when

an organic photovoltaic module restored the vision in a rat. [4] It is such the

versatility that organic semiconductors offer in terms of physical, optical and

electrical properties, that the chemical synthesis can now be accelerated by the

use of Machine Learning techniques. [5, 6]

A very early report by André Bernanose et al. in 1952 [7] describes

electroluminescence (EL), the process of producing light by applying a voltage.

Bernanose used crystalline films of acridine orange and quinacrine, an organic

phosphorescent compound, to observe electroluminescence. The work published

in 1955 [8], unofficially making him the “father of the organic light-emitting

diode”. Notable work on the study of EL was carried out by Pope et al. at

New York University and was reported in 1963, when the authors described

light emission from anthracene single crystals, though unusable due to the very

high voltages applied. [9] Research in the field was not very active until 1977,

when Shirakawa, MacDiarmid and Heeger reported the electrical conductivity in

synthesised doped polyacetylene. [10, 11] It was this discovery that was later

rewarded with the Nobel Prize in Chemistry in 2000 “for the discovery and

development of conductive polymers”. Plastics ceased to be simply insulators.

n

Figure 1.1 | Chemical structure of trans-polyacetylene. The discovery of electrical conductivity

in polyacetylene was the stimulus for the expansion of organic electronics.
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Introduction - why Organics?

1.1.1 Organics in renewable energy sources

While physics and chemistry behind carbon can be fascinating, practical

applications in devices in everyday life are necessary to push research to be

commercialised. Two main pillars can be identified where organic electronics have

the capacity to contribute: light generation and light harvesting, with electrically-

conductive devices being a possible third. The field of organic semiconductors is,

therefore, partially fuelled by the field of renewable energy sources as the light

harvesting pillar. While the Earth’s population is growing, so is the hunger for

energy. Inevitably, the energy consumption has more than double in the past 40

years, with an expected increase of 37 % by 2040. [12]

Currently we remain completely dependent on fossil fuels, we know that these

resources are not limitless and we see the destructive consequences they have

on our planet. This has lead to the search of alternative, renewable energy

sources. The greatest of the them all is the Sun, with wind, tidal, hydro and

geothermal powers as other sources. A large number of solar photons bombard

Earth’s surface, making solar energy the primary point of focus for harvesting

to substitute fossil fuels and photovoltaic devices as the most promising mean of

doing it.

Photovoltaic devices are structures that convert photons to electrical power. It

is estimated that only 0.3−0.4 % of the Earth’s surface covered with photovoltaic

devices of an average 20 % efficiency would suffice to cover our energy demands.

[12, 13] There are many examples of photovoltaics with efficiencies around or

above this value as shown in Figure 1.2 below. A theoretical maximum for organic

dye-sensitised solar cells of just over 20 % [14], with values of 29.3 % reported for

gallium arsenide devices, 27.6 % for single crystal silicon and up to 46.0 % for

multijunction cells 1, show this potential is feasible.

1 Values sourced from NREL, accessed September 2018.

3

https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf


Introduction - why Organics?

20001995

Ef
fic

ie
nc

y 
(%

)

1990198519801975

12

8

4

0

16

20

24

28

32

36

2005 2010 2015 2020

40

44

48

52
Best Research-Cell Efficiencies

(R
ev

. 0
7-

17
-2

01
8)

Single-Junction GaAs 
Single crystal
Concentrator
Thin-film crystal

Thin-film crystal

Multijunction Cells (2-terminal, monolithic)
LM = lattice matched
MM = metamorphic
IMM = inverted, metamorphic

Three-junction (concentrator)

Two-junction (concentrator)
Three-junction (non-concentrator)

Two-junction (non-concentrator)
Four-junction or more (concentrator)
Four-junction or more (non-concentrator)

Crystalline Si Cells 
Single crystal (concentrator)

Multicrystalline
Silicon heterostructures (HIT)

Single crystal (non-concentrator)

Thin-Film Technologies

CIGS
CdTe
Amorphous Si:H (stabilized)

CIGS (concentrator)

Emerging PV
Dye-sensitized cells

Organic cells (various types)
Organic tandem cells

Perovskite cells (not stabilized)

Inorganic cells (CZTSSe)
Quantum dot cells
(various types)

NREL
(ZnO/PbS-QD)

U.Toronto
(PbS-QD)

MIT U.Toronto
U.Toronto

NREL    13.4%
IBM 12.6%

11.9%

EPFL
EPFL

EPFL
EPFL

Sharp NIMS Sharp

UCLA-Sumitomo

UCLA

Heliatek

Heliatek

UCLA

Sumi-
tomo

U. Dresden

11.5%

Siemens

Groningen

U. Linz U. Linz

NREL / Konarka
U. Linz

Plextronics

Konarka

Mitsubishi
HKUST          

Phillips 66

UCLA
ICCAS

Konarka
Solarmer

12.6%

IBM IBM
IBM

EPFL
KRICT

KRICT EPFL

KRICT/UNIST

KRICTISCAS
23.3%

UNSW /
Eurosolare

UNSW
Georgia

Tech
Georgia

Tech
Georgia

Tech

SolarexSolarex

FhG-ISE

Trina

FhG-ISE
FhG-ISE

22.3%

RCA
RCA

RCA RCA RCA

Solarex ARCO

UniSolar

RCA

RCA

UniSolar
UniSolar

(aSi/ncSi/ncSi)
AIST AIST

LG

UniSolar

14.0%

Matsushita
Monosolar

Kodak
Kodak Kodak Kodak

AMETEK Photon Energy

U. So.
Florida

First Solar First
Solar

First Solar

First Solar

GEGE
Matsushita NREL

NREL

22.1%

22.9%

U.of Maine

U.of Maine
Boeing

Boeing

Boeing Boeing

Boeing
ARCO ARCO Boeing

Euro-CIS

NREL NREL NREL

EMPA (Flex poly)

NREL NREL NREL

ZSW
ZSW

SolarFron

NREL

NREL

NREL
NREL

Solibro

ZSW SolarFron

Solexel

Solexel

U. Stuttgart

U. Stuttgart

FhG-ISE
ISFH   21.2%

Sanyo Sanyo Sanyo Sanyo Sanyo Panasonic

Panasonic

Panasonic
KanekaKaneka

26.6%

NREL
(14x)

NREL (15.4x)
NREL (14.7x) 23.3%

27.6%
SunPower (96x)

Stanford
(140x)

Amonix
(92x)

UNSW
UNSW

SunPower (large-area)

FhG-ISE
ISFH

UNSW
UNSW

UNSW
UNSW

ARCO

RCA
Mobil
Solar

Sandia

UNSW
UNSW

UNSW

Spire

Stanford

Westing-
house

26.1%
Radboud U. Alta

Alta
Alta 28.9%

Varian
(216x)

Varian
(205x)

FhG-ISE (117x)
LG

FhG-ISE
(232x)

29.3%

27.8%

IBM
(T.J. Watson

Research Center)

Kopin

Radboud U.

FhG-ISE

LGLG
NREL

Varian

Boeing-
Spectrolab (5-J) 38.8%

46.0%

Soitec
(4-J, 319x)

FhG-ISE/ Soitec

Soitec
(4-J, 297x)

NREL

NREL
(4-J, 327x)

Alta
Alta

LGNREL (MM)

NREL

Varian

NREL
32.8%

NREL
Japan
Energy

Spire

No. Carolina
State U.

Varian

IES-UPM (1026x)
NREL (467x)

FhG-ISE
NREL (38.1x) 35.5%NREL

(IMM)

Sharp (IMM)
Sharp (IMM)

Sharp (IMM)

Spectrolab

37.9%

NREL/
Spectrolab

 Spectrolab

 Spectrolab

Boeing-
Spectrolab 

Boeing-
Spectrolab 

Boeing-
Spectrolab 

Boeing-Spectrolab
(MM, 240x)

Boeing-Spectrolab
(MM,179x)

NREL (IMM)
NREL

NREL
(IMM, 325.7x)

FhG-ISE
(MM, 454x)

SpireSemicon
(MM, 406x)

SolarJunc
(LM, 418x)

SolarJunc
(LM, 942x)

Sharp
(IMM, 302x)

Spectrolab
(MM, 299x)

Boeing-
Spectrolab
(LM, 364x)

44.4%

See https://www.nrel.gov/pv/assets/pdfs/cell_efficiency_explanatory_notes.pdf
for key to company/laboratory/organization acronyms & abbreviations.

Figure 1.2 | Figure illustrating the highest confirmed power conversion efficiencies for

photovoltaic solar cells from a range of different technologies. Image reproduced from National

Center for Photovoltaics (NCPV) at the National Renewable Energy Laboratory (NREL),

accessed September 2018.

The active material of most commercial solar panels installed is silicon.

While silicon is abundant on Earth, high temperatures and various toxic and

expensive processes are needed to fabricate high quality solar panels. This

results in expensive and non-environmentally friendly production that requires

at least a few years to pay back the initial investment, an estimated > 1 year

for the sunnier Southern Europe. 2 Light-emitting diodes that are widely

used in various lighting and display applications, also require similar expensive

and complicated processes. This is where the organic semiconductors provide a

promising alternative. With processes that do not require high temperatures and

vacuum are faster, simpler and cheaper than the ones for processing silicon, while

still providing efficiencies that are comparable to the inorganic alternatives.

The need of a simpler, cheaper method of fabrication has pushed towards

solution processing. Solution processing means that the fabrication, or deposition

of the materials, starts from a solution, followed a by a process of spin coating,

spray coating, slot-dye coating, dip-coating or inkjet printing and resulting in

uniform, thin, and, if needed, semi-transparent films. There are many reports

from various research groups that very high efficiencies from solution-processed

organic materials have been achieved, with a very recent record efficiency of

17.3 % for organic solution processed solar cells. [15] Solution processing has

driven research throughout the field of organic semiconductors with applications

2 Source: Fraunhofer Institute for Solar Energy Systems, ISE.
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found also in light-emitting diodes, [16, 17] lasers, [18–20] photodiodes [21] and

thin-film transistors. [22]

One class of photovoltaics that emerged from this solution-processed drive,

were the dye-sensitised solar cells, first reported by O’Regan and Grätzel in

1991, [23] with the latest results reporting a record efficiency of 13 %. [24] In

the last years, a new class of hybrid organic-inorganic solar cells has emerged,

the perovskite solar cells. They are solution processed, cheap and have a huge

tolerance over impurities and imperfections, contrary to silicon. [25] Though the

field has seen an unprecedented explosion since the publication of the seminal

paper of Snaith and co-workers [26] in 2012, the first reports were from Miyasaka

and co-workers, reporting a 2.2 % efficiency in 2006 [27] that was increased to

3.8 % in 2009. [28] Since then, perovskites have attracted significant attention

in understanding the physical processes. However, a big drawback of perovskites

remains the use of heavy and very toxic metals, such as cadmium and lead and

their environmental and human toxicity, though there are studies on the life cycle

of a perovskite solar cell [29], as well as lead-free perovskites. [30] Much effort has

been focused on researching different materials composition, processing conditions

and device architecture as to stabilise them for over 25 years, as required for real-

life applications. [25] However, in only a few years, building on the technology

and know-how obtained from the dye-sensitised solar cells, perovskite solar cells

have been reported achieving efficiencies up to 22.9 %, as shown in Figure 1.2

above. A remarkable increase from the 10.9 % reported in 2012. [26]
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1.1.2 Light-emitting organic semiconductors

Organic photovoltaics, including perovskites, are part of the driving force for the

research in organic semiconductors. And as it was put by Yablonovitch and co-

workers, a material suitable for photovoltaics should be an efficient emitter. [31]

Looking at the second pillar, that of light generation, then, we look at the organic

light-emitting diodes. After the discovery of the conductivity in polyacetylene

[10, 11] and the reports of electroluminescence from organic compounds [8, 9],

research continued to thrive, resulting in the reports of Roger Partridge using

poly(N-vinylcarbazole) (PVK) and making an OLED. [32] Though the efficiency

made it unusable, it showed the potential of organic material to produce light.

It was not until a few years later, in 1987, when Tang and Van Slyke

from Kodak reported the first organic light-emitting diode (OLED) with true

functional potential, and efficiency of 1 % photon/electron, using the thermally

evaporated small molecule tris(8-hydroxyquinolinato)aluminium (Alq3). [33]

Shortly after this report, Adachi et al. reported a multi-layer architecture,

closer to today’s standards for OLEDs, though significantly lower photon/electron

efficiency of 0.04 %. [34] Fast forward to 1990, the Cambridge group lead by

Burroughes, Bradley and Friend were the first to report a solution processed

high-efficiency polymer-based OLED with poly(p-phenylene vinylene) (PPV)

as emissive material [16], with Heeger validating this discovery with the PPV

derivative MEH-PPV [35] and a noteworthy work on flexible solution-processed

light emitting diodes. [36] This ignited a research field that for the last 30 years

has an average of almost 2 scientific papers per day,3 while there are more than

224,000 patent documents.4

Over the 30 past years of intense research in the field, there has been a wealth

of materials with excellent optoelectronic properties, resulting in very efficient

OLEDs. [37, 38] As already mentioned, a good material for OPVs is a good

emitter, and perovskites are not an exception. [38, 39] Perovskite based OLEDs

have been demonstrated to have have excellent electroluminescence external

quantum efficiency (ηEL) values, and with easily tunable emission wavelength.

Further to OLEDs, perovskites are a good candidate for organic lasers. To achieve

electrically excited lasing, several ingredients are necessary: a high-quality gain

medium with slow non-radiative decay pathways at the carrier density levels

required for population inversion, large mobilities and free-carrier densities to

minimise resistive heat loss, good thermal stability, a large gain cross-section at

3 Scopus results based on the keyword “OLED” for the period 1987-2018, accessed

04/09/2018.
4 Scopus results for the period 1987-2018 for patent documents with the keyword “OLED”,

accessed 04/09/2018.
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the lasing wavelength and sharp band tails marked by a low Urbach energy.

Perovskites have demonstrated all of these properties except for high carrier

densities and thermal stability, making them an exciting candidate for electrically-

driven lasing. [38, 40, 41]

Either from dye-sensitised [23], polymer [15, 42, 43], perovskite [25, 26] or

small molecule solar cells [44], organic field effect transistors [3, 22, 45, 46], light-

emitting diodes [16, 33] or lasers [18, 19], organic semiconductors is vast field,

covering and showing applications in every day life on many different sectors,

shows also huge potential of improving many aspects of everyday life.
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1.2 Optical and electronic properties

All the exciting properties that make organic semiconductors such a fascinating

field to conduct research in, arise from a simple principle of alternating single

and double bonds of their carbon-based atoms. By repeating this over a number

of units, one forms long linear chains that we call “conjugated polymers”. It

is this fact of alternating singe and double bonds that can lead to electrical

conductivity in organics and that allows light emission and absorption. It was

such the significance of “the discovery and development of conducting polymers”

that made it the subject of the 2000 Nobel Prize in Chemistry.

1.2.1 Molecular orbitals and π-conjugation

A carbon (12
6 C) atom has 6 electrons and its electronic structure is 1s2 2s2 2p2

in the ground state. Therefore, there are two electrons unpaired in the outer

shell. However, the small energy difference between 2s and 2p states allows one

electron to be excited to the 2p state, resulting in a total of four electrons to

form chemical bonds. A spherically symmetric 2s orbital and three dumbbell-

shaped 2p, as illustrated in Figure 1.3 below. These orbitals can hybridise in

three different configurations, sp1, sp2 and sp3 and form covalent bonds:

Four sp3-orbitals: all three p-orbitals are hybridised with the s-orbital.

Three sp2-orbitals hybridised between the s-orbital and the px- and py-

orbitals and one unhybridised pz-orbital

Two sp-orbitals hybridised between the s-orbital and the px-orbital, leaving

the py- and pz- orbitals unperturbed.

The sp3 hybridised forms mainly “saturated” polymers and diamonds, where

all four electrons are confined in σ-bonds (single) with neighbouring atoms,

therefore becoming an insulator that lacks interesting electronic or optical

properties.

8



Optical and electronic properties

x

y

z

2pz

2s
2py

2px

x

y

z

2pz

x

y

z

x

y

z

2pz

2py

sp3

sp2

sp

x

y

z

x

y

z

109.5°

x

y

z

120°

109.5°

109.5°

109.5°

120°

120°

Figure 1.3 | The outer orbitals of carbon. The spherically symmetric 2s and the three

dumbbell-shaped 2p (2px, 2py and 2pz). The combination of the orbitals result in three

hybridised orbitals, sp, sp2 and sp3, that form σ- and π-bonds with neighbouring atoms. Image

adapted from [13].

However, sp2 hybridised atoms form three coplanar, 120 ° to each other,

σ-bonds with neighbouring atoms. The remaining pz orbital, perpendicular to

the plane of the σ-bonds, is free to delocalise and overlap with neighbouring

orbitals to form π-bonds. This π-bond is a double bond and is illustrated in

Figure 1.4a below. The overlapping π-bond is extended below and above the

plane of the σ-bond. This overlapping of the orbitals leads to the formation of

a molecular bond and the subsequent splitting into two distinct energy levels, a

bonding molecular π-orbital and an anti-bonding π∗-orbital (Figure 1.4b). The

bonding π-orbital sits in lower energy level than the original pz, while the π∗-

orbital is in a higher energy level. Similarly, the overlapping sp2 orbitals lead

to the formation of a bonding σ-orbital and an anti-bonding σ∗-orbital, that sit

higher and lower than the π& π∗-orbitals respectively, as illustrated in the Figure

1.4b below.
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sp2 orbitals

plane

π-bond

π-bond

σ-bond

pz orbitalpz orbital

sp2

pz

σ

σ∗

π∗

π

pz

sp2

(a) (b)

Figure 1.4 | (a) Illustration of the sp2 orbitals (blue) forming the σ-bonds and the

perpendicularly-standing pz orbital that forms a π-bond (double bond) with a second carbon

atom. (b) Distinct energy levels of π- and π∗- orbitals of two neighbouring carbon atoms.

Image reproduced from orgworld.de, accessed September 2018.

By increasing the number of these sp2 hybridised carbon atoms, the distinct

energy levels of the π&π∗-orbitals degenerate into quasi-continuous bands where

the low-energy π-orbital is referred to as highest occupied molecular orbit

(HOMO) and the higher energy π∗-orbital as lowest unccupied molecular orbit

(LUMO). This is depicted in Figure 1.5b below. The degeneration takes place

in polymers, such as PPV presented in Figure 1.5a below, the same polymer

that was used as the active layer in the first ever reported polymer OLED. [16]

The energy difference between HOMO and LUMO is defined as the energy gap

(EG) of the molecule. The analogous of the HOMO and LUMO in inorganic

semiconductors is the valence and conduction bands (VB and CB respectively).

The energy gap is typically 1.4 − 3.5 eV for organic molecules and is the origin of

the optical properties of organic semiconductors, allowing transition in the range

∼ 350 − 900 nm, although there are reports from OS emitting in wavelengths up

to 2µm. [47–49]

n

8 × pz

24 × sp2
HOMO

LUMO

EG

(a) (b)

Figure 1.5 | Chemical structure of poly(p-phenylene vinylene) (PPV) and the degeneration of

the energy levels into quasi-continuous bands, highest occupied molecular orbit (HOMO) and

lowest unccupied molecular orbit (LUMO), which are the equivalent valance and conduction

bands met in inorganic semiconductors.
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For the sp hybridised carbon atoms, the two sp-orbitals overlap with two

adjacent co-linear atoms to form two σ-bonds. The remaining px- and py- orbitals

will be perpendicular to the σ-bond and overlap with the respective orbitals of

the adjacent atoms to form a triple bond.

Lastly, as mentioned above, the exciting properties of the organic

semiconductors are owed to the alternating single and double bonds. A system

with such alternation is called a π-conjugated system and can be either a small

molecule or a polymer. The π-conjugation is characterised by a spatial extension

of the π-orbitals over the backbone of the carbon atom chain that leads to

delocalised electrons. Such a system is trans-polyacetylene and the PPV polymer

shown in Figures 1.1 and 1.5a above. The molecules and polymers, that are going

to be presented below in Chapters 3 and 4 and form the core of this thesis, are

also π-conjugated. It is these delocalised electrons that are responsible for the

electrical conductivity of organic semiconductors. It is evident that the length

of the delocalised orbitals has an important effect on the optical and electrical

properties of the materials.
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1.2.2 Optical properties

There are two main processes arising from the energy gap of a molecule involving

photons: (a) absorption, when a photon is absorbed by the excitation of an

electron from the ground state (HOMO) to an excited state (LUMO), (b)

spontaneous emission when the excited electron returns to the ground state

(HOMO) by emitting a photon, basically the inverse process of absorption.

Process (a) is the main process occurring in photodetectors and solar cells and (b)

in LEDs. Processes (a) and (b) can be visualised with the help of the Jablonski

diagram shown in Figure 1.6. [50] There is a third process that can occur,

named stimulated emission and involves the emission of another similar photon

by recombination, resulting in the emission of two coherent photons and is the

main process in a laser.
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Figure 1.6 | The Jablonski diagram. Illustrates the optical transitions between the ground

state (S0) and the excited single states (S1, S2) and triple state (T1), and typical time scales

for each transition. With blue is noted the absorption of a photon, with orange fluorescent

relaxation, with cyan the intersystem crossing and with green phosphorescence. With pink

are noted the non-radiative relaxation processes (quenching and internal conversion). Solid

lines indicate radiative processes while dashed indicate non-radiative. Each of the ground and

excited states is split into further vibronic states 0, 1, ..., 5.

The diagram depicts the energy levels of a molecular system, arranged

vertically by energy and horizontally by spin number. The ground state S0 and
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the two excited states S1 and S2 are singlet states, i.e. states with total spin

number s = 0, as shown in Equation 1.2 below, while T1 is a triplet excited state,

i.e. a state with total spin number s = ±1, as shown in Equation 1.1 below.

|1, 1〉 = ↑ ↑

|1, 0〉 =
(↑ ↓ + ↓↑)√

2

|1,−1〉 = ↓ ↓

 s = 1 (1.1)

|0, 0〉 =
(↑ ↓ − ↓↑)√

2

}
s = 0 (1.2)

Conjugated polymers exhibit strong electron-lattice coupling, and therefore all

states are split into further vibrational energy levels, 0, 1, ..., n. The processes

that involve absorption and emission of photons are noted with solid lines while

non-radiative relaxations are noted with dashed lines.

The vertical transition from the ground state S0 to an excited state S1 or

S2 is termed absorption and takes place in ∼ 10−15 s (hνabs in Figure 1.6). An

electron excited to S2 relaxes non-radiatively to S1 in a process called internal

conversion (IC), process with a typical timescale of ∼ 10−12 s. Kasha’s rule states

that a return to the ground state S0 is more likely to occur from the lowest

excited state, i.e. S1. [51] A return from S1 to S0 is a radiative process called

fluorescence that occurs in a ∼ 10−9 s regime (orange hνem in Figure 1.6). This

is a spin-allowed process where the electron in the S1 and the electron in the S0

have opposite spin.

However, a spin-forbidden relaxation to S0 can occur, when the excited

electron has the same spin as the one in S0. This happens when an electron from

S1 “jumps” to T1 by intersystem crossing (ISC), a non-radiative spin conversion

process between two electronic states of different multiplicity, and later relaxes

to the ground state. For ISC to occur, spin-orbit coupling is required. Spin-

orbit coupling (SOC), or the heavy atom effect as it has been termed, is a

relativistic effect mixing the singlet and triplet wave functions. [52, 53] If the spin

angular momentum s and the orbital angular momentum l of an electron couple,

then a change in spin angular momentum can be compensated by an opposite

change in orbital angular momentum. This is because only the total angular

momentum j = s + l has to be conserved during an optical transition. [54]

Organic semiconductors are usually characterised by weak spin-orbit coupling,

unless there is a heavy atom present, such as platinum. However, as it is examined

below, this can be more favourable, and is observed, in the presence of heavy

metals. This process takes place in the order of ∼ 10−6 s to several s and is
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called phosphorescence (green hνem in Figure 1.6). Photoluminescence (PL) is

defined as the emission of photons, either fluorescence or phosphorescence, due

to photoexcitation.

Absorption and emission should be, theoretically, mirror images of one another

since the same energy level transitions are involved. In practise, they are

significantly broadened and many differences can be observed. The shapes of

the absorption and emission spectra can be described with the help of the Frank-

Condon diagram, illustrated in Figure 1.7 below.

The Frank - Condon principle derives from the Born-Oppenheimer

approximation. According to the approximation, electronic transitions and

nuclear motions are independent. The Frank-Condon principle states that the

electrons, being much lighter, are excited on a much faster time scale (∼ < fs)

than the motion of the heavier nuclei (∼ 100 fs). [55] Hence, electronic transitions

are represented by vertical lines. Because the electronic transitions take place in a

time scale much faster than the time scale of the nuclear motions, a transition has

higher probability of occurring between the two vibrational levels with the most

significant wavefunction overlap, in the example shown in Figure 1.7 is between

ν = 0 and ν = 2 that shows the highest intensity in the spectrum.

The more realistic absorption and emission spectra are shown in Figure 1.7

with solid lines overimposed to the transitions. This broadening is attributed to

various inhomogeneities in the exciton energies arising from different conjugation

lengths in polymers, different vibrational energies and general disorder in the

system. These differences can have physical origins, such as torsional vibrations.

14



Optical and electronic properties

E
n
er

g
y

Nuclear Coordinate

S1

S0

1

2

3

4

0

1

2

3

4

0

Wavelength

Absorption Emission

0 - 0

0 - 2 2 - 0
Nuclear Coordinate

S1

S0

1

2

3

4

0

1

2

3

4

0

Figure 1.7 | (a) Franck-Condon Energy Diagram. Morse-like potential energy curves for

the ground (E0) and first excited (E1) states. The vibrational wavefunctions are display with

orange. The most favourable transitions are indicated with arrows. (b) Illustration of the

spectra of the same vibronic transitions that are shown in (a) as absorption and emission.

Usually observed in dilute gases, while the solid lines represent the broadening of the spectra

in solids and solutions. Figure adapted from M. Samoza under the Creative licence.

The energetic difference between the 0 − 0 transition in absorption and

emission is defined as Stokes’ shift. In the example presented in Figure 1.7

above there is no Stokes’ shift as the 0− 0 transition in absorption and emission

are perfectly overlapping. An example that this can occur is for individual

chromophores in the gas phase. However, typically in dense molecular systems,

such as amorphous molecular film or conjugated polymers, electronic coupling

between different chromophores will be observed, that leads to energy transfer

populating tail states of the density of states distribution and a large Stokes’

shift will be exhibited. Smaller, more rigid molecules have smaller shifts due the

absence of conformational change due to excitation. Stokes’ shift can also be split

in true and apparent, with true owing to geometric relaxations and the apparent

to spectral diffusion.

After defining what photoluminescence is, shown in the Jablonski diagram
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in Figure 1.6 above, the efficiency of an emitter can be determined by the

photoluminescence quantum efficiency (ηPL). It simply the ratio of the number

of photons emitted to the number of the photons absorbed. [56] Experimentally

this is measured using an integrating sphere (absolute method) or comparing

it to a standard (relative method), but more details about the experimental

determination are discussed in Section 2.3 below.

Assuming an initial number of fluorophores in the excited state N0, after the

excitation there are N fluorophores that will leave the excited state S1 according

to the rate:

dN(t) = −(kr + knr)N(t)dt (1.3)

where t is the time, kr is the radiative rate for the S1 → S0 transition and

knr is the non-radiative rate. Integrating Equation 1.3 and considering that the

intensity of the fluorescence I(t) is proportional to the excited state population

N(t) yields:

I(t) = I0 e
− t/τ (1.4)

where τ is the fluorescence lifetime, I0 is the fluorescence intensity at t = 0, i.e.

the number of the photons absorbed, and can be experimentally determined. The

process of determining τ is described in Section 2.5 below.

ηPL can, therefore, be defined as:

ηPL =

∫ ∞
0

krn(t)dt

N0

(1.5)

However, the ηPL can be also expressed using the radiative and non-radiative

rates as the fraction of the radiative rate to the total decay rate of an excited

state using the formula:

ηPL =
kr

kr + knr
(1.6)

This is an equation with two unknowns, assuming that ηPL is experimentally

determined. To solve it, a second formula combining kr and knr is the one for

the lifetime of the excited state τ , also termed natural lifetime, i.e. the time

a molecule spends in the excited state before, radiatively or non-radiatively,
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returning to the ground state. The expression is:

τ =
1

kr + knr
(1.7)

Once τ and ηPL are measured, the two rates can be calculated.

It can also be argued that, while there is only one radiative path, and therefore

a singe kr, there are multiple non-radiative paths, such as IC, ISC and energy

transfer. In that case a summation factor
∑
i

knri would be used, of all the different

rates.

The study of conjugated polymers is carried out using the exciton model.

When a photon is absorb by a π-electron, the electron is excited to higher

lying orbital. This leaves behind a hole and an electron-hole system is formed.

Coulomb interaction between the two results in a bound state, a bosonic

quasiparticle called exciton. There are two types of excitons that are formed

in semiconductors, Wannier-Mott and Frenkel excitons. The former are typically

met in inorganic semiconductors, with lower binding energies and larger radii.

In conjugated polymers, the excitons are strongly-bound, owing to the difference

of the permittivity of the two media, with small radii and indicate the latter,

Frenkel-type excitons, with binding energies ∼ 0.1− 1.5 eV. [57, 58] Depending

on the total spin S, excitons are defined as singlet and triplet excitons, where

singlets have S = 0 and triplets S = 1. Excitons, both triplets and singlets can

exist both in photoluminescence and electroluminescence, i.e. following excitation

by photons or electrons respectively. Triplets radiative recombination will lead

to phosphorescence, as described above, while singlets lead to fluorescence.
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1.2.3 Energy transfer

A substantial part of the results presented in this thesis, and the entirety of

Chapter 3 is based on energy transfer. Energy transfer, as stated by its name,

is the transfer of an excited state’s energy from a donor to an acceptor. The

trivial or cascade energy transfer is the process involving a photon emitted from

a donor molecule D that and is reabsorbed by an acceptor molecule A. It usually

involves long distances (∼ tens of nm) and is typically met in dilute solutions.

This process can be expressed as:

D∗ → D + hν

hν + A → A∗
(1.8)

A different process, prevailing in dense media, that can take place is a

non-radiative energy transfer occurring via quantum chemical coupling between

electronic transitions, and is expressed as:

D∗ + A → D + A∗ (1.9)

where D is the donor, A is the acceptor and ∗ denotes excited states. This

mechanism of transfer is called Förster resonant energy transfer (FRET), depends

on the spectral overlap of the donor’s emission and acceptor’s absorption.

It involves only spin-allowed transitions, i.e. singlets, and therefore only

fluorescence is involved in the process. This was first formulated by the Perrin

brothers and is referred to as a through-space mechanism. [59, 60]

A final energy transfer mechanism is that of Dexter transfer and is an electron

exchange interaction. In Dexter transfer, an excited donor electron is transferred

to the acceptor excited state and an electron from the acceptor ground state is

transferred to the donor ground state. Since Dexter transfer is independent from

the electrons spin, both singlets and triplets are involved.

The quantum chemical coupling for energy transfer between donor and

acceptor is weak, the rate constant for the energy transfer is derived using Fermi’s

Golden Rule:

kFRET =
2π

~
| 〈Ψf |Ĥ ′|Ψi〉 |2 ρE (1.10)

where:

ρE : The density of final states
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Ĥ ′ : The coupling Hamiltonian, comprising the electrostatic interaction between

the charge distributions on the donor and acceptor

As noted, FRET is related to the spectral overlap between donor emission and

acceptor absorption which is expressed as:

J =

∫
ID(λ) εA(λ) λ4 dλ (1.11)

where:

ID(λ) : Donor emission (dimensionless)

εA(λ) : Extinction coefficient expressed in M−1 cm−1

and the donor emission in normalised as

∫
ID(λ) dλ = 1. The resulting J is

therefore expressed in M−1 cm−1 nm4.

To evaluate the electronic interaction energy β = 〈Ψf |Ĥ ′|Ψi〉, the donor

and acceptor molecules are considered as a system. The initial and final

state wavefunctions are Ψi = ÂΨ∗DΨA and Ψf = ÂΨDΨ∗A, with Â being

the antisymmetrisation operator and Ψ containing both electronic and spin

wavefunction. Considering that the system has two indistinguishable electrons,

the two wavefunctions for the initial and final states can be constructed as:

Ψi =
1√
2

[Ψ∗D(1)ΨA(2)−Ψ∗D(2)ΨA(1)]

Ψf =
1√
2

[ΨD(1)Ψ∗A(2)−ΨD(2)Ψ∗A(1)]
(1.12)

Substituting Ψi and Ψf into β = 〈Ψf |Ĥ ′|Ψi〉 leads to:

2β =
〈

[ΨD(1)Ψ∗A(2)−ΨD(2)Ψ∗A(1)]
∣∣∣Ĥ ′∣∣∣[Ψ∗D(1)ΨA(2)−Ψ∗D(2)ΨA(1)]

〉
⇒
(1.13)

2β =
〈

ΨD(1)Ψ∗A(2)
∣∣∣Ĥ ′∣∣∣Ψ∗D(1)ΨA(2)

〉
−
〈

ΨD(1)Ψ∗A(2)
∣∣∣Ĥ ′∣∣∣Ψ∗D(2)ΨA(1)

〉
−
〈

ΨD(2)Ψ∗A(1)
∣∣∣Ĥ ′∣∣∣Ψ∗D(1)ΨA(2)

〉
+
〈

ΨD(2)Ψ∗A(1)
∣∣∣Ĥ ′∣∣∣Ψ∗D(2)ΨA(1)

〉 (1.14)

In first and last term of Equation 1.14, the electrons remain in the respective

molecules before and after the interaction changing to the excited state (or the

ground state) and make up a coulomb term. In the two middle terms, the
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electrons change between the two molecules and retain their status of being in

an excited or ground state molecule before and after the interaction. These two

terms make up an exchange term. Equation 1.14 can be written as:

β = βC + βE (1.15)

with:
βC =

〈
ΨD(1)Ψ∗A(2)

∣∣∣Ĥ ′∣∣∣Ψ∗D(1)ΨA(2)
〉

βE =
〈

ΨD(1)Ψ∗A(2)
∣∣∣Ĥ ′∣∣∣Ψ∗D(2)ΨA(1)

〉 (1.16)

Assuming that the distance between acceptor and donor is large compared

to their size, it suffices to consider only the dominant dipole-dipole interaction

and is the approximation that Förster used, termed point-dipole interaction. In

this case, the Coulomb interaction energy βC follows an inversely proportional

relation to the donor-acceptor distance R, such as:

βC ∝ |µD| |µA|
R3

κ (1.17)

where:

|µD| & |µA| : The transition dipole moments for the donor and acceptor

κ : An orientation parameter for the relative orientation between the dipole

moments that κ = cos(φ) − 3 cos(θD) cos(θA)

In a sample where the transition dipoles are isotropically oriented, κ2 =
2

3
is

used, while a collinear arrangements results in κ2 = 4, a parallel in κ2 = 1 and a

perpendicular κ2 = 0. As a result of Equation 1.17, the energy transfer rate for

FRET depends inversely on the sixth power of the distance between donor and

acceptor:

kFRET ∝
|µD|2 |µA|2

R6
κ2 (1.18)

Taking into account spectroscopically measurable quantities for the transition

dipole moments, such as the fluorescence lifetime τ and the photoluminescence

efficiency ηPL, through the Einstein coefficients and the density of states, the

formula for kFRET can be derived [54]:

kFRET =
9 · ln10

128 π5NA

κ2 ηPL
n4 τ 0

D R
6

∫
ID(λ) εA(λ) λ4 dλ︸ ︷︷ ︸

J

(1.19)
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where:

NA : Avogadro’s number, NA = 6.02 × 1023 mol−1

n : Refractive index in the medium around the donor and acceptor

ηPL & τ 0
D : Donor’s photoluminescence quantum yield and lifetime, respectively,

without the presence of the acceptor

The same equation can be simplified into:

kFRET =
1

τ 0
D

[
R0

R

]6

(1.20)

R0 is the Förster radius. Assuming εA(λ) is expressed in M−1 cm−1 and λ in nm:

R6
0 = 8.77 · 10−5 ηPL κ

2 J (1.21)

Typical values for Förster radii are in the order of 1 − 10 nm, while Dexter

energy transfer dominates smaller distances. [54, 56]

However, when estimating a Förster radius in an organic semiconductor, care

must be taken as the classic Förster theory implies a single step process from

donor to acceptor. In condensed phases, such as thin films, energy transfer is

often a multi-step process including a random walk among donor chromophores.

