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Abstract 

This paper developed an agent-based trip chain model (ABTCM) to study the distribution of 
electric vehicles (EVs) charging demand and its dynamic characteristics, including flexibility and 
uncertainty, at different types of location. Key parameters affecting charging demand include 
charging strategies, i.e. uncontrolled charging (UC) and off-peak charging (OPC), and EV supply 
equipment, including three levels of charging equipment. 

The results indicate that the distributions of charging demand are similar as the travel patterns, 
featured by traffic flow at each location. A discrete peak effect was found in revealing the relation 
between traffic flow and charging demand, and it results in the smallest equivalent daily charging 
demand and peak load at public locations. EV charging and vehicle-to-grid (V2G) flexibility were 
examined by instantaneous adjustable power and accumulative adjustable amount of electricity. 
The EVs at home locations have the largest charging and V2G flexibility under the UC strategy, 
except for a period of regular working time. The V2G flexibility at work and public locations is 
generally larger than charging flexibility. Due to the fast charging application, the uncertainties of 
charging demand at public locations are the highest in all locations. In addition, the OPC strategy 
mitigates the uncertainty of charging demand. 
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ABTCM  Agent-based trip chain model 
EV  Electric vehicle 
UC  Uncontrolled charging 
OPC  Off-peak charging 
V2G  Vehicle to grid 
NHTS  National Household Travel Survey 
EVA  Electric vehicle agent 
EVSE  Electric vehicle supply equipment 
TPM  Transfer probability matrix 
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PDF  Probability density function 
RMSE  Root-mean-square error 
CC  Correlation coefficient 
TOU  Time-of-use 
ARMSE  Average root-mean-square error 
SOC  State-of-charge 
ARMSE  Average root-mean-square error 
TCD  Total charging demand 
HCD  Home location charging demand 
WCD  Work location charging demand 
PCD  Public location charging demand 
RCD  Recreation purpose charging demand 
SCD  Shopping purpose charging demand 
MCD  Meal purpose charging demand 
EDCD  Equivalent daily charging demand 
EDPL  Equivalent daily peak load 
GIS  Geographic information system 

 

1.Introduction 
The rising concerns about fossil fuel depletion and climate change have motivated the 

innovation of clean technologies. Electric vehicle (EV) is regarded as a promising solution to energy 
security and reduction in greenhouse gas emissions [1]. With the motivation of government 
policies and automaker investments, the fleet of EVs and the supporting infrastructure has been 
rapidly growing in recent years [2]. The growing penetration of EV poses both challenges and 
opportunities to the operation of power grids. On one hand, electric grids capacity may not be 
sufficient for the EV loads, especially when peak charging demand occurs [3]. On the other, the 
operation of power grids can be improved by effectively managing the charging and discharging of 
EVs, while increasing the integration of intermittent renewable energy [4] and providing ancillary 
power services [5]. 

In order to analyze the impacts of EVs, it is important to understand the distribution and 
flexibility of EVs charging demands, especially the respective characteristics at different types of 
locations, which are crucial information for grid operation [6], renewable energy integration [7], 
intra-city charging station planning [8] and energy management of EV batteries [9, 10]. To this 
objective, a reliable model capable of simulating the travel patterns of a large fleet of EVs and their 
charging demand at different locations is necessary. 

In existing studies, the spatial and temporal distributions of EVs charging demand are 
associated with different facilities. A majority of early studies have used a deterministic approach 
to model EVs charging demands. In [11], the EVs, which participated in strategic energy 
management of microgrids as energy storage units, were assumed to take three 40km trips in one 
day. In [12], the EVs always charged at 18:30 and interacted with a micro-cogeneration system. The 
impact of vehicle to grid (V2G) on reducing peak demand of energy markets was analyzed in [13], 
where all EVs were available for V2G at 18:00. In addition, other approaches derived static charging 
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patterns using annual travel data [14] or average values [15] rather than expected charging time 
and demands. These deterministic models may be useful for evaluating long-term impacts of EV 
[16], while are not so useful for short-term management/control [17]. 

For a better understanding and recurrence of EVs’ travel patterns and charging characteristics, 
existing studies developed several prototype trip models, which are able to capture the main 
characteristics of travel patterns, but can hardly reflect the stochastic characteristics of individual 
trips and associated energy consumption. Fernandes et al. [18] performed a mid-term simulation 
of a Spanish power system considering EV penetration with five types of travel pattern. Four types 
of EV fleets with different number of EVs, travel time and desired SOC were studied as intermediate 
agents between end-users and distributed renewable generation [19]. Similar models were used 
to evaluate the impacts of EVs charging on greenhouse gas emissions [20], voltage stabilization in 
an islanded microgrid [21] and frequency control of grids [22]. 

In contrast to deterministic models, stochastic modelling has gradually received growing 
attention. [23] simulated EV charging and V2G using a stochastic travel model and evaluated the 
impacts on the reliability of a smart grid. [24] quantified the potential of EVs to consume renewable 
energy and highlighted the importance of trip information as regards managing EV flexibility. 
However, existing stochastic models are usually based on home-related parameters: time of 
departure from home, time of arriving at home and daily travel distance, which can be used to 
determine an overall amount of energy consumption, while ignoring the variations at various 
locations. In [25], the three mentioned parameters are used to model EVs stochastic travel and 
they all assumed that the EVs are charged once per day at home. In reality, EVs can be charged at 
different kinds of location, such as: residential, commercial, recreation areas and workplaces [26]. 
In addition, the charging at one location will influence the charging at other locations, since the 
charging and discharging of batteries take time. Therefore, a detailed loop model considering the 
variations in EVs location and temporal distribution is important for modelling EVs charging and 
estimating associated flexibility. 

