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SUMMARY

Background
Brain change can occur in primary biliary cholangitis (PBC), potentially as
a result of cholestatic and/or inflammatory processes. This change is linked
to systemic symptoms of fatigue and cognitive impairment.

Aim
To identify whether brain change occurs early in PBC. If the change devel-
ops early and is progressive, it may explain the difficulty in treating these
symptoms.

Methods
Early disease brain change was explored in 13 patients with newly diag-
nosed biopsy-proven precirrhotic PBC using magnetisation transfer, diffu-
sion-weighted imaging and 1H magnetic resonance spectroscopy. Results
were compared to 17 healthy volunteers.

Results
Cerebral magnetisation transfer ratios were reduced in early PBC, compared
to healthy volunteers, in the thalamus, putamen and head of caudate with
no greater reduction in patients with greater symptom severity. Mean
apparent diffusion coefficients were increased in the thalamus only. No 1H
magnetic resonance spectroscopy abnormalities were seen. Serum man-
ganese levels were elevated in all PBC patients, but no relationship was seen
with imaging or symptom parameters. There were no correlations between
neuroimaging data, laboratory data, symptom severity scores or age.

Conclusions
This is the first study to be performed in this precirrhotic patient popula-
tion, and we have highlighted that neuroimaging changes are present at a
much earlier stage than previously demonstrated. The neuroimaging abnor-
malities suggest that the brain changes seen in PBC occur early in the
pathological process, even before significant liver damage has occurred. If
such changes are linked to symptom pathogenesis, this could have impor-
tant implications for the timing of second-line-therapy use.
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INTRODUCTION
Patients with the autoimmune cholestatic liver disease pri-
mary biliary cholangitis [formerly primary biliary cirrhosis
(PBC)] frequently exhibit both central nervous system
(CNS) symptoms and neurophysiological and functional
CNS abnormality. Fatigue is a significant problem in
patients with PBC, and although partly peripheral in ori-
gin, there appears to be a central component associated
with sleep disturbance and autonomic dysfunction.1–4

Patients with PBC also describe subtle cognitive impair-
ment (particularly relating to concentration and memory)
which can lead to significant functional impairment,5 a
phenomenon that has been associated with defective cen-
tral corticotropin-releasing hormone neurotransmission
and TReg inhibition in cholestatic animal models.6, 7 Cen-
tral fatigue and cognitive impairment in PBC remain un-
responsive to any form of current drug treatment. Further-
more, recent data from the large UK-PBC patient cohort
have suggested that the severity of both fatigue and cogni-
tive symptoms post-transplant in PBC is similar to that
seen in the un-transplanted population, raising the possi-
bility that the process responsible for CNS abnormality is
not reversed by transplantation.8 Prospective studies,
albeit in smaller patient numbers, have confirmed ongoing
fatigue in post-transplant patients, with a severity similar
to that seen in the un-transplanted PBC population.9 The
apparent lack of change in CNS symptomology in precir-
rhotic PBC following liver transplantation highlights the
need for improved therapy earlier in the disease course to
change its natural history.

Therapeutics in PBC is in the process of being trans-
formed by the advent of effective second-line therapy.
Primary therapy with ursodeoxycholic acid (UDCA) is
effective in the majority of people and 50% of patients
unresponsive to UDCA have been shown to respond to
the first of the second-line agents, obeticholic acid
(OCA), a Farnesoid X receptor (FXR) agonist.10, 11 Com-
bination therapy with UDCA and fenofibrate has also
been proposed for patients who exhibit an incomplete
UDCA response, however, high quality trial data are cur-
rently lacking.12, 13 The proposed paradigm for OCA at
present is to restrict its use to patients who have demon-
strated lack of response to UDCA. When used in this
way, the trials of OCA show no benefit in terms of fati-
gue or cognitive impairment in PBC patients, and this
remains a frustrating aspect of the otherwise very
promising therapy profile for this agent.10 One possible
explanation for the lack of benefit on CNS symptoms of
an otherwise highly effective agent could be that brain
change in PBC (which has already been demonstrated to

