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A B S T R A C T

Our understanding of mesial temporal lobe epilepsy (MTLE), one of the most common form of drug-resistant
epilepsy in humans, is derived mainly from clinical, imaging, and physiological data from humans and animal
models. High-throughput gene expression studies of human MTLE have the potential to uncover molecular
changes underlying disease pathogenesis along with novel therapeutic targets. Using RNA- and small RNA-
sequencing in parrallel, we explored differentially expressed genes in the hippocampus and cortex of MTLE
patients who had undergone surgical resection and non-epileptic controls. We identified differentially expressed
genes in the hippocampus of MTLE patients and differentially expressed small RNAs across both the cortex and
hippocampus. We found significant enrichment for astrocytic and microglial genes among up-regulated genes,
and down regulation of neuron specific genes in the hippocampus of MTLE patients. The transcriptome profile of
the small RNAs reflected disease state more robustly than mRNAs, even across brain regions which show very
little pathology. While mRNAs segregated predominately by brain region for MTLE and controls, small RNAs
segregated by disease state. In particular, our data suggest that specific miRNAs (e.g., let-7b-3p and let-7c-3p)
may be key regulators of multiple pathways related to MTLE pathology. Further, we report a strong association
of other small RNA species with MTLE pathology. As such we have uncovered novel elements that may con-
tribute to the establishment and progression of MTLE pathogenesis and that could be leveraged as therapeutic
targets.

1. Introduction

Mesial temporal lobe epilepsy (MTLE), one of the most common
forms of drug-resistant focal epilepsies, impairs quality-of-life, can
progressively impair cognition and mental health, and can be fatal due
to sudden death in epilepsy (SUDEP) or other causes (e.g., status epi-
lepticus, accidents) (Bell et al., 2011; Devinsky et al., 2016). Hippo-
campal sclerosis is the most prevalent neuropathological finding in
patients with drug-resistant MTLE and is characterized by neuronal
loss, atrophy, inelasticity/hardness, and astroglial proliferation in the

hippocampus (Blümcke et al., 2013; Thom, 2004). Surgical resection is
a common treatment for MTLE patients, but complication can arise.
Overall, surgery is effective in approximately 60% of cases, however,
25–35% of MTLE patients do not achieve sustained seizure freedom and
some suffer cognitive and behavioral sequelae (Blumcke et al., 2017;
Dredla et al., 2016; Engel et al., 2012; Kang et al., 2016; Pruitt et al.,
2016). Moreover, many patients are not candidates for surgery. Thus,
there is an urgent need to better understand the molecular mechanisms
underlying MTLE to develop novel molecular-based therapies.

Previous transcriptional studies of hippocampal tissue from MTLE
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patients identified profound changes in gene expression; however, these
studies examined only one brain region, analyzed selective tran-
scriptomic elements or were under-powered (Dixit et al., 2016; Griffin
et al., 2016; Kaalund et al., 2014). Studies profiling differentially ex-
pressed mRNA and microRNAs (miRNAs) in animal MTLE studies are
limited by heterogeneous seizure/epilepsy models and strains, leading
to discordant results (Korotkov et al., 2017). Further, no study has
analyzed other short non-coding RNAs elements of the transcriptome
such as small nuclear RNAs or small nucleolar RNAs. These elements of
the transcriptome represent important regulatory elements that are
thought to play a critical role in cancer prognosis (Liao et al., 2010; Mei
et al., 2012), but have not been studied in the context of MTLE. Per-
forming RNA-Seq and small RNA-Seq on clinically well-characterized
brain tissue resected during surgical treatment of drug-resistant MTLE
patients offers a unique opportunity to assay all elements of the tran-
scriptome towards developing a better understanding of the molecular
mechanisms underlying the pathogenesis of MTLE.

In this study, we comprehensively analyzed all transcriptomic ele-
ments in parallel in fresh-frozen cortical and hippocampal tissue re-
sected at surgery from MTLE patients using both RNA-Seq and small
RNA-Seq. Using RNA-Seq we identified marked changes in the hippo-
campus of the MTLE patients when compared to controls but not in the
cortex of MTLE patients. By contrast, small RNA-Seq revealed striking
differences in the expression of miRNAs as well as other small non-
coding RNAs in both the cortex and hippocampus of MTLE patients.
Integration of the small RNA and mRNA transcriptomic profiles of the
MTLE-HS identified 36 significantly enriched pathways that may be
regulated by miRNAs, including many immune response and in-
flammation related pathways.

2. Materials and methods

2.1. Human tissue

The MTLE surgical tissue analyzed in this study was obtained from
the archives of the departments of (Neuro)pathology of the Amsterdam
University Medical Centers (Amsterdam UMC), the Netherlands, and
University College London (UCL), United Kingdom. Informed consent
was obtained from each Institutional Review Board (Amsterdam UMC
and UCL) to use brain tissue and to access medical records. Tissue was
used in accordance with the Declaration of Helsinki and the Amsterdam
UMC Research Code provided by the Medical Ethics Committee and
approved by the scientific committee of the university Biobank. For this
study, 11 post-mortem control samples (5 cortical and 6 hippocampal)
and 22 surgical MTLE samples (6 cortical and 16 hippocampal) were
obtained. Table 1 summarizes the clinical characteristics of the patients
and controls. All cases were reviewed independently by two neuro-
pathologists and the classification of hippocampal sclerosis was based
on International League Against Epilepsy criteria for microscopic ex-
amination (Blümcke et al., 2013). Control material was obtained during
autopsy of age-matched individuals without a history of seizures or
other neurological diseases.