Using real-world data, [27-29] modelled travel patterns at multi-locations and number of daily 
trips and number of back home times were vital variables. However, those studies did not consider 
the possibilities of charging and trip purpose transition at different locations. As a result, those 
models often have a large simulation error, e.g. the error of trip type is about 15% in [28]. Therefore, 
a detailed trip chain model considering the location variation and temporal distribution is essential 
for studying the charging demand of EVs and related characteristics. 

The aim of this paper is to analyze the distribution of charging demand and the flexibility of 
charging and V2G of EVs at different types of location. To achieve this, a novel agent-based trip 
chain model (ABTCM), which considered various trip purposes and locations, was developed to 
simulate the travel patterns of EVs. The ABTCM was validated using the data from the American 
National Household Travel Survey (NHTS) [30]. The distributions of charging demand at three types 
of location were studied under two charging strategies, namely the uncontrolled charging (UC) 
strategy and the off-peak charging (OPC) strategy. The influence of traffic flow on charging demand 
was then specifically investigated. To evaluate the flexibility of charging and V2G of EVs, the paper 
calculated maximum adjustable charging/V2G power, which reflects the instantaneous capacity of 
load shifting, and maximum adjustable amount of charging/V2G electricity, which reflects the 
aggregate amount of load that can be shifted. The paper also evaluated the uncertainty of charging 
demand. 
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The contributions of the paper are two-fold. Firstly, the ABTCM model, which captures the 
characteristics of vehicle usage, is able to simulate the heterogeneous travel patterns and charging 
patterns of EVs with a higher simulation accuracy than existing studies. The model provides a 
generic method for studying complex transportation systems and associated energy consumption. 
Secondly, owing to the novel ABTCM, the dynamic characteristics of energy demand at different 
kinds of location were comprehensively investigated. The results provide important information on 
how charging stations should be planned and how demand-side energy management, if possible, 
could be implemented to satisfy the energy needs at different locations. 

2. Agent-based trip chain model 
This study developed an ABTCM to simulate and analyze the travel and charging patterns of EVs, 

which are represented by EV agents (EVAs) in the model. The trip chain model specifies three kinds 
of locations, where EVs park and charge, and seven trip purposes that are performed at the three 
locations (Fig. 1). The study focused on the most common parking locations and trip purposes in 
order to obtain generic knowledge for wide energy application. The model differentiated EVs travel 
and charging on weekdays and on weekends to generate comprehensive results related to travel 
patterns. 

 
Fig.1 Overview of the EV agent 

In the ABTCM, two sub models: the trip chain model and the charging model, work together and 
define the actions of EVAs. The trip chain model determines the states of EVAs, the rules of states 
switching and other actions like parking. The charging model controls EVAs’ charging and two 
strategies: uncontrolled charging (UC) and (off-peak charging) OPC, are considered in the model. 

2.1 Trip chain model 

2.1.1 Real-world data 
The 2017 NHTS [30] contains 514,132 vehicle travel logs by all modes for 24-hour on weekdays 

and weekends and thus represents the best available source for modelling travel patterns and 
related impacts. The trip-chain model includes six trip purposes (Table 1), which were retrieved 
from the dataset and account for near 97% of private trips and 96% of all trips. For the convenience 
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of modelling, the “home” purpose was further divided into two purposes: “home linger” (P1), 
which means the EV will leave from home again in the same day and “end trip” (P7). 

 
Table 1. Trip purposes 

Purpose Home Work Shopping Pick/Drop Meal Recreation Total 
Symbol P1/P7 P2 P3 P4 P5 P6 / 

Total trip (%) 34.5 14.4 19.9 6.3 7.8 12.9 95.8 
Private vehicle trip (%) 35.4 14.1 21.2 7.3 7.8 10.9 96.7 

 

2.1.2 Trip chain generation 
The trip chain module generates a series of random trip chains, e.g. starting from home, 

continuing with one or more trips between different locations and finally ending at home. The 
electricity demand and time for charging are dependent on the trip, which is characterized by a 
series of parameters: departure place (pd), departure time (Td), trip driving time (td), trip driving 
distance (dt), destination (pe) and parking time (tp) . Td and pd are calculated as Formula 1 and 2. 
The entire trip chain is represented by Formula 3. Parameter n in Formula 1-3 represents the nth 
trip in the entire trip chain. The trip parameters follow the probabilities calculated from the NHTS 
dataset. 

 
𝑇",$%& = 𝑇",$ + 𝑡" + 𝑡*     (n=1, 2, 3…)                                       (1) 
𝑝",$%& = 𝑝,,$             (n=1, 2, 3…)                                       (2) 

-𝑝",&, 𝑝,, 𝑇",&, 𝑡", 𝑡*, 𝑑/0 = 
(𝑝",&; 𝑝,,&, 𝑝,,3 ⋯𝑝,,$; 𝑇",&; 𝑡",&, 𝑡",3 ⋯ 𝑡",$; 𝑡*,&, 𝑡*,3 ⋯ 𝑡*,$; 𝑑/,&, 𝑑/,3 ⋯𝑑/,$)      (3) 

Every trip chain starts from the first departure from home at time Td,1. The probability density 
function (PDF) and the related distribution of the time for the first departure are shown in Fig. 2. 
The parameters of a trip and its conditional probability in a trip chain are dependent on the trip 
prior to it. 