be irreversible following transplantation) may be some-
thing which actually develops from early in the disease
process, rather than being a late-stage phenomenon. It
may, therefore, be that the current treatment paradigm
for OCA mitigates against beneficial effect on brain
change. At present, however, the data regarding early
PBC, and the extent to which CNS abnormality is pre-
sent, and might thus be reasonably targeted by more
effective anticholestatic therapy, are limited. All pub-
lished studies of organic brain change in PBC have been
limited to advanced-stage cirrhotic patients. The study of
patients with early disease is warranted to explore the
hypothesis that brain change starts early in the disease; a
finding which if confirmed would warrant a change in
proposed treatment paradigms.

The basal ganglia and the globus pallidus in particular
are key regions of the brain with associated pathophysiol-
ogy in a variety of conditions ranging from movement dis-
orders, such as Parkinson’s disease14 to chronic hepatitis
C, and in manganese workers, who have been exposed to
industrial pollution.15–17 It has been previously hypothe-
sised that disrupted activity in these areas of the brain
leads to decreased motivation in these conditions, per-
ceived by the individual as fatigue.18 Furthermore, the
basal ganglia and the globus pallidus in particular have
been shown to be susceptible to manganese accumulation
associated with cholestasis of any cirrhotic state, while
patients with chronic liver disease exhibit pallidal hyperin-
tensity on T1-weighted magnetic resonance imaging
(MRI), similar to that seen in hypermanganesaemic states,
such as chronic parenteral nutrition administration and
manganese toxicity from industrial exposure.19, 20

The main investigative modality for CNS abnormali-
ties in PBC is, therefore, cerebral magnetic resonance
imaging (MRI) as manganese is a relaxation agent affect-
ing both T1 and T2 parameters.18 Imaging studies per-
formed to date have identified the presence of white
matter lesions in the brains of PBC patients and there is
objective evidence of a cerebral auto-regulation abnor-
mality.5, 20

Furthermore, magnetisation transfer (MT) sequences,
in patients with PBC who have established cirrhosis,
have defined abnormalities in the basal ganglia which
have been attributed either to manganese accumulation
or to changes in brain water content.18, 20 While MT
data are simple to acquire in the brain, there are multi-
ple factors that may influence their value and affect the
interpretation in PBC. The MT effect is based on com-
paring signal from water bound to intracellular macro-
molecules, compared to unbound or ‘free’ intracellular
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water and determining the shift between these compart-
ments.21 The MT effect is thus determined by (i) the
physico-chemical environment of ‘free’ or unbound
intracellular water molecules and (ii) the concentration
of intracellular macromolecules which may bind the free
water.22–24 If manganese deposition is present, this may
also have an effect on magnetisation transfer ratios. Fur-
thermore, it may be anticipated that the magnetisation
transfer ratio (MTR) may change as a result of natural
ageing processes, apart from pathological disease pro-
cesses.20 Unpicking the various factors responsible for
changes observed is difficult and we therefore took a
multiparametric imaging approach to define abnormali-
ties more precisely than has been done previously.

All previous MRI studies in PBC have been restricted,
however, to patients with advanced disease and established
cirrhosis. The aim of the present study was to build on
previous work to explore MRI change in the brains of PBC
patients, extending the previous studies using magnetisa-
tion transfer MRI sequences to newly diagnosed patients
with early stage disease. In the current study, we have also
applied other methodologies to PBC for the first time at 3
Tesla (T).18 Diffusion-weighted imaging (DWI) allows the
investigator to probe the tissue structure at the micro-
scopic level, by quantifying the motion of water molecules.
Data obtained may infer changes in intra- or intercellular
hydration, or changes to the structural integrity of
neuronal bundles. The combination of MT and diffusion-
weighted imaging may offer further insight into the
pathophysiology in PBC.