2.2. RNA isolation

Frozen brain tissue was homogenized in Qiazol Lysis Reagent
(Qiagen Benelux, Venlo, the Netherlands). Total RNA was isolated using
the miRNeasy Mini kit (Qiagen Benelux, Venlo, The Netherlands) ac-
cording to manufacturer's instructions. The concentration and purity of
RNA was determined at 260/280 nm using a NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, Wilmington, DE, USA) and RNA
quality was assessed using a Fragment Analyzer (Agilent technologies
Netherlands, Amstelveen, the Netherlands).

2.3. RNA-Seq library preparation and sequencing

All library preparation and sequencing were completed at
GenomeScan (Leiden, the Netherlands). For RNA-Seq the NEBNext
Ultra Directional RNA Library prep Kit for Illumina (New England
Biolabs, Ipswich, MA, USA) was used in accordance with the manu-
facturer's protocols to process the samples and prepare the libraries for
sequencing. In brief, ribosomal RNA (rRNA) was depleted from total
RNA using a rRNA depletion kit (New England Biolabs, Ipswich, MA,
USA). Next, RNA was fragmented and cDNA synthesis was performed.
Sequencing adapters were ligated to the cDNA fragments followed by
PCR amplification. Samples used for small RNA-Seq were processed
using the TruSeq Small RNA-Seq preparation kit (Illumina, Foster City,
CA, USA) in accordance with manufacturers' guidelines. Small RNA was
isolated from purified RNA by size selection after ligation of sequencing
adapters. After gel excision, the small RNA fragments were amplified by
PCR. All clustering and DNA sequencing used the Illumina cBot and the
HiSeq 4000. Both RNA-Seq and small RNA-Seq were subjected to
paired-end sequencing with a read length of 151 nts to a depth of 50
million and 20 million reads, respectively.

2.4. Bioinformatics analysis of RNA-Seq data

Read quality was assessed using FastQC v0.11.2 software produced
by the Babraham Institute (Babraham, Cambridgeshire, UK), and
Trimmomatic v0.36 was used to filter reads of low quality (Bolger et al.,
2014). Low quality leading and trailing bases were removed from each
read, a sliding window trim using a window of 4 and a phred33 score
threshold of 20 was used to assess the quality of the body of the read.
We excluded any read<75 nucleotides in length. Only reads with
forward and reverse elements were included in downstream analysis.

Table 1
Samples used in this study.

Sample Region Gender Epilepsy
duration
(years)

Age of onset
(years)

Age (years)

MTLE-2 Cortex Male 15 19 34
MTLE-3 Cortex Male 9 21 29
MTLE-4 Cortex Male 11 15 26
MTLE-5 Cortex Female 23 9 32
MTLE-6 Cortex Male 52 0 52
MTLE-7 Cortex Male 15 7 22
MTLE-1 Hippocampus Female 11 22 32
MTLE-3 Hippocampus Male 9 21 29
MTLE-5 Hippocampus Female 23 9 32
MTLE-6 Hippocampus Male 52 0 52
MTLE-8 Hippocampus Male 7 51 58
MTLE-9 Hippocampus Male 30 3 33
MTLE-10 Hippocampus Female 35 20 55
MTLE-11 Hippocampus Female 42 1 43
MTLE-12 Hippocampus Female 16 13 29
MTLE-13 Hippocampus Female 17 15 32
MTLE-14 Hippocampus Female 12 46 58
MTLE-15 Hippocampus Female 22 23 45
MTLE-16 Hippocampus Female 11 8 37
MTLE-17 Hippocampus Female 50 14 64
MTLE-18 Hippocampus Male 7 18 25
MTLE-19 Hippocampus Male 8 17 25
Control-1 Cortex Male – – 31
Control-4 Cortex Male – – 31
Control-6 Cortex Male – – 49
Control-7 Cortex Male – – 57
Control-8 Cortex Male – – 48
Control-1 Hippocampus Male – – 31
Control-2 Hippocampus Male – – 25
Control-3 Hippocampus Female – – 44
Control-4 Hippocampus Male – – 31
Control-5 Hippocampus Male – – 75
Control-6 Hippocampus Male – – 49
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Reads were aligned to the human reference genome, GRCh38 using
TopHat2 v2.0.13 with the default settings (Kim et al., 2013). Using the
featureCounts program from the Subread package, the number of reads
that aligned to the genes in accordance with Gencode v27 were cal-
culated (Harrow et al., 2012; Kozomara and Griffiths-Jones, 2014; Liao
et al., 2014). Genes were only included in the differential expression
analysis if they had ≥ 5 read counts in ≥ 4 samples. Differential ex-
pression was analyzed using the R package DESeq2 (Love et al., 2014).
The false discovery rate was controlled for using the Benjamini-Hoch-
berg correction, gene expression changes with an adjusted p-value<
.05 were considered significant.

2.5. Bioinformatics analysis of small RNA-Seq data

Read quality was assessed using FastQC v0.11.2 software produced
by the Babraham Institute (Babraham, Cambridgeshire, UK) and
Trimmomatic v0.36 was used to filter reads of low quality (Bolger et al.,
2014). Low quality leading and trailing bases were removed from each
read, a sliding window trimming using a window of four and a phred33
score threshold of 15 was used to assess the quality of the read body.
Any read<17 nts was discarded. Both forward and reverse reads had
to be present for reads to be included in downstream analysis.