 
Fig.2 Distribution of the departure time of the first trip 
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Fig.3 Trip chain generation process 
The trip chain generation process is shown in Fig. 3 and it includes eight steps: 
(1) If the EV is not used in a whole day, the model will not generate a trip for it and the following 

process will not be implemented. The probability that an EV will not be used in the day is 
10.8% on weekdays and is 16.9% on weekends [30]. 

(2) If the EV is used, the departure time of the first trip is decided according to the PDF in Fig. 
2. 

(3) In the meantime, the trip purpose is determined according to the transfer probability matrix 
(TPM) regarding departure time and former trip purpose. The time interval for TPM 
extraction is one hour with NHTS dataset, at each hour, the TPM consists of six independent 
PDFs indicating the probability of trip purposes transformation. Detailed information of the 
TPMs and associated 288 PDFs are reported in supplementary data. 

(4) The trip driving distance (dt) is then calculated according to the trip purpose with associated 
PDFs. The PDFs of driving distance obey the lognormal distribution, which have been 
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validated using the data in the 2017 NHTS [30]. An example of dt between residential 
locations and work locations is shown in Fig.4. The details of the 36 PDFs of dt are provided 
in the supplementary data. 

 
Fig.4 Distribution of driving distance between L1 and L2. 

(5) The trip driving time is calculated according to the driving distance. Study [31] suggested 
that the driving time obeys the normal distribution of driving distance, as indicated by 
Formula 4, where μt(dt) and σt

 2 (dt) are fitted to the 2017 NHTS data [30] using power 
function. The PDF of trip driving time to driving distance is calculated as Formula 5. 
𝑡" = 𝑁(𝜇/(𝑑/), 𝜎/3(𝑑/))                                                    (4) 

p(𝑡"|𝑑/) =
&
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                         (5) 

(6) Step (2)-(5) define a trip and the EV will park at the previous destination at the beginning of 
this step. The parking time (tp) is derived and the PDFs of tp vary with the following trip 
purpose and with the time in the day. The average parking time at the working location is 
shown in Fig. 5. For example, the cars arrive at four in the morning at the working location 
will only stay 30 minutes on average and those arrive at six will park over 500 minutes. tp for 
“home linger” purpose is the time for staying at home and the overnight parking time is the 
period between the ending time at home on one day and the departure time on the next 
day. 

 
Fig.5 Average parking time at the work location 

(7) The next departure time is calculated according to Formula 1 and the departure place is the 
destination of the last trip. 

(8) The first stage of this step is similar to step (2), which obtains the trip purpose and 
destination. The present trip will be the last one, if the next trip purpose is “end trip”. 
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Otherwise, the trip generation will repeat from step (3). 

2.1.3 Validation 
Based on the distributions of four input parameters: departure time, TPM, driving distance and 

parking time, the key output parameters of the trip chain model: proportion of trip purposes, end 
trip time and number of daily trips, are examined to validate the model. To this purpose, a total of 
1000 EVs were simulated for 70 days, i.e. 50 weekdays and 10 weekends (20 days), with a step of 
1 minute. A total of 61087 trip chains including 246334 trips have been generated.  

The evaluation of trip purposes between the simulation results of the trip chain model and the 
real-world data is shown in Table 2. The simulations regarding the seven trip purposes reflects the 
real-world data very well, as implied by the relative errors. Since only seven trip purposes were 
considered in the trip chain model, the proportions of the seven trip purposes are slightly larger 
than those of the real-world data. Compared to a previous study [28], in which the relative error 
of trip purpose was 15%, the quality of the trip chain model in this study is significantly better. 

Table 2. Evaluation on simulated trip purposes 
Purpose P1 P2 P3 P4 P5 P6 P7 Other Total 

Real-world data (%) 11.01 14.04 21.14 7.27 7.78 10.91 24.44 3.41 96.7 
Simulation (%) 11.23 14.88 22.2 7.52 7.92 11.41 24.83 0 100 
Relative error (%) 1.9 5.8 5.0 3.4 1.8 4.6 1.6 / / 

As regards time of end trip and number of daily trips, root-mean-square error (RMSE), which 
represents the average deviation of the simulation results from the real-world data, and correlation 
coefficient (CC), which represents the fitting of the simulation curve to the real-world data, were 
computed for validation. The results shown in Fig. 6 and Fig. 7 are much more precise than the 
previous method [32], which further validates that the trip chain model can accurately simulate 
the trip patterns of EVs. 

 
Fig.6 Distribution of the end trip time. 
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Fig.7 Distribution of the number of daily trips. 

2.2 Charging model 

The charging model simulates the charging behaviors of EVs at various locations and the charging 
profiles concerns about various types of EVSE and charging strategies. It is noted that the electric 
consumption and charging power of EV batteries are a function of many factors during the dynamic 
process in the real world. However, it is assumed to be a constant in the present model, because 
this study focuses on the generic energy performance of EVs. 