We hypothesised that (i) 3T MRI may more accurately
define changes in cerebral magnetisation transfer ratios
with its inherent signal-to-noise advantage in patients with
early stage precirrhotic PBC; (ii) the combination of MT
imaging, diffusion-weighted imaging and proton magnetic
resonance spectroscopy (1H MRS) may better define the
etiology of any MR detectable abnormality in patients with
precirrhotic PBC and (iii) MR parameters may correlate
with manganese levels and/or fatigue data. The data from
this study shed light on the genesis of brain injury in PBC,
suggesting that change is in fact present from early in the
disease process, and supporting the concept that a change
in the treatment paradigm to using highly effective therapy
early in the disease course is logical.

PATIENTS AND METHODS

Patient groups
Thirteen female patients (mean age 57 years, range 34–
65) with stage I or II PBC on diagnostic biopsy were

recruited from the out-patient departments at the John
Radcliffe Hospital, Oxford and Freeman Hospital, New-
castle within 6 months of that diagnostic biopsy. Seven-
teen healthy volunteers (11 women and 6 men) with a
mean age of 49.8 years (range 40–64), were recruited by
open advertisement to staff members and visitors to
Imperial College Healthcare Trust, to provide normative
control data for MR imaging. None of the healthy volun-
teers reported any significant medical history.

Patient inclusion criteria were: (i) age 18–65 years; (ii)
a liver biopsy consistent with stage I or II precirrhotic
PBC; (iii) no evidence of cirrhosis on clinical examina-
tion, liver biopsy, laboratory data or imaging; (iv) clinical
stability and (v) ability to give informed consent. Medical
exclusion criteria for both groups included: (i) history of
cerebrovascular disease; (ii) type I diabetes, or type II
diabetes with macrovascular complications; (iii) current
excessive alcohol consumption (UK National safe drink-
ing limits: 30 g and 20 g per day for men and women,
respectively); (iv) current intravenous drug usage;
(v) renal impairment (creatinine >150 mmol/L) and
(vi) psychoactive drugs or a history of major psychoses.

During the assessment, all patients completed the vali-
dated PBC-40 quality of life measure25 and blood tests
were taken to assess liver function tests, renal function,
full blood count, coagulation studies and serum man-
ganese levels. The latter were processed at the trace met-
als laboratory at Charing Cross Hospital, Imperial
College Healthcare Trust, London, UK.

MR imaging
Cerebral MRI was performed on a 3T Philips Intera MR
system (Philips, Best, the Netherlands). Standard volu-
metric T1-weighted sequences were performed with a
three-dimensional (3D) imaging sequence: echo time
(TE) 3.8 ms, repetition time (TR) 256 ms, number of
signal averages (NSA) = 1, 256 image matrix, 25 cm
field of view (FOV) and 2.0 mm slice thickness. T2-
weighted sequences were performed to exclude structural
brain pathology, with the following sequence parameters:
TE 80 ms, TR 3000 ms, 2 NSA, image matrix of 230,
23 cm FOV, and 3.0 mm slice thickness. DWI was
obtained in 15 directions of sensitisation using single-
shot echo planar imaging (TR 12555 ms, TE 51 ms, slice
thickness 2 mm, 2 NSA, b = 1000 s/mm2). A SENSE fac-
tor of 2 was used to reduce image distortion. A 15 direction
sequence was also used. MT was obtained using a two-
dimensional gradient-echo pulse sequence (TR 54.7 ms, TE
3.75 ms, flip angle 15 degrees, slice thickness 2 mm, 1
NSA) with 20 slices positioned over the basal ganglia. 1H
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MRS was acquired using a SENSE headcoil and a short
echo time PRESS sequence (TR 2000 ms, TE 36 ms, NSA
64), with volumes of interest of 15 9 15 9 15 mm placed
in the left basal ganglia. The sequence was performed three
times to give a total NSA of 192.

MRI analysis
Magnetisation transfer ratio (MTR) maps were calcu-
lated, using ImageJ version 1.32j, (www.imagej.nih.gov)
with the formula MTR = 100(SI0�SIRF)/SI0, where SIRF
is the signal intensity in the image employing an
off-resonance radiofrequency pulse and SI0 the signal
intensity in the initial proton density image. Regions of
interest (ROIs) were drawn around the: (i) frontal white
matter; (ii) head of caudate; (iii) putamen; (iv) globus
pallidus and (v) thalamus, bilaterally. The same area of
ROI was used for each brain region between subjects.
The pallidal index (PI) was calculated by the ratio of the
left/right averaged signal intensity in the globus pallidus,
to the averaged signal intensity of frontal white matter
on T1-weighted imaging multiplied by 100.26 Signal
intensities were measured using ROIs drawn version
1.32j (www.imagej.nih.gov).