Furthermore, as noted above, Förster approximation assumes a large distance

between donor and acceptor compared to their size and when the coupling

is provided by electromagnetic dipole–dipole interaction. This holds true in

solutions but not in thin films. This results in failure of the point-dipole

approximation in extended π-conjugated molecules and polymers. [54, 56]

Finally, in the case where distances are very short (R< 1 nm), Dexter energy

transfer is predominant. The rate of Dexter transfer is expressed as:

kDexter ∝ J e−
2R
L (1.22)

where L is a constant that relates the effective average orbital radius of the

acceptor and the donor states.
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1.3 Organic light-emitting diodes

While relatively young, the field of OLEDs has greatly expanded and matured by

the quality and innovative research that has focused, both from the academic

world but also from the private sector. Since the first OLED was reported

from the Kodak labs, companies such as Hewlett-Packard, Pioneer, Panasonic,

Konica Minolta use OLEDs in their products. Most known in the recent years

for the commercial application in televisions are Sony, Samsung and LG and

since 2015 Apple. Two major suppliers of materials for those applications

are Cambridge Display Technology (CDT) and Universal Display Corporation

(UDC). Impressively, the latter holds exclusively, co-exclusively or sole licence

right to more than 5, 000+ patents for applications of phosphorescent OLEDs. 5

Some of the major OLED producers worldwide, such as Samsung, LG, Pioneer

and Panasonic, are all supplied by UDC.

While the best-known applications for OLEDs are imaging (screens) and

lighting, where visible light emission is necessary, near-infrared (NIR) OLEDs

have not been equally studied, albeit their niche applications in healthcare,

defence and security and telecommunications.

A typical diode structure comprises of a glass or other transparent substrate on

which the electrodes and functional layers are deposited. The simplest OLED has

a transparent anode, the active (emissive) layer and a reflecting metal as cathode.

A structure of this single-layer OLED is shown in Figure 1.8. Active layer may

include any emissive small molecule or polymer, such as PPV [16] or polyfluorenes

(PFO or F8) [61, 62]. The cathode usually is a thermally evaporated metal such as

calcium (Ca), aluminium (Al), silver (Ag), magnesium (Mg), etc. [63] Further to

pure metals, lithium fluoride (LiF) is widely used as a µ-layer of a few nanometres

with aluminium. [64] Current OLEDs typically consist of four or more layers of

different materials. Such multilayer structures allow for the separation of the

charge-injecting, charge transporting and light-emitting functions to the different

layers, thus leading to increased efficiency and lifetime [65]

5 As noted on the company’s website oled.com
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Cathode

Emissive layer

Anode

V

Figure 1.8 | Exploded view of the structure of an OLED with a transparent anode (bottom

blue layer), emissive layer (central green layer) and a metal cathode (top grey layer). Voltage

is applied via the two contacts.

The single layer device efficiency has been improved over the course

of the years following its discovery. This improvement was partially the

result of insertion of more layers to act as Electron/Hole Transport Layer

(ETL/HTL), Electron/Hole Injection Layers (EIL/HIL), Electron/Hole Blocking

Layers (EBL/HBL) according to the energy bands and purpose, while chemical

design and engineering progressed and the synthesis of very efficient materials

was achieved. A typical diode architecture that has been widely studied,

and is also the part of the research presented in this report in Chapter 3, is

ITO/PEDOT:PSS/F8BT/Ca/Al. [66, 67] Such architecture is reported in Figure

1.10.
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Figure 1.9 | Illustration of type-I and type-II heterojucntions.

In the case of a multilayer architecture, or an architecture employing a host-

guest strategy, similar to the one that is investigated in the Chapter 3 below,
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there are two possible heterojunctions that can form. Type-II heterojunction

is a system where the HOMO and LUMO levels of the first semiconductor are

both energetically higher than the second, a staggered architecture, illustrated

in Figure 1.9. Such systems are largely employed by organic photovoltaic

(OPV) devices, as they can efficiently dissociate formed excitons. In OLEDs,

however, such system can be utilised to serve as an electron or hole blocking

layer. However, in the case of emissive layers, such as the blends in Chapter

3, type-I heterojunction is employed. In such a system, the energy gap of one

semiconductor is within the second one, as depicted in Figure 1.9, resulting in

charge trapping at the smaller energy gap material.

This multilayer architecture utilises indium tin oxide (ITO) as the anode

electrode, a very common material used for the anode, formed by a solid solution

of Indium Oxide (In2O2) and 10w/w% of Tin Oxide (SnO2) as dopant. ITO

has a high conductivity (sheet resistance in the order of ∼ 20 Ω/�), a high work

function (∼ 4.6 eV), low roughness (∼ 1.8 nm RMS measured by Atomic Force

Microscopy (AFM) from the supplier) and transparency to a range of wavelengths

from visible to NIR. [68] Further modification to the sheet resistance (∼ 15 Ω/�)

and work function (∼ 4.8 eV) comes from oxygen plasma treatment, [69] but

increases up to 1.3 − 1.6 eV reported by Brown et al. [70]. Interestingly, the

duration of the oxygen plasma treatment doesn’t seem to strongly affect the work

function modification, nor does the intensity. However, Brown et al. showed a

rapid decrease of the work function when the samples were left in air, a range of

100−400 min, with a rather slower decrease for larger time scales, while remaining

> 5 eV. [70]
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Figure 1.10 | (a) Photograph of an F8BT-based organic light-emitting diode (OLED) under

operation. (b) Illustration of the F8BT OLED architecture used. (c) Energy diagram of the

isolated materials used for the F8BT OLED and illustration of the operation principle. Holes

are represented with the orange “+” sign, electrons with the red “-” sign. The resulting emitted

photon is illustrated with the yellow arrow. Holes move from the indium tin oxide (ITO) to the

lower-sitting PEDOT:PSS to the highest occupied molecular orbit (HOMO) of the polymer,

while electrons are injected from the Ca to the lowest unccupied molecular orbit (LUMO). The

recombination of electron-hole pair leads to electroluminescence, with a photon emitted.

The following step includes spin coating poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT:PSS) from a water dispersion on top of the

ITO to act as a Hole Transport Layer (HTL). [64] PEDOT:PSS has a

higher work function than ITO (∼ −5.2 eV), therefore better matching the

HOMO of the active layer, usually around 5 − 6 eV. On top of the

PEDOT:PSS is deposited, usually via spin-coating process, the active layer,

the conjugated polyfluorene derivative poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-

(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT). F8BT is a widely studied polyfluorene

derivative with a wide energy band-gap, two strong absorption bands with

maxima at ∼ 325 nm and ∼ 450 nm and green emission, with maximum at

∼ 550 nm (absorption and emission spectra are illustrated in Figures 3.13 and

3.50b & 3.12a below).

The low work function material that injects the electrons in the cathode is

calcium (Ca). Ca is thermally evaporated under high vacuum (∼ 10−6 mbar)

and has a work function of ∼ − 2.8 eV. [71] On top of Ca a protection layer of

aluminium (Al) is evaporated without breaking the vacuum to prevent oxidation

of the Ca layer. A schematic representation of a multilayer device, carrier

injection, as well as the band diagram of the aforementioned materials (isolated)

can be seen in Figure 1.10.

Further details about the device fabrication can be found in Section 2.6.

25



Organic light-emitting diodes

1.3.1 Device operation

The operational principle of an OLED, when is under forward bias, starts with

the injection of the carriers. Holes from the ITO, and electrons from the

cathode metal are injected to the emissive layer HOMO and LUMO respectively.

These carriers are then transported through the emissive polymer where they

are attracted by Coulomb interaction, forming a bound state, an exciton. This

exciton can recombine radiatively, with emission of light from the emissive layer,

or non-radiatively. This phenomenon of light emission due to charge injection is

called electroluminescence (EL). This principle is illustrated in Figure 1.11. [16]
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Figure 1.11 | Illustration of the energy level alignment in an organic light-emitting diode

(OLED) with an architecture of ITO/Emissive Layer/Calcium. (a) Isolated materials (before

contact), (b) materials in contact, (c) flat band condition, i.e. when the applied bias is V =

VBI and (d) materials under forward bias, i.e. when V >VBI.

The choice of materials with proper work functions, Φ, used as electrodes is

important as to minimise the the energy barriers, notably Φh for the holes and

Φe for the electrons. As shown in Figure 1.11, it is unlikely for electrons to be

injected from the anode electrode (ITO) and holes from the cathode (calcium)

due to the high energy barriers. The energy barriers for holes and electrons are

defined as:

Φh = EHOMO − ΦITO

Φe = Φcalcium − ELUMO

(1.23)

26



Organic light-emitting diodes

As it is illustrated in Figure 1.11, ΦITO 6= Φcalcium. Consequently, once the

different materials are brought into contact, charges move from the cathode to

the anode creating a built in voltage, VBI, until ∆E = 0 where the Fermi level of

the structure (Ef ) is aligned. VBI is defined as

VBI = ΦITO − Φcalcium (1.24)

Contrarily to other semiconductors, electronic structures in polymers are

accurately illustrated with rigid bands as the depletion region is � thickness

(hundreds of µm versus ∼ 100 nm). [72] Therefore, bands are illustrated tilting

rigidly by the VBI, with negligible band bending. As illustrated in Figure 1.11,

the energy gap (EG) can be express as:

EG = e VBI + Φh − Φe (1.25)

With the materials being in contact, the Fermi energy is constant. In the case

of conjugated polymers, Ef is within the energy gap, as illustrated in Figure 1.11,

not corresponding to an actual energy level. Given a thermodynamic equilibrium,

the Fermi-Dirac distribution, f(ε), expresses the probability of an electronic state

with energy ε being occupied at a temperature T:

f(ε) =
1

e
(ε−Ef )

kT + 1
(1.26)

Therefore, when ε = Ef , the probability of occupancy is 50 %. This is called the

Fermi level.

As illustrated in Figure 1.11c, when the applied bias V0 = VBI, the is a

flat-band case. The applied voltage V0 is the minimum voltage required for

charge carrier injection. By increasing the forward applied bias, more charges are

injected. The injection occurs via thermally assisted tunneling through the thin

Coulombic barriers of the depletion regions at the metal contacts. In the case of

the forward applied bias, the charge carriers propagate through the various layers,

overcoming small energy barriers at the interfaces, ending up to the emissive layer

where they can recombine. The large energy barriers offered confine the carriers

to the emissive layer, preventing further propagation.

For low energy barriers between electrodes and emissive layer, the current

flowing can be described by the Richardson-Schottky model and is not injection

limited. When the energy barriers are higher, the current is injection limited, and

the charge injection is better described by a Fowler-Nordheim model. However,
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upon injection, charge transport takes place through the thermally assisted

tunnelling, i.e. hopping. [73] For low energy barriers, hole current is space charge

limited (SCLC) while electron current is trap limited. This is a result of the low

hole mobility that causes an accumulation of charges close to the anode interface

and generate an opposite electric field. Electrons instead are more affected by

trap states caused by defects.
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1.3.2 Efficiency

As mentioned above, there are two different states possible, singlet states with

spin s = 0 (Equation 1.2) and triplet states with s = 1 (Equation 1.1). As already

discussed, the ratio of singlet to triplet (rst) is 3:1, i.e. 75 % triplets and 25 %

singlets, assuming an equal formation probability. [74] Radiative recombination

is fully allowed from singlet states only, and with a high energy barrier between

singlet and triplet energies, intersystem crossing (ISC) is unlikely and emission is

mainly due to singlet excitons. There are, however, cases where triplet emission

is the main source, such as heavy-metal containing material with phosphorescent

emission, or purely organic materials that are engineered in such a way that the

energy difference of singlet and triplet (∆Est) is small and reverse ISC is possible,

resulting in purely fluorescent thermally activated delayed fluorescence (TADF).

The efficiency of an OLED device incorporating a fluorescent emissive layer,

termed electroluminescence external quantum efficiency (ηEL), is summarised by

a single expression of the product of the internal quantum efficiency and the light

outcoupling efficiency (ξ):

ηEL = ξ ∗ IQE
ηEL = ξ ∗ γ

[
rst ∗ ηPLFL

+ (1− rst)ηPLPH

] (1.27)

Where:

ηPL is the photoluminescence quantum efficiency (ηPL) contribution for ηPLFL

fluorescence and ηPLPH
phosphorescence

rst is the ratio between singlets to the total number of excitons

γ is the excitons formation efficiency or charge balance factor, i.e. a factor

taking into account the carrier population imbalance (the ratio of minority

to majority carrier populations)

ξ is the outcoupling efficiency, i.e. the amount of light escaping the device

As ηPL is defined the ratio between the number of photons emitted to the number

of photons absorbed by a material in solution or in thin film.

ηPL =
photons emitted

photons absorbed
(1.28)

Further details about the experimental setup for the evaluation of ηPL are given

in Chapter 2.
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From Equation 1.27 is appreciated that it is important to have a high ηPL,

a property affecting the material, but also a balanced charge injection (γcap).

However, an improvement of a factor of 3 can be achieved by leveraging triplet

states, and it is the reason for the intense research that is carried out by the

organic semiconductors community and the use of heavy metals, rare earth

elements and lately thermally activated delayed fluorescent materials. Lastly, ηout
proves another limiting factor, with significant room for improvement. Typical

values of ηout are reported in the order of 0.2 − 0.3. [75] This is limited by the

difference in the refractive indices of the various layers, total internal reflections at

the interface of substrate/air, waveguided light in the various layers and substrate,

etc. Approaches in improving this could be modifying the substrate by employing

microlenses to extract more light, or changing the shape of the light output face,

something has proven to be successful in high-energy physics with scintillating

crystals. [76–78]
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1.3.3 Near-infrared emitting organic light-emitting diodes

With near-infrared (NIR) is defined conventionally the spectral region above

λ= 700 nm and below λ= 1000 nm. Following the significant reports of OLEDs

by Partridge in 1983 [32], Kodak in 1987 [33] and the Cambridge group in 1990

[16], the field of organic NIR emitting dyes was also ignited. As a result, since

1990 there have been > 1, 200 reports in the literature. 6 As shown in Figure

1.12, the field has shown an increasing trend of published papers, therefore an

increased interest over the last years.
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Figure 1.12 | Number of papers published since 1990 based on a search of “near-infrared”,

“emission” and “organic” as reported from the Web of Science, as of March 19th, 2019. Image

adapted from [79].

Despite this increase of reports and interest, the field of NIR organic materials

is relatively underdeveloped compared to the visible range, owing to the difficulty

of achieving very high luminescence and electroluminescence external quantum

efficiency (ηEL) values. This can be attributed to two major factors. Firstly, the

necessary small energy gap to achieve NIR emission (< ∼ 1.77 eV) results in a

need to have very planar π-conjugated systems. These systems have the tendency

to π-π stack and form non-emissive (dark) H-aggregates that are detrimental for

the emissive properties of the material. [80] Secondly, it has been shown that NIR

emitting organic materials obey the so-called “energy-gap” law. The energy-gap

law predicts that chemically similar compounds have an exponentially increasing

non-radiative (knr) with decreasing energy gap due to the vibrational overlap of

the manifolds of the ground and excited states. [81, 82] This means that while

the emission red-shifts, the internal conversion (IC) (non-radiative process, vide

6 These results are based on the Web of Science reports for the keywords “near-infrared”,

“emission” and “organic”. Accessed March 19th, 2019.
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infra) of S1 → S0 becomes more efficient. The energy-gap law is summarised in

the expression [56]:

knr ∝ exp (−γ∆E

~ω
) (1.29)

where:

ω : maximum vibrational frequency

γ : is a quantity expressible in terms of the molecular parameters

Several approaches have been reported in an attempt to minimise and

overcome the limitations of the two factors mentioned above. One approach is

by molecularly engineering the materials, such as rotaxanes [83, 84] and similar

structures [85], that sheath the conjugated core protecting it from π-π stacking.

A second approach is to increase the distance between the emitters, by diluting

the NIR emitting chromophores in a polymer matrix, typically with a wider

energy gap. [86–95] Further to organic materials, inorganic metal complexes

and quantum dots have also been reported in the literature as efficient NIR

emitters. This thesis, dealing with narrow energy gap emitters, has employed

both approaches to achieve efficient emission. Figure 1.13 presents the the ηEL
of NIR emitting OLEDs published to date, including the results presented in this

thesis. [91, 96]
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Figure 1.13 | Electroluminescence external quantum efficiency (ηEL) as a function of emission

wavelength for near-infrared (NIR) organic light-emitting diodes (OLEDs) published to date

including the results presented in this thesis. [96] The grey dashed box in the bottom left corner

is the area that has been magnified in the inset. There are no TADF results in this figure.

As shown in the Figure 1.13 above, there are many organic-inorganic metal

complexes that have exhibited impressively high ηEL values, but the “record

holder” for the highest ηEL reported so far is by Tuong Ly et al. that achieved an

impressive ηEL = 24 % in a normal planar OLED structure that was further

boosted to 55 % when using a light-outcoupling hemisphere. [97] The diode

emission peaks at 740 nm and was based on platinum metal organic complexes

as the emissive layer. The NIR emitting phosphorescent porphyrins reported by

the groups of Forrest [78, 92, 98, 99] and Reynolds [100–102] are also among the

highest efficiencies reported for NIR organic materials containing, however, toxic

heavy metals. Furthermore, perovskites have also been shown to achieve high

values of ηEL ∼ 5.0 %. [37, 38, 103]

Bridging the gap between triplet emission and toxic heavy metals are materials

that can leverage triplet excitons without the use of heavy elements needed by

phosphorescent materials, such as platinum, lead, iridium, etc. Such materials

were first reported by Adachi et al. in 2012 and their emission is referred to as

thermally activated delayed fluorescence (TADF). [104]. By employing reverse
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intersystem crossing (rISC) thanks to the engineered small energy difference

between singlets and triplets (∆EST ), highly efficient spin up-conversion from

non-radiative triplet states to radiative singlet states is promoted. This results

in materials that are possible to achieve 100 % internal quantum efficiency, but

avoid the use of toxic and heavy metals. By employing TADF, Adachi was able

to report a very impressive ηEL of ∼ 10 % with emission peaking at 721 nm.

[91] Such value is above the theoretical upper limit of conventional fluorescent

OLEDs, achieved there thanks to a high ηPL and TADF.

Following the seminal report of 2012, the field of TADF molecules has seen a

vivid interest as the materials are purely organic and allow for some of the highest

reported values. With visible light applications in mind, such as lighting and

screens on various devices (e.g. TVs, smartphones, etc.), it is interesting to look at

the best efficiencies reported for OLED devices for the three primary colours, red,

green and blue that employ TADF compounds. Wu et al. from the Departments

of Chemistry and Materials Science and Engineering of the National Tsing Hua

University in Taiwan reported the synthesis of two diboron-based molecules

that, when embedded in OLEDs have a green emission peaking at 528 nm and

achieved an impressive ηEL = 37.8 %. [105] Lin et al. from the Departments of

Electrical Engineering and Chemistry of the National Taiwan University reported

the molecular architecture based on the spiroacridine-triazine hybrid that resulted

in OLEDs with “sky blue” emission peaking at 480 nm and ηEL = 36.7 %. [106]

Lastly, Li et al. from the University of Kyushu in Japan, the Materials Science

and Engineering Commonwealth Scientific and Industrial Research Organisation

(CSIRO) in Victoria, Australia and the Functional Materials Laboratory Nippon

Steel and Sumikin Chemical Co. in Japan, reported an orange-red emitter

peaking at 610 nm that achieved an impressive ηEL = 17.5 %. [107] Impressively,

all three aforementioned record efficiencies are reported for simple, planar OLED

structures that don’t have any outcoupling enhancements, but do have optimised

architectures with injecting and blocking layers to balance the injecting carriers

and contain the recombination within the emissive layer. Most importantly, all

three are fully organic compounds omitting the use of toxic and expensive heavy

metals or rare-earth complexes. Further to small-molecule materials showing

TADF, polymers can also be synthesised to exhibit TADF. [108]
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Applications of near-infrared emitting organic light-emitting diodes

Further to the visible light applications, materials that absorb and emit in the NIR

are of great interest for many different sectors. NIR absorbing materials can be

utilised for the enhancement of the efficiencies of solar cells. As mentioned above,

a tandem solar cell approach can yield very high efficiencies and still harvest solar

energy at wavelengths > 700 nm, which accounts for almost 50 % of the energy

that the Sun emits. [15, 109] Given the biocompatibility of organic materials,

biological and biomedical applications remain very promising fields. Combining

NIR absorbing and emitting compounds, blood oxymetry is one example that can

utilise NIR OLEDs and photodetectors. [110, 111]

Figure 1.14 | Top: Absorption (effective attenuation coefficient) spectra of biological tissue.

Bottom: Sensitivity curves of typical sensors used. The shaded red and grey areas represent

two near-infrared (NIR) windows. Image reproduced from [112].

The interest of NIR devices in many bio-related applications is also driven by

the fact that biological tissue (blood, fat tissue and skin) has a local minimum

in the absorption of light, illustrated in Figure 1.14. [112] Combining the low

tissue absorption and > 50 % silicon (CCD) detector efficiency, thus making the

wavelength range λ= 700− 950 nm an ideal potential for NIR OLEDs. [112]

This fact makes NIR OLEDs good candidates for healthcare applications in
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photodynamic therapy (PDT) and low level light therapy (LLLT) [113–115].

Further applications of NIR OLEDs are found in defence and security. [48, 116]

Since the human eye is not sensitive to NIR light, NIR OLEDs are also candidates

for applications in all-optical networking systems such as Light-Fidelity (Li-

Fi) to substitute the existing Wi-Fi and overcome the bandwidth limitations.

[49, 117, 118]

NIR emitting OLEDs fabricated, characterised and presented below yielded

unprecedented ηEL values, with efficiencies up to ∼ 4 % and EL peaking at

> 850 nm. It is to the best of the author’s knowledge that such values represent

the highest values ever reported in the literature for heavy-metal-free (and in

cases metal-free altogether) NIR emitters with a lifetime in the order of τ ∼ ns,

at the time of writing of this thesis, as it is also indicated in the Figure 1.13 when

compared to the organic molecules.
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2 |Experimental methods

“Cuncti adsint meritaeque

expectent praemia palmae”

UCL motto

In this chapter, a short description of the methods used to prepare samples,

characterise them and analyse the data collected is given.
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2.1 Solution Preparation

The solutions were prepared by weighting the materials in powder form, polymers

and small oligomers. All dry materials were stored in a dry, N2 filled glovebox,

free from any solvent. Once the materials were weighted in their respective

amber vials, the appropriate amount of solvent was added to arrive to a 10 mg/ml

solution.

Blends of a host-guest approach, an approach that Chapter 3 utilises

extensively, were made using appropriate volumes of each solution to arrive to the

desired loading, e.g. add to 297µl of 10 mg/ml F8BT solution, 3µl of a 10 mg/ml

porphyrin oligomer solution to make a F8BT:porphyrin 1.0w/w% solution. In

the case of the polymers in Chapter 4, pure polymers were prepared in 10 mg/ml

solutions of anhydrous chlorobenzene.

All solutions were made in a second dry, N2 filled glovebox using anhydrous

solvents supplied from Sigma Aldrich.

2.2 Thin films preparation

In this thesis, thin films were prepared using spin-coating. Starting from the same

solutions reported above, an appropriate volume was loaded to a pipette and was

dropped on the substrate. Depending on the substrate that was used, either a

glass spectrosil, a simple glass slide, the OLED ITO substrate (vide supra), the

volume varied from ∼ 50 µl to ∼ 100 µl. The substrate was subsequently rotating

at an appropriate speed to fabricate a required thickness film. The thickness of

the films was verified using a Dektak profilometer and an atomic force microscope

(AFM) if the resolution of the Dektak was not sufficient.

Typical thickness for the active layers were ∼ 100 nm. The thickness of the

films was verified frequently with the profilometer to verify the repeatability of

the experiments. It was also repeated every time a new batch of a commercial

polymer was bought and used, or when a new material was introduced. The

varying exhaust conditions of the spin coaters (both when spin coating in air and

in the glovebox), resulting from fluxes of air, made the results reproducible with a

∼ 10− 20 % accuracy in the thickness of the resulting film, independently of the

substrate, though smaller substrates tend to have a decreased reproducibility.

It has been shown that the thickness of the active layer has a great influence

in the resulting electroluminescence spectrum and electroluminescence external

quantum efficiency (ηEL). [119, 120, 120] For the F8BT-based OLEDs that have
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been extensively used in the present thesis has been shown that a ∼ 100 nm active

layer has the best results.

poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

(PEDOT:PSS), being a water dispersed polymer, was spin coated outside the

glovebox, in ambient conditions. All other spin coating was carried out inside an

N2 filled, dry glovebox.

2.3 Optical properties

Optical properties are primarely investigate by collecting UV-VIS-NIR steady-

state absorption and emission spectra.

Steady-state absorption spectroscopy

Absorption spectra are collected either in solution or in thin-films. Solution

absorption spectra are typically collected using a quartz cuvette with a 10 mm.

The blank is collected with a cuvette filled with the solvent that is used to dilute

the material.

Thin film absorption is usually collected from fused-silica spectrosil substrates,

on top of which the material to be investigated is deposited. Typical deposition

techniques are spray-coating, dip-coating, spin-coating, blade-coating, drop-

casting, etc. In the frame of this thesis, spin-coating is used exclusively as the

most appropriate way of thin-film forming for the applications concerned. The

blank is taken using a clean spectrosil.

Steady-state emission spectroscopy

Emission spectra are collected using an ANDOR-Shamrock 163 spectrometer

coupled with an ANDOR-Newton charge-coupled device (CCD) unit. The Andor

is capable of providing a resolution of ∼ 0.3 nm and is cooled to −50 ◦C. The

Andor has a window of ca. 500 nm which is rotatable using a micrometric screw.

This allows the rotation of a diffraction grating as to adjust the viewing window

from the near-UV to the near-IR (∼ 300−950 nm). For correct calibration of the

window, the 629 nm peak of the fluorescent lights in the room was used and was

cross-calibrated using laser diodes with precisely known emission wavelengths.

The instrument allowed for the custom adjustment of the exposure time and

the number of accumulations to improve the signal-to-noise ration. Typical
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values for the results presented are 0.1 s exposure/integration time and 100

accumulations. However, in certain weak emitters in the near-IR, longer

integration times were used to allow for improved signal-to-noise ratio. A final

adjustment was the opening slit that allows for more light to enter the instrument

at the cost of resolution.

The response of the Andor is corrected using calibration factors that were

calculated for specific wavelength, as described in the Section 2.3 below. The

spectra presented in this thesis were collected using the Andor spectrometer.

In order to collect emission spectra, solutions and thin-films were excited

with various sources. Throughout the thesis, various laser sources were used

to excite the molecules, according to the absorption spectra, in order to be

resonant with an absorption peak. The excitation source is noted in the captions,

however the sources used are continue wave laser diodes bought from Thorlabs

emitting in 405, 445, 520 nm. Additional sources used are a 375 nm and a 450 nm

picosecond pulsed laser diodes from Edinburgh Instruments, the same used for

the TCSPC technique described below in Section 2.5 and a 325 nm He-Cd gas

laser. Finally, during certain measurements, to perform comparative studies that

is not presented below and during the calibration presented below, a Thorlabs

laser diode emitting at 780 nm was also used.

Calibration and improvement of the ηPL measurements

The calibration of the response of our spectrometer so far was done using a

calibrating lamp with a black body emission of a known temperature. The black

body emission spectrum is given by:

Rs(λ, T ) =
2hc2

λ
5

1

ehc/λkBT − 1
(2.1)

As for all the instruments, a response function correction factor was needed

to correct the collected spectrum for the instrument’s responsivity. A typical

correction factor was collecting a spectrum of a black-body emitter, such as a

calibration lamp, of a known temperature. This would allow to create a correction

simply by comparing the theoretical spectrum to the collected one. This was

proven to be correct and accurate for our instrument for a number of viewing

windows. However, careful consideration and investigation of some values in the

near-UV showed that there was a discrepancy between the expected and obtained

values. This led to the in-depth investigation of the causes and the detailed

calibration of the Andor.
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To calibrate, three “viewing windows” were chosen, as to facilitate ηPL
measurements:

315 − 790 nm window for ηPL measurements using any source in the near-

UV, such as the 325 nm He-Cd and the 375 nm picosecond lasers.

380−870 nm window for ηPL measurements using the 405 and 450 nm laser

diodes.

480−965 nm window for ηPL measurements using primarily the 520 nm laser

diode and any other in the red-near-IR. This was also the main window used

for OLED measurements.

and the three corresponding correction factors were created. This allowed to

standardise our measurements, with accurate calibration factors and wavelength

ranges, but also to speed up the collection and analysis steps.

To carry out the calibration, a xenon lamp spectrum was collected using a

calibrated photodiode (PD). The PD was calibrated directly by the manufacturer,

Bentham. The spectrum was collected at 5 nm steps, for the range 300− 950 nm.

Since the spectrum responsivity (R) that was provided by Bentham was measured

in [R] ∝ [W]−1[nm]−1, a division with the wavelength was necessary to obtain the

corrected PD spectrum in Watts. Following that, the same spectrum was collected

every 5 nm using the Andor spectrometer, using the three ranges 315 − 790 nm,

380 − 870 nm and 480 − 965 nm. Since the photodiode was collecting a signal

from the complete 5 nm, each spectrum collected with the Andor was integrated.

This led to the creation of the xenon lamp power spectrum using the Andor. The

three calibration factors were obtain by simply dividing:

correction factor =
IAndor

IPD

(2.2)

The resulting calibration factors can be seen in Figure 2.1 below comparing the

results for three calibration ranges for both inside and outside the integrating

sphere that was used for all the ηPL measurements reported in the present thesis.
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Figure 2.1 | The resulting calibration factors for the three ranges for the response of the

spectrometer for measurements (a) outside the integrating sphere and (b) inside the integrating

sphere.

The same procedure was followed both for inside and outside the integrating

sphere, as to compensate for the response function of the sphere. To correct

a spectrum collected with the Andor, it suffices to divide the spectrum by

the correction factor calculated. It is important, for the correct calculation

of the measurements, that once a spectrum has been collected using the

Andor spectrometer that is multiplied by the wavelengths as to convert the

power (radiometric quantity) to photon flux (photometric quantity). Our

calibrations were compared to literature values of calibrations standards against

measurements in our labs. The calibration standards used and the methodology

for the calculations can be found in [121] and the final results are presented in

Table 2.1 below.
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Table 2.1 | Table comparing the photoluminescence quantum efficiency (ηPL) values of

calibration standards and the experimental results. ηlitPL refers to the values found in [121], ηexpPL

refers to the experimental results obtained after measuring with the new calibration factors, ηBB
PL

refers to the previous approach of using the black body approximation. λexc is the wavelength

of excitation.

Range Sample λexc (nm) ηlitPL (%) ηexpPL (%) ηBB
PL (%)

315− 790 C102 405 76.0 68.60 98.9

315− 790 C153 405 54.5 60.00 76.0

380− 870 C153 405 54.5 69.00 85.0

380− 870 C153 450 54.5 64.80 65.7

380− 870 Rh101 520 91.3 87.50 93.0

480− 965 Rh101 520 91.3 81.50 81.0

380− 870 Ox170 520 57.9 43.00 43.0

480− 965 Ox170 520 57.9 41.00 42.0

480− 965 IR125 780 13.2 0.65 8.0

480− 965 IR140 780 16.7 1.50 12.5

Results proved to be encouraging for the new calibration factors. However,

before arguing the accuracy in the NIR, some discrepancies are to be expected

when comparing to the literature values, as different suppliers were used,

compared to those used by the authors in [121]. Also, exciting at 780 nm with

emission well in the NIR and a detector that has reduced sensitivity in that

spectral range, are both factors contributing to some less accurate results. It

is worth noting that no results presented in this thesis were calculated using a

780 nm excitation.

Notably, all the measurements of Chapter 3 were carried out using these

calibration factors, though the results of Chapter 4 are with the previous ones.

However, the range of wavelengths that the materials of Chapter 4 were emitting

prove to be the most accurate of the “black-body” method, with a negligible

difference.

2.4 Photoluminescence quantum yield

measurements

As photoluminescence quantum efficiency (ηPL) we define the ratio of the number

of photons emitted by the number of the photons absorbed:

ηPL =
photons emitted

photons absorbed
(2.3)
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There are two main procedures to experimentally define the ηPL, a relative

and an absolute. For the relative method, the determination of ηPL of a sample

is based on the measurement of the spectrum and comparing it to a sample with

a known ηPL, a standard by using the formula:

ηsamplePL =
Isample
Iref

Aref (λexc)

Asample(λexc)
ηrefPL (2.4)

However, there is a second procedure to measure ηPL, an absolute method,

that has been reported by de Mello et al. [122] and includes:

An excitation source, typically a laser

An integrating sphere with the inner surface coated with a diffusely

reflecting material

A detector

The experimental setup is illustrated in Figure 2.2 bellow. All values of ηPL
presented in this thesis have been calculated using this method.
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Figure 2.2 | Experimental photoluminescence quantum efficiency (ηPL) measurement setup

where the integrating sphere is depicted as the black circle, the detector as the grey square,

the laser light as the blue line and the sample as the red rectangle. The measurement includes

three experiments: The integrating sphere (A) without the sample, (B) with the sample but

not hit directly by the beam and (C) with the sample hit directly by the beam. Image adapted

from [122].