2.2.1 Electric vehicle supply equipment 
There are mainly three levels of EVSE deployed in practice: Level 1 (3.3 kW), Level 2 (up to 14.4 

kW but typically 6.6 kW) and Level 3 (typically 44/120 kW) [33]. In many studies, Level 1 and Level 
2 EVSE are usually referred to normal/slow charging facilities and Level 3 EVSE are called rapid/fast 
charging facilities. The deployment of various types of EVSE at different locations can be seen in 
Table 3. 

Table 3. EVSE outputs and arrangement 
EVSE Output (kW) Residential Work Public 

Level 1 3.3 √   
Level 2 6.6  √ √ 
Level 3 44   √ 

2.2.2 Charging strategy 
The movement of an EV relies on its battery, of which the power is measured by the state-of-

charge (SOC). This study assumed that the SOC of an EV is proportional to its driving distance, as 
shown by Formula 6.  
SOC = SOCT − d/,$ ∙ E ⁄ C                                                     (6), 

where SOC0 is the original SOC at the departure, dt,n is the trip distance, E is the electricity 
consumption per kilometer and C is the battery capacity. This study considered two charging 
strategies: uncontrolled charging (UC) and off-peak charging (OPC) strategy, and the details are 
introduced as follows. 

(1) UC strategy 
EVs are charged according to their SOC and driving needs, while the electricity tariff or load 
management of the grid does not affect the charging behavior. The algorithm of the UC 
strategy and the detailed processes are introduced in Appendix. A1. 

(2) OPC strategy 
The time-of-use (TOU) pricing mechanism is employed to motivate EVs to reduce cost by 
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load shifting. The OPC strategy is applied to Level 1 EVSE at home to manage EV’s charging 
demands. A full random dispatch algorithm, which has been introduced in a previous study 
[27], is adopted to avoid electric imbalance. The algorithm of the OPC strategy is shown in 
Appendix. A2. 

2.3 Flexibility and uncertainty estimation 

2.3.1 Evaluation of Flexibility 
Flexibility refers to the ability of adjustment of an energy system [34]. This study implemented a 

benchmark assessment of the charging and discharging flexibility provided by a certain EV fleet. 
Like other studies about flexibility, this paper utilized the maximum adjustable 
charging/discharging power at time t as ramping constraint and the maximum amount of 
adjustable charging/discharging electricity during the parking period as the total quantity 
constraint. The baseline for flexibility estimation is the original charging profile of EVs. 

The maximum adjustable charging power, 𝑃Z[\]^_`ab , at time t can be calculated as Formula 7, 
where 𝑃Zcade,d is the power of the EVSE, m represents the total number of EVs and i represents 
the ith EV. Formula (8)-(10) are the constraints for calculating the charging potential, where 𝑡*,f 
and 𝑆𝑂𝐶f represent the parking time and SOC of the ith EV and C represents the capacity of the 
battery. 

𝑃Z[\]^_`ab = 𝑃Zcade,d ∙ ∑ 𝛼/*,f ∙ 𝛼lmZ,f ∙ 𝛼l/a/,,f`
& 																												𝑖 ∈ {1…𝑚}               (7) 

𝛼/*,f = v1																	𝑡*,f > 30	𝑚𝑖𝑛
0																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

																																																		𝑖 ∈ {1…𝑚}               (8) 

𝛼lmZ,f = v1														 (100 − 𝑆𝑂𝐶f) ∙ 𝐶 𝑃Zcade,d⁄ > 30	𝑚𝑖𝑛
0																																																																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

							𝑖 ∈ {1…𝑚}               (9) 

𝛼l/a/,,f = �1									𝑃𝑎𝑟𝑘𝑖𝑛𝑔 ∩ 𝑛𝑜𝑡𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔0																																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
																														𝑖 ∈ {1…𝑚}              (10) 

Constraint (8) and (9) dictates that the adjustable charging power is counted when the parking 
time and the expected charging time of the ith EV are both longer than 30 minutes. The limitation 
of 30 minutes is commonly adopted by studies on smart charging or V2G activities. Constraint (10) 
controls the flexibility of EVs: if an EV is charging or on a trip, the adjustable charging power is zero. 

The maximum amount of adjustable charging power, 𝐶Zc\]^_`ab , is calculated as Formula (11) and 
(12), where 𝑆𝑂𝐶`ab,f is the maximum SOC that the ith EV can be charged during the parking time. 
As shown by Formula (13) and (14), it is then converted into an integral over a certain period of 
time for handling the sum of adjustable power over different time scales, where 𝑃Zcade,,/ is the 
equivalent charging power at time t. Formula (15) is the time-related constraint for calculating 
𝑃Zcade,,/, where 𝑡",f represents the departure time of the ith EV. 
𝐶Zc\]^_`ab = 𝐶 ∙ ∑ (𝑆𝑂𝐶`ab,f − 𝑆𝑂𝐶f) ∙ 𝛼/*,f ∙ 𝛼lmZ,f ∙ 𝛼l/a/,,f`

& 							𝑖 ∈ {1…𝑚}             (11) 
𝑆𝑂𝐶`ab,f = min-100%, 𝑃Zcade,d ∙ 𝑡*,f 𝐶⁄ + 𝑆𝑂𝐶f0 																						𝑖 ∈ {1…𝑚}             (12) 