Apparent diffusion coefficient (ADC) and fractional
anisotropy (FA) maps were calculated using DTI Studio
version 2.1 (www.dsi-studio.labsolver.org). Apparent dif-
fusion coefficient and fractional anisotropy values were
recorded from specific regions of interest (ROI) in the
genu, body and splenium of the corpus callosum. These
areas were chosen as they were anatomically highly con-
spicuous and therefore easily defined on this imaging
sequence. A standardised area of ROI was used for the
individual ROIs between different subjects.

MR spectra were analysed by two observers (MW and
LS), blinded to the clinical status of the patients. Peak
areas were measured for choline (Cho), creatine (Cr),
myo-inositol (mI) and N-acetylaspartate (NAA), using
the Advanced Magnetic RESonance (AMARES) algo-
rithm included in the MRUI software package
(www.mrui.uab.es), in the time domain. Peak area ratios
for NAA/Cr, Cho/Cr and mI/Cr were then calculated.

Statistical methods
Data were tested for normality using the Shapiro–Wilk
test. Between-group comparisons were made with the
Mann–Whitney U test. Correlations were made with the
Spearman rank test. Tests of significance were two-tailed.
Statistical analyses were performed using SPSS version 16
(IBM SPSS Statistics for Windows, Version 22.0.
Armonk, NY: IBM Corp). Where multiple brain regions

were analysed, a multiple correction factor of n-1 was
applied (Bonferroni correction for multiple compar-
isons).

Ethics
Ethical approval was obtained from the Hammersmith
and Queen Charlotte’s & Chelsea Research Ethics Com-
mittee (ref 04/Q0406/161). Local Research Governance
approval and indemnity, was provided by Imperial College
London. All subjects provided written informed consent.

RESULTS
The clinical details for study participants are given in
Table 1.

Magnetisation transfer ratio (MTR)
Magnetisation transfer ratios were significantly decreased
in the caudate, putamen and thalamus of precirrhotic PBC
patients, compared to the healthy volunteers (Table 2 and

Table 1 | Clinical characteristics of PBC patient
participants

Parameter Mean (s.d.)

UDCA use 100%
Alkaline phosphatase (ALP) 464 (238.1)
Alanine aminotransferase (ALT) 49.6 (32.1)
Prothrombin time (PT) 12.2 (0.5)
Bilirubin 11.0 (7.9)
PBC-40 symptoms domain
(potential range 7–35)

19.0 (4.3)

PBC-40 fatigue domain (11–55) 32.4 (11.2)
PBC-40 cognitive domain (6–30) 15.9 (4.6)
PBC-40 social & emotional
domains (13–65)

34.6 (11.8)

PBC-30 itch domain (0–15) 5.3 (4.9)

Table 2 | Regional mean magnetisation transfer ratios
(MTR) for precirrhotic PBC patients vs. controls and P
values of statistical significance using Mann–Whitney
test. Regions of the brain showing significant change in
PBC patients compared to controls after correction for
multiple testing are denoted in bold

Brain region

Mean MTRs (s.d.)

P valueControl PBC patients

Frontal white matter 57.56 (1.02) 56.83 (0.77) 0.01
Caudate 46.96 (0.72) 46.23 (0.84) 0.01
Putamen 48.56 (0.83) 47.09 (0.84) <0.0001
Globus pallidus 53.19 (0.93) 52.28 (1.15) <0.05
Thalamus 52.67 (1.09) 50.48 (1.42) <0.0001
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Figure 1). The greatest reductions in magnetisation trans-
fer ratios were found in the thalamus (3.9% reduction)
and the putamen (3.2% reduction). No statistically signifi-
cant differences in magnetisation transfer ratios were
noted within the group of PBC patients when they were
categorised according to self-reported symptoms on the
PBC-40 assessment tool. There was no correlation between
regional brain magnetisation transfer ratios and age in
either patients with precirrhotic PBC or healthy controls.
There was no significant correlation between the magneti-
sation transfer ratio data and laboratory biochemical data.
In this cohort, there was no association between the palli-
dal index and manganese levels (r = 0.037, P = 0.899).