For the calculation of the experimental ηPL there are three measurements that

are required:
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(a) A measurement with the integrate sphere empty, with only the excitation

source directed inside, in our case a laser: Measurement A, where LA is the

laser light.

(b) A measurement where the sample is placed inside the integrating sphere

but it is not hit directly by the laser light and the only source of excitation

is reflected light: Measurement B where LB is the laser light and PB is the

emission of the sample.

(c) A measurement where the sample is placed inside the integrating sphere

and is hit directly by the laser light: Measurement C where LC is the laser

light and PC is the emission of the sample.

The experimental procedure is summarised in an elegant formula:

ηPL =
PC − (1− A)PB

LAA
(2.5)

where A is defined as A = (1− LC
LB

).

The laser light intensity is gradually quenched in favour of the emission of the

material, whose emission in contrary is gradually increasing as depicted in Figure

2.2.

An additional way to define ηPL is in terms of the radiative and not-radiative

rates:

ηPL =
kr

kr + knr
(2.6)

where kr is the radiative rate for the S1 → So transition and knr is the

non-radiative decay . By determining experimentally ηPL (Equation 2.4), the

radiative an non-radiative constants can be calculated by combining Equation

2.6 and

τ =
1

kr + knr
(2.7)

where τ is the fluorescent lifetime, the time a molecule ”spends” in the

excited state before relaxing to the S0. τ is experimentally measured using

time-correletated single photon counting (TCSPC).

In the frame of this thesis, all the ηPL results presented where calculated

using the absolute method summarised in Figure 2.2. To account for any micro-

variations in the laser intensity, each of the A, B and C experiments was repeated

five times and then averaged over the results. The results presented below are in

the form 〈ηPL〉 ± σ, where:
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〈ηPL〉 is the average ηPL, 〈ηPL〉 =

5∑
i=0

ηPLi

5
σ is the standard deviation of the five measurements

If a large σ was observed during the analysis of the results, the measurements

were repeated with the sample.

2.5 Time-correlated single photon counting

Time-correletated single photon counting (TCSPC) is a technique that uses a

pulsed laser and fast electronics to determine the fluorescence lifetime. A laser

pulse from a pulsed laser with high repetition rate is exciting a sample. The laser

pulse acts also as a trigger signal for the electronics to “expect” the arrival of a

photon. The detector’s electronics and software are designed so only one photon

will be counted after each trigger.

By measuring the time between trigger and photon arrival the photons that

are detected are correlated to the excitation pulse and a histogram of the PL

intensity vs time is created. The resulting plots are then fitted with an exponential

function, like:

R(t) = A0 +
n∑
i=1

Aie
(− t

ti
)

(2.8)

where A0 is a constant that takes into account the background, Ai is the weight

of the exponential and ti is the lifetime.

To calculate the average lifetime t�, the Equation 2.9 is used:

t� =



n∑
i=1

Aiti

n∑
i=1

Ai

, if
n∑
i=1

Ai = 1

n∑
i=1

Aiti
Ai
, if

n∑
i=1

Ai 6= 1

(2.9)

All the decays that are presented in this thesis are bi-exponential decays fitted

with a bi-exponential function. The resulting two lifetimes are averaged using the

respective weights.

The minimum measurable time by the instrument is referred to as the

instrument response function (IRF). To collect the IRF, a scattering sample,
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in this case some soap provided by the manufacturer dissolved in deionised water

was used, is irradiated by the same laser used for the measurements. The window

of the collection is moved close to the maximum of the laser peak. The laser used

throughout the thesis for the TCSPC measurements was emitting at λ= 450 nm.

The window of the collection for the IRF was placed at ∼ 460 nm to increase the

signal.

For all the fits that are presented, the decays were fitted with a tail fit. This

is due to the long collection times (900 s) for each sample, meaning that for

each of the decays presented below, it took 900 s to collect each spectrum. This

increased the average noise (dark counts) and as a result, when the IRF was

collected, the average noise was considerably lower and/or the maximum counts

were significantly higher, depending on the measurement conditions, thus forcing

the fitting software to overestimate/underestimate the fits.

However, in one occasion, a reconvolution fit (taking into consideration

the IRF) is presented below (notably in Figure 3.33). The instrument has a

characteristic shoulder when measuring the decay, that in very short decays it

becomes evident. The IRF of the TCSPC system is shown in Figure 2.3 below.
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Figure 2.3 | Instrument response function (IRF) for the TCSPC system used to measure the

time decays presented in this thesis.

2.6 Devices fabrication

Further characterisation of the materials includes the incorporation into organic

light-emitting diodes (OLEDs) as emissive layers. The fabrication of OLEDs is

a multi-step process that starts from a thorough cleaning of the substrates, spin
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coating of the different layers, thermal evaporation of the cathode metals and

concludes with encapsulating the devices to protect from oxidation, specifically

of the cathode metals.

The fabrication process begins by cleaning the glass indium tin oxide (ITO)

substrates; they are placed in an acetone and isopropanol bath and are sonicated

for 15 min each step. The samples are then dried under a N2 flux and are then

treated with O2 plasma at 10.2 W for 15 min. The O2 plasma modifies the

work function of the ITO from ∼ 4.6eV to ∼ 4.8eV, as well as modifying it

morphologically. [69, 70, 123]

The following step is the spin coating of the hole injector poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) from a 3.8 %

water dispersion. The spin rate of 5000 rpm results into a uniform layer of

∼ 50 nm thickness. This step doesn’t influence the modification of the work

function. [70] The samples are then transferred in a N2 filled dry glovebox (GB)

and are thermally annealed at 150 ◦C for 10 min. This annealing process removes

any remaining water from the PEDOT:PSS layer.

From this part onwards, the samples are only handled within the inert

atmosphere of the GB. On top of the PEDOT:PSS layer is spin coated the emissive

layer. The emissive layer’s thickness is kept at ∼ 100 nm. To verify the thickness,

prior to spin coating on the ITO substrate, fused silica substrates are used and

the thickness is measured using a Dektak profilometer.

Once the spin coating is complete, the samples are loaded into a thermal

evaporator. At that point the cathode metals, calcium (Ca) and aluminium (Al),

are thermally evaporated on the emissive layer at ∼ 10−6 mbar. 30 nm of Ca are

first evaporated at a rate of 0.4�A/s follow by 200 nm of Al at a rate of 2�A/s.
During the thermal evaporation of the metal, the substrates are cooled to circa

6 ◦C to prevent crystallisation of the organic layers. [124] The combination the

patterned ITO and the evaporated contacts results in each device having 6 pixels

of ∼ 4.5 mm2 surface on each substrate.

Once the evaporation is complete, a small drop of encapsulating epoxy is

dropped on the metals and a small glass slide placed on top of the epoxy. This

serves as a protection of the pixels from the atmospheric oxygen and water. The

insertion of the electrical legs for the contacts completes the fabrication process.

An exploded view of a typical device is illustrated in Figure 2.4 below.

In the frame of this thesis, and for the needs of initial tests of materials in

OLED devices, a second type of substrate was used that doesn’t contain patterned

ITO, supplied by Colorado Concept Coatings LLC, but the pixels are defined

by an evaporation shadow mask that results in 8 pixels of 3.5 mm2 that are
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not encapsulatable. To avoid oxidation of the Ca layer, this type devices are

transported under a nitrogen atmosphere to a vacuum chamber and measured

under a ∼ 10−2 mbar pressure. However, results from this type of devices are

omitted from this thesis to remain consistent and report comparable results.

Encapsulation glass slide

Encapsulation epoxy

Glass ITO substrate

Electrical connection legs

Figure 2.4 | Exploded view of the pre-patterned glass indium tin oxide (ITO) substrates (ITO

shown in yellow), encapsulating epoxy (red), glass slide and electrical connection legs. Image

adapted from ossila.com.

A fully fabricated and encapsulated device is shown in Figure 1.10.

2.7 Electrical properties

The current was measured by a Keithley 2400 source meter, which also supplied

the voltage. The luminous output was measured from a 100 mm2 calibrated silicon

photodiode by a Keithley 2000 multimeter. The EL spectra were collected with

the same Andor spectrometer that was used for the PL experiments presented

above.

The different characteristic extracted and presented in this thesis from the

current density - voltage - radiance (JVR) curves include the electroluminescence

external quantum efficiency (ηEL), radiance, current density, and turn on voltage

(VON).

The efficiency of the device is summarised by the expression of ηEL:

ηEL = ηPL ∗ rst ∗ γcap ∗ ηout (2.10)

According to Varo et al., a unified model was proposed in 2014 to discuss

the JV curves in a space charge limited regime. [125] According to the authors,

at low voltages there is an Ohmic regime, described by Ohm’s law. At higher
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voltages, Child’s law is used to interpret the quadratic-fitted curve. Lastly, the

last part of the curve is fitted with higher than quadratic model. The mobility

depends on temperature, electric field applied and carrier concentration. As

already mentioned, charge injection commences at the flat band condition and

any current measured below that voltage is due to leakages and short-circuits due

to imperfections of the polymer layers.

In this thesis, materials studied are either partly or entirely emitting in at

λ> 700 nm, i.e. in the near-infrared (NIR). For this reason, radiance (R) is

reported rather than luminance.

In the frame of this thesis, the turn-on voltage of an OLED is arbitrarily

defined as the voltage at which the radiance is:

VON = V(R = 3.5× 10−5 mW/cm2) (2.11)

where it is well above the detection threshold of the photodiode, ∼ 3-5 times the

average noise.

The software used for controlling the Keithley that supplied and measured

the current and the voltage of the OLED, as well as reading of the Keithley from

the photodiode is shown in Figure 2.5.

Figure 2.5 | LabVIEW software screenshot for the measuring of the OLEDs.

Another LabVIEW software was developed, based on the one presented
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in Figure 2.5 that allowed for a constant applied current density or voltage

to measure the lifetime. Depending on the mode selected, the voltage or

current density respectively was recorded, along with the light output that would

subsequently allow the evolution of ηEL over time. A screenshot of this software

is shown in Figure 2.6.

Figure 2.6 | LabVIEW software screenshot for the measuring of the OLEDs lifetime.

The red switch in the middle controls the strategy, either applied voltage or

applied current density (illustrated). There is also the choice of carrying out the

experiment for a predefined amount of time, as well as the time interval between

measurements. In the unfortunate case of the diode breaking, the software has a

safety feature that will terminate the measurement to avoid any further risks.

2.8 Near-infrared emission calculation

This is thesis is focused around near-infrared (NIR) emitting materials, so it is

the author’s view that the NIR emission of the materials is worth mentioning. In

the tables and plots of Chapter 3 below, the “NIR PL and EL %” refer to the

percentage of the emission of the sample that falls at λ> 700 nm, that has been

conventionally defined as the lower limit of NIR light.

2.9 Analysis

The analysis of the data collected was carried out using a variety of tools available.

Initial analysis was done with LabVIEW, the same software that collected the
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data and was used for the Keithley controls. ηPL calculations were initially

performed with a combination of OriginPro and Microsoft Excel. Some LabVIEW

routines were developed that allowed the automation of the calculation. A

screenshot of the ηPL calculation software is shown in Figure 2.7.

Figure 2.7 | LabVIEW software screenshot for the calculation of ηPL.

It is worth noting that the software of Figure 2.5 exported directly the data

corrected for the response of the photodiode.

Further analysis was carried out using custom routines developed by the

author in python 3.6 and above using a number of libraries (e.g. pandas 0.22,

matplotlib 2.1.2, numpy 1.14) that resulted in full automation of numerous

processes. All the Figures depicting data were plotted using python and

matplotlib.

Some of the spectra presented in this thesis were noisy due to a low emission

(both PL and EL, e.g. when collecting the OLED spectra at the VON or a low

ηPL). Another issue that has been observed is some interference fringes at low

energies (λ> ∼ 850 nm). To avoid such phenomena in the plots, a Savitzky–Golay

filter was applied to the spectra using a 3rd degree polynomial and 51 points as

parameters from the scipy library in python. [126]
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3 |Porphyrin oligomers as highly

efficient near-infrared emitters

A collection of highly efficient, near-infrared emitting porphyrin oligomers

employing novel, bulky sidechains were studied. Varying the length, coordinating

metal or connecting bonds altered their emissive properties and embedding them

in OLEDs resulted in unprecedented performance of external quantum efficiency.
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3.1 Overview of the chapter

During the time of this research, the author carried out various experiments at

different times. To better organise this chapter, the results presented below are

organised in a better “story-telling” way, rather than chronological or significance

order.

A series of zinc porphyrin oligomers with bulky sidechains, ranging from a

monomer l -P1 to a long oligomer/polymer l -PN, are presented below. Among

the oligomers tested is l -P6, a hexamer where special focus was given, as at the

time of the first measurements in ca November 2015, in the beginning of the

author’s research, it gave the highest and most promising results. It also served

as a direct comparison to a study that was previously published by our groups

regarding a similar hexamer.

Another parallel study was about five different hexamers, whose difference is

the coordinating metal at the centre of each porphyrin unit, a metal-free hexamer,

two light metals - magnesium and zinc - and two heavy metals - platinum and

palladium.

Lastly, a new pentamer was synthesised that had modified links between each

unit, resulting in a shorter oligomer but with significantly red-shifted emission

compared to the other oligomers, and very good performance.

All the porphyrin oligomers were synthesised in the laboratories of Prof. Harry

L. Anderson, FRS in the Chemical Research Laboratory of the University of

Oxford. The zinc oligomers and the five hexamers were synthesised by Dr.

Ibrahim Bulut, although the hexamers were purified by Dr. Michel Rickhaus. The

pentamer was synthesised by Dr. Lara Tejerina. The author attended training

during a secondment placement in Oxford University that included the synthesis

of the monomers incorporating the heavy metals, later to be polymerised and

formed the hexamers characterised.

Porphyrins in this chapter were used in a donor-acceptor architecture (vide

infra), with polymers being the donors and the porphyrins the acceptors. While a

maximum effort was made to have completely comparable and consistent results

in this chapter, certain factors were beyond the author’s control. Such a factor

was one polymer host material, F8BT, that was supplied by American Dye Source

Inc (ADS). In this thesis, three different batches of F8BT from ADS where

used as host, and unfortunately one of them, the one used in the majority of

the experiments, was under-performing compared to the one used for the initial

hexamer and novel pentamer experiments. While this does not seem to affect the

efficiencies in either ηPL or ηEL, it is noted for clarity and for explanation of some
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of the results presented below.7 Furthermore, a second host used, PIDT-2TPD,

was a polymer synthesised by Dr. Petri Murto in the laboratories of Prof. M.

Anderson in Chalmers University, and given its “custom” nature, supply was not

sufficient to cover all the experiments.

To sum up, the chronological order that took place for the experiments is the

following:

1. Zinc hexamer characterisation (including photoluminescence quantum

efficiency (ηPL) in solution of all the zinc oligomers) in blends with F8BT

with good performance 8

2. Zinc oligomer series (repeating experiments with the same hexamer as

above) in blends with under-performing F8BT

3. Five hexamers with different coordinating metals in blends with under-

performing F8BT

4. Acetylene-linked pentamer in blends with both F8BT batches and with

PIDT-2TPD

While in the context of the present thesis the results are organised as:

1. Zinc oligomer series, including all the results of the hexamer characterisation

in Section 3.3

2. Five hexamers with different coordinating metals in Section 3.4

3. Acetylene-linked pentamer in Section 3.5

The purity and authenticity of the synthesised compounds was verified by the

synthetic chemistry group in Oxford prior to all the physical characterisation

that was carried out in UCL. The characterisation included 1H NMR

spectroscopy, Maldi-ToF Mass spectroscopy, and also by recycling Gel Permeation

Chromatography (GPC) by checking the retention times, and UV-VIS and PL

spectroscopy. This process assesses the presence of shorter/longer oligomers.

The final product has > 98 % purity as a result from the measurements from the

aforementioned techniques. These data are typically included in the supporting

information of publications (vide supra).

Further to the characterisation that was carried out in Oxford, another

measure to verify the authenticity of the materials was to compare it with the

7 After a long exchange of communication with ADS and a thorough attempt to identify

the problem, this was impossible in the course of this thesis. A study on the ηPL and ηEL of

the different batches was carried out under the exact same conditions and it was clear that the

“good batch” was outperforming the “bad” by a factor of ∼ 2 as pure material.
8 N.B. Though all the ηPL measurements were later repeated before the rest of the zinc

series characterisation.

55



Overview of the chapter

existing literature for the same or similar compounds with measured purities and

experimentally verified structure. Prof. H. L. Anderson and his group have a

deep expertise in porphyrin synthesis and a few of the materials presented in

this paper have also been characterised with other methods by other groups.

By repeating similar measurements, e.g. absorption and photoluminescence

experiments in dilute solution, similar spectra were observed for the dimer,

tetramer and hexamer. [127, 128] Notably, the hexamer optical characteristics are

similar to the ones obtained by another hexamer, albeit with different sidechains,

in 2011 by our group. [87] Further to the optical properties, the oligomers also

showed good agreement with [129] in terms of oscillator strength.

Details about the synthesis of the porphyrins have been extensively published

by the group of Prof. H. L. Anderson in the past. The synthesis of the zinc

porphyrin oligomers presented in Section 3.3 has been reported in [130, 131]. The

synthesis of the oligomers studied in [127], that are similar to the ones studied

in this thesis, has been published in [131–133] The synthesis of the platinum

porphyrin hexamer in Section 3.4 can be found in [134], with further synthetic

details to be published in the near future as the manuscript, including the data

of the Section 3.4 is in preparation. The pentamer presented in Section 3.5 has

been published in [135–137].

While it is important to have a good understanding of the synthetic processes,

the characterisation and verification of the materials that are studied is beyond

the scope and expertise of the author to reproduce and interpret NMR and mass

spectroscopy results. The curious reader is kindly redirected to the cited papers

above, and the references therein, in regards to the synthetic routes and methods

followed to prepare the porphyrin oligomers of this chapter.
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3.2 Porphyrins and their applications

The word porphyrin originates from the Greek word πορφυρό (porphyró) meaning

purple / dark red. Nomen est omen, porphyrins display purple / dark red colours

and red to near-infrared (NIR) emission, i.e. λ> 700 nm. Porphyrin derivatives

are met in Nature to harvest sunlight (chlorophyll) and mimic enzymes. [138–

140] Furthermore, iron-coordinated porphyrins, called hemes but more commonly

recognised as being part of the compound hemogoblin that is the red pigment in

blood. Hemes are also responsible for the delivery of oxygen to various tissues.

The chemical structure of Heme B is presented in Figure 3.1 below.
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Figure 3.1 | Chemical structure of Heme B, a porphyrin found in the hemoglobin protein that

transports oxygen to tissues.

Further to their presence in human biology and other applications in Nature,

they are also a very interesting class of conjugated materials that shows

remarkable optoelectronic properties, with applications for in-vivo photodynamic

therapy [141, 142] and exhibit promising non-linear optical properties. [143]

Porphyrins have also been used in dye-sensitised solar cells [24, 144–146] and

as two-photon dyes. [147] Studies have also shown that porphyrin compounds

can be used for NIR-to-vis up-conversion, a process that can prove useful

in photovoltaics technology giving the possibility to capture the elusive NIR

photons from traditional solid-state devices. [148] Nevertheless, the porphyrins

are more commonly met in light-emitting applications, such as organic light-

emitting diodes (OLEDs) (vide infra). Porphyrins also show an ease in the

chemical synthesis allowing for some extraordinary structures to be created. Such

approaches for the molecular design include ladder-type molecules [131, 149] to

porphyrin 6-, 12-, 24-, 30- and up to 40- units (!) nanorings, giving rise to some

astounding scanning tunnelling microscopy images (STM) such as the one in

Figure 3.2. [87, 133, 150–154]
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Figure 3.2 | Scanning tunnelling microscopy images of nanorings deposited on gold surfaces.

(a) Shows a 30-unit nanoring with numbered the individual porphyrin units. (b) Shows a 40-

unit nanoring with numbered the individual porphyrin units. (c) Shows some nested 30-unit

nanorings. In all three the scale bars are 5 nm. Image reproduced and adapted from [152].

Their emission can be tuned from red to NIR and shows strong absorption

bands in the visible (notably the Soret or B band) at ca. 400−550 nm. A series of

lower energy bands spread to the NIR (notably the Q bands, Qx and Qy) starting

from ca. 550 nm for the monomer and shifting to lower energies and increasing

in strength with increasing length of the repeating unit. [129, 155] The B band

originates from the S0 → S2 transition, while the Q bands originate from the

S0 → S1 transition.

N

N N

N N

N N

N

BX

BY

BX

BYy

x

Figure 3.3 | Soret or B band transitions in a porphyrin depicting the Bx and By transition

components. Image reproduced from [149].

The Soret band originates from two perpendicular components of the

transition dipole moment, BX and BY , as shown in Figure 3.3. If x is considered

as the axis of the oligomer, the axis along which the porphyrins are joined, By

transitions are parallel and face-to-face while Bx are head-to-tail. Transition

dipoles of each type couple and as a result the excited state is split, where the

Bx component, that is along the porphyrin chain, is the low-energy component

and the By, that is in the same plane but perpendicular to the chain, is the high-

energy. The Bx band is unaffected by the torsional orientation in the solid state
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and stills gives rise the Soret band. [149] Similarly to the Soret band, the Q band

is split into two components at n> 1, where n is the number of porphyrin units

in the chain. The lower-energy is parallel to the axis of the porphyrin Qx and the

high-energy is perpendicular to the chain Qy.

Porphyrins are highly luminescent molecules, with various reports declaring

very high efficiencies. [92, 101, 133, 155, 156] Typical applications in light-

emission are OLEDs, and given the porphyrins tunability in the emission, their

electroluminescence (EL) peaks in the range starting ∼ 650 nm up to > 900 nm.

[87, 92, 93, 101, 102, 155, 157, 158]

The zinc porphyrin oligomers presented in this thesis were also highly

fluorescent, exhibiting some of the highest values of photoluminescence quantum

efficiency (ηPL) in solution reported. When embedded in OLEDs as NIR emitting

guests, the oligomers exhibited the highest reported electroluminescence external

quantum efficiency (ηEL) to date9, in the respective spectral range, for a “heavy-

metal-free” compound. Their peaks of emission spanned for the monomer from

∼ 650 nm and showed bathochromic shift with increasing length of the oligomers,

up to > 800 nm for the longest oligomers studied.

The meso-butadiyne linked-, zinc-, linear- porphyrin oligomers (l -Pn), along

with the five different hexamers and the novel pentamer that were studied and are

presented in this thesis, were synthesised by the group of Prof. H. L. Anderson

FRS at the Chemistry Research Laboratory of the University of Oxford. [130, 131]

During the synthesis of the platinum and palladium compounds, the author was

present as part of a secondment placement at the University of Oxford to be

trained in chemical synthesis.

9 From the first measurement in early 2016 up to the time of the writing, late 2018-early

2019, the results presented in this thesis are the “record” efficiencies for heavy-metal-free,

fluorescent, NIR emitters.
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3.3 Zinc porphyrin oligomers

3.3.1 Solution photoluminescence of zinc porphyrin

oligomers

Aggregation prevention in the oligomers studied previously was based in the

metal-coordinating additive pyridine. [87] Differently from the porphyrin

oligomer studied by our groups in 2011 [87], the oligomers were modified by

adding bulky trihexylsilyl (THS) chains to the aryl groups that offer a large

steric hindrance to prevent aggregation and its chemical structure is shown in

Figure 3.4.

n = 1- 7

N

Zn

N N

N

SiSi

Si

Si Si

Si

Figure 3.4 | Chemical structure of the porphyrin used in this thesis with the bulky THS side

chains highlighted in purple.

The main spectral component of the absorption spectra are the B and Q

bands (vide infra). The B band spread in the blue-green part of the spectrum

for all porphyrin oligomers, increasing in width but shows little spectral shift

among the oligomers. It spanned between 400 − 550 nm and is created by the

transition S0 → S2. The Qx band is experiencing some more dramatic changes

with a strong bathochromic shift and an increase of the oscillator strength, as

expected. [159] The alignment of the corresponding dipole moment and the

extended conjugation are the main reasons for these phenomena. [128] It also

showed an overall broadening because of the freedom of the porphyrin units in

the chains to rotate around the meso-butadiyne links. [128, 132] The spectra of

the novel series of linear porphyrin oligomers in toluene solution are shown in

Figure 3.5.
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Figure 3.5 | (a) Extinction coefficient and (b) normalised absorbance of the zinc porphyrin

oligomers focused in the Q bands, in dilute anhydrous toluene solution (∼ µg/ml). Note the

gradual increase in intensity and red-shift of the Qx band from the monomer to the heptamer.

The extinction coefficient of l -PN is missing, as it is a polymeric oligomer with not a precisely

fixed length, calculating its molecular weight is difficult, as it is tracing back to the synthesis

batch of this specific compound. The ε data were supplied by Dr. I. Bulut from the University

of Oxford.

It is visible from Figure 3.5a that the oscillator strength (f) increased with

increasing number of porphyrin units in both absorption Soret (or B) and Q

bands. This is thanks to the alignment of the dipole moment along the x axis

of the oligomer and the extend conjugation. [155] To further enhance this claim,

the oscillator strength for the Qx transition was calculated and is plot in Figure

3.6 below.

The oscillator strength, f , is a measure for the strength of an optical transition

and can has been defined as:

f =
mc

πe2n

∫
σ′(ν)dν (3.1)

where σ′ is the absorption cross section and σ′ = 3.82 × 10−21ε, where ε is the

extinction coefficient.

The oscillator strength can therefore be calculated using the experimentally

defined measurements, i.e. the extinction coefficient and wavenumbers as:

f =
4.39× 10−9

n

∫
ε(ν)dν (3.2)
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For the calculation of f , the integration considers only the specific transition,

Qx, by deconvolving the spectrum.

The oscillator strength (f) showed a linear increase with increasing oligomer

length and is in agreement with previous studies that calculated (f) for similar

oligomers. [129] The (f/N) is also plotted to show the evolution of f per number

of units, which interestingly showed the same increase from monomer to dimer

as in ref. [129].
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Figure 3.6 | (a) Oscillator strength for the Qx band of the porphyrin oligomers and (b)

oscillator strength per porphyrin unit. The l -PN value is missing as the extinction coefficient

was also missing that was needed for the calculations. The R2 value of the linear fit is also

plotted to show the linear increase of the oscillator strength with increasing number of units.

The spectral position of the high-energy Soret band was practically stable in

the region 400− 550 nm, while the low energy Qx band red-shifts with increasing

length of the oligomer from 630 nm for the monomer l -P1 to ∼ 800 nm for l -PN, as

highlighted in Figure 3.5b thanks to the extended conjugation along the oligomer.

[155] The observed broadening of the Qx is attributed to a torsional heterogeneity

of the units that are free to rotate. [128, 132] Contrarily, Qy seemed spectrally

stable at ∼ 580 nm and “saturates” in intensity at the tetramer and above.

Following with the emissive properties of these compounds, the emission of

the zinc porphyrins studied is originating from the S1, as internal conversion from

S2 → S1 is very fast. [129] Twisted conformers that are excited to S1, planarise

before the emission within a ∼ 100 ps timescale. [128, 132, 160] Consequently,

fluorescence spectra in solution, presented in Figure 3.7a, displayed a narrow

high-energy peak that red-shifts with increasing oligomer length from ca. 630 nm

for l -P1 to > 800 nm for l -PN.
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Figure 3.7 | (a) Normalised photoluminescence spectra of the zinc oligomers. (b) % of the

photons emitted at λ> 700 nm. (b) inset Absolute photoluminescence quantum efficiency

(ηPL) results measured as described in Section 2.4 above and according to [122]. The spectra,

NIR PL calculations and ηPL measurements were carried out following excitation at 450 nm at

room temperature in dilute toluene solution (∼ µg/ml). The missing part in (a) of the spectrum

at 890 nm is to remove the second order of diffraction of the excitation laser in our spectrometer.

Since these molecules are termed “NIR emitters”, it is noteworthy that for

n> 2, the oligomers emitted > 96 % of the photons in the NIR and practically

100 % for the l -P6 and l -P7, as shown in Figure 3.7b. The zinc monomer l -P1

had only ∼ 10 % in the NIR, while the dimer exhibited > 80 % NIR emission.

Interestingly, l -PN showed some increased emission in the green-red, attributed

to possible degradation of the material, or decomposition of the longer chains

to shorter oligomers, or simply given its nature of polymeric, to some shorter

oligomers that “escaped” purification and are within the polydispersity. Those

peaks are shown in Figure 3.7a and highlighted at the drop of the NIR emission to

∼ 90 % in Figure 3.7b. In all oligomers, a secondary vibronic peak was displayed

in the low-energy part of the peak.

In the inset of Figure 3.7b are presented the photoluminescence quantum

efficiency (ηPL) results. The oligomers were measured in dilute toluene solution

(∼ µg/ml), in air and at room temperature according to the procedure reported in

[122] and described in Section 2.3. l -P2 and l -P7 showed impressive results with

〈ηPL〉 = 34.3 ± 0.7 % and 〈ηPL〉 = 47.8 ± 0.6 % respectively. The monomer was

surprisingly low at only 〈ηPL〉 = 7.9 ± 0.2 %. l -P6 that was of special interest due

to the direct comparison with a previous study, yielded 〈ηPL〉 = 28.5 ± 1.5 %. As

it is visible from the plot in Figure 3.7b, the oligomers “saturate” at 〈ηPL〉 ∼ 24 %

excluding l -P7 being somewhat of an outlier compared to the rest of the series,
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with l -P7 increasing the average to 〈ηPL〉 ∼ 27 %. Notably, all oligomers

outperformed the monomer by ≥ 3 times on average. Interpreted differently, an

increase of ηPL with decreasing energy gap (EG) is observed, a direct contradiction

with the EG law. The EG law predicts that chemically similar materials are

expected to show an exponential increase of the non-radiative rate due to an

increased overlap of the vibrational manifolds of the ground and excited states.

[81] The values presented can be found in Table 3.1, and a more detailed view in

Table A.1.

It is worthy to note that a sample of the same P6 linear hexamer that was

published by Fenwick et al. [87], with 3,5-bis(octyloxy)phenyl (OCT) sidechains

instead of THS, was tested alongside the rest of the zinc oligomers. Not

surprisingly, by avoiding the metal coordinating pyridine, the P6(OCT) yielded a

〈ηPL〉 = 6.7 ± 0.6 % in dilute toluene solution. This showed the beneficial role of

the bulky THS sidechains in minimising aggregation by the large steric hindrance

they afforded.

To test further the claim of the beneficial role of the THS sidechains, pure

porphyrin zinc pentamer and hexamer were spin coated on spectrosil substrate

to form thin films. The porphyrins were not luminescent enough in pure films

to have a measurable ηPL, however, it was possible to collect a spectrum and to

compare it to a 4-benzylpyridine (BP) containing. Using a 4 % loading of BP in

the solution, no noticeable increase in the luminescence of the films was observed

as to be measurable for ηPL experiments. What was interesting, however, was the

stark difference in the spectra of the two oligomers, with and without the BP, as

noted in Figure 3.8. It is evident that the addition of BP alters the film formation,

causing a significant bathochromic shift of the emission, but more importantly an

intense peak in the red at ∼ 640 nm, in agreement with the peak of the emission

of the monomer, l -P1. 10

Following these results, BP was discounted from being used further in the

experiments and pure film PL was not investigated, owing also partially to the

limited quantity that was synthesised.

10 These tests were carried out at the very beginning of the study, immediately prior to

the commencement of the author’s appointment at UCL, by Dr. Alessandro Minotto. The

purpose was to have an immediate comparison between the pure film PL performance since a

good performance was expected from the addition of the THS sidechains. Unfortunately, the

films were not luminescent enough to have a measurable ηPL, so following the previous study

strategy, BP was used to assess the possible advantages.
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Figure 3.8 | Photoluminescence spectra of (a) l -P5 and (b) l -P6 spin coated in thin films

with and without the use of the metal coordinating additive 4-benzylpyridine (BP). Solid lines

refer to the spectra without the use of BP, dotted lines refer to the spectra with the addition

of BP.

One can gain further insights on the radiative processes by collecting

time-resolved photoluminescence spectra using time-correletated single photon

counting (TCSPC). In Figure 3.9 are presented the time-resolved PL spectra in

a 2-D contour plot. The decays at the respective maxima of each emission are

plotted, the bi-exponential tail fits and the residuals are plotted in Figure 3.10.

The experimental setup allowed for the option to choose between a time limit or

a maximum number of counts before stopping collecting data. In the interest of

having quantitatively comparable data, all the maps were collected using a time

window of 900 s and every 10 nm. This way, one can plot the emission spectrum

at different time delays.
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Figure 3.9 | TCSPC time decay contour plots of the oligomers in dilute toluene solution

(∼ µg/ml). The time scale all the spectra is from 4.3 ns to 8.5 ns confirming the fluorescence

emission of the oligomers. The colour scales are counts. The spectra were collected integrating

for 900 s for each wavelength. The ∆λ of the collection was set to 10 nm and the time decays

were collected every 10 nm, with a repetition rate of the 450 nm picosecond laser allowing a

time window of 50 ns.
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Figure 3.10 | TCSPC time decay plots of the oligomers in dilute toluene solution (∼ µg/ml).

Each decay was measured at the respective maximum of the emission. For each decay, the

respective tail fit is shown with black solid line and the corresponding goodness of the fit (χ2)

is noted. Below each plot are the weighted residuals of the fit. The time scale all the spectra is

from 5 ns to 30 ns. The spectra were collected integrating for 900 s for each sample.

All the figures of Figure 3.9 confirmed a singlet emission since all were in
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the ∼ ns time regime i.e. fluorescence emission. By fitting the PL decay at the

relative maxima of emission, one can extract the lifetime, a procedure described

in 2.5. All the decays were fitted with a bi-exponential decay, as presented in

Figure 3.10, and the respective residuals are shown below each decay.. In Figure

3.11 are presented the calculated lifetimes and the radiative and non-radiative

rates for each oligomer. As it is noticeable in Figure 3.11a, the lifetime decreased

from ∼ 2 ns for the monomer to circa half, 1 ns, for the longest oligomer, as a

results of the increase of both radiative (kr) and non-radiative (knr) rates (vide

infra).
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Figure 3.11 | (a) Calculated photoluminescence lifetime (τ) for the zinc oligomers. (b)

Calculated radiative and non-radiative rates (kr and knr respectively) for the zinc oligomers.