𝐶Zc\]^_`ab = 	∫ 𝑃Zcade,,/ ∙ 𝑑𝑡
3M
T 																																																																																					              (13) 

𝑃Zcade,,/ = 𝐶 ∙ ∑ (𝑆𝑂𝐶`ab,f − 𝑆𝑂𝐶f) 𝑡*,f⁄ ∙ 𝛼/*,f ∙ 𝛼lmZ,f ∙ 𝛼l/a/,,f`
& 	 ∙ 𝛼/",f				𝑖 ∈ {1…𝑚}    (14) 

𝛼/",f = v1					𝑡",f − 𝑡*,f < 	𝑡 < 		 𝑡",f
0																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

																																																			𝑖 ∈ {1…𝑚}             (15) 

  The flexibility of V2G is calculated by a similar process as that for calculating the charging 
demand. The maximum adjustable V2G power and V2G amount is calculated as Formula (16)-(19), 
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where 𝑆𝑂𝐶d,l/,f  represents the necessary energy consumption of the rest trips in the day, 
𝑆𝑂𝐶a$b,f represents the range anxiety of the ith EV driver. 𝑉2𝐺`ab,f is the maximum SOC that 
the ith EV can discharge to the grid during the parking time and the SOC is not allowed to go lower 
than 20% of the battery’s full capacity for the protection purpose. 
𝑃�3�`ab = 𝑃�3� ∙ ∑ 𝛼/*,f ∙ 𝛼�3�,f ∙ 𝛼l/a/,,f`

& 																																											𝑖 ∈ {1…𝑚}            (16) 

𝛼�3�,f = v1 		(𝑆𝑂𝐶f − 𝑆𝑂𝐶d,l/,f − 𝑆𝑂𝐶a$b,f − 20%) ∙ 𝐶 𝑃�3�⁄ > 30	𝑚𝑖𝑛
0																																																																																												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

					𝑖 ∈ {1…𝑚}						(17) 

𝑉2𝐺`ab,f = min-𝑆𝑂𝐶f − 𝑆𝑂𝐶d,l/,f − 𝑆𝑂𝐶a$b,f − 20%, 𝑃�3� ∙ 𝑡*,f 𝐶⁄ 0 											𝑖 ∈ {1…𝑚}   (18) 
𝐶�3�`ab = 𝐶 ∙ ∑ 𝑉2𝐺`ab,f ∙ 𝛼/*,f ∙ 𝛼�3�,f ∙ 𝛼l/a/,,f`

& 																																															                  

= 𝐶 ∙ ∫ (∑ 𝑉2𝐺`ab,f ∙ 𝛼/*,f ∙ 𝛼�3�,f ∙ 𝛼l/a/,,f`
& 	 ∙ 𝛼/",f 𝑡*,f⁄ ) ∙ 𝑑𝑡					3M

T 		 		𝑖 ∈ {1…𝑚}   (19) 

2.3.2 Evaluation of Uncertainty  
This study developed an evaluation parameter, namely average root-mean-square error 

(ARMSE), to quantify the uncertainty of charging demand. RMSE represents the average deviation 
of an input array from the reference array, as shown in Formula (21). Here, the input array, Xk,j, is 
the real-time charging demand on the kth day and the reference array, 𝑋��, is the expected average 
charging demand in a specific period, which is calculated as Formula (20). The ARMSE is the average 
value of the RMSE of N days, which represents the average deviation of real-time charging demand 
from average daily/hourly charging profile in the period of N days (Formula 22). 

𝑋�� =
�E,�%�I,�%⋯%��,�

�
																																				𝑗 ∈ {1…𝑀}	                               (20) 

𝑅𝑀𝑆𝐸� = �∑ (��,�H���)I�
��E

 
																											𝑘 ∈ {1…𝑁}                               (21) 

𝐴𝑅𝑀𝑆𝐸 = ¢ £¤E%¢ £¤I%⋯%¢ £¤�
�

                                              (22) 

3. Results 
1000 EVAs, representing 1000 EVs, were simulated in the ABTCM for 77 days, including 55 

weekdays and 11 weekends (22 days), with a step of 1 minute. The initial SOC of each EV was 
assumed to be 100%. The EVs were simulated for the first 7 days to enter into a random state and 
the simulation for the next 70 days were used to generate results. The basic information of the EVs 
and the details of the TOU pricing mechanism [35] are provided in Appendix.A3. 

3.1 Distribution of charging demand 

3.1.1 Charging profiles of EVs under the uncontrolled charging strategy 
Table 4 shows the average daily charging demand of 1000 EVs under the UC strategy. In general, 

about 50% of the total charging demand (TCD) is met at the home location, followed by the work 
location (about 21%) and public location (about 29%). In addition, the daily charging demand on 
weekdays on average is 17% higher than that on weekends. The most significant difference occurs 
at the work location, i.e. the charging demand at work locations (WCD) on a weekday is nearly 5 
times of that on a weekend. By contrast, the charging demand at public locations (PCD) becomes 
larger on weekends, especially the demand associated with recreation purpose (RCD) on a 
weekend nearly doubles the amount on a weekday. 
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Table 4. Average daily charging demand of 1000 EVs under UC strategy 

Location Home  Work  Public Total 
Shopping  Meal Recreation  

EVSE/kWh Slow Slow Slow Fast Slow Fast Slow Fast / 
Weekday 5019.5 2601.3 620.5 350.0 341.3 125.3 937.1 171.3 10166.2 
Weekend 4544.5 564.5 704.8 331.9 466.7 164.1 1665.7 270.5 8712.5 
 