Diffusion-weighted imaging (DWI)
The apparent diffusion coefficient (ADC) was measured
in nine brain regions (Table 3 and Figure 2). The appar-
ent diffusion coefficient was significantly increased only
in the thalamus of the PBC patients. There were no
other brain regions approaching statistical significance,
even before correction for multiple comparisons. There
was no significant difference in fractional anisotropy
(FA), between patients and controls.

Proton Magnetic Resonance Spectroscopy (1H MRS)
& Pallidal Index (PI)
There was no statistically significant difference in the
cerebral metabolite ratios in the basal ganglia between
precirrhotic PBC patients and healthy controls (Table 4).
Furthermore, there was no statistically significant differ-
ence in the pallidal index between precirrhotic PBC
patients and controls.
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Figure 1 | Brain magnetisation transfer ratios (MTR) in PBC patients and normal controls. (a) Thalamus, (b) Frontal
White Matter, (c) Caudate, (d) Putamen, (e) Globus Pallidus. All differences were significant at P < 0.05 and all
remained significant other than globus pallidus following correction for multiple testing.

Table 3 | Regional cerebral mean apparent diffusion
coefficients (ADC) for precirrhotic PBC patients vs.
controls (910�3 mm2/s) and P values of statistical
significance using Mann–Whitney test. Regions of the
brain showing significant change in PBC patients
compared to controls after correction for multiple
testing are denoted in bold

Brain region

Mean ADC 910�3 mm2/s
(s.d.)

P valueControl PBC patients

Caudate 0.698 (0.03) 0.702 (0.02) N.S.
Putamen 0.681 (0.02) 0.697 (0.03) N.S.
Globus pallidus 0.736 (0.07) 0.719 (0.04) N.S.
Thalamus 0.740 (0.03) 0.765 (0.02) <0.01
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Symptom association
Magnetic resonance findings were correlated with the
PBC-40 cognitive and fatigue domains; the domains
quantifying CNS-related symptoms. Of the areas of the
brain implicated as abnormal on magnetisation transfer
ratios and diffusion-weighted imaging analysis, associa-
tion was only seen between cognitive symptom severity
and putamen magnetisation transfer ratios (Table 5 and
Figure 3). Cognitive symptom impact was relatively low
in the study population, compared to the PBC popula-
tion as a whole (none of the study participants had
severe cognitive symptom severity as defined using estab-
lished cut-offs).25 All the PBC patients with abnormally
low putamen magnetisation transfer ratio values (defined
using the cut-off of mean �2s.d. for the normal con-
trols) had moderate cognitive impairment symptoms

compared with only 3/8 of the patients with normal
putamen magnetisation transfer ratios.

DISCUSSION
The findings of this study demonstrate that MR abnor-
malities are present in the brains of PBC patients from
the earliest stages of the disease, within months of dis-
ease diagnosis. This finding would support the concept
that the disease process in PBC (inflammation, cholesta-
sis or a combination of processes) could cause progres-
sive brain change. The study was not powered to explore
the links between brain change and individual symp-
toms. However, a suggestive association was seen
between change in the putamen, an area of the brain
playing a key role in learning, and the severity of cogni-
tive symptoms.27 The study identifies markers for brain
change with the disease, and potentially response mark-
ers for therapy aimed at normalising brain function. The
findings of this preliminary study need to be replicated
in larger cohorts with more detailed information relating
to symptom associations. However, they would, if con-
firmed, provide evidence to support a concept of early
aggressive treatment with anticholestatic therapy to
reduce the onset of CNS symptoms in this condition.