The lifetime measurements were carried out following excitation at 450 nm at room temperature

in dilute toluene solution (∼ µg/ml), using the same solutions as for the ηPL measurements

reported above.

By considering the ηPL values that are presented in Figure 3.7b, the values for

kr and knr can be calculated and are presented in 3.11b. These values served as

direct contradiction to what is expected by the energy gap (EG) law (vide infra).

The EG law predicts an increasing knr, from an efficient internal conversion (IC)

S1 → S0, with a decreasing energy gap, i.e. red-shift of the emission. This would

result in a decrease of the ηPL that was not experimentally confirmed.

By changing the oligomer lengths, the chemical properties are significantly

impacted, with an increase of both the oscillator strength and the spatial

delocalisation of the first singlet excited state (S1). Therefore, the increasing

trend of the knr, presented in 3.11b, is attributed to a concomitant suppression

of intersystem crossing (ISC). It is expected that ISC is suppressed with increase
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oligomer length as a result of the increasing spatial difference between singlet and

triplet excited states. [53, 155, 161]

Further corroborating the argument of these oligomers being a good-

performing NIR emitter, there is an increase of kr with increasing oligomer length,

resulting in more efficient NIR emitters as the oligomers elongate. Overall,

both increasing ηPL and the singlet nature of the oligomers emission result

in promising materials to be further studied, and contribute to achieving the

highest reported electroluminescence external quantum efficiency (ηEL) when

incorporated in OLEDs, as presented below.
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3.3.2 Solid-state photoluminescence of zinc porphyrin

oligomers

Prior to fabricating and characterising OLEDs, solid-state photoluminescence

performance of the oligomers is needed. Despite the bulky THS sidechains, the

oligomers were poor emitters in the solid state as pure materials, with spin-

coated films showing large aggregates, even by naked eye. Photoluminescence

experiments showed that their emission was below the detection threshold of our

detector, i.e. their emission was almost entirely quenched due to concentration

quenching.

It was, therefore, necessary to identify a suitable material to be used

as host, with good charge transport and optical properties, allowing for a

good spectral overlap and efficient Förster resonant energy transfer (FRET)

from the polymer host to the oligomer guest, a usual strategy to avoid

concentration quenching. [162] From the different commercial polymers

available in our laboratories, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-(N-(p-

butylphenyl))diphenylamine) (TFB) and poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-

alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) where chosen as the ones with the

best spectral overlap, as illustrated in Figure 3.12a below, where the emission of

F8BT and TFB in thin films is presented, and the absorption spectrum of l -P6.

The chemical structures of both polymers is also illustrated in Figure 3.12b. As

mentioned above, the B band showed little spectral shifting with varying oligomer

length, while onlyQx showed the pronounced bathochromic shift. Therefore, both

polymers were the best options for their respective emission spectra. TFB was

chosen for its significant PL overlap with the oligomers B band, while F8BT due

to its spectral overlap with the Q bands manifold, mainly the Qy. The F8BT had

the twofold advantage of being the polymer host in some previous works from our

group, thus providing some valuable expertise in the characterisation, and as it

is shown below in Figure 3.19, a better HOMO-LUMO alignment with the NIR

emitters resulting in a type-I or quasi type-I heterojunction. [95, 163]
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Figure 3.12 | (a) l -P6 absorption (red) in dilute toluene solution and the two

polymer hosts photoluminescence, F8BT (green) and TFB (yellow) in thin films. It is

evident the good spectral overlap between the hosts emission and the guest absorption.

(b) top: poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT)

and bottom: poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-(N-(p-butylphenyl))diphenylamine)

(TFB) chemical structures structures.

F8BT is a green emitter, a polyfluorene derivative with high 〈ηPL〉 values

in solid state, with values of circa 60 % and 100 % in solution (vide infra). First

reported by Janietz et al. in 1998, polyfluorene and its copolymers quickly became

popular for light-emission applications. [164, 165] It is one of the most widely

studied polymers in light-emitting devices, with good electron and transport

properties exhibiting hole and electron mobilities on the order of 10−3 cm2 V−1 s−1

and 10−4 cm2 V−1 s−1 respectively, and a low-lying lowest unccupied molecular

orbit (LUMO) at ∼ 3.3 − 3.5 eV below vacuum. [166–169] On the other hand,

TFB, another polyfluorene derivative, has its emission higher than F8BT, at the

blue region and has been extensively studied as an interlayer, rather than a host

material. [38, 163, 170–173] There are, however, studies that have used TFB as

a host material, but are not that common. [174] It has a 〈ηPL〉 value at ∼ 25 %

in thin films, about half that of F8BT.

Knowing the effects of high concentration to the photoluminescence of the

oligomers, the loading of the oligomers in the two hosts (F8BT and TFB) was

kept low, allowing for efficient light emission, but high enough to quench the host

photoluminescence and obtain significant NIR emission. The blends investigated

were host :l -Pn 1.0, 2.5 and 5.0 w/w%, i.e. 99 parts of host polymer, 1 part of

guest oligomer was blended for the 1.0w/w%, etc. The blends are all weighted

and made by adding the required volume of 10 mg/ml solution of oligomers, to
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the required volume of equally 10 mg/ml solution of polymer host. The process

of solution preparation is explained in Chapter 2. The blended solutions were

subsequently spin coated to form thin films of ∼ 100 nm thick. It is noteworthy

that, given the chronological order of the experiments carried out and the special

attention given to the hexamer, both lower and higher concentration of the

F8BT:l -P6 blends were explored, but the results obtained were not satisfactory

and are therefore omitted from this thesis, to maintain a uniformity between all

the oligomers. 11

The absorption spectra of F8BT:l -P6 and TFB:l -P6 are presented in Figure

3.13 below. Since the spectra were dominated by the absorption of the polymer

host in both F8BT and TFB matrices, only the l -P6 spectra are presented to

maintain some simplicity. Also, as already mentioned, l -P6 was investigated

further in OLEDs.
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Figure 3.13 | (a) F8BT:l -P6 and (b) TFB:l -P6 absorption spectra. The insets in both are a

“zoomed” view of the Qx absorption band of the oligomers in the 700− 900 nm region.

In the F8BT:l -P6 absorption (Figure 3.13a), the two distinctive F8BT

components are present at 325 nm and 450 nm, whereas the Qx components of

the oligomer were at 800− 900 nm region. Compared to the solution absorption

(Figure 3.5), a ∼ 100 nm red shift is observed, attributed to a more planar

conformation of the oligomer in the polymer matrix. Also, the higher energy

11However, in the interest of reporting them, the lowest loading of F8BT:l -P6 0.5 % exhibited

a higher 〈ηPL〉 = 32 ± 3 % than the rest of the loadings but with a significantly lower NIR

emission (35 %) given the low loading, and F8BT:l -P6 10 % exhibited a noticeably reduced

〈ηPL〉 = 3 ± 1 % but higher NIR emission (85 %). Also, when explored in OLEDs, the results

were not comparable to the rest of the blends, as presented and explained below.
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peaks, present only in the solid state, are attributed to a reduced torsional

heterogeneity compared to the solution. When the oligomers are in solution,

they are free to rotate around the butadiyne links. [128] In a previous study, it

was found that oligomers that have their torsional degrees of freedom restricted

(e.g. in a high viscosity solvent) tend to show distinct absorption features in the

Q band, something observed in the spectra of the F8BT:l -P6 blends that the

oligomer was blended with a polymer and spin coated. [132]

TFB:l -P6 spectra (Figure 3.13b) showed a similar behaviour, dominated by

the single absorption feature of TFB at ∼ 370 nm. However, l -P6 Qx band

was slightly blue shifted compared to the F8BT ones, attributed to the different

planarisation of the oligomer in the solid solution. Not surprisingly, though, in

both F8BT and TFB blends, an increasing loading of the oligomer resulted in

increasing intensity of the Qx band.

Moving to the photoluminescence of the blends, the spectra showed

more interest than the absorption, with more pronounced differences between

oligomers. The F8BT:l -Pn blends spectra are presented in the panel of Figure

3.14 below. All the spectra have been normalised for the emission of the

porphyrin. This highlights the effect of increasing loading of the oligomers in the

polymer matrix in all but F8BT:l -PN in Figure 3.14h. It is therefore confirmed

that there is efficient FRET from the polymer host to the oligomers, and while

it is not perfect, F8BT emission is gradually quenched.

However, in the case of F8BT:l -P7 (Figure 3.14g), and more pronounced in

the case of F8BT:l -PN (3.14h), the effect of increasing concentration doesn’t

quench significantly F8BT PL. This fact is attributed to the increased length of

the oligomers, especially for l -PN, that increases the average distance between

chromophores resulting in reduced efficiency of FRET.

It is important to note that the oligomers showed an ∼ 80 nm red-shifted

emission compared to the PL in solution (Figure 3.7a). This is attributed partially

to an increased planarity that resulted in increase of the conjugation length and to

signs of aggregations. It is also noteworthy that the oligomers showed a minimal

Stokes’ shift that is a sign of rigidity of the oligomers in the polymer, something

observed in porphyrin oligomers and ladder-like polymers but, also, to a dipole

coupling in a J-Aggregate-like formation. [160, 175, 176]
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Figure 3.14 | (a) - (h) Photoluminescence spectra of the oligomers in blends with F8BT spin

coated on glass spectrosils (∼ 100 nm thick) collected outside the integrating sphere using a

445 nm diode laser. All the spectra have been normalised for the oligomers emission to highlight

the gradual quenching of the F8BT host in favour of the guest emission. blue represent the

F8BT:l -Pn 1.0 % loading, yellow the 2.5 % and green the 5.0 %. Both x and y scales are the

same in all plots to facilitate comparisons. The small “bump” in some plots ((d) through (h))

at ∼ 890 nm is the second order of diffraction of the excitation laser (445 nm).

Another important factor considered when studying PL of blends is both the

ηPL and the % of photons emitted in the NIR that are presented in Figure 3.15

below. It is immediately visible that across all oligomers, increasing loading

resulted in lowering the ηPL, an effect attributed to concentration quenching.
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Contrarily, increasing the loading of the oligomers in the polymer matrix resulted

in increasing the percentage of photons emitted in the NIR. However, comparing

the values with the pure oligomers in solution, a drop is observed in NIR PL due

to residual emission of the polymer host, that also boosted slightly ηPL values for

the lower loading of 1.0 %, but dropped with the higher loadings when the effects

of concentration quenching were more pronounced.
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Figure 3.15 | (a) photoluminescence quantum efficiency (ηPL) (b) near-infrared (NIR)

photoluminescence (PL) of the F8BT:l -Pn blends. The arrow in (b) emphasises the increase of

the % of the photons emitted at λ> 700 nm. With blue is the 1.0 %, yellow is the 2.5 % and

green is the 5.0 % loading.

Impressively, an 〈ηPL〉 value∼ 30 % in the solid-state was achieved without the

use of additives, such as 4-benzylpyridine (BP) to minimise aggregation. [87] This

corroborated further the positive effect of the THS sidechains, and a significant

improvement when compared to similar oligomers without THS sidechains that

require the metal coordinating BP to show ηPL values > 1 %. [87] To further

prove the effect, the ηPL of the THS-free porphyrin used by Fenwick et al. was

measured again. An F8BT:P6 10w/w% blend was prepared and found to have

〈ηPL〉 ∼ 1 %.

One might notice that comparing the absorption spectra of F8BT (Figure

3.13a) and that of the oligomers (Figure 3.5a), there is a significant overlap of

the second characteristic absorption band of F8BT with the main absorption peak

of the oligomers, the B band. Knowing that the excitation laser is a 445 nm diode

laser, one can claim that the emission of the porphyrins is not thanks to FRET,

but rather directly exciting the porphyrins. To test this claim, the same samples

of F8BT:l -P6 that were tested for ηPL and whose spectra are presented in Figure
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3.14f, where tested for PL intensity by collecting the spectra following selective

excitation of only the F8BT. To achieve that, a 325 nm He-Cd gas laser was used,

resonant with the high energy absorption peak of F8BT. The results, presented

in Figure 3.16 confirm that the relative intensities of F8BT-l -P6 remain almost

the same, corroborating the claim of efficient FRET.
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Figure 3.16 | Comparison of the F8BT:l -P6 photoluminescence (PL) following excitation with

two different laser sources: (a) 325 nm (b) 445 nm. The relative intensities remain almost the

same, corroborating the claim of efficient Förster resonant energy transfer (FRET). The missing

part at ∼ 650 nm is the second order of diffraction of the excitation laser.

Before proceeding with the OLED characterisation, it is worth noting that

the results presented above refer to the F8BT:l -Pn blends, omitting the TFB

blends so far. As mentioned above, the TFB did not perform well compared

to the F8BT one, and therefore only the hexamer was tested, just as presented

in the absorption spectra. However, FRET was efficient as expected by the

better spectral overlap, resulting in higher values for ηPL and similar for NIR PL,

making TFB:l -P6 a very promising candidate for efficient NIR OLEDs. The PL

spectra of the TFB:l -P6 blends are presented in Figure 3.17 below. Nevertheless,

as it is shown below, TFB blends did not perform well in OLEDs. Since the

characterisation of the hexamer preceded the rest of the oligomers, it was deemed

unnecessary to utilise the little material that was available in a study that didn’t

show much potential compared to F8BT.
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Figure 3.17 | TFB:l -P6 photoluminescence (PL) spectra following excitation at 371 nm.

The significant values presented above (such as ηPL and % of NIR PL) are

summarised in Table 3.1 below. However, all the values from both solution and

thin film photoluminescence characterisation are noted in the detailed Table A.1

at the end of the present thesis.

As it has been previously mentioned, the hexamer being of special value thanks

to the previous study of cyclic and linear zinc hexamers of Fenwick et al. [87],

the same P6(OCT) was tested in blends with F8BT. The same F8BT:P6(OCT)

10.0 % that was published, afforded a 〈ηPL〉< 1 % without the metal coordinating

4-benzylpyridine (BP), increased to ∼ 12 % by adding a 3w/w% BP. The same

blends were also tested alongside the l -P6(THS) and achieved a 〈ηPL〉 = 1 %,

corroborating the previous results of Fenwick et al. Comparatively, a lower

concentration of F8BT:l -P6(OCT) 2.5 % was also tested, that is not reported

in the 2011 study, and achieved a 〈ηPL〉 = 8 %.

All the blends presented above were used as active layer in the final step of

the characterisation, i.e. incorporation into OLEDs. The results described so far

represent some of the highest values reported for NIR emitters. The high values

of ηPL are the basis for achieving good ηEL performance, as it was explained in

Equation 1.27.
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Table 3.1 | Summary of the major optical properties of the zinc porphyrin oligomers in

solutions and thin films, including photoluminescence quantum efficiency (ηPL) and near-

infrared (NIR) photoluminescence (PL).

Sample 〈ηPL〉sol (%) NIR PL sol (%) 〈ηPL〉film (%) NIR PL film (%)

F8BT pure 59.9 ± 2.5 3.0

l -P1 1.0 % 16.1 ± 0.7 11.3

l -P1 2.5 % 7.9 ± 0.2 9.1 9.5 ± 0.41 17.1

l -P1 5.0 % 6.5 ± 0.4 23.5

l -P2 1.0 % 26.6 ± 1.6 68.7

l -P2 2.5 % 34.3 ± 0.7 84.8 21.9 ± 1.5 82.8

l -P2 5.0 % 14.2 ± 1.1 89.6

l -P3 1.0 % 27.8 ± 1.1 64.6

l -P3 2.5 % 24.2 ± 0.7 94.9 20.3 ± 0.7 75.1

l -P3 5.0 % 11.1 ± 0.7 83.9

l -P4 1.0 % 22.6 ± 0.6 58.7

l -P4 2.5 % 22.2 ± 0.5 96.2 14.8 ± 0.2 74.3

l -P4 5.0 % 8.4 ± 0.2 81.6

l -P5 1.0 % 26.1 ± 0.9 61.3

l -P5 2.5 % 27.3 ± 0.4 98.3 15.2 ± 0.6 73.4

l -P5 5.0 % 8.3 ± 0.4 84.7

l -P6 1.0 % 23.9 ± 0.9 61.6

l -P6 2.5 % 28.5 ± 1.5 99.1 11.4 ± 0.2 72.1

l -P6 5.0 % 6.9 ± 0.1 83.1

l -P7 1.0 % 17.1 ± 0.6 46.7

l -P7 2.5 % 47.8 ± 0.6 99.4 9.9 ± 0.3 61.6

l -P7 5.0 % 2.7 ± 0.1 62.9

l -PN 1.0 % 12.3 ± 0.4 25.5

l -PN 2.5 % 28.3 ± 0.7 90.1 7.4 ± 0.2 27.8

l -PN 5.0 % 2.7 ± 0.1 28.8

TFB pure 26 0.0

l -P6 1.0 % 30 60.0

l -P6 2.5 % 28.5 ± 1.5 31 64.0

l -P6 5.0 % 24 71.0

78



Zinc porphyrin oligomers

3.3.3 Zinc porphyrin oligomers OLEDs

With the very good results achieved in the photoluminescence (PL)

characterisation described in Sections 3.3.1 and 3.3.2 above, organic light-emitting

diodes (OLEDs) were fabricated, using the same blends and loading as presented

above as the emissive layers. The detailed procedure for the fabrication process

is described above in Section 2.6. The OLEDs fabricated have the typical

multilayer structure using indium tin oxide (ITO) as the transparent anode and

poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as a hole

transporting layer, but also a polymer layer that will increase the spatial difference

of the active layer from the metal anode. PEDOT:PSS will also move the

recombination region further away from the metal electrode, as recombinations

tend to take place closer to the electrode that injects the lower mobility carriers,

i.e. holes in these devices. [177] On top of PEDOT:PSS is spin coated the

active layer, using the same loadings as described above. Finally, the metal

cathodes are thermally evaporated including a layer of calcium and a protective

layer of aluminium. The resulting architecture, illustrated in Figure 3.18, is

ITO/PEDOT:PSS/active layer/calcium/aluminium that has afforded very good

results in the past and our group has an extensive expertise in optimising the

deposition processes. The resulting architecture is illustrated in Figure 3.18

below.
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Figure 3.18 | Illustration of the architecture of the organic light-emitting diodes (OLEDs)

fabricated. The architecture is ITO/PEDOT:PSS/active layer/calcium/aluminium, where as

emissive layer with green is the F8BT:l -Pn blends. The chemical structure of the porphyrin

oligomers is shown to the right and illustrated as dark-red chains in the emissive layer.

Due to the volume of available plots to describe the rich insights deducted from

the OLEDs characterisation and include the most possible metrics available, the

results plotted may seem overwhelming, and possibly complicated to understand.

However, the results are grouped in a comprehensive way and have been colour-

coded for easier understanding. The major curves are presented in the panels
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3.20 and 3.21 below.
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Figure 3.19 | Energy level diagram of the materials used for the organic light-emitting diodes

(OLEDs) fabrication. The values for the HOMO-LUMO levels of the zinc oligomers are taken

from [87, 127]. The values for the F8BT energy levels are taken from [87, 178].

The electroluminescence (EL) spectra are on the first column (left), the

current density - voltage - radiance (JVR) curves in the second (middle) and

the electroluminescence external quantum efficiency (ηEL) versus current density

on the third (right) for each of the F8BT:l -Pn blends. Blue lines and symbols

represent the F8BT:l -Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading.

In the JVR curves, solid lines refer to the current density versus voltage measured

in mA/cm2, while dashed lines to the radiance versus voltage, measured in

mW/cm2. Radiance was chosen, rather than luminance for the light emission

of the devices since the largest part of the EL is in the NIR.

Starting from the EL spectra, oligomers showed a slight shift compared to

the photoluminescence (PL) presented in Figure 3.14 of the same blends, since

charges have more opportunities to find lower energy sites to recombine. [94]

What is evident immediately is the significantly increased quenching of the host

emission in favour of the guest near-infrared (NIR) emitter. A synergistic result of

a good spectral overlap and a good energy level alignment, but also thanks to the

aforementioned excellent charge transport properties of F8BT, all contributing

in the radiative recombination of the excitons in the low-energy sites of the

oligomers. [179] As a result, EL is spectrally pure with > 90 % of emission at

λ> 700 nm for oligomers with n> 2, while the mainly red emitting l -P1 showed

17 % NIR emission with emission peaking at ∼ 650 nm. While these results

refer to 5.0 % loading, 2.5 % blends had very similar performance in the % of

photons emitted in the NIR. As depicted also in the Figures 3.20a through 3.20j

and 3.21a through 3.21j, 1.0 % loading had some enhanced host emission, still
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Figure 3.20 | First panel with the optoelectronic properties of the oligomers. Blue lines and symbols

represent the F8BT:l-Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading, for n = 1 − 4. (a, d, g, j)

(left column) depict the electroluminescence (EL) spectra, (b, e, h, k) (central column) the current density

- voltage - radiance (JVR) and (c, f, i, l) (right column) the electroluminescence external quantum efficiency

(ηEL) of the OLEDs. The legends in (a, d, g, j) refer to the voltage at which the spectra where collected.
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Figure 3.21 | Second panel with the optoelectronic properties of the oligomers. Blue lines and symbols

represent the F8BT:l-Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading, for n = 5 − 7 & N. (a, d, g,

j) (left column) depict the electroluminescence (EL) spectra, (b, e, h, k) (central column) the current density

- voltage - radiance (JVR) and (c, f, i, l) (right column) the electroluminescence external quantum efficiency

(ηEL) of the OLEDs. The legends in (a, d, g, j) refer to the voltage at which the spectra where collected.
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however achieving a remarkable > 80 % NIR emission for oligomers with n> 2,

with the exception of F8BT:l -P5 1.0 % that emitted 75 % of photons in the NIR.

These results are summarised in Figure 3.22.
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Figure 3.22 | Percentage of photons emitted in the near-infrared (NIR) for the zinc oligomers.

Blue symbols represent the F8BT:l -Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading.

The results were calculated from spectra collected at the saturation voltage, the voltage at

which light emission (radiance) is maximum. The dashed line is highlighting the 90 % point.

As per the PL results (Figure 3.15b), EL of l -PN showed some enhanced

emission at λ< 700 nm, attributed to some shorter oligomers, possible due

to degradation of the samples, but also to the increased distance between

chromophores making FRET less efficient. This resulted in the longest oligomer

being the least efficient NIR emitter.

In Figure 3.23a below are presented the maxima of ηEL for each sample. In

Figure 3.23b are presented the average maxima among the different fabricated

OLEDs. It is evident that the lower concentration achieved higher maximum

ηEL for all the oligomers, except the monomer, with a “champion” device of

the F8BT:l -P2 1.0 % achieving a record ηEL = 4.3 %. Notably, the record

value was measured at a current density of J ∼ 10−2 mA/cm2, at a radiance

of R> 10−3 mW/cm2, well above the detection limit of our detector, and as it is

visible from Figure 3.26d, the emission is mainly attributed to the NIR emitter.
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Figure 3.23 | (a) Maximum electroluminescence external quantum efficiency (ηEL) and (b)

average maximum electroluminescence external quantum efficiency (ηEL) for the zinc porphyrin

oligomers OLEDs.

With the exception of this very high value of the dimer, all the oligomers

showed stable performance across the fabricated devices. All the dimer devices

showed better performance than the rest of the oligomers, in terms of maximum

ηEL, and had ηmaxEL > 1.0 % and all at reasonable current densities. However, the

dimer, as the rest of the oligomers, showed some roll-off with increasing applied

bias (and therefore increasing current density). This is typical of OLEDs and can

be attributed to a variety of exciton quenching processes. Such processes could

be triplet-triplet annihilation (TTA), unbalanced charge carriers resulting in a

preferential build-up of one type of charge that can serve as a quenching site for

the excitons, but also charge trapping in the low energy sites. [180–183] However,

the somewhat less pronounced roll-off in the case of the highest concentration, i.e.

the presence of more dopants, can be attributed to the reduced self-quenching,

where the roll-off is determined by the charge pair dissociation rather than triplet-

triplet annihilation. [92] It also noticeable from both subfigures of Figure 3.23

that increasing the concentration of the dopant results in reduced ηEL, an effect

attributed to concentration quenching. [184] Finally, by looking at the ηEL of the

pure F8BT OLEDs in Figure B.2c, the dopant increased the maximum efficiency

of the devices in all cases. Plots with all the ηEL versus applied bias curves can

be found in Figures C.1 through C.8.
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Figure 3.24 | (a) Maximum radiance and (b) average maximum radiance for the zinc

porphyrin oligomers OLEDs.

Figures 3.24a and 3.24b show the maximum and average maximum radiance

measured for the various devices, respectively. Also in in terms of light emission,

l -P2 was the best performer in all three concentrations showing maximum values

of R> 2 mW/cm2. Furthermore, just as the results of ηEL, lower concentrations

afforded higher values, corroborating the argument of aggregation quenching.

l -P
1

l -P
2

l -P
3

l -P
4

l -P
5

l -P
6

l -P
7

l -P
N

0

2

4

6

8

10

B
ia

s
(V

)

1.0% 2.5% 5.0%

Figure 3.25 | Average turn-on voltage of the zinc porphyrin oligomers OLEDs. As turn-on

voltage is defined the voltage at which light emission (radiance) goes above 3.5× 10−5 mW/cm2.

Interestingly, l -P2 blends showed coherently low turn-on voltages (VON) of

∼ 3.5 V. As mentioned above in Section 2.7, VON is defined in this thesis as the

voltage at which the light emission (radiance) goes above 3.5 × 10−5 mW/cm2.
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Again, higher concentrations resulted in higher VON biases, a typical behaviour

of host-guest OLEDs. [184, 185] This observation of increased VON with higher

concentrations could corroborate a previous argument of the porphyrins acting

as charge traps that results in increased applied biases, reduced ηEL, but also

extended ohmic regime that can be observed from the JVR plots of Figures 3.20

and 3.21. [179] In all JVR plots, the higher concentrations exhibited this extended

ohmic regime.

By looking at the ηEL versus J curves in Figures 3.20 and 3.21 above, it could

be argued that, since the ηmaxEL is measured at relatively low current densities, it

was not the oligomers emitting, but rather the polymer host, however unlikely

given the larger EG that the host has. In order to explore how the blends

behaved at low voltages, the spectra at the very minimum applied bias that our

detector could detect a signal were collected. In order to explore how the different

blends emitted depending on the applied bias, the spectra at various biases until

the saturation voltage were subsequently collected and are presented in Figures

3.26 and 3.27 below. The voltage-resolved spectra have been normalised for

the maximum of the emission to emphasise the ratio between F8BT and l -Pn

emission. The pure F8BT OLEDs showed very stable voltage-resolved spectra

and from the very first photons collected to the saturation voltage, the spectrum

is identical to the one presented in Figure B.2a, and is therefore omitted from

this chapter for simplicity. The spectra can be found in the appendix in Figure

B.3.

As in Figures 3.20 and 3.21, the increase quenching of the emission of F8BT

in the two higher concentrations is noticeable . The spectra showed remarkable

stability and in all devices the first photons emitted that were detectable by

our spectrometer, originated from the NIR emitters. In all of the oligomers,

the 1.0 % blend exhibited an enhanced host emission at higher voltages. This

effect is attributed to a combination of two factors; the saturation of the low

energy emissive sites at increasing injected charge carries, therefore the excitons

are recombining at the polymer host, rather than the NIR emitters and the ease

of injecting carriers in the HOMO and LUMO of the host. This phenomenon is

significantly suppressed at the 2.5 % and 5.0 % loadings due to the existence of

more traps where the excitons can recombine rather than being emitted from the

host. There was also some subtle broadening of the NIR peak in the high-energy

tail, attributed to an increase temperature due to the increased carrier injection

and the higher applied biases. [186]

All the EL results presented in the Figures above are summarised in the Table

3.2 below. Further details and direct comparisons with the PL data can be made

using the Tables A.2 and A.1 in the appendix.
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Figure 3.26 | Voltage-resolved spectra for the zinc porphyrin oligomers OLEDs. Blue lines represent the

F8BT:l-Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. The spectra collection started at the minimum

voltage that was above the detection threshold and the last was the saturation voltage and were collected in

steps of 1 V.
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Figure 3.27 | Voltage-resolved spectra for the zinc porphyrin oligomers OLEDs. Blue lines represent the

F8BT:l-Pn 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. The spectra collection started at the minimum

voltage that was above the detection threshold and the last was the saturation voltage and were collected in

steps of 1 V.
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Table 3.2 | Summary of the EL properties of the zinc oligomers OLEDs.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax (mW/cm2) 〈Rmax〉 (mW/cm2) VON (V)

F8BT pure 0.3 0.3 ± 0.04 0.9 0.4 ± 0.19 3.7 ± 0.46

l-P1 1.0 % 0.8 0.3 ± 0.3 0.6 0.3 ± 0.2 2.8 ± 0.2

l-P1 2.5 % 0.9 0.6 ± 0.3 0.6 0.4 ± 0.2 3.2 ± 0.3

l-P1 5.0 % 1.3 0.8 ± 0.3 0.5 0.4 ± 0.2 3.8 ± 0.6

l-P2 1.0 % 4.5 1.5 ± 1.2 3.3 1.6 ± 0.9 3.5 ± 0.3

l-P2 2.5 % 1.7 1.5 ± 0.2 4.0 2.5 ± 1.2 3.6 ± 0.6

l-P2 5.0 % 1.5 1.3 ± 0.2 2.4 1.6 ± 0.8 3.6 ± 0.6

l-P3 1.0 % 1.6 1.3 ± 0.3 1.7 1.2 ± 0.3 5 ± 0.75

l-P3 2.5 % 1.2 0.8 ± 0.4 2.3 1.2 ± 0.6 5 ± 0.6

l-P3 5.0 % 0.6 0.3 ± 0.3 0.4 0.2 ± 0.2 7 ± 0.4

l-P4 1.0 % 1.4 0.9 ± 0.3 0.7 0.5 ± 0.2 5 ± 0.23

l-P4 2.5 % 0.6 0.5 ± 0.2 0.3 0.3 ± 0.1 6.7 ± 0.9

l-P4 5.0 % 0.3 0.3 ± 0.03 0.2 0.2 ± 0.01 7.5 ± 0.4

l-P5 1.0 % 0.9 0.9 ± 0.04 0.5 0.5 ± 0.04 4.2 ± 0.4

l-P5 2.5 % 0.6 0.6 ± 0.01 0.3 0.3 ± 0.02 6.4 ± 0.3

l-P5 5.0 % 0.3 0.2 ± 0.1 0.2 0.1 ± 0.08 7.2 ± 0.6

l-P6 1.0 % 1.1 0.9 ± 0.3 0.6 0.5 ± 0.1 5.1 ± 0.5

l-P6 2.5 % 0.9 0.7 ± 0.1 0.3 0.3 ± 0.02 7.4 ± 0.8

l-P6 5.0 % 0.6 0.5 ± 0.07 0.4 0.3 ± 0.1 8 ± 0.25

l-P7 1.0 % 1.3 0.9 ± 0.2 1.4 1.1 ± 0.3 4.3 ± 0.5

l-P7 2.5 % 0.9 0.8 ± 0.08 1.2 0.9 ± 0.3 6.8 ± 1.1

l-P7 5.0 % 0.4 0.4 ± 0.1 0.3 0.1 ± 0.1 8.1 ± 0.7

l-PN 1.0 % 1.1 0.7 ± 0.2 0.3 0.2 ± 0.1 4.8 ± 0.7

l-PN 2.5 % 0.6 0.6 ± 0.01 0.8 0.5 ± 0.3 6.4 ± 0.8

l-PN 5.0 % 0.3 0.2 ± 0.1 0.2 0.2 ± 0.05 6.5 ± 0.6

Just as mentioned previously, l -P6 was also tested in blends with a polymer

emitting at higher energies than F8BT, which also had better spectral overlap

(Figure 3.12). In order to examine how this spectral overlap is beneficial when in

devices, the same TFB:l -P6 blends reported in Figure 3.17 where used as emissive

layer in OLEDs, with the exception of the 5.0 % blend. The results are presented

in Figure 3.28 below.

It is immediately visible that TFB blends had a much lower ηEL values, with

both blends having a ηmaxEL ∼ 0.13 %, the lowest among the blends tested. It

is also noticeable the second peak observed in the 600− 700 nm observed in the

blends, that was not present in the pure TFB OLEDs. By considering the HOMO-

LUMO levels of TFB and l -P6, this peak can be attributed to an intermolecular

transition, as its energy (1.8−2.0 eV) corresponds to the energy difference between

HOMOTFB - LUMOl-P6, corroborated by the fact that this band is absent in the

PL spectra (Figure 3.17) and from the pure TFB OLEDs (Figure 3.28a). However,
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a second possible interpretation is that of the “keto” defects, originating from

oxidative degradation of the TFB layer that form trap states for charges and

excitons. [187, 188]

Furthermore, the EL is peaked at 812 and 822 nm for the 1.0 % and 2.5 %

respectively, a ∼ 50 and ∼ 40 nm blue shift compared to the F8BT:l -P6 blends,

showing that the hexamer has a different conformation in the two different

matrices. The surprisingly low ηEL values achieved are, therefore, attributed

to these two interpretations of intermolecular transitions and “keto” defects,

together with the energetic barrier for electron injection by the LUMO of TFB.
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Figure 3.28 | Pure TFB and TFB:l -P6 OLED properties. (a) (left) depicts the

electroluminescence (EL) spectra, (b) (centre) the current density - voltage - radiance (JVR)

and (c) (right) the electroluminescence external quantum efficiency (ηEL) of the OLEDs.