The average daily charging profiles on weekdays and weekends under the UC strategy are 
illustrated in Fig. 8. The patterns of the charging demand at the home location (HCD) and WCD are 
unimodal, with the peaks appearing at around 20:00 and at 9:00, respectively. Due to the peaks of 
the HCD and WCD, the pattern of the TCD is bimodal on weekdays and is unimodal on weekends. 
The profiles of PCD are much more fluctuant than those of the HCD and WCD due to the utilization 
of level 3 EVSE. On weekends, the average peak of PCD occurring at around 11:00 am is larger than 
that of HCD. This study considered three purposes, namely meal, shopping and recreation, at the 
public location and these represent the general characteristics of PCD. When a public location 
provides only one function or other functions, the PCD will change accordingly. 

 

Fig.8 Average daily charging profiles under uncontrolled charging strategy. 
 
Shown in Fig. 9, the patterns of charging demand for shopping purpose (SCD) and meal purpose 
(MCD) do not change much on different days, while the increase in recreation activities on 
weekends significant stimulate the RCD, as well as the PCD.  

 
Fig.9 Average daily charging profiles at public locations under uncontrolled charging strategy. 

3.1.2 Charging profiles of EVs under the off-peak charging strategy 
The average daily charging demand of EVs under the OPC strategy is shown in Table 5. 

Compared to the demand under the UC strategy, the HCD is much larger, representing nearly 75% 
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of the TCD. The PCD accounts for about 15% of the TCD and the WCD accounts approximately 10% 
of the TCD. 

 
Table 5. Average daily charging demand of 1000 EVs under OPC strategy 

Location Home  Work  Public Total 
Shopping  Meal Recreation  

EVSE/kWh Slow Slow Slow Fast Slow Fast Slow Fast / 
Weekday 7507.5 1226.0 336.8 182.7 203.6 77.1 587.0 92.2 10212.8 
Weekend 6615.5 275.0 336.6 175.7 216.7 79.5 844.3 136.4 8700.4 
 
The average charging profiles of EVs under the OPC strategy are illustrated in Fig. 10. Different from 
the original bimodal TCD under the UC strategy, the TCD under the OPC strategy becomes a 
unimodal pattern and the peak load appears in the period of 23:00-7:00 (day+1). The average peak 
load under the OPC strategy rises up to 1383 kW on weekdays and 1195 kW on weekends, 
representing an 83% and a 68% increase over the peak loads under the UC strategy. This is mainly 
attributed to the changes in the HCD, i.e. the peaks move to the period of 23:00-7:00 (day+1) and 
increase by 171% on weekdays and by 201% on weekends (Fig. 10 cf. Fig. 8). In the meantime, the 
WCD and PCD both significantly decrease. 

 

Fig.10 Average daily charging profiles under off-peak charging strategy. 
The average daily charging profiles at public locations under the OPC strategy are shown in Fig.11. 
With the increase in HCD, as indicated in Fig. 11, the average PCD significantly decreases, especially 
the peak load of RCD in the morning vanishes (Fig. 11 cf. Fig. 9). 

 

Fig.11 Average daily charging profiles at public locations under off-peak charging strategy. 
 
As a result of load shifting, the daily electricity cost under the OPC strategy is reduced by about 40% 
compared to that under the UC strategy under the TOU pricing mechanism (Fig. 12). 
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Fig.12 Average daily electricity cost under different charging strategies 
 

3.1.3 The influence of traffic flow on charging demand 
Traffic flow, represented by number of parking EVs, can be easily acquire in practice. Traffic flow 

can be used to forecast charging demand, which is the most important information for planning 
and operating a charging station. Fig. 13 shows the average daily traffic flows at different locations, 
where the flows at the public locations are further divided according to trip purpose. The largest 
aggregate traffic flow occurs at the public location and smallest at the work location. While the 
traffic flow at public locations increases at weekends, the traffic flow at work locations decreases 
more on weekends. 

 

Fig. 13 EV average daily traffic flow at different locations 
To reveal the relation between traffic flow and charging demand, equivalent daily charging 

demand (EDCD) and equivalent daily peak load (EDPL) are calculated as Formula (23)-(24). Different 
from the heterogenous impacts of an individual EV, EDCD indicates the amount of charging 
demand contributed by one EV on average and EDPL shows the magnitude of peak load 
contributed by one EV on average. EDCD and EDPL reflect the synthetic effects of charging 
possibility, charging duration, EVSEs and discrete charging distribution. However, EDCD and EDPL 
are much easier to obtain and more applicable in practice than the rest parameters. 