Reads were aligned to the human reference genome, GRCh38 using
Bowtie2 version 2.3.2 (Langmead and Salzberg, 2012), no mismatches
between the seed sequence and the reference genome were allowed,
reads were allowed to align a maximum of ten times. Using the fea-
tureCounts program from the Subread package the number of reads that
aligned to the miRNAs, according to miRBase21 (Griffiths-Jones et al.,
2008; Kozomara and Griffiths-Jones, 2014) (www.mirbase.org) and
other short RNA species extracted from Gencode v27 were calculated
(Harrow et al., 2012; Kozomara and Griffiths-Jones, 2014; Liao et al.,
2014). Small RNAs with ≥5 read counts in ≥ 4 samples were con-
sidered expressed. Differential expression analysis was performed using
the R package DESeq2 (Love et al., 2014). The false discovery rate was
controlled for using the Benjamini-Hochberg correction, gene expres-
sion changes with an adjusted p-value< .05 were considered statisti-
cally significant.

2.6. Integrative bioinformatics

RNA-Seq and small RNA-Seq data were integrated using the R
package “piano” (Väremo et al., 2013) and custom scripts written in R.
The “piano” package is an open source tool available in R that can be
used to perform gene set enrichment analysis (GSEA) using a variety of
methods. The whole RNA transcriptome profile and the Reactome
(Croft et al., 2011; Fabregat et al., 2018) gene to pathway dataset were
fed to “piano”. The Wilcoxon rank-sum test method was used to identify
enriched gene-sets among the dataset. Significance values were calcu-
lated through random gene sampling. First, a random set of genes equal
in size to the gene-set being tested was selected and the gene set statistic
was recalculated (Väremo et al., 2013). This was repeated 10,000 times
to give a discrete null distribution. The gene set p-value was based on
the fraction of random gene set statistics equal to or more extreme than
the original gene set statistic. All p-values were corrected using the
Benjamini-Hochberg method. Gene sets with an adjusted p-value< .05
were considered enriched. Next, gene sets enriched for differentially
expressed genes were identified using Fisher's exact test. Gene sets with
a Benjamini-Hochberg adjusted p-value< .05 were considered en-
riched for differentially expressed genes. Results were visualized using
Cytoscape (Shannon et al., 2003).

Gene sets that were potentially modulated by miRNAs were then
identified. First, the list of validated miRNA targets for each of the
differentially expressed miRNAs was retrieved from miRWalk2 (Dweep
et al., 2011; Dweep and Gretz, 2015). The validated miRNA targets
from miRWalk2 are collected via an automated text-mining search,
which is the collated with data from other databases. Each gene set that

was enriched for differentially expressed genes was then assessed for
over-representation of miRNA targets using Fisher's exact test. Gene sets
with a Benjamini-Hochberg adjusted p-value< .05 were considered
enriched for validated miRNA targets.

Finally, the expression levels of differentially expressed miRNAs and
differentially expressed genes in the modules of interest were correlated
to identify potentially miRNA-mRNA interaction partners. Correlations
were calculated using Spearman's rank correlation, significant correla-
tions (adjusted p-value< .05) of> 0.7 and less than −0.7 were
deemed potential interesting interaction partners.

2.7. Quantitative reverse-transcription PCR analysis

To evaluate the gene expression of Cathepsin H (CTSH), matrix
metallopeptidase 17 (MMP17), matrix metallopeptidase 14 (MMP14),
and interleukain-1 beta (IL1B), 2.5 μg of total RNA was reverse-tran-
scribed into cDNA using oligodT primers. PCR primers (Eurogentec,
Belgium) were designed using the Universal ProbeLibrary of Roche
(https://www.roche-applied-science.com) based on the reported cDNA
sequences. The PCR master mix and data quantification was carried out
in the same way as mentioned previously (Mills et al., 2017). The
starting concentration of each product was divided by the starting
concentration of the reference gene, eukaryotic translation elongation
factor 1 alpha-1 (eEF1A1) and this ratio was compared between groups
(Mann-Whitney U test); p-value< .05 was considered significant.

2.8. Connectivity map analysis

The connectivity map (CMap) uses cellular responses to perturba-
tions to identify relationships between diseases and therapeutics
(Subramanian et al., 2017). The top 150 up-regulated and top 150
down-regulated genes from MTLE-HS sorted by adjusted p-value were
fed into CMap. These were then compared to the CMap database that
contains over one million gene expression signatures that are derived
from L1000 high-throughput assay to identify perturbagens that give an
opposing gene signature to that entered.

3. Results

3.1. RNA-Sequencing of MTLE brain tissue

RNA-Seq was performed on total RNA extracted from 22 MTLE
subjects obtained at surgery and 11 non-epileptic post-mortem control
subjects. Each sample was sequenced to a depth of 50 million paired-
end reads. After quality assessment and filtering ~48 million paired-
end reads remained per sample of which ~84% mapped concordantly
to the human reference genome GRCh38. Dimensionality reduction of
the gene expression profile using the t-distributed stochastic neighbor
embedding (t-SNE) machine learning algorithm and subsequent plot-
ting identified three major clusters of samples (Fig. 1A). Cortical sam-
ples clustered together regardless of disease or control status, while
MTLE hippocampal samples (MTLE-HS) and control hippocampal
samples produced two distinct, divergent clusters.