Further to the rest of the zinc oligomers presented above, it is noteworthy

to report the results afforded by the P6(OCT) hexamer that was tested by

Fenwick et al. [87] In that study, it was reported that non 4-benzylpyridine (BP)

F8BT:P6(OCT) blends achieved a ηEL ∼ 0.01 %, increased by a factor of ten

to ηEL ∼ 0.1 % with the addition of 3.0w/w% BP. Testing the same P6(OCT)

against the l -P6(THS), but in a lower concentration of 2.5 %, instead of the

reported in the study 10.0 %, achieved a ηmaxEL ∼ 0.3 %, 1/3 of the value achieved

by the l -P6(THS), with the same 1/3 worse performance for the light emitted

(radiance), but with a similarly good NIR emission of > 90 % of the photons at

λ> 700 nm.
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3.3.4 Conclusions

In this section, the full optical and electro-optical characterisation of 8 zinc

porphyrin oligomers was reported. Starting from the monomer and increasing

the oligomers length up to the heptamer, and an eighth long oligomer,

termed “polymer” were tested starting from dilute solution measurements

up to organic light-emitting diodes (OLEDs) fabrication. The porphyrin

oligomers incorporated novel bulky trihexylsilyl (THS) chains that offered a

large steric hindrance and prevented aggregation efficiently. This claim was

tested against a THS-free hexamer and was proven valid. Despite the long

and bulky sidechains, pure porphyrin films were not emissive enough, so a

host-guest strategy was utilised, with the hosts being two widely studied,

commercially available polymers, namely poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-

alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) and poly[(9,9-dioctylfluorenyl-2,7-

diyl)-alt-

(4,4’-(N-(p-butylphenyl))diphenylamine) (TFB). With TFB photoluminescence

(PL) having an important spectral overlap with the porphyrin high-energy Soret

band and F8BT PL overlapping with the Q bands of the oligomers, thin films

were characterised. The characterisation included photoluminescence quantum

efficiency both in solution, and in thin films, PL intensity and absorption spectra.

The near-infrared (NIR) PL was calculated for all the oligomers in solution and

thin films. intersystem crossing (ISC) was reduced thanks to the increasing spatial

extent between triplets and singlets mitigating the increase of the non-radiate

rates, while concomitantly increasing the oscillator strength and the radiative

rate, and the aggregation prevention afforded by the THS sidechains resulted

in efficient emission at λ> 700 nm, with ηPL values up to 47 % and 100 % NIR

emission.

By incorporating the blends as active layer in OLEDs, very high

electroluminescence external quantum efficiency (ηEL) up to 4.3 % was achieved

with NIR emission remaining well above 90 % for many oligomers. These results

proved to be a challenge to the energy gap law and pave the way for the fabrication

of NIR emitting OLEDs with heavy-metal-free material.

A rule of thumb states that higher carrier mobilities result in lower operating

voltages, but it has also been suggested that lower mobilities result in higher

ηEL, at the expense of reducing the response time of an OLED. [177, 189] With

this in mind, the relatively low VON , the significantly high ηEL and radiance,

the F8BT:l -P2 2.5 % can be considered as the best trade-off of an efficient NIR

emitter from the zinc porphyrin oligomers presented above. It was also visible

from the THS vs OCT comparison that the bulkier sidechains do have a profound
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effect on the ηEL and ηPL values achieved, but also to the light output of the

OLEDs. Finally, the TFB:l -P6 blends proved that a favourable spectral overlap

does not translate to efficient OLEDs and the dominant process for light emission

in OLEDs is charge trapping in the low energy emitter, making HOMO-LUMO

alignment more important that spectral overlap.
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3.4 Porphyrin hexamers

Given the promising results achieved by the porphyrin oligomers using as

coordinating metal zinc, that were presented in Section 3.3 above, the same bulky

trihexylsilyl (THS) chains architecture was used, but changing the coordinating

metal. A range of hexamers was synthesised by Dr. Ibrahim Bulut in at the

Chemistry Research Laboratory of the University of Oxford in the group of

Prof. Harry L. Anderson, FRS using magnesium, palladium, platinum and a

metal-free hexamer were synthesised to investigate the results of heavier or lighter

metals and if the elusive triplets could be harvested. The chemical structure of

the oligomers is illustrated in Figure 3.29.

It is, therefore, expected to have the same excellent aggregation preventing

properties of the THS sidechains, but with the heavier metals to obtain

phosphorescence and, subsequently, increase of the efficiencies. As it has been

mentioned above, the zinc hexamer was of special attention given the promising

previous study of our groups, and so only hexamers were characterised with the

different coordinating metals. [87] Previously, the oligomers were referred to as

l -Pn, with n=1-7 and N for the polymer. To maintain the homogeneity in this

thesis, the different hexamers are referred to as l -P6 X, where X is the element

at the centre of each unit, e.g. H2 for the metal-free or Pd for the palladium.

n = 6

N

M

N N

N

SiSi

Si

Si Si

Si

M = H2, Mg, Zn, Pd, Pt

Figure 3.29 | Chemical structure of the porphyrin with the bulky THS side chains highlighted

in purple. With M is noted the different elements in the centre of each porphyrin unit: free-base

(metal free), magnesium, zinc, palladium and platinum.
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3.4.1 Solution photoluminescence of porphyrin hexamers

In Figure 3.30a are presented the absorption spectra of the five hexamers in dilute

anhydrous toluene solution (∼ µg/ml). It is surprising the spectral scattering of

the Qx band among the five hexamers, spanning from ∼ 680 nm for the l -P6

Pt, and red-shifting with decreasing atomic number of the element at the centre

of each porphyrin unit. Notably, l -P6 Pd was peaked at ∼ 700 nm, l -P6 Zn at

∼ 780 nm. l -P6 H2 broke the pattern peaking at ∼ 790 nm and l -P6 Mg the most

red-shifted peaking at ∼ 830 nm. Similar to the the zinc oligomers above, the

Soret band remained spectrally stable in the ∼ 400− 500 nm region.
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Figure 3.30 | (a) Absorbance and (b) normalised photoluminescence (PL) of the hexamers, in

dilute anhydrous toluene solution (∼ µg/ml). The PL spectra were collected following excitation

at 450 nm from a laser diode.

In the presence of the two heavy metals, platinum and palladium, one would

expect to see an importantly red-shifted emission originating from the triplet

states. As discussed above, the triplet states lie lower, in energy, than singlets

(Figure 1.6), so phosphorescence would be red-shifted compared to fluorescence.

However, the palladium hexamer showed no signs of triplet emission, while the

platinum had very weak emission, however showing some phosphorescence. The

photoluminescence (PL) spectra of the oligomers in dilute anhydrous toluene

solution (∼ µg/ml) are presented in Figure 3.30b. The same trend of decreasing

of the emitted photons with increasing atomic weight was observed, save for the

magnesium hexamer. However, l -P6 Pt exhibited an intense secondary emission

peak in the ∼ 900 nm region and a weaker at ∼ 700 nm. The former is attributed

to the S1 → S0 transition while the latter to the T1 → T0. The other four

oligomers, including the palladium, did not display any secondary peaks. l -P6
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Pt had its fluorescence peaked at ∼ 720 nm, l -P6 Zn and H2 almost coincidental

at ∼ 800 nm and l -P6 Mg at ∼ 840 nm. Another surprising spectral feature of

the l -P6 Pt was a strange band observed in the higher energies, ∼ 500− 650 nm

that was more intense by exciting the molecule with a 520 nm emitting laser,

rather than the 450 nm used for these spectra. Cross-contamination (e.g. from

another polymer or oligomer during the experiments) was ruled out since the

peak intensified with excitation at lower energies during a discussion of the data

with the synthetic group, however it is difficult to speculate how it originated. A

different source of this emission could be a chemical residue from the synthesis

or purification steps, but further investigation is required.
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Figure 3.31 | (a) Absolute photoluminescence quantum efficiency (ηPL) results measured

as described in Section 2.4 above and according to [122]. (b) % of the photons emitted at

λ> 700 nm. The spectra, NIR PL calculations and ηPL measurements were carried out following

excitation at 450 nm at room temperature in dilute toluene solution (∼ µg/ml).

As it can be deducted from the noisy spectrum in Figure 3.30b, l -P6 Pt

was not very emissive. This was corroborated when trying to measure the ηPL,

depicted in Figure 3.31a. Unfortunately, the l -P6 Pt PL was below our detection

threshold for ηPL measurements. l -P6 Pd showed some measurable PL, achieving

a 〈ηPL〉 ∼ 1 %. However, the three heavy-metal-free hexamers has much higher

ηPL values, with l -P6 H2 yielding ∼ 20 %, l -P6 Mg ∼ 30 % and l -P6 Zn, already

reported (vide supra) ∼ 28 %.

The near-infrared (NIR) PL results were not promising for the heavy-metal-

containing materials either. In Figure 3.31b are presented the percentage

of photons at λ> 700 nm. The heavy-metal-containing l -P6 Pd and Pt and

their significantly blue-shifted emission, compared to the three other hexamers,
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afforded ∼ 60 % of NIR emission. It is worth noting that the l -P6 Pt NIR PL

was further hindered by the band in the ∼ 500− 650 nm region. Contrarily, the

l -P6 H2, Mg and Zn showed ∼ 100 % of NIR emission.

To investigate further the nature of the PL of the five hexamers, time-

correletated single photon counting (TCSPC) was utilised to quantify the

radiative (kr) and non-radiative knr rates and the lifetime of the PL. Similar

to the zinc oligomers presented in Figure 3.9, 2-D contour plots were measured

for the hexamers. While TCSPC is not the most optimised method for measuring

phosphorescence, the pulsed lasers used have the option of modifying the

repetition rate. Thus, a short repetition rate of 50 MHz was used for the l -

P6 H2, Mg, Zn and Pd that did not show any signs of phosphorescence. l -P6 Pt

was used a much lower repetition rate allowing an observation window of 500 ns,

enough to see any long-living species and quantify the lifetime, and if needed

explore further with more appropriate equipment.
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Figure 3.32 | TCSPC time decay contour plots of the hexamers in dilute toluene solution

(∼ µg/ml). The time scale for (a, b, c, d) is from 4.3 ns to 8.5 ns confirming the fluorescence

emission of the oligomers. The time scale for (e, f) is 19 ns to 33.5 ns. The colour scales are

counts. The spectra were collected integrating for 900 s for each wavelength, while the l -P6 Pt

was collected for (e) 1800 s and (f) 3600 s to compensate for low ηPL and increase the signal-

to-noise ratio. The ∆λ of the collection was set to 10 nm and the time decays were collected

every 10 nm, with a repetition rate of the 450 nm picosecond laser at 50 MHz.
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The reduced repetition rate resulted in a lower average power, that combined

with the low emission from l -P6 Pt required to increase the collection time from

900 s to 1800 s and 3600 s.

Further to the 2D maps presented in Figure 3.32 above, the time decays at the

respective maxima of the emission are presented in Figure 3.33. It is noteworthy

that, while all samples presented are tail fits for the reasons outlined in Section

2.5, l -P6 Pd decay was fitted with a reconvolution fit to explain the secondary

shoulder of the emission. This shoulder is due to the instrument response function

(IRF), shown in Figure 2.3.
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Figure 3.33 | TCSPC time decay plots of the hexamers in dilute toluene solution (∼ µg/ml).

Each decay was measured at the respective maximum of the emission. For each decay, the

respective fit is shown with black solid line and the corresponding goodness of the fit (χ2) is

noted. Below each plot are the weighted residuals of the fit. The time scale for the spectra in

(a,b,c) is from 5 ns to 30 ns, in (d) is 0 ns to 30 ns and for (e) is 5 ns to 105 ns. For l -P6 Pd in

(d), the decay was fitted with a reconvolution fit due to the very short decay and to take into

consideration the characteristic second shoulder, a feature from the instrument. The spectra

in (a-d) were collected integrating for 900 s for each sample, while the spectrum in (e) was

integrated for 1800 s.

97



Porphyrin hexamers

As it is immediately visible, l -P6 Pt showed no signs of long-lived species

despite using double and quadruple integrating time than the rest of the

oligomers. This could be due to the very low ηPL that resulted in lower signals

for the TCSPC, and with the repetition rate lowered to allow for the longer

time window, this meant a much lower average power output of the laser. But

even in measurements of longer times with no upper limit (measuring times of

many hours), no long living species could be observed. Surprisingly, the PL

lifetime (τ) of l -P6 Pd and Pt were significantly shorter than the the other three

oligomers, visible from the Figure 3.32 and 3.34a, where the calculated lifetimes

are presented. This is representative of a faster decay path that, according to

Equation 2.7, could be attributed to either increasing kr or knr. Combining with

Equation 2.6 the values of the radiative and non-radiative rates can be calculated,

and are presented in Figure 3.34b.
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Figure 3.34 | (a) Calculated photoluminescence lifetime for the hexamers. (b) Calculated

radiative and non-radiative rates (kr and knr respectively) for the hexamers. The lifetime

measurements were carried out following excitation at 450 nm at room temperature in dilute

toluene solution (∼ µg/ml), using the same solutions as for the ηPL measurements reported

above.

Not surprisingly, a significant increase of knr is observed, explaining the low

ηPL and very fast τ . Magnesium metal-free hexamers are in the same trend as the

zinc hexamer, and not outliers compared to the rest of the zinc oligomers (Figure

3.11b). It is worth noting that all oligomers showed a bi-exponential decay and

the lifetimes presented are the average lifetime as calculated from Equation 2.9.

All the results presented in this section are summarised in detail in Table A.3

and the major optical properties in Table 3.3.
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However low the ηPL values obtained, in the prospect of having efficient near-

infrared (NIR) emitting OLEDs, the hexamers were tested in the solid-state to

investigate their optical properties.
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3.4.2 Solid-state photoluminescence of porphyrin

hexamers

Same as per the zinc oligomers, the hexamers were not tested as pure

films. Instead, the same polymer, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-

(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), was used as a host and the hexamers

as near-infrared (NIR) emitting dopants in the same three low loadings of 1.0, 2.5

and 5.0w/w%. As it was shown, F8BT was an excellent host for NIR emission,

despite a rather poor spectral overlap with the oligomers. The fact of forming a

type-I heterojunction and the excellent electrical properties have afforded some

impressive results so far.

In Figure 3.35 below are presented the photoluminescence (PL) spectra of the

hexamers in blends with F8BT.
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Figure 3.35 | (a) - (e) Photoluminescence spectra of the hexamers in blends with F8BT spin

coated on glass spectrosils (∼ 100 nm thick) collected outside the integrating sphere using a

445 nm diode laser. All the spectra have been normalised for the oligomers emission to highlight

the gradual quenching of the F8BT host. Blue represents the 1.0 % loading, orange the 2.5 %

and green the 5.0 %. Both x and y scales are the same in all plots to facilitate comparisons.

Not surprisingly, l -P6 Pt showed a very weak PL, however with the second,
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attributed to triplet emission, lower energy peak visible. l -P6 Pd showed a more

structured PL spectrum with a more pronounced secondary peak at ∼ 850 nm

compared to the solution spectrum. All hexamers displayed a red-shift of ∼ 40 nm

compared to the solution PL, progressively red-shifting further with increasing

loading, indicating concentration aggregation. Also in the hexamers case, a more

planar geometry afforded a more extended conjugation that resulted in this red-

shift compared to the solution measurements. Impressively, while l -P6 H2 and Zn

had almost identical PL in solution, there is a stark difference in the solid-state

with the metal-free hexamer having a much narrower PL of full width at half

maximum (FWHM) of ∼ 30 nm compared to ∼ 40 nm for the zinc one. This is

indicative of a more uniform distribution of planar hexamers, that lacking a metal

centre, could have less interactions with the sulphur or nitrogen atoms of F8BT,

as it has been utilised in the case of the metal-coordinating 4-benzylpyridine (BP)

the interaction between the zinc atom of the porphyrin with a nitrogen atom of

BP. [87]
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Figure 3.36 | (a) photoluminescence quantum efficiency (ηPL) (b) near-infrared (NIR)

photoluminescence (PL) of the F8BT:l -P6 X blends. With blue is the 1.0 %, yellow is the

2.5 % and green is the 5.0 % loading.

In Figure 3.36a are presented the ηPL values of the hexamers in solution and in

Figure 3.36b the percentage of photons emitted at λ> 700 nm. As it is visible from

Figure 3.36a, if the results of the magnesium hexamer are considered as an outlier,

there is a clear trend of decreasing 〈ηPL〉 with increasing atomic number of the

element in the centre. l -P6 H2 1.0 % had the highest value of 〈ηPL〉 ∼ 32 % for the

1.0 % loading, followed by the zinc for the same concentration of 〈ηPL〉 ∼ 25 %.

l -P6 H2 2.5 % showed an 〈ηPL〉 of ∼ 18 % with the rest of the loadings in the

101



Porphyrin hexamers

∼ 10 % or below region. l -P6 Pd and Pt showed low values, expected from the

bad results in solutions, surprisingly though, with l -P6 Mg performing similarly,

with only the 1.0 % loading in all three compounds being close to 10 %. However,

all hexamers showed the same trend of the zinc oligomers, of decreasing 〈ηPL〉
with increasing loading, corroborating the argument of concentration quenching.

The same “anarchy” in the results was observed in the NIR PL (Figure 3.36b).

l -P6 Pt, with its very low PL from the hexamer, was limited to ∼ 20 % or less

emitted in the NIR. l -P6 Zn showed the highest NIR PL, with > 60 % of the

photons emitted in the NIR for all three loadings. Surprisingly again, l -P6 Mg

remained below the 50 % mark for all loadings, while l -P6 Pd 2.5 and 5.0 % showed

more than half their emission in the NIR. Lastly, l -P6 H2 1.0 % also showed a

value below 50 %, but the higher loadings emitted > 50 % in the NIR. Similarly

to the zinc oligomers presented above, the poor spectral overlap of the host F8BT

and the hexamers played an important role of keeping Förster resonant energy

transfer (FRET) low. However, spectral overlap is not the main factor affecting

the energy transfer mechanism in OLEDs, and higher NIR emission values are

expected thanks to charge trapping in the lower-energy sites.

All the results presented are summarised in detail in Table A.3, including

solution and solid-state results to facilitate comparisons, with the major optical

properties in Table 3.3 below.
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Table 3.3 | Summary of the major optical properties of the zinc porphyrin oligomers in

solutions and thin films, including photoluminescence quantum efficiency (ηPL) and near-

infrared (NIR) photoluminescence (PL).

Sample 〈ηPL〉sol (%) NIR PL sol (%) 〈ηPL〉film (%) NIR PL film (%)

F8BT pure ∼ 100 1.0 59.9 ± 2.5 5.70

l -P6 H2 1.0 % 33.1 ± 2.7 35.43

l -P6 H2 2.5 % 21.1 ± 0.6 99.5 18.1 ± 3.2 53.10

l -P6 H2 5.0 % 9.4 ± 0.5 64.50

l -P6 Mg 1.0 % 10.6 ± 0.6 28.60

l -P6 Mg 2.5 % 20.7 ± 3.5 97.8 3.9 ± 0.5 36.80

l -P6 Mg 5.0 % 1.1 ± 0.04 47.10

l -P6 Zn 1.0 % 23.9 ± 0.9 61.60

l -P6 Zn 2.5 % 28.5 ± 1.5 99.1 11.4 ± 0.2 72.10

l -P6 Zn 5.0 % 6.9 ± 0.1 83.10

l -P6 Pd 1.0 % 10.3 ± 0.1 32.60

l -P6 Pd 2.5 % 1.4 ± 0.5 64.2 7.8 ± 0.1 51.10

l -P6 Pd 5.0 % 5.2 ± 0.4 66.90

l -P6 Pt 1.0 % 10.6 ± 0.3 8.40

l -P6 Pt 2.5 % - 56.6 2.8 ± 0.3 15.40

l -P6 Pt 5.0 % 0.9 ± 0.2 28.40
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3.4.3 Porphyrin hexamers OLEDs

Given the very interesting results achieved in the photoluminescence (PL)

characterisation described in Sections 3.4.1 and 3.4.2 above, organic light-emitting

diodes (OLEDs) were fabricated, using the same blends and loadings, as presented

above, as the emissive layers. The detailed procedure for the fabrication

process is described in Section 2.6. The OLEDs fabricated have a multilayer

structure, depicted in Figure 3.37 below, using indium tin oxide (ITO) as the

transparent anode and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

(PEDOT:PSS) as a hole transporting layer. On top of PEDOT:PSS is spin coated

the active layer, and finally the metal cathodes are thermally evaporated including

a layer of calcium and a protective layer of aluminium. The resulting architecture

is ITO/PEDOT:PSS/active layer/calcium/aluminium.

Ca
Al

F8BT:l-P6 X blends

PEDOT:PSS

Glass ITO substrate

Figure 3.37 | Illustration of the architecture of the organic light-emitting diodes (OLEDs)

fabricated. The architecture is ITO/PEDOT:PSS/active layer/calcium/aluminium, where as

emissive layer with orange is the F8BT:l -P6 X blends.

Starting from the electroluminescence (EL) spectra, presented in the first

column (left) of Figures 3.38 and 3.39, similarly to the zinc oligomers, the

hexamers showed an expected slight red-shift compared to the PL measurements.

However, as per the EL spectra of the zinc oligomers, a more severe quenching of

the emission of the F8BT was observed in all oligomers, significantly improving

the near-infrared (NIR) emission (vide supra). l -P6 H2 showed a very narrow

emission for all three loadings of ∼ 35 nm (∼ 60 meV) FWHM, peaking at

∼ 864 nm with an unexpected increase of the red-tail of the 1.0 % loading (Figure

3.38a, blue line). Surprisingly, l -P6 Mg showed almost complete quenching

of the F8BT host in all three concentration, an effect the other hexamers

showed only for the 2.5 and 5.0 % and had the EL peaking at ∼ 890 nm.

Concerning the heavy-metal containing hexamers, l -P6 Pd didn’t show any sign

of phosphorescence while l -P6 Pt showed an enhanced emission of the triplet state

with the phosphorescence peak being significantly intensified, however co-existing

with the fluorescence, giving rise to potential applications as oxygen sensor since

oxygen is known to quench the triplet emission. [190] The phosphorescence

104



Porphyrin hexamers

emission also showed increasing intensity with increasing loading. l -P6 Pd EL

spectrum maintained the same structure and secondary lower energy peak seen

previously in the film PL spectrum (Figure 3.35d), with EL peaking at ∼ 765 nm.

All the hexamers showed a slight bathochromic shift with increasing loading,

attributed to intermolecular interactions.
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Figure 3.38 | First panel with the optoelectronic properties of the hexamers. Blue lines and

symbols represent the F8BT:l -P6 X 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. (a,

d, g) (left column) depict the electroluminescence (EL) spectra, (b, e, h) (central column) the

current density - voltage - radiance (JVR) and (c, f, i) (right column) the electroluminescence

external quantum efficiency (ηEL) of the OLEDs. The legends in (a, d, g) refer to the voltage

at which the spectra where collected.

Looking at the ηEL versus current density curves, the hexamers performed
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similarly to the rest of the oligomers, with ηEL remaining relatively stable in low

to average current densities, exhibiting a roll-off when moving towards higher

ones. But with the stark difference of the l -P6 H2 1.0 % that had a remarkably

high ηEL, that increased with increasing current density, passing to an impressive

ηEL ∼ 3 % and remaining high until higher current densities of ∼ 1− 2 mA/cm2.

The curves presented in Figure 3.38c, similarly to all the other ηEL vs J curves

above and below, depict the highest value achieved, with several devices maxima

being outliers, something that is visible from the average ηmaxEL plots and the high

standard deviation. However, l -P6 H2 1.0 % showed a remarkable stability of all

devices tested, evident from the low standard deviation in the average maximum

ηEL reported in Table 3.4, showing this same behaviour. The higher loadings all

showed lower values, but still remain impressive considering the spectral range,

with EL peaking at ∼ 864 nm. Not surprisingly, given the moderate results

from the PL characterisation, l -P6 Pt exhibited some very low ηEL values for

all loadings. Plots with all the ηEL versus applied bias curves can be found in

Figures C.1 through C.8.
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Figure 3.39 | Second panel with the optoelectronic properties of the hexamers. Blue lines and

symbols represent the F8BT:l -P6 X 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. (a,

d, g) (left column) depict the electroluminescence (EL) spectra, (b, e, h) (central column) the

current density - voltage - radiance (JVR) and (c, f, i) (right column) the electroluminescence

external quantum efficiency (ηEL) of the OLEDs. The legends in (a, d, g) refer to the voltage

at which the spectra where collected.
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Figure 3.40 | Percentage of photons emitted in the near-infrared (NIR) for the hexamers. Blue

symbols represent the 1.0 % blends, yellow the 2.5 % and green the 5.0 % loading. The results

were calculated from spectra collected at the saturation voltage, i.e. the voltage at which light

emission (radiance) is maximum. The dashed line is highlighting the 90 % point.

Regarding the NIR emission, depicted in Figure 3.40, the hexamers showed

significant improvement compared to the PL spectra, as expected, with NIR EL

being at > 90 % for all the hexamers with the 5.0 % loading. 2.5 % loading showed

some enhanced host emission, but still was > 80 % except the platinum hexamer

that had the most blue-shifted singlet EL, peaking at ∼ 730 nm, but still showed

> 70% EL for all three loadings. As mentioned above, l -P6 Mg had almost

completely quenched the F8BT emission resulting in ∼ 100 % NIR emission

In Figure 3.41 are depicted the ηEL results, with ηmaxEL in Figure 3.41a and the

average maximum ηEL (〈ηmaxEL 〉) in 3.41b. As already discussed, l -P6 H2 1.0 % was

crowned “champion” with a ηmaxEL ∼ 3.2 %, followed by l -P6 Zn 1.0 % achieving a

ηmaxEL ∼ 1.2 %. Surprisingly, the heavy-metal containing l -P6 Pd had ηmaxEL ∼ 1 %

for both 1.0 and 2.5 %.
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Figure 3.41 | (a) Maximum electroluminescence external quantum efficiency (ηEL) and

(b) average maximum electroluminescence external quantum efficiency (ηEL) for the hexamer

OLEDs.

Interestingly, the ηmaxEL values achieved were consistent across the different

devices tested, as shown in 3.41b by the small standard deviation (errorbar).

Notably, l -P2 1.0 % from the zinc oligomer series of Section 3.3 yielded a

remarkable ηmaxEL ∼ 4.3 % (Figure 3.23a). However, the 〈ηmaxEL 〉 of the same sample

was at ∼ 1.5 %, with a high standard deviation implying an outlier for the best

performing device. Contrarily, l -P6 H2 had a very consistent performance that

afforded a substantial 〈ηmaxEL 〉 ∼ 2.6 %. Both heavy metal containing l -P6 Pd and

Pt had 〈ηmaxEL 〉< 1 %.
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Figure 3.42 | (a) Maximum radiance (Rmax) and (b) average maximum radiance for the

hexamer OLEDs.

The same consistency cannot be said for the light output (R) performance of

the OLEDs, with the average Rmax of l -P6 H2 and Pd showing an important

errobar, however with impressive maximum values of ∼ 3.2 mW/cm2 and ∼
2.5 mW/cm2 for the H2 and Pd respectively. Again, l -P6 Pt was termed the worst

performer amongst the hexamers, surprisingly though with its highest loading of

5.0 % displaying the highest R amongst the three loadings. l -P6 Mg and Zn

showed a rather low light output, with values below ∼ 1 mW/cm2, with Mg

5.0 % having an average Rmax< 0.1 mW/cm2. It was also noteworthy that l -P6

Mg 5.0 % was the blend with the worst JVR plots (Figure 3.38e), showing an

extended ohmic behaviour and very “rough” JV curves.
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Figure 3.43 | Average turn-on voltage of hexamer OLEDs. As turn-on voltage is defined the

voltage at which light emission (radiance) goes above 3.5 × 10−5 mW/cm2.

Another impressive characteristic of the hexamers was the trend of decreasing

turn on voltage (VON) with increasing atomic weight of the ligand for the 5.0 %,

while for the 1.0 % there was a flat-slightly increasing trend. l -P6 H2 1.0 %, as the

best performing so far, had the lowest VON of ∼ 4 V. l -P6 Pt was surprisingly

consistent across all three loadings, with VON ∼ 6 V. l -P6 H2 and Mg 5.0 %

exhibited the highest VON of the hexamers of ∼ 9.7 V. The 2.5 % loading VON

was scattered amongst the hexamers with values ranging from 5.5 and 6 V for H2

and Pt to 6.5 and ∼ 7.6 V for Pd and Mg and Zn respectively.

All the EL characterisation results presented in the Figures above are

summarised in the Table 3.4 below. Further details and direct comparisons with

the PL data can be made using the Tables A.4 and A.3 in the appendix.
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Figure 3.44 | Voltage-resolved spectra for the hexamer OLEDs. Blue lines represent the

F8BT:l -P6 X 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. The spectra collection

started at the minimum voltage that was above the detection threshold of our spectrometer and

the last (thick lines) was the saturation voltage, the voltage at which radiance was maximum.

The spectra were collected in steps of 1 V.

Lastly, in Figures 3.44 and 3.45 are reported the voltage-resolved spectra of

the hexamers. Similarly to the zinc oligomer presented in Figures 3.26 and 3.27,

the spectra show that at the very VON it is the hexamers emitting rather than

the polymer host, a logical conclusion given that the charges injected with get

trapped in the low-energy emitters and recombine there. Increasing the applied

bias resulted in an increase of the polymer host emission, more importantly for
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the 1.0 % loading.
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Figure 3.45 | Voltage-resolved spectra for the hexamer OLEDs. Blue lines represent the

F8BT:l -P6 X 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. The spectra collection

started at the minimum voltage that was above the detection threshold of our spectrometer and

the last (thick lines) was the saturation voltage, the voltage at which radiance was maximum.

The spectra were collected in steps of 1 V.

What is impressive, however, with the voltage resolved spectra presented were

the ones of l -P6 Pt. In all three loadings there is a clear decrease of the intensity

of the phosphorescence peak, an observation that is in line with the interpretation

of triplet-triplet annihilation (TTA). With the term TTA, a special case of energy

transfer is referred to, via electron exchange interactions. TTA occurs when two

triplets interact to produce an excited singlet state and a ground singlet state.

The interpretation of TTA in the case of l -P6 Pt is evidenced by the increased

applied bias, and therefore current density, when more carriers are injected into

the emitting layer and TTA becomes the dominant triplet decay process in

operating devices. [75, 191] TTA has been observed in F8BT-based OLEDs [192]

and the role of the host material is important when TTA is considered. [75]

Finally, it is expected to observe an increasing TTA trend with increased current

density (a result of the increasing applied bias) as more triplets are formed and
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the average distance between triplets is decreased, given that TTA can occur only

if two triplet excitons are in close proximity. [183]

F8BT-based OLEDs have been recently demonstrated to exhibit a behaviour

of triplet-assisted emission, increasing the efficiency of OLEDs above the singlet

allowed threshold. [193] This further increases the complexity of the processes

taking place in these devices, allowing for further investigation, e.g. in transient

EL measurements.

Table 3.4 | Summary of the EL properties of the hexamer OLEDs.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax mW/cm2 〈Rmax〉 mW/cm2 VON (V)

F8BT pure 0.32 0.28 ± 0.04 0.88 0.4 ± 0.19 3.7 ± 0.46

l-P6 H2 1.0 % 3.20 2.66 ± 0.33 3.40 1.88 ± 0.95 4.33 ± 0.8

l-P6 H2 2.5 % 0.50 0.39 ± 0.05 0.60 0.33 ± 0.18 5.5 ± 1.4

l-P6 H2 5.0 % 0.30 0.23 ± 0.05 0.10 0.11 ± 0.05 9.6 ± 0.36

l-P6 Mg 1.0 % 0.60 0.43 ± 0.23 0.80 0.52 ± 0.28 4.68 ± 1.1

l-P6 Mg 2.5 % 0.60 0.44 ± 0.08 0.60 0.35 ± 0.28 7.83 ± 0.52

l-P6 Mg 5.0 % 0.20 0.163 ± 0.03 0.10 0.07 ± 0.03 9.8 ± 0.9

l-P6 Zn 1.0 % 1.10 0.89 ± 0.26 0.60 0.49 ± 0.1 5.1 ± 0.5

l-P6 Zn 2.5 % 0.90 0.69 ± 0.1 0.30 0.29 ± 0.02 7.4 ± 0.8

l-P6 Zn 5.0 % 0.60 0.52 ± 0.07 0.40 0.26 ± 0.15 8 ± 0.25

l-P6 Pd 1.0 % 1.00 0.71 ± 0.18 2.60 1.78 ± 0.76 4.5 ± 0.69

l-P6 Pd 2.5 % 1.00 0.73 ± 0.22 1.00 0.71 ± 0.32 6.45 ± 0.67

l-P6 Pd 5.0 % 0.40 0.33 ± 0.04 1.50 0.97 ± 0.49 8 ± 0.58

l-P6 Pt 1.0 % 0.20 0.16 ± 0.04 0.20 0.15 ± 0.02 5.8 ± 0.76

l-P6 Pt 2.5 % 0.20 0.12 ± 0.06 0.60 0.28 ± 0.21 5.97 ± 0.68

l-P6 Pt 5.0 % 0.20 0.14 ± 0.03 0.60 0.43 ± 0.23 6.8 ± 1.04
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3.4.4 Conclusions

In this chapter, the characterisation of six novel linear porphyrin hexamers with

different elements coordinating the centre of each porphyrin cavity was reported.

Starting from a metal-free porphyrin hexamer to a heavy-metal containing

phosphorescent platinum hexamer, they were characterised in dilute solution by

means of absorption and emission spectroscopy. The absolute photoluminescence

quantum efficiency (ηPL) was measured using an integrating sphere and the near-

infrared (NIR) was calculated from the photoluminescence (PL) intensity spectra.

The oligomers showed an impressive circa 100 % NIR emission for the

metal-free and light metals. The expected phosphorescence from the heavy

metals was only present in the case of the platinum hexamer, however with

a reduced NIR emission. The palladium hexamer didn’t show any signs of

phosphorescence, which combined with a very blue-shifted emission compared

to the other hexamers, resulted in poor NIR emission performance; both heavy

metals containing hexamers had NIR emission in the order of ∼ 60 %. In terms

of ηPL, l -P6 Pt showed PL below our detection threshold for photoluminescence

efficiency measurements, while l -P6 Pd was marginally detectable and yielded a

〈ηPL〉 ∼ 1 %. However, the other three hexamers achieved values in the same

order of the rest of the zinc oligomers, with l -P6 H2 having 〈ηPL〉 of ∼ 20 %, l -P6

Mg of 〈ηPL〉 of ∼ 30 % which was the highest amongst the hexamers, and l -P6

Zn having 〈ηPL〉 of ∼ 28 % too. Furthermore, by using time-correletated single

photon counting (TCSPC), the lifetime of the excited states of the hexamers was

investigated and found to be very fast, in the ∼ ns range, including the palladium

and platinum containing ones.

To characterise the hexamers in the solid state, the well-known

and well-studied commercial polymer poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-

(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) was used as host, with the hexamers

acting as NIR emitting traps. ηPL was high for the l -P6 H2 having 〈ηPL〉> 10 %

for all loadings, peaking at ∼ 32 % for the 1.0 %. l -P6 Mg had severely lowered

〈ηPL〉 of ∼ 10 % for the 1.0 % and lower for the higher concentrations, similar

to the l -P6 Pd and Pt, while l -P6 Zn achieved a reasonable ∼ 23 % for the

1.0 %, lowering with increasing loading however. In terms of NIR emission, the

blends showed scattered performance, with the magnesium hexamer showing the

larger proportion of photons emitted in the λ> 700 nm and the platinum being

the worse.