𝐸𝐷𝐶𝐷 = ¦af§¨	Zcadef$e	",`a$"
©daªªfZ	ª§m«	f$	a	"a¨

                                                (23) 

𝐸𝐷𝑃𝐿 = ­,a�	§ma"	mª	¦af§¨	Zcadef$e	*dmªf§,
©daªªfZ	ª§m«	f$	a	"a¨

                                        (24) 

The distributions of the EDCD and the EDPL are shown in Fig. 14 and 15. Although there is the 
largest traffic flow and fast charging EVSE are available at public locations, the EDCDs and EDPLs 
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are the smallest. This reveals the lowest charging demand on average at public locations, mainly 
because of the shortest time of charging. The EDCDs at home and work locations are quite similar 
under the UC strategy, while it becomes much higher at home locations under the OPC strategy, 
due to the load shifting effect of the TOU pricing (Fig. 14). The impact of the OPC strategy on EDPL 
at home locations is even larger (Fig. 15), implying that most EVs charge when electricity prices is 
low and that peak load shifts to another time due to this effect. The EDPLs at work locations are 
the largest under the UC strategy, because the charging time of different EVs overlaps. In addition, 
the ranges of distribution of EDCD and EDPL are widest at work locations, reflecting the largest 
variations in charging demand at work locations. 

 

 
Fig. 14 The equivalent daily charging demand of EVs at different locations.  

 
Fig. 15 The equivalent daily peak load of EVs at different locations. 

The EDPL of each purpose at public locations was further calculated and the results are shown 
in Fig. 16. It is interesting to see that the EDPLs of individual purposes are much larger than the 
overall EDPL at public locations. This phenomenon indicates that the charging loads related to 
different activities are discretely distributed, i.e. can be called “Discrete peak effect”. The discrete 
charging plus a short charging time leads to small EDPLs at public locations. In addition, the 
individual EDPLs of shopping and meal purposes are at an equivalent level of the EDPLs at home 
and work locations, indicating the effect of fast charging. In practice, it is important to consider the 
discrete peak effect in organizing the loads of EV charging and to integrate EDCDs and EDPLs into 
the Geographic Information System (GIS) to solve, e.g. planning for the development of EV 
infrastructure [36]. 
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Fig. 16 The daily peak load of EVs for different purposes at public location 

3.2 Flexibility of charging and discharging of EVs 

3.2.1 Charging flexibility of EVs 
Charging flexibility is evaluated by the maximum adjustable charging power, 𝑃Z[\]^_`ab , and the 

maximum adjustable amount of charging electricity, 𝐶Zc\]^_`ab , of which the results are shown in 
Fig.17 and Table 6, respectively. Since all of the EVs at home locations participate in load shifting, 
the maximum adjustable charging power, 𝑃Z[\]^_`ab , and the maximum adjustable amount of 
charging electricity, 𝐶Zc\]^_`ab , at home locations under the OPC strategy were not calculated. 

As shown in Fig.17 and Table 6, the EVs at home locations have the largest charging flexibility, 
𝑃Z[\]^_`ab  and 𝐶Zc\]^_`ab , under the UC strategy. However, in the period 9:00-15:00 on weekdays, 
which is the regular working time, the maximum adjustable charging power 𝑃Z[\]^_`ab  at home 
locations is smaller than that at work locations (Fig. 17 (a)). 

On weekends, the charging flexibility, 𝑃Z[\]^_`ab  and 𝐶Zc\]^_`ab , at work locations greatly decreases 
due to the reduction in traffic flow and parking time. By contrast, the charging flexibility, 𝑃Z[\]^_`ab  
and 𝐶Zc\]^_`ab , at public locations is higher on weekends than on weekdays due to a larger traffic 
flow and longer parking time (Fig. 17 (a) cf. (b) and (c) cf. (d)). 

Charging strategies, i.e. the UC and OPC strategy, do not change the overall pattern of the 
maximum adjustable charging power, 𝑃Z[\]^_`ab , only the corresponding value of the profile have 
proportionally reduced (Fig. 17 (a) cf. (c) and (b) cf. (d)). The maximum adjustable amount of 
charging electricity, 𝐶Zc\]^_`ab , at work and public locations under the OPC strategy is 29% and 24% 
smaller than the adjustable amount under the UC strategy, since people tend to charge during the 
off-peak period. 

Although the maximum adjustable charging power, 𝑃Z[\]^_`ab , at public locations is comparatively 
small, the adjustable amount of electricity, 𝐶Zc\]^_`ab , is large enough for load shifting. This is also 
related to the discrete charging effect, which enables a long time for load shifting at public locations. 
The method proposed in this study, with case specific data, can provide valuable information on 
load management and grid control. 
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Fig. 17 The maximum adjustable charging power profiles at different locations. 
Table 6. Average daily maximum adjustable amount of charging electricity (kWh) 

Location Home Work 
Public 

Shopping  Meal Recreation Total 
UC_Weekday 5316.3 2323.7 994.4 588.0 1199.8 2782.3 
UC_Weekend 5360.0 527.2 1213.3 793.0 2318.2 4324.5 
OPC_Weekday / 1651.9 804.5 488.7 996.5 2289.7 
OPC_Weekend / 370.1 903.8 638.7 1599.3 3141.9 

3.2.2 Flexibility of vehicle-to-grid 
V2G flexibility is evaluated by the maximum adjustable V2G power, 𝑃�3�`ab, and the maximum 

adjustable amount of V2G electricity, 𝐶�3�`ab, of which the results are shown in Fig.18 and Table 7, 
respectively. 

The maximum adjustable V2G power, 𝑃�3�`ab (Fig. 18), shows the same pattern as the maximum 
adjustable charging power, 𝑃Z[\]^_`ab  (Fig. 17), because they are both closely related to traffic flows. 