Two differential gene expression analyses were carried out; control
cortex was compared to MTLE cortex (MTLE-ctx) and control hippo-
campus was compared to MTLE-HS. In line with t-SNE clustering ana-
lysis, only two differential expressed genes were identified when the
control cortex was compared to the MTLE-ctx – transcription factor 23
(TCF23) and the uncharacterized non-coding RNA LOC101929719
(Fig. 1B). Both genes were up-regulated in the MTLE-ctx. On the other
hand, when the control hippocampus was compared to the MTLE-HS,
large perturbations to the transcriptome profile were identified; 2780
genes were up-regulated and 2952 were down-regulated (Fig. 1C). The
top 10 up-regulated and down-regulated genes (ranked by adjusted p-
value) are listed in Table 2. To validate the RNA-Seq data the genes
CTSH, IL1B MMP17 and MMP14 were selected for analysis with RT-
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qPCR (Supp. Fig. 1). In line with the RNA-Seq data the genes CTSH and
IL1B were significantly up-regulated (Mann-Whitney-U; p-value< .05)
and MMP14 was significantly down-regulated (Mann-Whitney-U; p-
value< .05). WhileMMP17 appeared to be down-regulated, the change
was not statistically significant.

A gene set enrichment analysis (GSEA) (see methods) was per-
formed on the transcriptome profile generated from the RNA-Seq ana-
lysis of the control and MTLE-HS samples. 150 distinct pathways were
significantly enriched (adjusted p-value< .05) and were also enriched
for differentially expressed genes (Fisher's exact test, adjusted p-
value< .05) (Supp. Table 1). The hippocampal transcriptome profile
was enriched for pathways that included the immune system and

immune cytokine signaling, MAPK family signaling cascades and ne-
gative regulation of the PI3K/AKT network (Fig. 1D).

To delineate the potential cell-types perturbed in MTLE-HS pa-
thology, we analyzed an independent dataset of single-cell RNA-Seq
from neurons, microglia, oligodendrocytes and astrocytes taken from
the healthy human brain (GSE67835) (Darmanis et al., 2015). Genes
from the single-cell RNA-Seq analysis were classified as microglia, oli-
godendrocyte, astrocyte and neuron specific based on expression values
(> 10 read-counts in cell type of interest,< 1 read count in all other
cell-types). Of the 2780 genes up-regulated in MTLE-HS, 21 were spe-
cific to astrocytes, 9 to oligodendrocytes, 12 to neurons, and 41 to
microglia (Supp. Table 2). Among the 2952 down-regulated genes in

Fig. 1. RNA-Seq analysis of post-mortem tissue from cortex and hippocampus of mesial temporal lobe epilepsy cases. a. t-Distributed stochastic neighbor embedding
(t-SNE) two-dimensional projection of the whole transcriptome profile generated from each sample. Each point represents a different sample. Samples from the cortex
cluster together regardless of disease state. For the samples isolated from the hippocampus there was separation by disease state. b. Volcano plot showing differential
expression of genes between MTLE cortex (n=6) and control cortex (n=5). Two genes were found to be up-regulated and no genes were down-regulated. Gene
were considered differentially expressed if the adjusted p-value< .05. c. Volcano plot showing differential expression of genes between MTLE hippocampus (n= 6)
and control hippocampus (n=16). 2780 genes were found to be up-regulated and 2952 genes were down-regulated. Genes were considered differentially expressed
if the adjusted p-value< .05. d. Visualisation of the significantly enriched pathways that were also enriched for the number of differentially expressed genes
(adjusted p-value< .05). Here only pathways with an adjusted p-value< .01 are shown. Each node represents a different enriched pathway The size of node is
proportional to the number of differentially expressed genes present in the pathway. The intensity of the node colour indicates the adjusted p-value, with white
indicating an adjusted p-value< 0.01 and red indicating a p-value< 0.03. Edges between nodes indicates shared genes in the pathway.

J.D. Mills, et al. Neurobiology of Disease 134 (2020) 104612

4



MTLE-HS, 41 were specific to neurons, 12 to astrocytes, 7 to microglia
and 6 to oligodendrocytes (Supp. Table 2). Hypergeometric testing re-
vealed that genes up-regulated in the hippocampus were significantly
enriched for astrocytes (p < .01) and microglia (p < .01), while the
down-regulated genes were significantly enriched for neurons
(p < .01).

3.2. Small RNA-Sequencing of MTLE brain tissue

Small RNA-Seq was performed on the same samples analyzed for
RNA-Seq. Each sample was sequenced to a depth of ~20 million reads.
After quality assessment and filtering, ~16 million reads remained, of
which 88% were successfully mapped to the human reference genome
GRCh38. Dimensionality reduction of the gene expression profile using
the t-SNE algorithm and subsequent plotting identified two major
clusters (Fig. 2A). Interestingly, whereas the standard RNA-Seq was
reflective of brain region, the small RNA-Seq profiles reflected disease
state, with both the MTLE-ctx and MTLE-HS clustering distinctly from
the control cortex and hippocampus. This suggests that small RNAs
reflect disease state more accurately than the mRNA fraction and are
able to distinguish MTLE pathogenesis more readily from the control
state.

In contrast to the standard RNA-Seq, small RNAs were identified as
differentially expressed when the MTLE-ctx was compared to the con-
trol cortex. Overall, there were 66 small RNAs that were up-regulated
and 142 down-regulated small RNAs (Fig. 2B). The top 10 up-regulated
and down-regulated small RNAs (ranked by adjusted p-value) are listed
in Table 3. When MTLE-HS was compared to control hippocampus
there were 218 up-regulated and 448 were down-regulated small RNAs
(Fig. 2C). Next, the biotypes of the differentially expressed small RNAs
were assessed, the most common biotype of differentially expressed
small RNAs in both the MTLE-HS and MTLE-ctx was small nuclear
RNAs, followed by miRNAs (Fig. 2D-E). Finally, the overlap of miRNAs
and other small non-coding RNAs from hippocampus and cortex were
analyzed (Supp. Fig. 2). Of the differentially expressed miRNAs in the
MTLE-HS, only 9% of up-regulated miRNAs and 16% of down-regulated
miRNAs were also differentially expressed in the MTLE cortex. By

contrast, among other small RNA species, 44% of those up-regulated
and 32% of those down-regulated in the MTLE-HS were similarly up- or
down-regulated in the MTLE-ctx. This result suggests that the expres-
sion patterns of the other small non-coding RNAs, including snoRNAs
and snRNAs, are more conserved across brain regions of patients with
MTLE than the expression changes of miRNAs or mRNAs.