By incorporating the blends as active layer in organic light-emitting diodes

(OLEDs), very high electroluminescence external quantum efficiency (ηEL) up

to 3.2 % was achieved with NIR emission remaining well above 90 % for many
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oligomers. These results proved to be a challenge to the energy gap law and

pave the way for the fabrication of NIR emitting OLEDs with heavy-metal-free

material. With a scope of having biocompatible NIR emitting high ηEL OLEDs,

l -P6 H2 proved to be an ideal candidate. Despite the heavy metal platinum, l -P6

Pt didn’t prove as efficient as other phosphorescent platinum porphyrins reported

in the literature, however verified that porphyrin oligomers with their high spatial

difference between the signlet and triplet excited states are efficient intersystem

crossing (ISC) suppressors.
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3.5 Novel zinc porphyrin pentamer

Continuing the study of porphyrin oligomers, a new pentamer was synthesised

and characterised. As mentioned above, the synthesis was carried out

by Dr. Lara Tejerina at the group of Prof. Harry L. Anderson, FRS at the

Chemistry Research Laboratory of the University of Oxford. The characterisation

was carried out during the secondment placement of Dr. Tejerina in UCL.

Contrary to the zinc porphyrin pentamer part of the study presented in

Section 3.3, this pentamer has shorter, π-conjugated single acetylene bonds

between adjacent units. This results in a shorter oligomer with extended

conjugation along the whole molecule, which translates in red-shifted emission

compared to the butadiyne-linked oligomers described above. Similarly to the

l -Pn oligomers, zinc was the coordinating metal at the centre of each unit in this

pentamer too.

The chemical structure of the porphyrin is depicted in Figure 3.46 below. The

oligomer has the same trihexylsilyl (THS) sidechains as the porphyrin oligomers

studied in Section 3.3 above and shown in Figure 3.4. However, this pentamer

had different ending units in place of THS, namely 3-cyanopropyldiisopropylsilyl

(CPDIPS). In the frame of this Section, this pentamer is referred to as CP-l -P5

to distinguish it from the l -P5 described above.

THS THS THS THS THS THS THS THS THS THS

THS THSTHS THSTHS THSTHS THSTHS THS

CPDIPS CPDIPS
N

Zn
N N

NN
Zn

N N
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N N
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NN
Zn

N N

N

THSCPDIPS

CN

SiSi

Figure 3.46 | Chemical structure of the novel single acetylene linked pentamer. The new CP-

l -P5 pentamer has the same THS sidechains as previously reported, with new CPDIPS ending

groups and zinc as the coordinating metal at the centre of each porphyrin unit.
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3.5.1 Solution photoluminescence of the zinc porphyrin

pentamer

The absorption and photoluminescence (PL) spectra are illustrated in Figure

3.47a, while the contour plot of the PL decay is shown in Figure 3.47b.
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Figure 3.47 | (a) Extinction coefficient in red and photoluminescence (PL) in green of the

novel CP-l -P5 pentamer in dilute anhydrous toluene solution (∼ µg/ml). (b) TCSPC time

decay contour plot of the oligomer in dilute toluene solution (∼ µg/ml). The time scale is 4.3 ns

to 8.5 ns confirming the fluorescence emission of the oligomers. The colour scale is counts. The

spectrum was collected integrating for 900 s for each wavelength. The ∆λ of the collection was

set to 10 nm and the time decay was collected every 10 nm, with a repetition rate of the 450 nm

picosecond laser at 50 MHz.

As already mentioned, this oligomer has significantly red-shifted emission with

the Qx band peaking at 805 nm, a ∼ 25 nm red-shift compared to l -PN, the zinc

oligomer with the most red-shifted Qx band (Figure 3.5 and Table A.1). Not

surprisingly, the Soret band remained in the same region as the butadiyne-linked

oligomers, ∼ 400 − 550 nm. This oligomer showed an important Stokes’ shift of

∼ 50 nm, more than double compared to the second from the butadiyne-linked

(Table A.1). CP-l -P5 also showed the further near-infrared (NIR) emission, with

its PL peaking at ∼ 853 nm and an impressive spectral purity of > 99.9 % of

photons at λ> 700 nm. CP-l -P5 achieved a photoluminescence quantum efficiency

(ηPL) in solution of ∼ 30 %-in line with the other oligomers (see Figure 3.7).
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Figure 3.48 | TCSPC time decay plot of the oligomer in dilute toluene solution (∼ µg/ml),

the respective tail fit is shown with black solid line and the corresponding goodness of the fit

(χ2) is noted. Below each plot are the weighted residuals of the fit. The time scale is 5 ns to

30 ns and the spectrum was collected integrating for 900 s.

The effectiveness of these oligomers to suppress intersystem crossing (ISC)

has been demonstrated with the heavy metal containing hexamers above, and this

pentamer has a fluorescence emission, as demonstrated in Figures 3.47b and 3.48,

where the TCSPC decay spectra are shown and the respective fit. 12 Notably,

when fitted with the bi-exponential decay, the pentamer had a τ ∼ 2 ns decay

lifetime. By using the ηPL and τ values, the radiative and non-radiative rates can

be calculated and were kr ∼ 0.15 ns−1 and knr ∼ 0.34 ns−1.

All these characteristics add up to a very promising material in this unexplored

field of NIR emitters, and it was further characterised in the solid state. The

same polymer used in this study, i.e. poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-

alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) was chosen as its host, since the

impressive results yielded so far. The chemical structure of F8BT is shown in

Figure 3.49c. However, a second polymer was also used to explore the difference

when using hosts with different energy gaps.

A previous work by Minotto et al. had shown that a novel red emitting

polymer, Poly[4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-

b’]dithiophene2,7-diyl-alt-5,5’-bis(2-octyldodecyl)-4H,4’H-[1,1’-bithieno[3,4-

12 N.B. The TCSPC spectrum has the same time scale as the plots of Figure 3.9, and was

collected from similar concentration and conditions to facilitate the comparisons.
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c]pyrrole]- 4,4’,6,6’(5H,5’H)-tetrone-3,3’-diyl] (PIDT-2TPD), combined with a

NIR emitting guest has yielded impressive results. [90] To examine the prospects

of CP-l -P5, PIDT-2TPD was also used as a host polymer. The chemical structure

of PIDT-2TPD is illustrated in Figure 3.49 below.
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Figure 3.49 | (a) Chemical structure of the novel red-emitting polymer, PIDT-2TPD,

abbreviated here as PIDT-2TPD. (b) Energy levels (highest occupied molecular orbit (HOMO)

and lowest unccupied molecular orbit (LUMO)) of the PIDT-2TPD (purple) and F8BT (green).

For PIDT-2TPD (-3.7 and -6.1 eV) and CP-l -P5 (-4.2 and -5.9 eV) correspond to the cyclic

voltammetry measurements [90]. (c) Chemical structures of the four polymer hosts used with

CP-l -P5. (i) poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-(N-(p-butylphenyl))diphenylamine)

(TFB) and the three polyfluorene derivatives: (ii) poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N’-

diphenyl)-N,N’-di(pbutylphenyl)-1,4-diamino-benzene)] (PFB), (iii) polyfluorene (PFO) and

(iv) poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT). The

values of F8BT are taken from [87, 178].

In addition to F8BT, three more blue emitting polymers were used

as hosts. Like the l -P6 experiments discussed above, to investigate
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the energy transfer processes with hosts that emit at higher energies,

three blue emitting polyfluorene derivatives were used with CP-l -P5

in 1.0 % loading. Notably, the three polymers, depicted in Figure

3.49c, are polyfluorene (F8), poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-(N-(p-

butylphenyl))diphenylamine) (TFB) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-

(N,N’-diphenyl)-N,N’-di(pbutylphenyl)-1,4-diamino-benzene)] (PFB).

Similarly to what the TFB:l -P6 experiments showed (vide infra), the ηPL
and overall device behaviour, in terms of turn-on voltage, light output and

electroluminescence external quantum efficiency (ηEL), with these blends were

not comparable to those achieved by F8BT and PIDT-2TPD. In favour of brevity,

the results are omitted from this Section, but are noted in Table A.5.
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3.5.2 Solid-state photoluminescence of zinc porphyrin

pentamer

To maintain consistency throughout the experiments, and facilitate the

comparisons, the same three loadings were made, from the same three guest:host

concentrations were characterised, i.e. 1.0, 2.5 and 5.0w/w%. The process of

preparing the solutions is detailed in Chapter 2.

The PL spectra of the pure polymers and of the blends are shown in Figure

3.50 below. The absorption spectra are omitted for simplicity since are dominated

by the hosts absorption. However, similar to the observations noted above of using

a different host for l -P6 (Figure 3.13), the pentamer has a different conformation

when diluted in the two polymers resulting in the Qx band peaking at ∼ 880 nm

for the F8BT blends and ∼ 830 nm for the PIDT-2TPD blends.
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Figure 3.50 | Photoluminescence spectra of the novel CP-l -P5 pentamer in blends with (a)

F8BT and (b) PIDT-2TPD, spin coated on glass spectrosils (∼ 100 nm thick), collected inside

the integrating sphere using a 445 nm diode laser for the F8BT blends and 520 nm diode laser

for the PIDT-2TPD blends. All the spectra have been normalised for the oligomers emission to

highlight the gradual quenching of the hosts in favour of the guest emission. Blue represent the

1.0 % loading, yellow the 2.5 % and green the 5.0 %, while with black are the pure polymers.

The inset in (b) highlights the red-shifting of the CP-l -P5 emission.

Similarly, the PL was significantly red-shifted compared to the solution, but

also showed different emission peaks in the two different hosts. The F8BT

blends had a red-shifted emission peaked at 894 nm for the F8BT:CP-l -P5 1.0 %,

while 2.5 and 5.0 % peaked at 917 nm (inset of Figure 3.50b), a small variation

already observed in the electroluminescence (EL) emission of the butadiyne-linked
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zinc oligomers (notably Figures 3.20j and 3.21g), but also of the l -P6 in the

TFB blends (Figure 3.28). The same phenomenon is observed in the PIDT-

2TPD:CP-l -P5 blends, with a progressive red-shift from 861 nm for the 1.0 %, to

876 nm for the 2.5 %, to 891 nm for the 5.0 % (Figure 3.50a). This slight red-

shift with increasing CP-l -P5 concentration is consistent with aggregation, also

corroborated by the reduced photoluminescence quantum efficiency (ηPL) (Figure

3.51a).
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Figure 3.51 | (a) photoluminescence quantum efficiency (ηPL) (b) near-infrared (NIR)

photoluminescence (PL) of the PIDT-2TPD: and F8BT: CP-l -P5 blends. With blue is the

1.0 %, yellow is the 2.5 % and green is the 5.0 % loading.

This batch of F8BT used for the pentamer experiments had an 〈ηPL〉 ∼ 50 %.

When CP-l -P5 is blended, F8BT blends showed a progressively reducing 〈ηPL〉
from ∼ 17 % for 1.0 %, to ∼ 8 % for 2.5 % and ∼ 4 % for 5.0 %. Contrarily, and as

expected, increasing the loading gradually quenched the host emission, achieving

a 15 % NIR PL for 1.0 %, 23 % for 2.5 % and 32 % for 5.0 %.

Pure PIDT-2TPD in the solid state yielded an 〈ηPL〉 ∼ 30 %, slightly lower

than the commercial F8BT. Interestingly, PIDT-2TPD blends achieved higher

〈ηPL〉 values, even though decreasing with increasing CP-l -P5 loading. Notably,

1.0 % showed an 〈ηPL〉 of ∼ 27 %, 2.5 % showed ∼ 17 % and 5.0 % showed ∼ 8 %.

The higher values of NIR PL of 77 % for 1.0 %, 86 % for 2.5 % and 87 % for

5.0 % indicated a more efficient Förster resonant energy transfer (FRET) from

the red-emitting PIDT-2TPD rather than F8BT.
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All the results presented above are summarised in the detailed Table A.1 and

presented in the same table as the other zinc porphyrin oligomers to facilitate

comparisons.

Both results from these blends in the solid state, along with the excellent

results from the F8BT blends and the butadiyne-linked oligomers of Section

3.3 above and the impressive performance in Minotto et al. in [90], all lead

to the expectation of efficient organic light-emitting diodes (OLEDs), that were

fabricated and characterised, and are presented below.
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3.5.3 Zinc porphyrin pentamer OLEDs

Given the comparatively good results achieved in the photoluminescence (PL)

characterisation described in Sections 3.5.1 and 3.5.2 above, OLEDs were

fabricated, using the same blends and loading as presented above as the emissive

layers. The detailed procedure for the fabrication process is described above

in Section 2.6. The OLEDs have the typical multilayer structure using indium

tin oxide (ITO) as the transparent anode and poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT:PSS) as a hole transporting layer. The active

layer is spin coated on top of PEDOT:PSS, and finally the metal cathodes

are thermally evaporated including a layer of calcium and a protective

layer of aluminium. The resulting architecture is ITO/PEDOT:PSS/Active

layer/calcium/aluminium, illustrated in Figure 3.52, that has afforded very good

results in the past and our group has an extensive expertise in optimising the

deposition processes.

Figure 3.52 | Illustration of the architecture of the organic light-emitting diodes (OLEDs)

fabricated. The architecture is ITO/PEDOT:PSS/Emissive layer/calcium/aluminium, where

as emissive layer with red is illustrated the PIDT-2TPD:CP-l -P5 blends and with yellow the

F8BT:CP-l -P5.

Similar to the results presented above, the electroluminescence (EL) spectra

are on the first column (left), the current density - voltage - radiance (JVR) curves

in the second (middle) and the electroluminescence external quantum efficiency

(ηEL) versus current density on the third (right) for each of the F8BT:l -Pn blends.

Blue lines and symbols represent the F8BT:l -Pn 1.0 %, yellow for the 2.5 % and

green the 5.0 % loading. In the JVR curves, solid lines refer to the current density

versus voltage measured in mA/cm2, whereas dashed lines to the radiance versus

voltage, measured in mW/cm2. Radiance was chosen, rather than luminance for

the light emission of the devices since the largest part of the EL is in the NIR.

Starting from the EL spectra, both blends performed remarkably well in

terms of host quenching and % of NIR emission. Following the previous trends,
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increasing the guest loading progressively quenched the emission of the host

polymer. Similar to some of the previous EL spectra, a small red-shift is observed

with increasing concentration of the pentamer in the polymer matrix, notable in

the CP-l -P5 blends from ∼ 840 nm for the 1.0 % loading, to ∼ 845 nm for the

2.5 %, to∼ 860 nm for the 5.0 %. For the F8BT:CP-l -P5 blends a smaller shift was

observed from∼ 880 nm for the 1.0 % to∼ 896 nm for the higher loadings. Similar

behaviour of progressively red-shifting emission with increasing concentration of

a dopant in host-guest architectures has also been reported in the literature. [91]

However, just as the PL results (Figure 3.50), EL is peaked at lower energies

for the F8BT blends, indicating a different, more planar, conformation of the

oligomer. It is worth noting that this red-shift could also be interpreted as signs

of aggregation.
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Figure 3.53 | Panel with the optoelectronic properties of the novel pentamer. Blue lines and

symbols represent the F8BT:l -P6 X 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. (a,

d, g) (left column) depict the electroluminescence (EL) spectra, (b, e, h) (central column) the

current density - voltage - radiance (JVR) and (c, f, i) (right column) the electroluminescence

external quantum efficiency (ηEL) of the OLEDs. The legends in (a, d, g) refer to the voltage

at which the spectra where collected.

It is evident from the EL spectra in Figures 3.53a and 3.53d that the

emission is predominantly at λ> 700 nm. Notably, PIDT-2TPD:CP-l -P5 blends

outperformed the F8BT blends in terms of NIR emission with > 93 % of the
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photons in the NIR for the 1.0 % peaking at > 99 % for the 5.0 %, while the

2.5 % had > 96 % in the NIR. F8BT:CP-l -P5 blends performed equally well for

the higher concentrations with > 96 and > 97 % for the 2.5 and 5.0 % loadings

respectively. The 1.0 %, as it is also visible from the EL spectrum, showed a more

important host emission showing, nevertheless, >84 % of photos at λ> 700 nm.

These results are summarised in Figure 3.54. It is interesting to compare the

EL NIR emission to the PL one (Figures 3.54 and 3.51b respectively). The

more strongly quenched polymer hosts in both cases suggest that in the OLEDs,

the radiative mechanism is direct recombination in the low-energy sites of the

porphyrin. Similar results were observed in all previous OLED experiments using

F8BT as host (Figures 3.22 and 3.40 for the zinc oligomer series and the hexamers

respectively).
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Figure 3.54 | Percentage of photons emitted in the near-infrared (NIR) for the zinc pentamer.

Blue symbols represent the 1.0 % blends, yellow the 2.5 % and green the 5.0 % loading. The

results were calculated from spectra collected at the saturation voltage, i.e. the voltage at

which light emission (radiance) is maximum. The dashed line is highlighting the 90 % point.

In Figure 3.55a are presented the maximum values of electroluminescence

external quantum efficiency (ηEL) for each of the different blends and in Figure

3.55b are depicted the values of the average of the ηEL achieved for each device. As

mentioned in Chapter 2, each device comprises from 6 pixels. For the CP-l -P5

experiments, 2 devices (i.e. 12 pixels) were fabricated with F8BT and PIDT-

2TPD for each loading of 1.0 and 2.5 %, and one device for the higher 5.0 %

loading, expecting a lower performance from the higher loading. While the F8BT

blends achieved a slightly higher ηmaxEL of ∼ 2.5 %, PIDT-2TPD blends showed a
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more consistent operation with the maximum values showing a lower standard

deviation with a higher average maximum value of ∼ 1.96 % for the 1.0 % blends.

In both blends, as per the other zinc oligomers, increasing the loading of the

porphyrin resulted in reduced ηEL, a sign of concentration aggregation. Therefore,

higher concentrations exhibited a progressively reducing ηmaxEL , however with more

consistent values for both blends. Plots with all the ηEL versus applied bias curves

can be found in Figures C.1 through C.8.
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Figure 3.55 | (a) Maximum electroluminescence external quantum efficiency (ηEL) and

(b) average maximum electroluminescence external quantum efficiency (ηEL) for the CP-l -P5

OLEDs.

Interestingly, despite the similar performance in terms of ηEL, the two blends

had very different behaviour in light emission, with the PIDT-2TPD blends

showing higher radiance (R) values of ∼ 3.5 mW/cm2, in the same order of

magnitude of the l -P2 and l -P3 (Figure 3.24a), but with lower standard deviation,

indicating, again, a more consistent good performance from the CP-l -P5. This

can be explained by the higher current densities that flowed through the PIDT-

2TPD devices, compared to the F8BT ones, resulting in more recombination and

therefore higher light output (Figures 3.53b and 3.53e).
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Figure 3.56 | (a) Maximum radiance and (b) average maximum radiance for the zinc pentamer

OLEDs.

Another significant difference in the performance of the two blends was that

the turn-on voltage (VON) for the PIDT-2TPD blends was almost stable across

all the devices and blends at 1.6 V with very steep JVR curves that saturate

at ∼ 6 V, while the F8BT:CP-l -P5 1.0 % has a VON ∼ 5 V, with the two

higher concentration at > 8 V, similar to the rest of the oligomers (Figure 3.25),

however a property that is mostly attributed to the polymer host, rather than

the porphyrin guest. It is noteworthy, though, that the guests in all cases had

an important effect on the turn on voltage by modifying the energetic barrier

for bipolar charge injection. Looking at the shape of the pre-VON JV curve,

the expected quadratic dependency was not observed indicating a trap-mediated

charge transport.
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Figure 3.57 | Average turn-on voltage of the pentamer OLEDs. As turn-on voltage is defined

the voltage at which light emission (radiance) goes above 3.5 × 10−5 mW/cm2.

Lastly, as per the blends in all the previous oligomers presented in this

Chapter, the very first photons emitted from the OLEDs are photons emitted from

the guest. This is visible from the voltage-resolved spectra in Figure 3.58 below.

Again, similarly to the other zinc oligomers, the 1.0 % blend devices showed

emission spectra that were unstable in regards of host/guest ratios, especially

for the F8BT blends. Notably, they showed a progressively increasing emission

of the polymer host with the increase of the applied bias, i.e. the number of

injected charge carriers, attributed to the saturation of emission sites. However,

the absence of such behaviour from the PIDT-2TPD blends could be an indication

of some long-lived processes, such as thermally-activated delayed fluorescence or

triplet-triplet annihilation.
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Figure 3.58 | Voltage-resolved spectra for the pentamer OLEDs. Blue lines represent the

polymer:CP-l -P5 1.0 %, yellow for the 2.5 % and green the 5.0 % loading. The spectra collection

started at the minimum voltage that was above the detection threshold of our spectrometer and

the last (thick lines) was the saturation voltage, the voltage at which radiance was maximum.

The spectra were collected in steps of 1 V.

It is worth mentioning that in all metrics captured and presented so far, the

butadiyne-linked l -P5 was significantly outperformed by CP-l -P5, same as all the

other zinc, butadiyne linked oligomers emitting in the same spectral region. This

makes CP-l -P5 as a very good candidate for NIR emitting, heavy-metal free,

efficient OLEDs. When these results are compared to the efficiencies reported

in literature in the Zampetti et al., they are found to outperform many of the

reports. [79]

All the aforementioned results are summarised in Table 3.5. A more extensive

comparison of the results can be found in the appendix, in Table A.5.
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Table 3.5 | Summary of the EL properties of the CP-l -P5 OLEDs.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax (mW/cm2) 〈Rmax〉 (mW/cm2) VON (V)

PIDT-2TPD pure 1.55 ± 0.1 2.3 ± 0.5 1.7 ± 0.01

PIDT-2TPD 1.0 % 2.46 1.96 ± 0.3 3.41 3.1 ± 0.7 1.6 ± 0.01

PIDT-2TPD 2.5 % 1.53 1.4 ± 0.1 2.20 2.1 ± 0.1 1.6 ± 0.01

PIDT-2TPD 5.0 % 1.10 0.73 ± 0.2 1.45 1 ± 0.3 1.6 ± 0.01

F8BT pure 0.95 0.77 ± 0.3 3.60 2.8 ± 0.8 3.3 ± 0.3

F8BT 1.0 % 2.56 1.52 ± 0.6 1.80 1 ± 0.6 4.9 ± 0.92

F8BT 2.5 % 1.10 0.95 ± 0.13 0.61 0.5 ± 0.17 8.5 ± 0.6

F8BT 5.0 % 0.63 0.56 ± 0.06 0.26 0.24 ± 0.01 8.7 ± 0.4

Further to PIDT-2TPD and F8BT, three more polymers were investigated

as polymer hosts, similarly to the hexamer l -P6 presented above (Figure

3.28). The three polymers are poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-

(N-(p-butylphenyl))diphenylamine) (TFB), poly[(9,9-dioctylfluorenyl-2,7-diyl)-

co-(N,N’-diphenyl)-N,N’-di(pbutylphenyl)-1,4-diamino-benzene)] (PFB) and

polyfluorene (PFO). The chemical structures of these polymers are presented

in Figure 3.49c. However, the results obtained were not comparable to the ones

afforded by F8BT and PIDT-2TPD and are omitted for simplicity and brevity,

they are presented, however, in the Table A.5 for comparison.
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3.5.4 Zinc porphyrin pentamer OLEDs lifetime

Since the very short time that passed between the synthesis of the CP-l -P5 and

the characterisation reported above, and the creation of some custom LabVIEW

routines (Chapter 2), it was possible to carry out lifetime measurements on the

fabricated OLEDs. With the flexibility to choose between constantly applied

bias and current density, i.e. a steady flow of charges, the time before the light

emission fell below a threshold could be monitored. Such measurements are

not often reported in the literature, or the results of the present thesis below

and above, a realistic, applications-orientated study was able to be carried out,

similar to the one in Cacialli et al. [194] Given the capturing of all metrics of the

devices, it was possible to monitor the evolution of radiance or ηEL, or any other

characteristic, over the period of time.

The lifetime results are presented in Figure 3.59, while in Figure 3.59a are

presented the results of the evolution of ηEL over time for the best performing, in

terms of ηEL, F8BT:CP-l -P5 and PIDT-2TPD:CP-l -P5 OLEDs. For both blends,

the 1.0 % loading was tested. Figure 3.59b depicts the evolution of light emission

(radiance) over time for the same device.
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Figure 3.59 | Pentamer OLEDs lifetime measurements for (a) electroluminescence external

quantum efficiency (ηEL) over time and (b) radiance (R) over time. The horizontal dashed

lines represent the 80 % of the initial (maximum) value.

For these experiments, a constant applied current density was chosen. This

ensured a stable charge injection, that saw an increasing applied bias over time.

On the contrary, a steady applied bias would lead to a decreasing current density,

and the, expected, reduction of the ηEL would be difficult to be attributed to

132



Novel zinc porphyrin pentamer

device degradation or simply to a reduced charge injection, which in turn also

indicates a degrading device. Also, it would not be comparable to chose the

same applied current density for both devices, since the PIDT-2TPD devices

exhibited higher currents than the F8BT devices (Figures 3.53b and 3.53e). For

the PIDT-2TPD:CP-l -P5 1.0 % device, 15.6 mA/cm2 was applied, corresponding

to 3.1 V applied bias and the peak of the ηEL ∼ 2.1 %. Given the different shape

of the ηEL versus current density curves of the two blends (Figure 3.53), for the

F8BT:CP-l -P5 1.0 % device, 6.2 mA/cm2 was applied. This value corresponds to

10 V initial applied bias, however it is a point on the JV curve after the peak of

the ηEL in the ηEL vs J curve, but ∼ halfway before the saturation voltage. At

that point, the device exhibited ηEL ∼ 1.1 %.

It is immediately visible that the F8BT devices had lost ∼ 80 % of the initial

performance within ∼ 1 h of the beginning, while the same loading in the PIDT-

2TPD withstood ∼ 32 h of constant operation before dropping below the 80 %

mark. 13 More interesting, however, is the fact that the F8BT devices showed

almost 100 % identical spectra before and after the measurements, while PIDT-

2TPD showed an enhanced red tail of the oligomer emission, as shown in Figure

3.60. Similar observations have been reported, where broadening and spectral

red-shift is attributed to a pushing of the recombination zone closer to the ITO

electrode. [195]

Due to material degradation and possible crystallisation of the organic layer

on the ITO side [196], defects are formed that act as hole traps, being closer

to the anode electrode, effectively moving the recombination zone. [195] It has

been demonstrated that moving the recombination zone away from the electrodes

contributes to the increase of the lifetime of the devices. [197] It has also

been reported that degradation of the organic layer occurs at the interface of

the organic layer with the metallic layers of the electrodes, both cathode and

anode. [198] Another degradation mechanism in OLEDs is the increase of

the temperature of the device during operation, increasing non-radiative losses.

[196, 199] Furthermore, in small-molecule phosphorescent OLEDs, chemical

reactions within the emissive layer have been reported. [200]

13 It is noteworthy that the 80 % mark was arbitrary set, partially because the PIDT-2TPD

blends never reached the 50 % in the timeframe of the experiments, and a combination of lack

of time and conflicts of blocking the lab for the measurements, restricted further experiments

to reach lower values.
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Figure 3.60 | Pentamer OLEDs spectra before and after the lifetime measurements for (a)

PIDT-2TPD:CP-l -P5 and (b) F8BT:CP-l -P5 based OLEDs.

A possible method for improving the lifetime of the device is to reduce the

energy barrier for electron injection. This can be done using alkaline metals and

their salts, such as LiF. [196, 201] The addition of a heat dissipating layer, or

cooling method other than the environmental heat sink, could also benefit the

device lifetime and operating voltages.
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Figure 3.61 | Evolution of the applied bias in the (a) PIDT-2TPD:CP-l -P5 and (b) F8BT:CP-

l -P5 based OLEDs.

Another interesting parameter to compare is the evolution of the applied

bias for the devices during the test. As it can be expected, keeping the J
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constant, the applied bias required to maintain the J constant increased in a

nearly linear manner, as it is shown in Figure 3.61. This increase over time

of the increasing applied bias to keep the J constant can be attributed to the

degradation of the organic layers. It could either be a consequence of the loss

of conjugation in the active layer or phase separation of PEDOT and PSS [123],

but also to defects generation that limit the effective carrier mobility and th

charge transport properties, resulting in the observed voltage increase and the

luminescence decrease. [165, 195, 200]

All these results, the fact that PIDT-2TPD:CP-l -P5 showed higher ηEL,

higher percentage of NIR emission, higher radiances, lower turn-on voltages

and longer lifetimes corroborate the fact that amongst all the zinc porphyrin

oligomers, the CP-l -P5 blended in PIDT-2PD are ideal candidates for NIR

emitting OLEDs.
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3.5.5 Conclusions

To conclude, in this section, the full optical and electro-optical characterisation

of the novel linear, π-conjugated, single acetylene linked, zinc porphyrin

pentamer oligomer, CP-l -P5. This pentamer is shorter than the butadiyne

linked counterpart, resulting in an extended conjugation along the oligomer

backbone. Consequently, the emission of the oligomer in solution is red-shifted,

compared to the butadiyne-linked counterparts, with emission in dilute toluene

solution peaking at ∼ 850 nm. It showed impressive performance in terms of

photoluminescence quantum efficiency (ηPL) of ∼ 30 % and spectral purity, with

its emission ∼ 100 % at λ> 700 nm.

Similarly to the previous excellent results, poly[(9,9-di-n-octylfluorenyl-2,7-

diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) was chosen as a polymer host

to investigate the properties of the oligomer in solid-state emission. Further to

F8BT, a novel red-emitting polymer was also utilised, PIDT-2TPD. Both blends

had very good performance in terms of ηPL, achieving a maximum of > 25 %

for the PIDT-2TPD blends and > 15 % for the F8BT blends. Interestingly, the

PIDT-2TPD blends had impressive performance of near-infrared (NIR) emission

of ∼ 80 % and higher, while F8BT remained at a surprisingly low ∼ 20 %.

By incorporating the blends as active layers in organic light-emitting diodes

(OLEDs), impressively high electroluminescence external quantum efficiency

(ηEL) was achieved and high spectral purity. ηEL values peaked at ∼ 2.5 % for

both F8BT and PIDT-2TPD blends, while the PIDT-2TPD blends exhibited

> 97 % emission at λ> 700 nm at a very low turn-on voltage of ∼ 1.6 V.

Nevertheless, F8BT blends showed equally impressive NIR emission of > 90 %

for all the different loadings. Furthermore, the PIDT-2TPD OLEDs also had

extremely impressive light output (radiance) values of > 1.5 mW/cm2 for all

loadings, while F8BT had similar values for the lower loading.

All conclusions point towards PIDT-2TPD:CP-l -P5 as the champion devices.

This is corroborated by the durability tests of the devices. PIDT-2TPD based

OLEDs demonstrated a ∼ 32 h lifetime of constant operation before their

performance drops below 80 % of the initial values. F8BT-based devices only

lasted ∼ 1 h for the same test.

This proves that efficient and long-lasting near-infrared emitting organic light-

emitting diodes can be envisaged using the combination of two novel materials, a

red-emitting polymer host and a near-infrared emitting oligomer guest, that do

not incorporate toxic or expensive heavy metals.
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3.6 Summary & statistics on the porphyrin

oligomers

This Chapter was focused on the extensive characterisation of various porphyrin

oligomers and their potential in being used as efficient near-infrared emitting

organic light-emitting diodes. From the variety of oligomers studied, three

managed to stand out giving substantial emission at λ> 700 nm. Notably,

F8BT:l -P2 from the zinc porphyrin oligomer series of Section 3.3, F8BT:l -P6 H2

from the five different hexamers of Section 3.4 and PIDT-2TPD:CP-l -P5 from

the novel pentamer charactesiation of Section 3.5.

The nature of this study, being explorative of the optoelectronic properties of

these materials, necessitated a number of devices being fabricated. An insight on

the statistics of the samples studied was presented, by showing in all cases both

maximum values, but also the average maximum as a metric of the dispersity of

the efficiencies. It is the author’s view that a further insight on this would be of

interest to the reader, and therefore a histogram of the efficiencies achieved versus

the number of devices that achieved the efficiency, per concentration as well as

total, is presented in Figures 3.62 and 3.63 below. Furthermore, a histogram and

a boxplot of the same statistics are presented in Figure 3.63 to summarise the

distributions.
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Figure 3.62 | Statistics on the devices fabricated presented in this thesis. These figures depict

the distribution of the electroluminescence external quantum efficiency (ηEL) per loading (1.0,

2.5 and 5.0 %).

It is evident from Figure 3.62 above that 1.0 % has the advantage in terms

of efficiencies, with more devices achieving ηEL> 1 %, also the loading with

the champion devices. Increasing the loading of the oligomer in the polymer

host resulted in significantly decreasing the ηEL, as demonstrated by the ηEL
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distribution that was skewed towards lower values in Figure 3.62 and 3.63b.

0 1 2 3 4

ηEL (%)

0

10

20

30

40

50

O
cc

u
rr

en
ce

s

All loadings

(a)

1.0 % 2.5 % 5.0 %

Loading

0

1

2

3

4

η E
L

(%
)

(b)

Figure 3.63 | Distribution of the electroluminescence external quantum efficiency (ηEL) across

all concentrations.

Figure 3.63a summarises the efficiencies achieved independently of the loading.

As per Figure 3.62, a large number of devices had efficiencies of ηEL ∼ 1 %. From

the box plot of the Figure 3.63b, there is a 95 % confidence interval from the

devices presented of the 1.0 % loading for ηEL ∼ 1 %. It is also noticeable the

progressive decrease of the ηEL, while, as already mentioned, there were a few

outliers in the ηEL> 3 % for the 1.0 %, which were the “champion” devices.

The plots of Figure 3.63 do prove that high efficiencies are achievable through

careful synthesis and choice of materials, despite the devices not being optimised

for the highest efficiency. It also corroborates a “packing effects” interpretation of

the higher loadings, since the 1.0 % had the most devices with higher efficiencies.

As already mentioned above, the results of the porphyrin oligomers presented

in this Chapter “break” the record of the highest value reported for purely organic,

fluorescent NIR emitters. Despite testing some oligomers that contained heavy

metals, it was the heavy-metal-free oligomers that yielded very high efficiencies.