In the current study, we used multiple, complemen-
tary MR imaging modalities (T1-weighted MRI, magneti-
sation transfer ratios, diffusion-weighted imaging and 1H
MRS) in order to explore the full spectrum of potential
injury processes in precirrhotic patients. We have previ-
ously studied PBC patients with established cirrhosis at
1.5 Tesla (T), finding that magnetisation transfer ratios
were significantly reduced,18 with increased abnormality
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Figure 2 | Brain apparent diffusion coefficients (ADC)
in PBC patients and normal controls for the thalamus.
Difference was significant at P < 0.05 and remained
significant following correction for multiple testing. No
significant differences were seen for other brain areas.

Table 4 | MRS-measurable metabolite ratios in the
basal ganglia in healthy controls and patients with
precirrhotic PBC. P value denotes level of statistical
significance with the Mann–Whitney test

Metabolite ratio

Cerebral metabolite ratios
(s.d.)

P valueControls PBC

mI/Cr 0.204 (0.06) 0.315 (0.56) 0.1
Cho/Cr 0.553 (0.13) 0.494 (0.15) 0.3
NAA/Cr 1.64 (0.11) 1.74 (0.29) 0.4

mI, myo-inositol; Cr, creatine; Cho, choline; NAA, N-acetyl
aspartate.

Table 5 | Associations between fatigue and cognitive
symptom severity and degree of abnormality in areas
of the brain in PBC showing abnormal magnetisation
transfer ratios (MTR) and apparent diffusion
coefficients (ADC) values compared to controls. Values
in bold denotes P < 0.05. (a) magnetisation transfer
ratios, (b) apparent diffusion coefficients

Parameter

PBC-40
cognitive
domain
score (r2)

PBC-40
fatigue
domain
score (r2)

(a)
Thalamus 0.08 0.01
Frontal white matter 0.11 0.04
Caudate 0.00 0.03
Putamen 0.37 0.09

(b)
Thalamus 0.00 0.03
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levels in more fatigued subjects. The Newcastle group
studied 11 patients with PBC with cerebral MRI as part
of a study designed to investigate associations between
cognitive impairment, autonomic dysfunction and struc-
tural brain lesions.5 The white matter lesion load corre-
lated with cognitive function, measured by full-scale
Intelligence Quotient (IQ). More recently, Hollingsworth
et al. studied 30 patients with PBC, measuring magneti-
sation transfer ratios, T1 and T2 in the globus pallidus.20

They found that magnetisation transfer ratios were nega-
tively correlated with age in early-stage PBC patients.
Forton et al. attributed changes in magnetisation transfer
ratios to increased manganese deposition.18 This may be
related to cholestasis that occurs in PBC and thus
impaired biliary export of manganese with subsequent
sedimentation in areas of high blood flow, such as the
basal ganglia. There is biological plausibility to the man-
ganese hypothesis, given established reports of increased
manganese deposition in other conditions where T1

hyperintensity has been observed, such as welders with
occupational manganese exposure28 and subjects on
long-term total parenteral nutrition.29 Additionally, a
strong correlation has been demonstrated between ante-
mortem MRI pallidal signal intensity and post-mortem
manganese concentrations.26 However, reduced magneti-
sation transfer ratios has also been widely reported in
patients with cirrhosis and the etiology suggested to be
related to increased brain water content or low-grade
cerebral oedema.30 Thus, the etiology of reduced mag-
netisation transfer ratios and associations with both fati-
gue and laboratory parameters remains to be confirmed.
Neurophysiological approaches such as transcranial mag-
netic stimulation (TMS) show functional abnormality in

regulatory circuits in the CNS.5 Animal models of
cholestasis, such as the bile duct ligated rodent, show
inflammatory change, associated with infiltration of
inflammatory cells into the CNS, although, clearly, the
potential for cholestasis itself to have neurological effects
remains.31, 32 In the current study, we observed reduced
magnetisation transfer ratios in the basal ganglia struc-
tures of the thalamus, putamen and head of caudate.
The mean apparent diffusion coefficients were only
increased in the thalamus. Although serum manganese
levels were elevated in the precirrhotic PBC patients, we
found no association between the imaging data and
blood manganese levels.