3.3. Bioinformatic integration of small RNA-Sequencing and RNA-
Sequencing data

To identify key miRNAs that may regulate pathogenic or altered
pathways in the hippocampus of MTLE patients, each of the 150 en-
riched pathways from the GSEA were assessed for over-representation
of validated miRNA targets of the differentially expressed miRNAs. Of
the enriched pathways, 36 were enriched for validated miRNA targets
(Fisher’ s Exact test, adjusted p-value< .05) (Fig. 3).

Next, we analyzed individual correlations between miRNAs and
their validated gene targets within each pathway to identify potentially
important miRNA-mRNA pairs. Among the miRNAs of interest, let-7b-
3p and let-7c-3p had the greatest number of correlations with differ-
entially expressed genes '− . Expression of let-7b-3p was negatively
correlated with five differentially expressed genes (Spearman's rank
correlation<−0.7, adjusted p-value< .05) and positively correlated
with eight differentially expressed genes (Spearman's rank correla-
tion> 0.7, adjusted p-value< .05) (Supp. Table 3). Let-7c-3p was ne-
gatively correlated with ten differentially expressed genes (Spearman's
rank correlation<−0.7, adjusted p-value< .05) and positively cor-
related with 20 differentially expressed genes (Spearman's rank corre-
lation>0.7, adjusted p-value< .05) (Supp. Table 3). Furthermore, let-
7b-3p and let-7c-3p, were predicted as major regulators of 15 and 19
different pathways, respectively, of which 12 pathways were common
to both miRNAs. Of particular interest were the negative correlations
between let-7b-3p and Trio Rho Guanine Nucleotide Exchange Factor
(TRIO) and Prostaglandin E Synthase 2 (PTGES2), and let-7c-3p and
DEAD-Box Helicase 41 (DDX41), SWI/SNF Related Matrix Associated,
Actin Dependent Regulator of Chromatin, Subfamily A, Member 4
(SMARCA4) and Lysine Methyltransferase 2D (KMT2D) (Fig. 4). Each of

Table 2
Top 10 up-regulated and down-regulated genes in the MTLE hippocampus sorted by adjusted p-value.

Top 10 over-expressed genes in MTLE-HS

Gene Description Chr. Location Log2(FC) Adj. p-value

TAL1 TAL bHLH transcription factor 1, erythroid differentiation factor chr1:47216290–47,232,220 1.89 4.81E-14
CCL3 C-C motif chemokine ligand 3 chr17:36088256–36,090,169 4.50 7.78E-14
SEMA6D Semaphorin 6D chr15:47184101–47,774,223 0.74 1.91E-13
GGTA1P Glycoprotein, alpha-galactosyltransferase 1 pseudogene chr9:121444991–121,500,027 1.83 4.27E-13
TNF Tumor necrosis factor chr6:31575567–31,578,336 4.62 2.17E-12
FMNL3 Formin like 3 chr12:49636499–49,708,165 1.20 3.10E-12
CH25H Cholesterol 25-hydroxylase chr10:89205629–89,207,314 3.16 1.15E-11
OGFRL1 Opioid growth factor receptor like 1 chr6:71288803–71,308,950 1.87 1.72E-11
AC245014.3 Long intergenic non-coding RNA chr1:145281116–145,281,462 2.89 2.60E-11
EGR2 Early growth response 2 chr10:62811996–62,919,900 3.14 2.78E-11

Top 10 under-expressed genes in MTLE-HS

Gene Description Chr. Location Log2(FC) Adj. p-value

TTR Transthyretin chr18:31591726–31,591,726 −11.22 3.28E-55
PRLR Prolactin receptor chr5:35048756–35,230,589 −8.07 2.41E-51
FOLR1 Folate receptor 1 chr11:72189558–72,196,323 −8.59 7.68E-33
DNAH11 Dynein axonemal heavy chain 11 chr7:21543215–21,901,839 −4.24 7.68E-33
SERPINF1 Serpin family F member 1 chr17:1761959–1,777,574 −5.37 1.14E-30
SERPIND1 Serpin Family D Member chr22:20707686–20,891,218 −2.45 4.52E-30
SLC13A4 Solute Carrier Family 13 Member 4 chr7:135662487–135,748,846 −7.40 2.53E-28
SLC5A5 Solute Carrier Family 5 Member 5 chr19:17871961–17,895,174 −3.05 1.87E-25
DCX Doublecortin chrX:111293779–111,412,375 −8.13 1.93E-25
ST8SIA2 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 chr15:92393827–92,468,728 −3.75 2.00E-23
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these genes were present in the inflammation and immune response
related enriched pathways.

3.4. Connectivity map analysis

The up-regulated and down-regulated gene lists from the MTLE-HS
were analyzed using the connectivity map (CMap) (see methods) to
identify compounds that would give rise to a gene signature that op-
poses the gene signature observed in MTLE-HS. The top five compounds
identified included dictamnine, which has diverse biological activities,
such as antifungal, antibacterial, vascular-relaxing, antiplatelet ag-
gregation, anti-hypertension and anti-tumor activities, the MEK in-
hibitor PD-0325901, the MTOR inhibitor deforolimus, the anti-in-
flammatory compound celastrol, and the estrogen receptor agonist
dairylpropionitrile. These compounds are already approved for use in
humans and as such could be repurposed for use in the treatment of
MTLE.