Re-adapting Figure 1.13 to exclude the inorganic and quantum dot NIR OLEDs,

Figure 3.64 below shows how the results presented above compare to organic

compounds efficiencies reported in the literature. In the sake of clarity, only the

results with efficiencies ηEL> 1.5 % are reported in the plot.
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Figure 3.64 | Electroluminescence external quantum efficiency (ηEL) as a function of emission

wavelength for organic near-infrared (NIR) organic light-emitting diodes (OLEDs) published to

date and the results presented in this thesis. [96]

Since the best efficiencies reported can be argued to be outliers, and as shown

in Figure 3.63b the confidence interval is at ∼ 1.0 %, considering the average

maximum ηEL that the devices achieved, still remains higher than the majority

of the results reported and still hold the record. Namely, F8BT:l -P6 H2 1.0 %

achieved an average maximum ηEL of 2.66 %, and PIDT-2TPD:CP-l -P5 1.0 %

yielded an average maximum ηEL of 1.96 %, slightly below the best reported in

Figure 3.64.

All three categories of porphyrin oligomers presented in this chapter serve as

a proof of concept that efficient NIR OLEDs, using purely fluorescent materials

that do not require heavy, toxic and expensive elements such as platinum or

lead, are feasible. With proper engineering of the energy levels and an optimised

device architecture, an even more prolonged device lifetime and efficiency can be

achieved, allowing for daily, real world use.
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4 |Highly luminescent

encapsulated polymers based

on diketopyrrolopyrrole

The research and part of the data presented in this chapter are published in

Leventis et al., JACS 2018. [85]

Three compounds of diketopyrrolopyrrole polymers were synthesised by A.

Leventis in Dr. Bronstein’s research group at University College London

Department of Chemistry, and characterised. The full extend of the aggregation

minimisation is examined when the three compounds are compared to their non-

encapsulated counterparts.
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4.1 Diketopyrrolopyrrole-based polymers

A class of molecularly engineered materials to prevent aggregation are materials

with a rotaxinated architecture; in this particular case it is a conjugated core

protected by a macrocycle. [83, 202] Rotaxanes can have conjugated polymer

cores consisting from polymers such as poly(p-phenylene vinylene) (PPV),

polyfluorenes (PFO) and poly(para-phenylene) (PPP, benzene polymer). These

polymer cores are threaded through α- or β- cyclodextrin macrocycles fitted

with bulky endgroups to prevent the macrocycle from slipping off the conjugated

polymer chain during processing. The chemical structure of rotaxanes is shown

in Figure 4.1. [203] The protection of the core results in blue-shift of the

photoluminescence (PL) when compared to the un-protected cores. Rotaxanes

find applications in OLEDs [84], exhibit lasing [204] and can be water soluble.
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Figure 4.1 | Chemical structure of cyclodextrin-threaded conjugated rotaxanes incorporating

as core (a) poly(para-phenylene) (PPP), (b) poly(p-phenylene vinylene) (PPV) and (c)

polyfluorenes (PFO). (d) Chemical structure of the cyclodextrin with 6-membered macrocycle

(α-CD) and 7-membered macrocycle (β-CD). Image reproduced from ref. [84].

A similar approach was followed by Sugiyasu et al. in 2010 to sheathe a

polythiophene core within its covalently linked cyclic sidechains. [205] In this

way, planar polymers can maintain their π-conjugation length which results in

The introduction figure in the previous page is reproduced from [85] in JACS.
15 While H. L. Anderson is known to the reader from the significant contributions to the

synthesis, physical and chemical characterisation on the porphyrins, some of which are presented

in the Chapter 3 of the present thesis, he has also researched the synthesis of rotaxanes and

our research groups have an extensive history of characterisation of such structures.
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high carrier mobilities. X-ray analysis reveals that the bithiophene backbone is

nearly planar and with a diameter of 1.2 nm one can envisage applications in

Organic Integrated Circuits. [205] In 2013, Pan et al. successfully synthesised a

red-emitting insulated molecular wire with a remarkable 〈ηPL〉 ∼ 13 %. [206]

To the extent of the author’s knowledge, Sugiyasu [205] and Pan [206] are

the only demonstrations of red-emitting encapsulated insulated molecular wires.

Examples in the blue have been demonstrated by some groups. [203, 207–211]

Our groups followed a similar strategy by designing and synthesising a

new class of sterically hindered encapsulated diketopyrrolopyrrole (DPP)-based

polymers, whose chemical structure is shown in Figure 4.2. DPP is one of

the most widely used structures in conjugated polymers. It exhibits chemical

stability and ease in modifying, resulting in various applications, from dyes

in automotive industry (namely Rosso corsa, nicknamed “Ferrari red” [163])

to various optoelectronic devices. It shows high photoluminescence quantum

efficiency (ηPL) in solution, giving rise to applications as a fluorescent dye but

exhibits a high tendency to π-π stack and therefore minimising applications in

the solid state.

Ar

NO

H

Ar

N

H

O

Figure 4.2 | Chemical structure of diketopyrrolopyrrole.

To prevent this effect, an encapsulating approach was followed, resulting in

DPP-based insulated molecular wires that showed very high 〈ηPL〉 in solution

(> 90 %), and also prevented the severe PL quenching in the solid state by

sheathing the DPP core using its own side chains to minimise the efficient π-π

stacking. The packing effect is more pronounced in the red and NIR emitting

materials, as an increased planarity is required to reduce sufficiently the energy

gap and obtain emission to lower energies. This allowed the first demonstration

of highly-efficient red emitters in the solid-state.

Applications for DPP-based polymers have been reported as efficient organic

photovoltaics, thin-film transistors, [212–214] OLEDs, [215–218] and red-dye

pigments [219, 220]. DPP favours π-π stacking and is not considered as

a candidate for solid-state emissive applications (vide supra). By modifying

and encapsulating the DPP backbone and copolymerising it with polyfluorene
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(compound DPP:F), thiophene (compound DPP:T) and phenylene (compound

DPP:P) the π-π stacking, and therefore aggregation quenching, can be prevented,

allowing efficient emission even in the solid-state. This strategy is illustrated in

Figure 4.3 bellow.
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Figure 4.3 | Representation of the encapsulation strategy of the DPP core (green shade) is

encapsulated and copolymerised with polyfluorene (compound DPP:F), thiophene (compound

DPP:T) and phenylene (compound DPP:P).

However, DPP polymers have not been considered as efficient solid-state

emitters due to their tendency to π-π stack and form dark aggregates. A preferred

approach to cope with this issue is the co-polymerisation with a wider gap host

in the polymer chain. [163, 215–221] Unlike similar studies that PFO derivatives,

like F8BT, were blended with DPP:F8BT copolymers in very small loadings to

minimise aggregation effects, [163] or DPP derivatives in blends with F8BT [88].

Our approach was to encapsulate the DPP units and co-polymerise with

PFO in a 1:1 ratio. A similar strategy was followed by Cao et al. where they

copolymerised PFO with DPP, obtaining however, lower ηPL values than the

ones presented below. [221] To evaluate, understand and quantify the extent

of the success of our encapsulation strategy, the non-encapsulated, denoted as

naked herein, polymers were synthesised and characterised. The experimental

results presented below contain both encapsulated polymers abbreviated as E-

DPP:Ar and their naked counterparts, abbreviated as N-DPP:Ar, where Ar is

“F” for polyfluorene, “P” for phenylene or “T” thiophene, respectively for the

three compounds, as shown in Figure 4.3.

The DPP derivatives studied and presented in this thesis were synthesised by

the group of Dr. H. Bronstein in the Department of Chemistry at University

College London. 16 Details regarding the synthesis can be found in ref. [85].
16 However, at the time of the writing, Dr. H. Bronstein is at the University of Cambridge.
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4.2 Solution photoluminescence of

diketopyrrolopyrrole polymers

Starting from the E-DPP:F compound which is a DPP:PFO copolymer, whose

chemical structures are illustrated in Figure 4.4a, it showed clear spectra in dilute

chlorobenzene (CB) solution (∼ 4 µg/ml) with a high-energy absorption band at

∼ 350 nm and second lower-energy but higher intensity at ∼ 520 nm while the

emission of the 0-0 transition is peaking at 570 nm (the emission peak of PFO is

at 420 nm [222]), exhibiting a ∼ 50 nm Stokes’ shift. The spectra of DPP:F are

shown in Figure 4.4d.

The molecular weight of the polymer was measured and found to be

MW ∼ 65.8 kDa. Interestingly, E-DPP:F exhibited a remarkable 〈ηPL〉 of almost

unity, 94.8 ± 1.0 %. It is noted that ηPL measurements were carried out in air, in

room temperature. The excitation wavelength was with a ThorLabs diode laser

emitting at 520 nm and measured according to the protocol reported in Section

2.4 and reference [122].

The DPP:Thiophene compound, whose chemical structure are illustrated in

Figure 4.4c, E-DPP:T, showed a completely different behaviour, with the high-

energy absorption band exhibiting a lower intensity compared to DPP:F and

10 nm red-shift of the low-energy peaking at 580 nm. The PL of E-DPP:T in

dilute CB solution is peaked at 620 nm for the 0-0 transition. E-DPP:T showed

lower 〈ηPL〉 than E-DPP:F, but remained high comparing to other DPP polymers

in the literature, at 73.6 ± 1.2 % and a molecular weight of MW ∼ 23.8 kDa. The

enhanced shoulder on the red-tail of the emission implied a rigid framework. The

optical properties are summarised in Figure 4.4f.
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Figure 4.4 | The upper part of the figure shows the chemical structures of the encapsulated

alternating co-polymers (top) and their naked counterparts (bottom) of (a) DPP:F, (b) DPP:P

and (c) DPP:T. The lower part shows the absorption (green lines) and photoluminescence (PL)

(orange lines) spectra of the encapsulated (solid lines) and naked (dashed lines) of (d) DPP:F,

(e) DPP:P and (f) DPP:T respectively (in dilute CB solution (∼ µg/ml)).

The third encapsulated compound, DPP:P, a DPP:Phenylene copolymer

whose chemical structure is illustrated in Figure 4.4b, showed spectra that

resemble those of DPP:F, both in absorption and emission with similar Stokes’

Shift and peaks of the emission, as shown in Figure 4.4e. However, the

MW ∼ 26.7 kDa was lower and showed a lower 〈ηPL〉 of 74 ± 1.2 %, similar

values to DPP:T. Such a Stokes’ shift is thought to occur due to torsions along

the backbone, but is advantageous for minimising self-absorption effects. [206]

As mentioned above, to further prove the beneficial role of the encapsulating

architecture of the materials, the polymers were tested against the performance

of their unprotected counterparts. With the exception of DPP:F that the test

was not conclusive due to a monomeric behaviour and problematic synthesis, N-

DPP:P and N-DPP:T (where N stands for naked) showed significantly lower

〈ηPL〉, unstructured and broad spectra, and deep red-shifts. The optical

properties of this series of polymers is summarised in Table 4.1. N-DPP:F was

not investigated further in the study and no experimental data are presented
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Table 4.1 | Summary of optical properties of the encapsulated and non-encapsulated

DPP polymers in dilute chlorobenzene solution, in air and room temperature, with

the photoluminescence quantum efficiency (ηPL) and maxima of emission and absorption

respectively, for the three encapsulated polymers and their naked counterparts.

Sample 〈ηPL〉(%) λemmax (nm) λabsmax (nm)

E-DPP:F 94.8± 1.0 572 527

N-DPP:F - [a] - -

E-DPP:P 74.0± 1.2 573 528

N-DPP:P 19.0± 3.3 628 512

E-DPP:T 73.6± 1.2 620 581

N-DPP:T 18.2± 1.3 688 553

[a] : N-DPP:F was not investigated further in the study.

In the panel depicted in Figure 4.4, all the spectra are illustrated and

encapsulated-non-encapsulated are grouped for comparison. It is visible that all

the spectra exhibited a broadening and red-shifted emission, signs of aggregation,

observation confirmed by the decreased ηPL of the naked counterparts.
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4.3 Solid-state photoluminescence of

diketopyrrolopyrrole polymers

To further characterise the material and test the effects of encapsulation in

the challenging solid-state, the polymers were spin-coated on quartz spectrosil

substrates from a 10 mg/ml CB solution. It is notable that the polymers were

soluble in CB without the need of increased temperature or spinning. The

substrates were cleaned with acetone and IPA in ultrasonic baths, and the

polymers were subsequently spin-coated inside a N2 glovebox at 1500 rpm, as

explained in detail in Chapter 2, to obtain a ∼ 100 nm thick film. Any further

characterisation was carried out in air, in room temperature. The spectra of the

polymers are presented in the Figure 4.5.
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Figure 4.5 | Absorption (blue lines) and photoluminescence (PL) (red lines) spectra of the

Encapsulated (solid lines) and naked (dashed lines) of (a) DPP:F, (b) DPP:P and (c) DPP:T

respectively in thin films (∼ 100 nm).

All spectra exhibited the common feature of enhancement of the red-tail 0-1

transition shoulder in PL, when compared to the solution ones. The differences

in the absorption spectra, however, were more subtle, with a small red-shift of

the absorption maximum by 20 nm in case of DPP:T and DPP:P. In PL, all

three experienced a red-shift, ∼ 20 nm for DPP:F and DPP:T and a surprising

∼ 70 nm for DPP:P, but this can be attributed to the increase of the red-tail

shoulder. The second, higher energy 0-0 transition shoulder is at ∼ 590 nm,

∼ 20 nm red-shifted compared to the solution measurement. This could also

be an artefact during the collection of the spectra, the angle between sample-

laser-detector and the enhancement of the 0-1 transition peak that would result

in more consistent results amongst the three E-DPP polymers. The red shift

of the emission compared to the solution measurements can be attributed to

an increased planarity, rising from the more ordered phase of the solid-state

compared to the solution one.
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The broadening and red-shifting of the emission is a sign of considerable

aggregation that the naked counterparts showed, which has been suppressed from

the encapsulation in the E:DPP polymers. The key-factor that supported this

claim of an efficient protection of the emissive properties, however, was the 〈ηPL〉.
Already noticeable from the solution measurements and becoming evident in the

solid-state, in the case of the encapsulated polymers was remarkably high, yielding

for E-DPP:F = 19.8 %, E-DPP:T = 27.8 % and E-DPP:P = 22.6 % when the

naked polymers N-DPP:T = 5.6 % and N-DPP:P = 8 %. As mentioned above,

N-DPP:F is not measured. The optical properties of the DPP polymers are

summarised in Table 4.2.

Table 4.2 | Summary of optical properties of the encapsulated and non-encapsulated DPP

polymers in thin films (∼ 100 nm), with the photoluminescence quantum efficiency (ηPL) and

maxima of emission and absorption respectively, for the three encapsulated polymers and their

non-encapsulated counterparts.

Sample 〈ηPL〉(%) λemmax (nm) λabsmax (nm)

E-DDP:F 19.8± 1.1 589 531

N-DPP:F - [a] - -

E-DPP:P 22.6± 1.1 640 [b] 548

N-DPP:P 8.0± 0.3 648 514

E-DPP:T 27.8± 1.3 640 601

N-DPP:T 5.6± 0.5 704 560

[a] : N-DPP:F was not investigated further in the study. [b] : This represents the maximum

value of the emission. However a higher energy shoulder peaked at ∼ 590 nm would be more in

trend with the other polymers and could be an artefact of the measurement and the angle of

the collection of the spectra.

It is noteworthy that the 〈ηPL〉 of 27.8 % in the case of E-DPP:T is one of the

highest values reported for a solid-state ηPL red-emitting conjugated polymer.

The 〈ηPL〉 values reported for the E-DPP compounds confirm a very effective

encapsulation strategy and the first demonstration of highly-fluorescent DPP

polymers in the solid state. As this paves the way for applications in devices

such as OLEDs, OLEDs were fabricated using the DPP polymers as emissive

layer.
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4.4 Diketopyrrolopyrrole polymers OLEDs

As discussed, the DPP polymers exhibit a fantastic potential for optoelectronic

applications. To prove this claim, OLEDs were fabricated and characterised

incorporating the DPP polymers, both encapsulated and naked, as the active

layer. Following the procedure described above in Section 2.6, DPP-incorporating

OLEDs were fabricated and characterised, allowing to examine the effects of the

encapsulation strategy in devices. The electroluminescence (EL) spectra, JVL

curves and electroluminescence external quantum efficiency (ηEL) are presented

in Figure 4.6 below.

These powerfully confirm a wealth of advantages afforded by the

encapsulation, in terms of radiance, efficiency, and of spectral purity of the

emission.

From the EL spectra (Figures 4.6d and 4.6g) it is evident that the naked

compounds featured significantly wider, red-shifted and essentially featureless

electroluminescence, which fully corroborated the interpretation that their

emission is aggregation-dominated. More specifically, N-DPP:P showed a ∼
70 nm bathochromic shift from 583 nm for E-DPP:P to 650 nm for N-DPP:P.

The spectral width (full width at half maximum, FWHM) was increased from

∼ 80 nm to 131 nm for N-DPP:P and even more for DPP:T (FWHM ∼ 32 nm

for E-DPP:T compared to ∼ 170 nm for N-DPP:T), and a red-shift of ∼ 50 nm.

By looking at the current density - voltage - radiance (JVR) characteristics
17 (Figures 4.6b, 4.6e and 4.6h), it is noticeable that the encapsulation did

not cause hindering of charge injection and transport compared to the naked

compounds, as the onsets were comparable for the two classes of materials, if not

lower for the minority carriers for the E:DPP compounds (vide infra). Majority

carriers (unipolar) injection began immediately for applied biasses > 0V , with

the further minority carrier injection, and the associated light emission, initiated

at applied biasses as low as ∼ 2.7 V for E-DPP:F, ∼ 2.5 V for E-DPP:P and

∼ 1.9 V for E-DPP:T. Contrarily, EL for the naked compounds started at

applied biasses ∼ 5 V higher for N-DPP:P and ∼ 1 V higher for N-DPP:T.

Interestingly, Figures 4.6e and 4.6h also indicate that whereas the current onset of

luminescence was comparable for all devices incorporating encapsulated polymers,

at ∼ 0.02 mA/cm2, the EL current onset for the naked polymers is significantly

higher, i.e. ∼ 0.2 mA/cm2 for N-DPP:P and ∼ 5 mA/cm2 for N-DPP:T.

These differences of quenching the electro-generated excited states are

17 Radiance rather than luminance is reported as a significant part of the spectrum is in the

near infrared (λ> 700 nm), as mentioned in Chapter 2.
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Figure 4.6 | Panel with the optoelectronic properties of the DPP based organic light-emitting

diodes (OLEDs). Dashed lines and empty symbols refer to the naked polymers while solid lines

and filled symbols refer to encapsulated. (a, d, g) Electroluminescence spectra (purple lines),

(b, e, h) current density - voltage - radiance (JVR) curves (grey lines for current density and

pink lines for radiance), (c, f, i) external quantum efficiency versus current density (brown

symbols) curves for (a, b, c) DPP:F, (d, e, f) DPP:P and (g, h, i) DPP:T. The legends in

(a, d, g) refer to the voltage at which the spectra where collected. Due to its unsuitably low

molecular weight and problematic synthesis, the N-DPP:F was not investigated further in the

study.
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attributed to the naked compounds’ aggregation effects, so that light emission

only exceeded the limit for detection for higher current densities and biasses.

The higher ηEL for the E-DPP compounds, 0.16 % for E-DPP:P, 4 times higher

than the 0.04 % of N-DPP:P and 0.08 % for E-DPP:T, 16 times higher than the

0.005 % of N-DPP:T also afforded significantly higher radiances at the respective

saturation biasses, impressively more than an order of magnitude, i.e. from

∼ 0.2 mW/cm2 for the E-DPP polymers to ∼ 0.02 mW/cm2 for the naked

counterparts. It was further observed that amongst the encapsulated compounds,

the maximum ηEL was obtained by E-DPP:P (ηEL = 0.16 %), but exhibited

an important ηEL roll-off with increasing current density, whereas E-DPP:T had

essentially stable ηEL for significant current densities (ηEL ∼ 0.07 %), in the order

of ∼ 100 mA/cm2. Finally, E-DPP:F ηEL (Figure 4.6c) exhibited a behaviour

between the two other E-DPP, reduced ηEL roll-off, but still present, however

with peak ηEL = 0.1 %, slightly higher than E-DPP:T, but still lower than E-

DPP:P, nevertheless at higher current densities (∼ 40 mA/cm2).

All the optoelectronic properties of the fabricated and characterised OLEDs

are summarised in the Table 4.3, where the advantages of the encapsulation can

be quantified. Plots with all the ηEL versus applied bias curves can be found in

Figures C.1 through C.8.

Table 4.3 | Summary of the optoelectronic properties of the organic light-emitting diodes

(OLEDs) incorporating the DPP polymers.

Sample VON (V) [a] 〈Rmax mW/cm2〉 [b] ηmaxEL
[c] 〈ηmaxEL 〉 [d] λELmax (nm) [e]

E-DPP:F 2.7± 0.05 0.23± 0.05 0.11 0.1± 0.02 582

N-DPP:F - [f ] - - - -

E-DPP:P 2.5± 0.07 0.24± 0.09 0.16 0.14± 0.02 583

N-DPP:P 7.3± 0.25 0.02± 0.002 0.04 0.04± 0.0002 650

E-DPP:T 1.9± 0.05 0.29± 0.01 0.084 0.072± 0.009 630

N-DPP:T 3.1± 0.11 0.02± 0.001 0.005 0.005± 0.0004 679

[a] : Voltage at which radiance > 3 × 10−5mW/cm2.
[b] : Average maximum radiance. [c] : Maximum electroluminescence external

quantum efficiency. [d] : Average maximum external quantum efficiency.
[e] : Maximum of the emission. [f ] : N-DPP:F was not investigated further study.
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4.5 Conclusions

In the Table 4.4 is shown a summary of the major optical and optoelectronic

properties of the DPP polymers characterised.

In view of the larger intensity of the 0-0 compared to 0-1 transition in the EL

spectra (Figure 4.6g), usually taken as an indication for suppression of aggregation

effects [223], the sharp onset of EL at the lowest voltage within this set of materials

(ca. 1.9 V), and the stable efficiency up to ∼ 100 mA/cm2, E-DPP:T can be

considered as the most promising compound for OLEDs.

Table 4.4 | Summary of the major characteristics of DPP polymers, including solution

and thin-film photoluminescence quantum efficiency (ηPL), absorption and photoluminescence

maxima and organic light-emitting diode (OLED) characteristics, including electroluminescence

external quantum efficiency (ηEL), average turn-on voltages and electroluminescence maxima.

Solution Thin Films OLEDs

Sample 〈ηPL〉(%) λemmax (nm) λabsmax (nm) 〈ηPL〉(%) λemmax (nm) λabsmax (nm) ηmaxEL (%) VON (V)[a] λemmax (nm)

E-DPP:F 94.8 ± 1.0 572 527 19.8 ± 1.1 589 531 0.11 2.7 ± 0.05 582

N-DPP:F -[b] - - - - - - - -

E-DPP:P 74.0 ± 1.2 573 528 22.6 ± 1.1 640 [c] 548 0.16 2.5 ± 0.07 583

N-DPP:P 19.0 ± 3.3 628 512 8.0 ± 0.3 650 514 0.04 7.3 ± 0.25 650

E-DPP:T 73.6 ± 1.2 620 581 27.8 ± 1.3 640 601 0.084 1.9 ± 0.05 630

N-DPP:T 18.2 ± 1.3 688 553 5.6 ± 0.5 704 560 0.005 3.1 ± 0.11 679

[a]: VON is defined when radiance is > 3× 10−5 mW/cm2.
[b] : N-DPP:F was not investigated further in the study due to problematic synthesis and

monomeric behaviour.[c] : This represents the maximum value of the emission. However a

higher energy shoulder peaked at ∼ 590 nm would be more in trend with the other polymers

and could be an artefact of the measurement and the angle of the collection of the spectra.

From the results presented, it is visible that the encapsulating nature of E-

DPP:F, E-DPP:P and E-DPP:T was beneficial and improved the characteristics

and efficiencies of the devices. The unexpected low ηEL exhibited, though, could

show further improvement by optimising the device architecture and active layer

thickness.

To conclude, three diketopyrrolopyrrole-based encapsulated polymers were

synthesised and characterised optically by means of solution and thin film

absorption and photoluminescence spectroscopy and photoluminescence quantum

efficiency (ηPL), as well as optoelectronically by means of fabrication and

characterisation of organic light-emitting diodes (OLEDs) incorporating the three

encapsulated polymers as emissive layers. The three compounds displayed

impressively high solution ηPL up to almost unity, with significantly high

values also in the solid state, allowing the diketopyrrolopyrrole polymers to be
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used in optoelectronic devices such as OLEDs. The sheathed conjugated core

prevents aggregation quenching, promoting an enhanced backbone colinearity,

a claim corroborated by scanning tunnelling microscopy that showed linear,

conformationally defect-free polymer domains.
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5 |Conclusions and Outlook

“This is the way the world ends

This is the way the world ends

This is the way the world ends

Not with a bang but with a whimper”

– The Hollow Men

T. S. Eliot

This thesis provided an outlook on aspects of general interest in the vast field

of organic optoelectronics, with a special focus on organic light-emitting diodes

(OLEDs). In Chapter 1, a general overview organic semiconductors (OS) was

given, with a historic review of major achievements. A special focus to a rather

new class of materials was reported, perovskites, and how the “sister” field of

organic photovoltaic (OPV) devices has pushed organics. Following this, what is

the main topic of this thesis was discussed, the optical and electronics properties

of OS, as well as OLEDs.

Chapter 2 presented the experimental methods used throughout the research

forming this thesis. From solution preparation, to photoluminescence quantum

efficiency (ηPL) measurements and time-correletated single photon counting

(TCSPC) characterisation, to OLED devices fabrication and measuring tools,

various details that explain how the results were calculated and presented.
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5.1 Challenges

This thesis dealt with narrow-band organic emitters, with photoluminescence

(PL) peaked in the red and near-infrared (NIR). Addressing and achieving

efficient emission in this spectral region is challenging for two main reasons.

First, there is a tendency of the non-radiative rate (knr) to increase exponentially

when the energy gap is decreasing, necessary to achieve NIR emission. This is

summarised by the so-called “energy-gap law” that was first formalised in 1970.

A second challenge is the tendency the materials show towards π-π stacking.

To sufficiently reduce the energy gap for red and NIR emission, a more extended

conjugation is needed. This results in more planar molecules that in turn tend

to facilitate π-π stacking.

In the course of this thesis, both limitations were addressed by employing two

different approaches. By means of molecular design and material properties,

porphyrin oligomers and encapsulated polymers achieved high efficiencies in

solution, while also showing efficient electroluminescence external quantum

efficiency (ηEL) when incorporated in OLEDs.

5.2 Porphyrin oligomers as near-infrared

emitters

By means of photophysical and optoelectronic investigations, a family of

porphyrin oligomers, π-conjugated organic semiconductors, were described and

characterised. These semiconductors are emissive molecules, tackling the

challenging part of the lower energies of the spectrum, given the increased

planarity required to lower the emission energy of a molecule, that concomitantly

causes unwanted π-π stacking and aggregation quenching and the “energy-gap

law” limiting the efficiency. To prevent the effects of those limiting factors, two

strategies were reported: the use of bulky side chains with a large steric hindrance

as a mean of aggregation prevention and the increase of the length of the molecule

chain as a mean of “energy-gap law” limitation.

A series of very efficient porphyrin oligomers with emission peaking at

λ> 700 nm were presented. The oligomers presented in Chapter 3 proved that

spectrally pure and very efficient NIR emitting OLEDs are feasible, and while

omitting the use of heavy metals that are toxic, these oligomers remain bio-

compatible.
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5.3 Diketopyrrolopyrrole polymers

By employing a second approach of aggregation prevention, i.e. an encapsulation

architecture that sheaths the conjugated core, a series of very efficient, novel

diketopyrrolopyrrole (DPP) based red emitting polymers were discussed in

Chapter 4. With only a few previous reports in the literature of benefiting

from this architecture, these polymers maintained the π-conjugation length. By

comparing the encapsulated polymers performance with their naked counterparts,

it was possible to prove the beneficial role the encapsulation played from dilute

solution measurements to incorporation into OLEDs.

5.4 Contribution of this work

With the results outlined in Chapters 3 and 4, this work showed that the hurdles

low energy-gap materials face can be addressed. The so-called “energy-gap law”

can be overcome with a twofold approach the porphyrin oligomers utilise. Firstly,

the increase of the oligomer length suppresses intersystem crossing (ISC) as a

result of the increased mismatch of singlet and triplet spatial extent. Secondly,

increasing the oscillator strength results in the increase of the radiative rate, kr.

It was also demonstrated that another hurdle the NIR emitting materials face,

the π-π stacking and the concomitant aggregation quenching due to the increased

planarity needed for sufficiently extended conjugation, is suppressed by utilising

molecular design methods, i.e. bulky sidechains.

Both approaches resulted in the demonstration of the highest ηEL reported,

to date and to the best of the author’s knowledge, for heavy-metal-free and

metal-free altogether OLEDs, emitting in this spectral region with a fluorescence

lifetime of ∼ ns. A metal-free hexamer-based OLED showed almost pure NIR

electroluminescence (EL) with ηEL up to ∼ 3.2 %, an unprecedented value for

metal-free materials not leveraging reverse ISC or phosphorescence. Notably,

a novel pentamer with slightly modified chemical structure incorporating zinc,

achieved a somewhat lower ηEL ∼ 2.5 %, still above the reported values for

similar emitters, however showed remarkable stability over continuous operation,

with > 80 % of the initial ηEL maintained over 32 h. This is an impressive value

considering that the diodes fabricated where not optimised for stability during

continuous operation.

Further to the bulky chains, another approach to preventing π-π stacking

was demonstrated when the, known for its strong propensity to π-π stack and

aggregate, diketopyrrolopyrrole (DPP) was co-polymerised and encapsulated
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using its own sidechains. The encapsulation was demonstrated when both

encapsulated and naked polymers where compared under the same conditions

to prove the benefits of this strategy, even when considering ηPL measurements

in dilute solution, where the aggregation effects would be minimised. ηPL values

of the encapsulated polymers where > 3 times higher than the naked counterparts

in dilute solution, increasing up to ∼ 5 times in the solid state. This proved the

polymers to remain highly efficient in the solid state, where DPP was limited.

Notably, the encapsulated polymers achieved ηEL values of up to 16 times higher

than the naked analogue, demonstrating huge potential for further investigation.

This work has highlighted the possibilities that host-guest strategies, such as

the polymer-porphyrin approach, or co-polymerisation and encapsulation, allow

to overcome the traditional hurdles of the so-called “energy-gap law” and the

detrimental π-π stacking of low-energy emission in the solid state.
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5.5 Future research

DPP-based polymers showed exceptionally high fluorescence efficiency values

in solution and some of the highest ever reported in the solid-state for their

respective spectral range, however with lower-than-expected external quantum

efficiencies when embedded in OLEDs. The prospects they showed could fuel

further research towards exploring different OLED architectures and measuring

the HOMO-LUMO levels as to find more appropriate materials for interlayers

or electrodes. Given the good results the novel red-emitting polymer (PIDT-

2TPD), presented in Section 3.5, showed in terms of OLED stability, and the fact

that DPP is widely used in many optoelectronic and dye-related applications, the

DPP-based encapsulated polymers could prove a great alternative in efficient red

OLEDs for solution processed applications.

Drawing further inspiration from good results of PIDT-2TPD based OLEDs

in blends with the porphyrin oligomers, the DPP-polymers could be employed

in a similar host-guest strategy with some of the best NIR emitting porphyrin

oligomers to form even more efficient NIR OLEDs.

Porphyrin oligomers also showed an impressive potential as efficient NIR

OLEDs, using both zinc and metal-free novel oligomers as emitters. Chemical

design allowed for an easy tuning of the emission wavelength, by varying both

the chemical elements in the centre of each porphyrin unit and the length of the

oligomer, thus providing flexibility for future applications where fine tuning of the

emission peak is needed. The ηEL afforded was unprecedented for a heavy-metal-

free, and metal-free altogether, for this spectral range, and with unoptimised

devices showing long device lifetimes under continuous operation, the studies

presented above pave the way for efficient NIR emitting OLEDs that are no

longer emissive or using expensive rare-earth, precious or toxic metals.

Finally, trying to force phosphorescent emission from a platinum-containing

porphyrin hexamer showed how efficiently ISC is suppressed in these oligomers,

resulting, however, in poor emissive properties of the platinum oligomer based

OLEDs. Interestingly, a distinctive two-peaked EL spectrum was observed, owing

to the recombination of both singlet and triplet excitons. One could envisage

an application where similar OLEDs are employed to monitor oxygen levels.

Oxygen is known to have detrimental properties in triplet excitons, so observing

an intensity increase of the phosphorescence peak of the OLED could signify a

drop of the oxygen levels in a room, e.g. with odourless noble or inert gases, such

as a nitrogen filled glovebox or a low-temperature cooling with liquid helium

set-up, such as an MRI.
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A | Summarising tables

Below are some summary tables with all the detailed data presented.
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Table A.1 | Detailed table with the zinc porphyrin photoluminescence (PL) data in dilute solution and thin films.