MR signal abnormalities in basal ganglia have also
been widely reported in patients with any cause of estab-
lished cirrhosis, most conspicuously on T1-weighted MRI
and these were originally thought to be a manifestation
of hepatic encephalopathy (HE). Several investigators
report correlations between measures of MRI T1 hyper-
intensity in the basal ganglia and blood manganese levels
in patients with cirrhosis of any cause, but not always
associated with hepatic encephalopathy.26, 33, 34 In the
context of established cirrhosis of any cause, reductions
in have been attributed to low-grade cerebral oedema,
which is thought to occur in hepatic encephalopathy.35

While associations between reduced magnetisation trans-
fer ratios and the Child-Pugh score have been found by
some,36 this is not a consistent finding in the litera-
ture.21, 37 Patients with cirrhosis have been shown to
have an magnetisation transfer ratio that normalises after
liver transplantation.35 A further reduction in magnetisa-
tion transfer ratio has been induced in patients with cir-
rhosis by the administration of an amino acid load with
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a significant change in magnetisation transfer ratio
induced in 4 h.35 However, in the current study, only
patients without cirrhosis, as determined by liver biopsy,
were included. Thus, the findings of reduced magnetisa-
tion transfer ratios are not a consequence of hepatic
encephalopathy, which is supported by the normal 1H
MRS for the cohort.

In diffusion-weighted imaging, the mean apparent dif-
fusion coefficients in the thalamus was significantly
increased, but in the other measured brain regions did
not approach statistical significance, even before correct-
ing for multiple comparisons. While one might intu-
itively expect diffusion-weighted imaging measures to be
abnormal in the same regions as MT, as both are
affected by brain water content, there is evidence in the
multiple sclerosis literature that there is often no correla-
tion between magnetisation transfer ratios and diffusion-
weighted imaging measures.38, 39 This reinforces that
these two MR modalities are independent of each other,
quantifying different effects within a region of interest.
The classical biological interpretation of the increased
apparent diffusion coefficients in the thalamus would be
the presence of ‘vasogenic’ or extracellular oedema.39–42

However, it must be appreciated that effects from pro-
teins, phospholipids and extracellular matrix may affect
the diffusion of water molecules,43 rather than just an
increase in the amount of extracellular water. Indeed,
manganese deposition within the thalamus could result
in alteration of the cell membrane permeability, thereby
affecting the water diffusivity and that accumulation of
manganese within the extracellular matrix, or intracellu-
larly, may affect the apparent diffusion coefficients. Due
to the fact that the increased apparent diffusion coeffi-
cients were only found in one brain region, it is possible
that other areas of the brain may have yielded significant
results. However, given that this was a pilot study, insuf-
ficient numbers of subjects may have been contributory.

The finding of normal 1H MRS in this cohort of PBC
patients, of whom more than 50% reported symptoms of
moderate or severe fatigue, is interesting. 1H MRS has
been found to be abnormal in patients with impaired
quality of life attributed to liver disease. In patients with

cirrhosis and hepatic encephalopathy, reduced basal gan-
glia choline/creatine (Cho/Cr) and myo-inositol/creatine
(mI/Cr) ratios have been widely reported.44–46 Elevated
Cho/Cr ratios in the basal ganglia have been reported in
patients with mild hepatitis C without cirrhosis47 and
were associated with impaired psychometric perfor-
mance. Thus, the absence of neurospectroscopic abnor-
malities may suggest an alternative mechanism to that
which affects the quality of life of patients with cirrhosis
or mild hepatitis C.

This is the first neuroimaging MR study specifically to
look at precirrhotic PBC. We sought to identify whether
there may be CNS change early in the disease and our
findings would confirm that there is. Larger scale, and in
particular linear studies, will be needed to explore the
relationship of this change to symptoms and its response
to therapies such as UDCA and OCA. The presence of
brain change so early in the disease process would, how-
ever, suggest that the current step-up approach to ther-
apy in which treatment change follows failure of a
therapy type may allow the progressive accumulation of
brain injury whilst waiting for adequate therapeutic
response.
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