4. Discussion

We found striking differences in the RNA and small RNA tran-
scriptome profiles in the hippocampus of patients with MTLE compared
to control hippocampus. The RNA transcriptome from MTLE patients
showed 2780 up-regulated genes and 2952 down-regulated genes
compared to controls. We identified an enrichment of 150 pathways
within the transcriptome profile of the MTLE hippocampus, including

immune function, cytokine signaling, MAPK signaling and PI3K/AKT
network. In contrast, the cortical expression patterns were similar
among patients and controls with only two genes up-regulated in MTLE.
Interestingly, there were marked differences in small RNA expression in
both the cortex and hippocampus of MTLE patients compared to con-
trols. In the MTLE-ctx, 66 small RNAs were up-regulated and 142 were
down-regulated. In the MTLE-HS, 218 small RNAs were up-regulated
and 448 were down-regulated. Integration of the small RNA and RNA
transcriptome profiles of the MTLE-HS identified 36 significantly en-
riched pathways that may be regulated by miRNAs, including many
immune response and inflammation related pathways.

We observed distinct differences between the clustering of the RNA
and the small RNA transcription profiles. While RNAs could be used to
clearly define the brain region from which the sample was extracted,
the small RNA transcriptome profile clustered by disease state, entirely
independent of brain region. For both the MTLE-ctx and the MTLE-HS
the most common biotype of differentially expressed small RNAs was
small nuclear RNAs, followed by miRNAs and then small nucleolar
RNAs. Interestingly, expression changes in the other small non-coding
RNA species were relatively more conserved between the hippocampus
and cortex when compared to miRNAs, which showed greater regional
divergence. These findings suggest that small non-coding RNAs may be
involved in the initial underlying molecular pathogenesis of MTLE, or
the brain's compensatory changes to suppress epileptogenesis and sei-
zures. While small nucleolar RNAs have been implicated in cancer (Liao
et al., 2014; Mei et al., 2012) and small nuclear RNAs in Alzheimer's

Fig. 2. Small RNA-Seq analysis of post-mortem tissue from cortex and hippocampus of mesial temporal lobe epilepsy cases. a. t-SNE two-dimensional projection of
the small RNA expression profile generated from each sample. Each point represents a different sample. In contrast to the RNA-Seq data samples cluster by disease
state rather than brain region. b. Volcano plot showing differential expression of small RNAs between MTLE hippocampus (n= 6) and control hippocampus (n=16).
66 small RNAs were found to be up-regulated and 142 small RNAs were down-regulated. Small RNAs were considered differentially expressed if the adjusted p-
value< .05. c. Volcano plot showing differential expression of small RNAs between MTLE hippocampus (n=6) and control hippocampus (n= 16). 218 small RNAs
were found to be up-regulated and 448 small RNAs were down-regulated. Small RNAs were considered differentially expressed if the adjusted p-value< .05. d.
Biotypes of differentially expressed small RNAs in the cortex. Small nuclear RNAs made up the majority of the differentially expressed small RNAs, followed by small
nucleolar RNAs, and miRNAs. e. Biotypes of differentially expressed small RNAs in hippocampus. Small nuclear RNAs made up the majority of the differentially
expressed small RNAs, followed by small nucleolar RNAs, and miRNAs.
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disease (Bai et al., 2013) these elements have never been investigated in
terms of MTLE. The results presented here suggest that these under-
studied elements of the transcriptome require more attention for dis-
ease modifying roles in MTLE. Further studies to determine whether
these changes are part of the pathology or compensatory changes in
MTLE could result in the development of new therapeutic tools.

In the present study, let-7b-3p and let-7c-3p were predicted as
regulators of 15 and 19 different enriched pathways respectively. This

suggests that these miRNAs may act as critical regulators of the MTLE
transcriptional networks. miRNAs from the lethal-7 (let-7) family were
among the first miRNAs to be discovered and are evolutionarily con-
served across various animal species (Lee et al., 2016). Previously, let-
7b was shown to regulate cell proliferation and differentiation in the
cortex of mice during development (Zhao et al., 2010). Knock-down of
let-7b resulted in enhanced proliferation of neural stem cells, while
over-expression of let-7b decreases proliferation and accelerates

Table 3
Top 10 up-regulated and down-regulated small RNA in the MTLE cortex and hippocampus sorted by adjusted p-value.

Cortex

Top 10 over-expressed small non-coding RNAs

Gene Class Chr. Location Log2(FC) Adj. p-value

RNU6-576P Small nuclear RNA, pseudogene chr1:47216290–47,232,220 4.02 4.48E-14
RNU6-211P Small nuclear RNA, pseudogene chr17:36088256–36,090,169 3.59 6.68E-14
RNU6-1133P Small nuclear RNA, pseudogene chr15:47184101–47,774,223 2.82 1.48E-09
RNU6-1141P Small nuclear RNA, pseudogene chr9:121444991–121,500,027 2.84 4.83E-08
hsa-miR-4443 microRNA chr6:31575567–31,578,336 2.66 5.46E-08
RNU6-735P Small nuclear RNA, pseudogene chr12:49636499–49,708,165 2.74 5.39E-06
RNU6-61P Small nuclear RNA, pseudogene chr10:89205629–89,207,314 2.32 5.77E-06
RNU6-673P Small nuclear RNA, pseudogene chr6:71288803–71,308,950 2.49 1.26E-05
RNU6-1187P Small nuclear RNA, pseudogene chr1:145281116–145,281,462 2.72 1.52E-05
RNU6-256P Small nuclear RNA, pseudogene chr10:62811996–62,919,900 2.02 3.68E-05