Sample 〈ηPL〉sol (%) NIR PL sol (%) Abs λsolmax (nm) PL λsolmax (nm) τ (ns) kr (ns−1) knr (ns−1) 〈ηPL〉film (%) NIR PL film (%) PL λfilmmax (nm) Red shift (nm)

F8BT pure ∼ 100 1 - 534 2.4 0.41 0.004 59.9 ± 2.5 3.0 555.0 21

l-P1 1.0 % 16.1 ± 0.7 11.3

l-P1 2.5 % 7.9 ± 0.2 9.1 628 632 2.07 0.04 0.45 9.5 ± 0.41 17.1 642.0 10

l-P1 5.0 % 6.5 ± 0.4 23.5

l-P2 1.0 % 26.6 ± 1.6 68.7

l-P2 2.5 % 34.3 ± 0.7 84.8 712 720 1.54 0.22 0.43 21.9 ± 1.5 82.8 750.0 30

l-P2 5.0 % 14.2 ± 1.1 89.6

l-P3 1.0 % 27.8 ± 1.1 64.6

l-P3 2.5 % 24.2 ± 0.7 94.9 730 767 1.5 0.16 0.51 20.3 ± 0.7 75.1 811.0 44

l-P3 5.0 % 11.1 ± 0.7 83.9

l-P4 1.0 % 22.6 ± 0.6 58.7

l-P4 2.5 % 22.2 ± 0.5 96.2 745 781 1.27 0.17 0.62 14.8 ± 0.2 74.3 855.0 74

l-P4 5.0 % 8.4 ± 0.2 81.6

l-P5 1.0 % 26.1 ± 0.9 61.3

l-P5 2.5 % 27.3 ± 0.4 98.3 757 787 1.19 0.23 0.62 15.2 ± 0.6 73.4 858.0 71

l-P5 5.0 % 8.3 ± 0.4 84.7

l-P6 1.0 % 23.9 ± 0.9 61.6

l-P6 2.5 % 28.5 ± 1.5 99.1 769 793 1.16 0.25 0.62 11.4 ± 0.2 72.1 867.0 74

l-P6 5.0 % 6.9 ± 0.1 83.1

l-P7 1.0 % 17.1 ± 0.6 46.7

l-P7 2.5 % 47.8 ± 0.6 99.4 772 798 1.17 0.41 0.44 9.9 ± 0.3 61.6 869.0 71

l-P7 5.0 % 2.7 ± 0.1 62.9

l-PN 1.0 % 12.3 ± 0.4 25.5

l-PN 2.5 % 28.3 ± 0.7 90.1 782 810 0.99 0.29 0.72 7.4 ± 0.2 27.8 879.0 69

l-PN 5.0 % 2.7 ± 0.1 28.8

TFB pure - - - - - - - 26 0.0 430.0 -

l-P6 1.0 % 30 60.0

l-P6 2.5 % 31 64.0 860.0 -

l-P6 5.0 % 28.5 ± 1.5 99.1 769 793 1.16 0.25 0.62 24 71.0

PIDT-2TPD pure - - - - - - - 28.8 ± 1.9 17.9 638.0 -

CP-l-P5 1.0 % 27.3 ± 1.9 76.7 861.0 8

CP-l-P5 2.5 % 30 ± 1.4 99.9 805 853 2.04 0.15 0.34 17.5 ± 2.5 85.8 876.0 23

CP-l-P5 5.0 % 8.1 ± 0.4 87.1 891.0 38

F8BT pure ∼ 100 1 - 534 - - - 50.2 ± 0.4 50.0 556.0 22

CP-l-P5 1.0 % 16.9 ± 0.4 15.6 894.0 41

CP-l-P5 2.5 % 30 ± 1.4 99.9 805 853 2.04 0.15 0.34 8.3 ± 0. 2 23.6 917.0 64

CP-l-P5 5.0 % 4.1 ± 0.2 32.3 917.0 64
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Table A.2 | Detailed table with the zinc porphyrin organic light-emitting diodes (OLEDs) data.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax mW/cm2 〈Rmax〉 mW/cm2 VON (V) λELmax (nm) NIR EL (%)

F8BT pure 0.32 0.28 ± 0.04 0.88 0.4 ± 0.19 3.7 ± 0.46 560.0

l-P1 1.0 % 0.83 0.28 ± 0.32 0.62 0.28 ± 0.2 2.8 ± 0.2 8.2

l-P1 2.5 % 0.98 0.6 ± 0.31 0.56 0.43 ± 0.2 3.2 ± 0.3 648.0 12.8

l-P1 5.0 % 1.32 0.79 ± 0.32 0.53 0.35 ± 0.22 3.8 ± 0.6 16.3

l-P2 1.0 % 4.50 1.46 ± 1.18 3.30 1.6 ± 0.9 3.52 ± 0.3 83.1

l-P2 2.5 % 1.76 1.5 ± 0.23 4.00 2.47 ± 1.22 3.57 ± 0.6 748.0 90.3

l-P2 5.0 % 1.51 1.34 ± 0.21 2.38 1.62 ± 0.77 3.62 ± 0.6 93.3

l-P3 1.0 % 1.66 1.29 ± 0.32 1.70 1.2 ± 0.3 4.6 ± 0.75 95.2

l-P3 2.5 % 1.19 0.78 ± 0.4 2.30 1.18 ± 0.62 5.4 ± 0.6 796.0 97.7

l-P3 5.0 % 0.58 0.28 ± 0.26 0.36 0.2 ± 0.15 7.4 ± 0.4 96.1

l-P4 1.0 % 1.38 0.9 ± 0.27 0.70 0.51 ± 0.25 5.4 ± 0.23 89.4

l-P4 2.5 % 0.60 0.45 ± 0.21 0.32 0.25 ± 0.11 6.7 ± 0.9 845.0 92.7

l-P4 5.0 % 0.30 0.27 ± 0.03 0.19 0.16 ± 0.01 7.5 ± 0.4 93.3

l-P5 1.0 % 0.94 0.89 ± 0.04 0.50 0.45 ± 0.04 4.2 ± 0.4 75.8

l-P5 2.5 % 0.63 0.6 ± 0.01 0.31 0.29 ± 0.02 6.4 ± 0.3 852.0 93.1

l-P5 5.0 % 0.32 0.22 ± 0.11 0.18 0.12 ± 0.08 7.2 ± 0.6 94.8

l-P6 1.0 % 1.13 0.89 ± 0.26 0.62 0.49 ± 0.1 5.1 ± 0.5 84.4

l-P6 2.5 % 0.87 0.69 ± 0.1 0.31 0.29 ± 0.02 7.4 ± 0.8 862.0 94.7

l-P6 5.0 % 0.60 0.52 ± 0.07 0.37 0.26 ± 0.15 8 ± 0.25 98.1

l-P7 1.0 % 1.25 0.93 ± 0.23 1.39 1.05 ± 0.33 4.3 ± 0.5 87.4

l-P7 2.5 % 0.95 0.84 ± 0.08 1.22 0.89 ± 0.29 6.8 ± 1.1 860.0 98.1

l-P7 5.0 % 0.43 0.35 ± 0.13 0.30 0.13 ± 0.1 8.1 ± 0.7 94.6

l-PN 1.0 % 1.05 0.74 ± 0.19 0.31 0.19 ± 0.12 4.8 ± 0.7 79.3

l-PN 2.5 % 0.63 0.62 ± 0.01 0.82 0.52 ± 0.26 6.4 ± 0.8 871.0 90.7

l-PN 5.0 % 0.30 0.21 ± 0.08 0.20 0.15 ± 0.05 6.5 ± 0.6 90.1

TFB:l-P6 1.0 % 0.13 0.11 ± 0.02 0.20 0.2 ± 0.06 4.3 ± 0.6 811.0 76.0

TFB:l-P6 2.5 % 1.13 0.09 ± 0.02 0.20 0.2 ± 0.04 4.3 ± 0.4 822.0 87.0
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Table A.3 | Detailed table with the porphyrin hexamers photoluminescence (PL) data in dilute solution and thin films.

Sample 〈ηPL〉sol (%) NIR PL sol (%) Abs λsolmax (nm) PL λsolmax (nm) τ (ns) kr (ns−1) knr (ns−1) 〈ηPL〉film (%) NIR PL film (%) PL λfilmmax (nm) Red shift (nm)

F8BT pure ∼ 100 1.0 - 534 2.40 0.410 0.004 59.9 ± 2.5 5.70 555 21

l-P6 H2 1.0 % 33.1 ± 2.7 35.43 863 -

l-P6 H2 2.5 % 21.1 ± 0.6 99.5 783 804 1.84 0.120 0.430 18.1 ± 3.2 53.10 863 59

l-P6 H2 5.0 % 9.4 ± 0.5 64.50 863 -

l-P6 Mg 1.0 % 10.6 ± 0.6 28.60 894 39

l-P6 Mg 2.5 % 20.7 ± 3.5 97.8 833 855 2.50 0.083 0.320 3.9 ± 0.5 36.80 900 45

l-P6 Mg 5.0 % 1.1 ± 0.04 47.10 907 52

l-P6 Zn 1.0 % 23.9 ± 0.9 61.60 - -

l-P6 Zn 2.5 % 28.5 ± 1.5 99.1 769 795 1.16 0.250 0.620 11.4 ± 0.2 72.10 867 72

l-P6 Zn 5.0 % 6.9 ± 0.1 83.10 - -

l-P6 Pd 1.0 % 10.3 ± 0.1 32.60 774 47

l-P6 Pd 2.5 % 1.4 ± 0.5 64.2 706 727 0.35 0.040 2.800 7.8 ± 0.1 51.10 774 47

l-P6 Pd 5.0 % 5.2 ± 0.4 66.90 779 52

l-P6 Pt 1.0 % 10.6 ± 0.3 8.40 739 & 895 44 & 19

l-P6 Pt 2.5 % - 56.6 671 695 & 876 0.43 0.020 2.310 2.8 ± 0.3 15.40 740 & 895 45 & 19

l-P6 Pt 5.0 % 0.9 ± 0.2 28.40 741 & 895 46 & 19
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Table A.4 | Detailed table with the porphyrin hexamers organic light-emitting diodes (OLEDs) data.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax mW/cm2 〈Rmax〉 mW/cm2 VON (V) λELmax (nm) NIR EL (%)

F8BT pure 0.32 0.28 ± 0.04 0.88 0.4 ± 0.19 3.7 ± 0.46 560.0

l-P6 H2 1.0 % 3.20 2.66 ± 0.33 3.40 1.88 ± 0.95 4.33 ± 0.8 864.0 71.3

l-P6 H2 2.5 % 0.50 0.39 ± 0.05 0.60 0.33 ± 0.18 5.5 ± 1.4 866.0 89.2

l-P6 H2 5.0 % 0.30 0.23 ± 0.05 0.10 0.11 ± 0.05 9.6 ± 0.36 869.0 95.1

l-P6 Mg 1.0 % 0.60 0.43 ± 0.23 0.80 0.52 ± 0.28 4.68 ± 1.1 890.0 95.5

l-P6 Mg 2.5 % 0.60 0.44 ± 0.08 0.60 0.35 ± 0.28 7.83 ± 0.52 891.0 96.9

l-P6 Mg 5.0 % 0.20 0.163 ± 0.03 0.10 0.07 ± 0.03 9.8 ± 0.9 894.0 95.5

l-P6 Zn 1.0 % 1.10 0.89 ± 0.26 0.60 0.49 ± 0.1 5.1 ± 0.5 860.0 84.4

l-P6 Zn 2.5 % 0.90 0.69 ± 0.1 0.30 0.29 ± 0.02 7.4 ± 0.8 863.0 94.5

l-P6 Zn 5.0 % 0.60 0.52 ± 0.07 0.40 0.26 ± 0.15 8 ± 0.25 856.0 98.3

l-P6 Pd 1.0 % 1.00 0.71 ± 0.18 2.60 1.78 ± 0.76 4.5 ± 0.69 763.0 84.6

l-P6 Pd 2.5 % 1.00 0.73 ± 0.22 1.00 0.71 ± 0.32 6.45 ± 0.67 769.0 88.4

l-P6 Pd 5.0 % 0.40 0.33 ± 0.04 1.50 0.97 ± 0.49 8 ± 0.58 769.0 97.8

l-P6 Pt 1.0 % 0.20 0.16 ± 0.04 0.20 0.15 ± 0.02 5.8 ± 0.76 728.0 72.3

l-P6 Pt 2.5 % 0.20 0.12 ± 0.06 0.60 0.28 ± 0.21 5.97 ± 0.68 729.0 78.6

l-P6 Pt 5.0 % 0.20 0.14 ± 0.03 0.60 0.43 ± 0.23 6.8 ± 1.04 730.0 92.5
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Table A.5 | Detailed table with the CP-l -P5 organic light-emitting diodes (OLEDs) data.

Sample ηmaxEL (%) 〈ηmaxEL 〉 (%) Rmax mW/cm2 〈Rmax〉 mW/cm2 VON (V) λELmax (nm) NIR EL (%)

F8BT pure 0.95 0.77 ± 0.3 3.60 2.8 ± 0.8 3.3 ± 0.3 560.0

F8BT(2) pure 0.13 0.13 ± 0.03 0.38 0.20 ± 0.14 560.0

PIDT-2TPD pure 1.55 ± 0.1 2.3 ± 0.5 1.7 ± 0.01 640.0 46.0

PIDT-2TPD:CP-l-P5 1.0 % 2.46 1.96 ± 0.3 3.41 3.1 ± 0.7 1.6 ± 0.01 838.0 93.0

PIDT-2TPD:CP-l-P5 2.5 % 1.53 1.4 ± 0.1 2.20 2.1 ± 0.1 1.6 ± 0.01 846.0 96.0

PIDT-2TPD:CP-l-P5 5.0 % 1.10 0.73 ± 0.2 1.45 1 ± 0.3 1.6 ± 0.01 861.0 99.0

F8BT:CP-l-P5 1.0 % 2.56 1.52 ± 0.6 1.80 1 ± 0.6 4.9 ± 0.92 881.0 84.0

F8BT:CP-l-P5 2.5 % 1.10 0.95 ± 0.13 0.61 0.5 ± 0.17 8.5 ± 0.6 896.0 96.0

F8BT:CP-l-P5 5.0 % 0.63 0.56 ± 0.06 0.26 0.24 ± 0.01 8.7 ± 0.4 896.0 97.0

F8 pure 0.36 0.21 ± 0.12 0.37 0.36 ± 0.01 3.95 ± 0.5 510.0

TFB pure 0.05 0.04 ± 0.01 0.70 0.68 ± 0.17 3.6 ± 0.2 436.0

PFB pure 0.03 0.03 ± 0.01 0.62 0.63 ± 0.01 3.9 ± 0.01 487.0

F8:CP-l-P5 1.0 % 0.35 0.29 ± 0.06 0.87 0.5 ± 0.36 5.9 ± 1 880.0 84.0

TFB:CP-l-P5 1.0 % 0.06 0.04 ± 0.01 0.78 0.51 ± 0.24 3 ± 0.01 835.0 68.0

PFB:CP-l-P5 1.0 % 0.03 0.02 ± 0.01 0.58 0.35 ± 0.24 3.01 ± 0.01 834.0 53.0
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B |Pure polymers figures

This appendix includes the figures of the pure polymers used in the experiments

of Chapter 3.
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Figure B.1 | Pure F8BT (good batch) and pure PIDT-2TPD OLED properties. (a, d) (left)

depicts the electroluminescence (EL) spectra, (b, e) (centre) the current density - voltage -

radiance (JVR) curves and (c, f) (right) the electroluminescence external quantum efficiency

(ηEL) versus current density of the OLEDs. The legends in (a, d) refer to the voltage at which

the spectra where collected.
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Figure B.2 | Pure F8BT (bad batch) OLED properties. (a) (left) depicts the

electroluminescence (EL) spectra, (b) (centre) the current density - voltage - radiance (JVR)

and (c) (right) the electroluminescence external quantum efficiency (ηEL) of the OLEDs. The

legend in (a) refers to the voltage at which the spectra where collected.
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Figure B.3 | Voltage-resolved spectra for the pure F8BT organic light-emitting diodes

(OLEDs).
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C | ηEL versus Applied bias

curves for OLEDs

In the Figures below are presented the electroluminescence external quantum

efficiency (ηEL) versus applied bias curves for all the diodes that are presented in

this thesis, in a grid format. This can facilitate comparisons.
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Figure C.1 | ηEL versus Applied bias curves for OLEDs (1).
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Figure C.2 | ηEL versus Applied bias curves for OLEDs (2).
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Figure C.3 | ηEL versus Applied bias curves for OLEDs (3).
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Figure C.4 | ηEL versus Applied bias curves for OLEDs (4).
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Figure C.5 | ηEL versus Applied bias curves for OLEDs(5).
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Figure C.6 | ηEL versus Applied bias curves for OLEDs (6).
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Figure C.7 | ηEL versus Applied bias curves for OLEDs (7).
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Figure C.8 | ηEL versus Applied bias curves for OLEDs (8).
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Figure C.9 | ηEL versus Applied bias curves for OLEDs (9).
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Abstract
We report the electro-optical characterisation of a series of near-infrared (NIR) emitting linear porphyrin hexamer (l-P6(THS)) incorporated in polymer light-emitting
diodes (PLEDs). We study the photoluminescence (PL) and the electroluminescence (EL) of the l-P6(THS) in blends with the commercial conjugated polymer
poly(9,9’-dioctylfluorene-alt-benzothiadiazole) (F8BT) that demonstrated the highest external quantum efficiency (EQE) reported so far from a heavy-metal free and
non-phosphorescent NIR emitter.

Optical Characterisation

(a) Molecular structure of the porphyrins (b) Absorption and emission spectra of the 
l-P6(THS) in toluene solution at room temperature.

• THS sidechains are limiting the π-π stacking
• >99 % of the photons are emitted in the NIR.

(c) Absorption and (d) emission spectra of the F8BT:l-P6(THS) blends in thin films 
(~100 nm), with different loadings of the l-P6(THS). The molecular structure of F8BT 
is shown.

• F8BT emission spectrally overlaps with the l-P6(THS) absorption, permitting 
efficient energy transfer.

• At increasing loadings, the F8BT emission
is quenched in favour of the oligomer.

• PLQY > 17 %, exceeding 32 % at lower
concentrations.

• Focus on the 2.5 w/w% for the PLEDs

Polymer Light-Emitting Diodes (PLEDs)
We fabricated PLEDs incorporating the F8BT:l-P6(THS) blends with the 
architecture shown below.

Illustration of the fabricated devices showing the cross-sections and the relative 
band diagrams. One of the fabricated devices switched-on incorporating pure F8BT 
as active layer and TFB as EBL is shown.

(e) EL spectra of the PLEDs incorporating pure F8BT and the F8BT:l-P6(THS) blends. 
(f) J-V-L characteristics of the PLEDs. (g) EQE versus current density curves of the 
PLEDs. EL collected at saturation voltage for each device.

• Spectrally pure EL with >95 % of the photons in the NIR
• Peak of the emission at 850 nm
• Use of the commercial hole transporting polymer TFB to act as

Electron Blocking Layer (EBL) 4

• Substantial increase of the average max radiance and EQE, as well as the 
EQEMAX obtained

Conclusions – Future work
We characterised electro-optically the PL and EL of a novel conjugated linear porphyrin hexamer.
We demonstrated the highest EL EQE = 3.46 % in the NIR from a non-phosphorescent and heavy-metals free material.
 The average maximum EQE is >1 % while remaining above 0.5 % at high current densities (>200 mA/cm2).
 The introduction of a thin ( >10 nm) layer of TFB improves significantly the performance and characteristics of the device.

 Future optimisation of the multi-layered architecture with the introduction of a Hole Blocking Layer (HBL).
 Examine different lengths of the repeating porphyrin unit for colour tuning.

Introduction
NIR emitting materials have a wide range of applications:
• Medical (Photodynamic therapy) 1

• Security and defence devices
• All optical communications (Li-Fi) 2

• Novel linear porphyrin hexamer with different sidechains (THS) to prevent aggregation 
compared to previous work from our groups. 3

• Solution processable materials w/o the need of high vacuum deposition techniques.

Sample PLQY 
(%)

PL in NIR 
(%)

F8BT 54 3

1.0 % l-P6(THS) 17 52

2.5 % l-P6(THS) 13 62

5.0 % l-P6(THS) 6 83

Sample VON

(V)
Average RMAX

(mW/cm2)
EQEMAX

(%)
Average EQEMAX

(%)
EL in the NIR 
(%)

2.5 % w/o EBL 6.6±1.2 0.3±0.1 2.21 0.88±0.35 98

2.5 % with EBL 8.1±0.9 1.9±0.6 3.46 1.1±0.5 95
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Abstract
Here we report the optical characterisation of a series of near-infrared (NIR) emitting porphyrin oligomers incorporated in organic light-emitting diodes (OLEDs). We
characterised the optical properties both in solution and thin film and the electroluminescence external quantum efficiency (ηEL) of the oligomers in blends with the commercial
conjugated polymers poly(9,9’-dioctylfluorene-alt-benzothiadiazole) (F8BT), that demonstrated high EQEs up to 3.8 %. We investigated different loadings of the porphyrins in
the polymer matrix and carried-out optical characterisation by means of UV-VIS absorption, time-resolved emission spectroscopy (time-correlated single photon counting) and
PL efficiency measurements (ηPL).

Optical Characterisation
Optical characterisation includes UV-VIS-NIR absorption and ηPL 
measurements of the porphyrin oligomers.

(a) Absorption and (b) Emission spectra of the oligomers in toluene solution at room 
temperature. Inset in (b) shows the porphyrin structure.

• THS sidechains are limiting the π-π stacking
• Monomer PL peaks at 630 nm while the hexamer has >99 % of the photons 

are emitted in the NIR.
Blending the hexamer (NIR emission) with the commercial conjugated polymer 
F8BT (good spectral overlap – efficient Förster Resonance Energy Transfer)

(a) Absorption and (b) emission spectra of the F8BT:l-P6 blends in thin films (~100 
nm). The molecular structure of F8BT is shown in (b).

• At increasing loadings, the F8BT emission is quenched in favour of the 
oligomer – up to 85 % NIR emission at 10 w/w % loading

• ηPL > 17 %, exceeding 32 % at lower concentrations.
• Focus on the 2.5 w/w% for the OLEDs

Introduction
NIR emitting materials have a wide range of applications
 Medical (Photodynamic therapy and Low Level Light Therapy) 1

➢ Low absorption from tissue and > 50 % CCD efficiency in the 700 – 950 nm window 2

 All optical communications (Li-Fi) 3

• Novel linear porphyrin hexamer with bulky sidechains (THS) to prevent aggregation
• Solution-processable materials w/o the need of high-vacuum deposition techniques.
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Conclusions – Future work
❖ We characterised electro-optically the PL and EL of a novel conjugated linear porphyrin hexamer.
❖ We demonstrated the highest ηEL = 3.8 % in the NIR from a non-phosphorescent and heavy-metal free material with a τ ~ ns, suitable for telecommunications applications.

➢ Improve the injected carrier balance by adding a Hole Blocking Layer (HBL).
➢ Harvest triplet emission by substituting with heavy metals (Pt, Pd) the Zn centre.
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Organic Light-Emitting Diodes (OLEDs)
We fabricated OLEDs incorporating the F8BT:l-P6 blends with the architecture 
shown below.

Illustration of the fabricated devices showing the cross-sections and the relative 
band diagrams..

(a) EL spectra of the OLEDs 
incorporating the F8BT:l-P6 blends. (b)
ηEL versus Current Density curves with 
and w/o EBL. (c) Current Density –
Voltage – Radiance curves of the OLEDs.

Main focus on the 2.5 % as the best 
compromise between spectral purity 
and efficiency.

 Spectrally pure NIR emission with > 
95 % of the photons at λ > 700 nm.

 EL peaking at 850 nm with 45 nm 
FWHM.

 ηEL up to 2.2 %.
 By adding the commercial 

conjugated polymer TFB to act as 
Electron Blocking Layer (EBL) the ηEL

improved further to 3.8 %. 4

• Average maximum ηEL remained        
> 1.1 % with the EBL and > 0.8 % w/o 
EBL.

• Average maximum radiance               
> 1.9 mW/cm2 with EBL and                
> 0.3 mw/cm2 w/o EBL
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What is Flexible electronics?

The majority of electronics is built on top of silicon (Si) as a substrate. On certain occasions, glass can be used as an alternative to silicon. By using a flexible material

as substrate, such as various kinds of plastic, and fabricating electronics on it, we end up with flexible electronics! Will the next Samsung Galaxy or Apple iPhone use

flexible materials? Maybe…

Applications

Flexible screens and sensors – Next generation 

smartphones and laptops?

Many smartphone and laptop manufacturers have presented concepts and 

working prototypes of foldable and flexible devices. 

Flexible sensors

To enable flexible devices, a flexible touchscreen is needed. Also, flexible and 

conformable electronics find applications in wearable sensors for bio-related 

applications.
Conclusions
Flexible electronics are a major market, with a projected worth of up to

$73.4 billion by 2027 for the printed, flexible and organic electronics markets,

receiving a lot of investments from over 3000 companies and organisations

ranging from multinational companies, such as LG and Samsung, to innovative

start-ups and leading Universities around the world.

Applications

Flexible batteries and solar cells – Energy supply

Smartphones and laptops with flexible screens and flexible electronics are 

useless without a flexible source of energy. Batteries can be made flexible. A 

greener alternative? Flexible solar cells? Done!

Lenovo

Cambridge Graphene Centre and Plastic 

Logic – Flexible e-ink type display using 

graphene electronics. (2014)

Plastic Logic

LG

Flexterra – A start-up comprised by physicists and 

chemists created a 24 mm x 30mm flexible screen for 

a smart “wrist band” called Wove Band. (2017)

LG Display – A 810x1200 18” OLED

foldable display with a reported $1.75 

billion investment. With 0.18mm thick,

it’s rollable like a poster! (presented 2016).

Lenovo - using advanced material and

new screen technologies to create a

foldable laptop screen (concept 2016)

Flexterra

Queen’s University, Canada

Queen’s University, Canada –

ReFlex: A flexible smartphone 

with useful features, but also fun! 

Bend it to launch the birds in 

Angry Birds!! It has a 720p OLED 

display by LG, Android OS and 

sensors to “feel” the bend. (2016)

Central Standard Timing - CST-01:A 

0.8mm thick flexible wristwatch, with an 

e-ink (Kindle like) screen. The “world’s 

thinnest watch” that weighs 12g. It raised 

over $1,000,000 on Kickstarter. (2013)

CST

Korean Universities – Flexible, 

ultra-thin solar cells that can be 

integrated to a number of devices and 

objects : smartwatches, clothes, bags, 

even glasses! (2016)

Panasonic – A flexible battery that can pass 

1000 bend cycles and maintain 80% of the 

capacity. At 0.45 mm, it is very thin, but with 

a low max capacity of 60 mAh, much less 

than an iPhone 7 battery (~1900 mAh). (2017)

University of British Columbia, Canada 

– A 5cm x 5cm prototype flexible sensor 

that can detect “touch” commands while 

bended or stretched. (2017)

Panasonic

Sarwar, et al/Science Advances

Our work for Flexible Electronics: Sensors!

Our approach to flexible sensors is “tattoo” electronics! Just like the “tattoos” 

found in snacks! All that is needed is just a wet cloth an the tattoo is 

transferred. Our driving force:

Lochner et al, Nat. Commun. 2014

University of California-Berkley, US – All-organic 

sensor for pulse oximetry: Measure pulse rate and blood 

oxygenation by using light. Flexible substrate with two 

OLEDs and a detector. (2014)

UCL

University College London, London – A tattoo-able 

working OLEDs on commercial tattoo paper with 

green emission – On-going work!

For this work we used a commercial tattoo 

paper, some bio-compatible “plastics” 

(polymers) to emit the light and aluminium! 

The device works (not ideally, yet!)!

Further optimisations are on the way! Our 

(Italian) collaborators at the Centre for Micro-

BioRobotics (CMBR) in IIT are developing 

the detection part on the same tattoo paper and 

hopefully we can obtain a fully organic 

flexible OLED-detection system.
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1. Abstract
Here we report the optical and electro-optical characterisation of three encapsulated low-gap red-emitting conjugated polymers and their "naked" analogues,
incorporated in organic light-emitting diodes (OLEDs). We characterised the optical properties both in solution and thin films, and the electroluminescence external
quantum efficiency (ηEL) to evaluate the advantages of our encapsulation strategy which entails sheathing of the conjugated cores via covalently-bound and ring-
shaped sidechain. The novel polymers exhibit high fluorescence quantum yields (ηPL), both in solution (> 70 %) and in thin films (> 20 %) as a result of reduced
suppressed pi-pi aggregation and structural disorder.

2. Optical Characterisation
 Diketopyrrolopyrrole (DPP) motifs in: organic solar cells, transistor devices, as

dyes in automotive industry (Ferrari)
 Luminescent applications limited due to the tendency of DPP to π-π stack

➢ Covalent approach to sheath the DPP core and prevent stacking effects
➢ Copolymerised with three different derivatives: fluorene (E-DPPF), thiophene

(E-DPPT) and phenyl (E-DPPP) (Figure 1)

 Further explore the efficacy of the encapsulation strategy by comparing with
the “naked” analogues

 PL spectra are compared in Figure 2

 ~20 nm red-shift from solution to thin films due to increased planarity
“Naked” versus encapsulated polymers
 Spectral narrowing and blue-shift for the encapsulated polymers

(FWHM narrowing of ~ 80 and ~ 40 nm for DPPP in solution and thin film
respectively, ~ 130 and ~ 75 nm for DPPT)

 3 times higher ηPL of the encapsulated polymers in both solution and thin
films
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4. Conclusions
❖ Successful synthesis of three diketopyrrolopyrrole copolymers
❖We characterised electro-optically the PL and EL of a novel conjugated

insulated molecular wired DPP copolymer
❖We compared the optical and electro-optical properties of the encapsulated

polymers to their “naked” analogues to demonstrate the suppression of
aggregation.

❖ First demonstration of a DPP copolymer with very high ηPL both in solution
and thin film, paving the way for future applications where efficient red
emitters are required.

5. References
A. Leventis et al., JACS, 2018, 140 (5), pp 1622–1626

3. Organic Light-Emitting Diodes (OLEDs)
We fabricated OLEDs using the polymers as the active layer in a typical

structure of ITO/PEDOT:PSS/Polymer/Calcium/Aluminium.

 Electroluminescence (EL) FWHM increased by ~ 50 and ~ 140 nm respectively for
DPPP and DPPT)

 Red-shift of ~ 70 nm for DPPP and ~ 50 nm for the DPPT
 External quantum efficiency (ηEL) of OLEDs shows 4 time increase for DPPP and 16

times for DPPT.
 Up to 10 times higher radiance (~ 0.2 mW/cm2 and ~ 0.02 mW/cm2 for

encapsulated and “naked” respectively)
➢ All corroborate our claims for aggregation prevention of the encapsulated

polymers

Figure 1: Representation of the encapsulation strategy of the DPP core. The 
copolymerised derivatives are shown on the right.

Figure 2: Normalised photoluminescence spectra. (a, b, c) Dilute solution in chlorobenzene    
(~ 4 μg/ml). (d, e, f) Thin films (~ 100 nm thickness). Solid lines → encapsulated polymers, 

dashed lines → “naked” analogues. (a, d) DPPF, (b, e) DPPP and (c, f) DPPT.

Sample η𝑷𝑳
𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 (%) η𝑷𝑳

𝒇𝒊𝒍𝒎
(%)

E-DPPF 94.8± 1.1 19.8 ± 1.1

E-DPPP 74 ±1.2 22.6 ± 1.1

E-DPPT 73.6 ± 1.2 27.8 ± 1.3

N-DPPF

N-DPPP 19 ± 3.3 8 ± 0.3

N-DPPT 18.2 ± 1.3 5.6 ± 0.5

Figure 3: (a, d, g) EL spectra, (b, e, h) current density – voltage – radiance (JVR) curves (black for current 
density and red for radiance) of E-DPPF, E-DPPP and E-DPPT (solid lines) and the “naked” analogues 

(dashed lines) respectively. (c, f, j) ηEL versus current density of E-DPPF, E-DPPP and E-DPPT (black balls) 
and the “naked” analogues (empty circles) respectively.
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1. Abstract
We characterised a series of low-gap zinc porphyrin oligomers and incorporated in organic light-emitting diodes (OLEDs). The modified bulky trihexylsilyl (THS)
sidechains prevent π-π stacking, whereas an increase of the oligomer length increases the conjugation and hinders intersystem crossing. This allows the tuning of the
emission from red to the near-infrared (NIR) (λ > 700 nm) and achieving high ηEL. When incorporated in OLEDs, porphyrins emit up to ~ 900 nm and show
exceptionally high ηEL, up to 4.5 % and high radiances, up to 4 mw/cm2, paving the way for applications where NIR emitters are required.

3. Optical Characterisation
 Oligomers emit in the red and NIR region
 Peaks in solution from ~ 630 nm to ~800 > 80 % of the emission in the NIR

 THS sidechains are limiting the π-π stacking
 Oligomers show high ηPL in solution, up to ~ 45 % for the l-P7
 For n > 3, > 95 % in the NIR

 For solid-state applications, blends with a commercial conjugated polymer, 
F8BT
➢ Excellent semiconducting properties
➢ Good spectral overlap – efficient Förster Resonant Energy Transfer (FRET) 

expected
➢ Blends with F8BT in three loadings: 1.0, 2.5 and 5.0 w/w%

 Good trade-off of NIR emission-high ηPL for the 2.5 w/w% loading and the 
mid-length oligomers

 Increasing the loading → increased quenching of F8BT → High NIR emission

2. Introduction
NIR emitting materials have applications in:
Medical (photodynamic therapy and low level light therapy)
➢Low absorption from tissue and > 50 % CCD efficiency in the 700 – 950 nm 

window
 All optical communications (Li-Fi)
 Defence and security

❖ Synthesised a series of zinc porphyrin oligomers with bulky sidechains to 
prevent aggregation

❖ Solution-processable materials w/o the need of high-vacuum deposition 
techniques

❖ Tuning of the emission by changing the oligomer length

5. Conclusions – Future work
❖We characterised electro-optically the PL and EL of a series novel conjugated 

linear porphyrin oligomers.
❖We demonstrated very high ηEL = 4.5 % and radiance in the NIR from a non-

phosphorescent and heavy-metal free material, suitable for applications in 
the NIR

❖We showed the tuning of the emission by changing the oligomer length
➢ Use a different host polymer than F8BT
➢ Harvest triplet emission by substituting zinc with heavy metals (Pt, Pd) in the 

metal centre.

4. Organic Light-Emitting Diodes (OLEDs)
Multi-layered OLEDs fabrication incorporating the F8BT:Oligomers blends as 

active layer
 OLEDs architecture: ITO/PEDOT:PSS/Active Layer/Calcium/Aluminium
 OLEDs show almost complete quenching of the F8BT emission
➢ > 90 % of the photons in the NIR
➢ Type II heterojunction favours the emission from the low energy sites
➢ Direct recombination rather than FRET

 ηEL values represent some of the highest reported for heavy-metal free 
organic materials for this spectral range
➢ ηEL max of 4.5 % for l-P2
➢ > 1 % for all oligomers

 Average maximum ηEL remains > 0.5 % for all the oligomers

 Radiances exhibited by the oligomers up to ~ 4 mW/cm2

Maximum radiance achieved at reasonable voltages (~ 15 V) for the 1.0 and 
2.5 w/w% loadings

Figure 3: (left) Normalised electroluminescence spectra of F8BT:Porphyrin blends. (right) Percentage 
of the electroluminescence in the NIR region. Both figures show the spectra and NIR EL of 

F8BT:Porphyrin 5.0 w/w% loading at the voltage where the maximum light emission was achieved. 
Inset: Illustration of the architecture of the fabricated OLEDs.

Figure 4: (left) Maximum electroluminescence external quantum efficiency (ηEL ) achieved. (right)
Maximum radiance achieved.

Figure 1: (left) Normalised photoluminescence in dilute (10-6 M) toluene solution. (right)
Percentage of the photoluminescence in the NIR region. Inset: Photoluminescence quantum yield 

(ηPL) of the oligomers in solution. Structures of F8BT (top left) and porphyrin (bottom right)

  
           

  

 

Figure 2: (left) Photoluminescence quantum yield (ηPL) of the F8BT:Oligomers blends in thin films 
(~ 100 nm). (right) Percentage of the photoluminescence in the NIR region.
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