Top 10 under-expressed genes small non-coding RNAs

Gene Class Chr. Location Log2(FC) Adj. p-value

hsa-miR-320d microRNA chr18:31591726–31,591,726 −2.71 1.81E-16
hsa-miR-320e microRNA chr5:35048756–35,230,589 −2.57 4.48E-14
RNU4-91P Small nuclear RNA, pseudogene chr11:72189558–72,196,323 −2.63 3.38E-12
RNU4-30P Small nuclear RNA, pseudogene chr7:21543215–21,901,839 −3.39 6.98E-12
RNU4-6P Small nuclear RNA, pseudogene chr17:1761959–1,777,574 −2.53 1.08E-11
RNU4-82P Small nuclear RNA, pseudogene chr22:20707686–20,891,218 −2.49 4.00E-11
U4 Small nuclear RNA chr7:135662487–135,748,846 −2.51 1.16E-10
SNORD38 Small nucleolar RNA chr19:17871961–17,895,174 −2.27 2.44E-08
RNU4-53P Small nuclear RNA, pseudogene chrX:111293779–111,412,375 −3.07 7.51E-08
hsa-miR-320c microRNA chr15:92393827–92,468,728 −1.48 3.77E-07

Hippocampus

Top 10 over-expressed small non-coding RNAs

Gene Class Chr. Location Log2(FC) Adj. p-value

hsa-miR-4443 microRNA chr3:48196564–48,196,616 3.80 2.05E-24
RNU6-1141P Small nuclear RNA, pseudogene chr10:21661635–21,661,741 3.51 7.68E-19
RNU6-576P Small nuclear RNA, pseudogene chr10:2199387–2,199,488 3.55 4.01E-16
RNU6-735P Small nuclear RNA, pseudogene chr12:95438737–95,438,843 3.56 4.79E-15
RNU6-211P Small nuclear RNA, pseudogene chr5:80365726–80,365,832 2.92 3.92E-14
hsa-miR-4455 microRNA chr4:184938383–184,938,440 4.74 6.20E-14
hsa-let-7c-3p microRNA chr21: 16539828–16,539,911 1.13 7.93E-10
RNU6-61P Small nuclear RNA, pseudogene chr13:8069426–80,369,534 2.230 1.26E-09
RNU6-1327P Small nuclear RNA, pseudogene chr9:558826–558,930 2.94 2.09E-09
RNU7-26P Small nuclear RNA, pseudogene chr6:27897504–27,897,566 3.89 2.10E-09

Top 10 under-expressed genes small non-coding RNAs

Gene Class Chr. Location Log2(FC) Adj. p-value

hsa-miR-1298-5p microRNA chrX: 114715233–114,715,344 −6.54 1.03E-43
hsa-miR-1911-5p microRNA chrX: 114763184–114,763,263 −7.57 1.39E-43
SNORD38 Small nucleolar RNA chr19:3521248–3,521,320 −3.19 5.31E-27
SNORA44 Small nucleolar RNA chr1:28580381–28,580,512 −2.64 1.58E-19
SNORA6 Small nucleolar RNA chr3:39408389–39,408,539 −4.00 2.09E-19
hsa-miR-320d microRNA chr13: 40727816–40,727,887, −2.26 2.09E-19
RNU6-140P Small nuclear RNA, pseudogene chr19:38797002–38,797,109 −3.24 3.50E-19
RNU6-443P Small nuclear RNA, pseudogene chr1:13279125–13,279,231 −3.08 7.37E-18
RNU6-164P Small nuclear RNA, pseudogene chr5:162477891–162,477,993 −2.91 1.06E-17
hsa-miR-204-5p microRNA chr9: 70809975–70,810,084 −3.69 1.58E-17

J.D. Mills, et al. Neurobiology of Disease 134 (2020) 104612

7



Fig. 3. Integration of differentially expressed miRNAs with enriched pathways. Integration of differentially expressed miRNAs with enriched pathways. Green
segments represent an enriched pathway that was enriched for validated miRNA targets (Fisher exact test, adjusted p-value< .05). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Proposed interactions of miRNAs let-7b-5p and let-7c-5p with validated genes targets that are involved in inflammatory pathways. Yellow nodes represent
miRNAs, grey nodes represent genes, red nodes represent pathways. The blue outline of the gene nodes indicates down-regulation of the gene. Edges between
miRNAs and gene nodes indicates predicated target that was strongly negatively correlated with miRNA expression (Spearman's rank correlation<−0.7, adjusted p-
value< .05). Edges between gene nodes and pathway nodes indicate that the gene is a member of that enriched pathway. Edges between pathway nodes indicates
common genes in each pathway. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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neuronal differentiation (Zhao et al., 2010). Let-7b has also been shown
to interact with the long non-coding RNA H19 (Han et al., 2018b).
Inhibition of let-7b via H19 contributes to apoptosis of hippocampal
neurons in a rat model of MTLE (Han et al., 2018a). The function and
expression of let-7c in the epileptogenic brain is less well studied.
Overexpression of let-7c in human stem cells leads to morphological as
well as functional deficits including impaired neuronal morphologic
development, synapse formation and synaptic strength, as well as a
marked reduction of neuronal excitability (McGowan et al., 2018). In
one study let-7c expression did not change in the hippocampus of MTLE
patients and in the cortex of FCD patients when compared to controls
(Srivastava et al., 2017). However, in another study let-7c was found to
be increased in serum of drug-responsive MTLE patients compared to
drug-resistant MTLE patients (Wang et al., 2015). Both let-7b-3p and
let-7c-3p remain interesting targets for further investigation in their
role of regulation of the MTLE transcriptional network and whether
they possess disease modifying properties.

Based on alterations to the mRNA transcriptome profile five com-
pounds were identified that could counteract the gene expression
changes identified in MTLE-HS: the MEK inhibitor PD-032590, the
mTOR inhibitor deforolimus, the anti-inflammatory celastrol, the es-
trogen receptor agonist diarylpropionitrile, and dictamnine. Hyper-ac-
tivation of the mTOR pathway is implicated in the pathogenesis of
epilepsy associated with MTLE, tuberous sclerosis complex, cortical
dysplasia and some genetic epilepsies (e.g., DEPDC5) (Crino, 2015;
Wong, 2013). Since the mTOR and MEK pathways are interconnected,
hyper-activation in MEK may also facilitate epileptogenesis and sei-
zures (Conciatori et al., 2018). The mTOR pathway is suggested to be an
anti-epileptogenic target (Galanopoulou et al., 2012), and the mTOR
inhibitor everolimus is currently used in the clinic as adjunctive therapy
for patients with tuberous sclerosis complex (Franz et al., 2018; French
et al., 2016). The role of inflammation in a spectrum of experimental
and human epilepsies is well established and several neuroin-
flammatory pathways have been identified as novel treatment targets
for epilepsy (van Vliet et al., 2018). The effects of estrogens on seizures
is less clear (Velíšková et al., 2010). For decades, estrogens were con-
sidered proconvulsant, however, recent studies show that estrogens can
be either excitatory or inhibitory. The estrogen receptor agonist dia-
rylpropionitrile had anti-seizure effects in the pentylenetetrazole-in-
duced seizures (Frye et al., 2009). However, estrogen can be pro-
convulsant in animals and humans (Scharfman and MacLusky, 2006).
Finally, dictamnine is a furoquinoline antibiotic for which little is
known about its potential central nervous system effects; however, it
inhibits lipopolysaccharide-induced nitric oxide production in vitro and
may have anti-oxidant and anti-inflammatory effects in the brain (Yoon
et al., 2012). While this approach has previously been used to identify
potential drug candidates for the treatment of cancer of which many
have been validated in vitro (Musa et al., 2018), whether these com-
pounds could be disease modifying for individuals with refractory epi-
lepsy requires further investigation.

A potential limitation of the presented study was the use of post-
mortem brain tissue for the controls versus surgical resected material
for the MTLE cases. Due to technical and ethical issues the use of post-
mortem tissue as controls is standard practice in many human brain
transcriptome studies. The general assumption is that sourcing RNA
from brain tissue from two fundamentally different biological stages
would result in the identification of transcriptional changes that reflect
these stages rather than the disease of interest. Interestingly, the results
presented here (Fig. 2b) suggest that this issue may be overstated. In-
deed, when post-mortem brain tissue of the cortex was compared to
surgical resected material from the cortex, only two differentially ex-
pressed genes were identified. Further, clustering of the transcriptional
profiles of both tissue sources revealed that the profiles were similar.
These results are in-line with what is known about the pathology of the
cortex in MTLE. While, this study provides preliminary evidence that
there are only minor transcriptional alterations when post-mortem

brain tissue is compared to surgical tissue a more comprehensive and
systematic study is required that analyses different RNA species, such as
non-coding RNAs, across different brain regions. However, this result
does suggest that the alterations in the small RNA profiles of the MTLE-
ctx are likely to be disease related. It also must be noted that the MTLE
material used for this study was taken from individuals who had been
experiencing seizures for multiple years (range: 7–52 years), further no
information on time since last seizure prior to operation was available,
this makes it difficult delineate and attribute the identified transcrip-
tional changes to underlying epileptogenic changes or as a consequence
of seizure activity. Subsequent in vivo studies or in vitro studies would
be required to elucidate which of the identified transcriptional changes
can be attributed to epileptogenic events or as a symptom of seizure
activity, and to further assess if any of the novel changes identified here
could be utilized as a molecular target for treatment of MTLE. Finally,
among the samples chosen for this study there was a selection bias
towards male samples, this was due to the genders of the available of
samples. This potential confounder was considered; however, clustering
of samples showed no difference in the overall RNA-Seq and small RNA-
Seq transcriptome profile between the female and male samples and as
such any differences introduced by gender were considered minimal.

5. Conclusions

This study constitutes the most systematic transcriptomic analysis of
MTLE brain tissue to date, by analyzing both the expression profiles of
RNA and small RNA in parallel we provide new insights in MTLE pa-
thogenesis. The transcriptome profile generated from RNA-Seq con-
firmed key pathogenic pathways activated, along with neuronal loss
and activation of astrocytes and microglia in the hippocampus of MTLE
patients. Through the integration of both RNA-Seq and small RNA-Seq
the miRNAs let-7b-3p and let-7c-3p were identified as potential key
regulators of multiple pathways related to MTLE pathology. Most in-
terestingly, this study has identified a potential key role for other small
non-coding RNA species, such as small nucleolar RNAs and small nu-
clear RNAs, in the pathogenesis of MTLE. These understudied elements
of the transcriptome have emerging roles in other diseases, including
cancer and Alzheimer's disease, but are yet to receive such attention in
MTLE and related pathologies.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nbd.2019.104612.
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