The V2G flexibility, 𝑃�3�`ab and 𝐶�3�`ab, is generally larger than charging flexibility, 𝑃Z[\]^_`ab  and 
𝐶Zc\]^_`ab , at work and public locations. On the contrary, the maximum adjustable amount of V2G 
electricity, 𝐶�3�`ab, at home location is smaller than the adjustable amount of charging electricity 
𝐶Zc\]^_`ab , which shows that for many EVs the capacity for V2G is limited due to a lower SOC after the 
trips in daytime. The maximum adjustable amount of V2G electricity, 𝐶�3�`ab, at public locations is 
larger than the amount at home and work locations, although the maximum adjustable V2G power, 
𝑃�3�`ab, is relatively small.  

Charging strategy has an opposite and heavier influence on the V2G flexibility than on the 
charging flexibility, i.e. the V2G flexibility under the OPC strategy at work and public locations is 
larger than that under the UC strategy. This is because EVs usually have a larger SOC after the OPC 
operation at home and thus have larger potentials of discharging and smaller potentials of charging 
in the following period of time at work and public locations. 

 
Fig. 18 The maximum adjustable V2G power profiles at different locations. 

Table 7. Average maximum amount of adjustable V2G electricity (kWh) 
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Location Home Work 
Public 

Shopping  Meal Recreation Total 
UC_Weekday 4674.1 2732.6 1231.8 727.6 1338.0 3297.4 
UC_Weekend 3233.5 589.6 1520.6 996.1 2742.7 5259.4 
OPC_Weekday / 4161.5 1541.2 917.0 1880.7 4338.9 
OPC_Weekend / 884.3 1898.8 1254.0 3794.6 6947.4 

3.3 The uncertainty of charging demand 

Not only the total magnitude of EV charging demand, but also its dynamic characteristics are of 
great importance, because the uncertainty of EV charging demand can greatly affect the reliability 
of power systems [37]. Due to the heterogeneity and randomness in EVs’ travel and charging 
behavior, the forecast of EV charging demand may contain a high level of uncertainty, especially 
with respect to fast charging. Therefore, the study calculated ARMSE to measure the uncertainty 
of charging demand. 

 

 
Fig. 19 The uncertainty of daily charging profile at different locations (time step: 1 minute) 

Fig 19 compared the uncertainty of charging demands at different locations over a day. The 
uncertainties of charging demand at public locations are highest under different charging strategies, 
and this is due to the application of Level 3 EVSE. 

Apart from the influence of EVSE, the ARMSE is positively related to charging demand. This is 
why the uncertainties of charging demand at home locations are generally higher than those at 
work locations and why the uncertainties on weekdays are higher than those on weekends. 
Compared to the uncertainties under the UC strategy, the ARMSEs at work and public locations 
under the OPC strategy are much lower, meaning meanwhile the OPC strategy motivates load-
shifting, it also mitigates uncertainty of charging demand. 

4.Conclusions 
An agent-based trip chain model (ABTCM) was proposed to simulate the traffic patterns and 

charging demand of electric vehicles (EVs). Based on the heterogenous travel and charging patterns 
of EVs, not only the total magnitude of EV charging demand, but also its dynamic characteristics, 
including flexibility and uncertainty, at different types of location were analyzed in this study. 

The largest charging demand, about 50% of the total, is met at home locations, under the 
uncontrolled charging (UC) strategy and about 70% of the total demand is met at home locations 
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under the off-peak charging (OPC) strategy. The second largest part of charging demand is met at 
work locations on weekdays, but the smallest charging demand is met at work locations on 
weekends. Under OPC strategy, the peak loads move away from the original periods and this results 
in a 40% cost reduction compared to that under the UC strategy. 

The relation between traffic flow and charging demand was revealed by equivalent daily 
charging demand (EDCD) and equivalent daily peak load (EDPL). Under the UC strategy, the EDPLs 
at work locations are largest, because the charging time of different EVs overlaps. Under the OPC 
strategy, the EDCDs and EDPLs at home locations become much larger due to load shifting. The 
discrete peak effect plus a short charging time leads to the smallest EDCDs and EDPLs at public 
locations, although there is the largest traffic flow and fast charging supply equipment is available. 
In practice, it is important to consider the discrete peak effect in organizing the loads of EV charging 
and to integrate EDCDs and EDPLs into the planning for the development of EV infrastructure. 

EV charging and V2G flexibility were examined by instantaneous maximum adjustable charging 
power and accumulative maximum adjustable amount of charging electricity. On the whole, the 
EVs at home locations have the largest charging and V2G flexibility under the UC strategy; except 
for a period of regular working time, when the maximum adjustable charging power at home 
locations is smaller than that at work locations. Meanwhile, the V2G flexibility at work and public 
locations, is generally larger than charging flexibility. In addition, the discrete peak effect causes a 
long time for load shifting at public locations. As a result, the adjustable amount of electricity is 
large at public locations, while the adjustable power is comparatively small. 

Due to the application of fast charging supply equipment, the uncertainties of charging demand 
at public locations are the highest in all locations. Compared to the results under the UC strategy, 
the uncertainties at work and public locations are much lower under the OPC strategy, meaning 
meanwhile the OPC strategy motivates load-shifting, it also mitigates the uncertainty of charging 
demand. 

The method proposed in this study, as well as the results, provide important information on how 
charging stations should be planned and operated, and on how demand-side energy management 
should be implemented at different types of location. Future research can incorporate the GIS 
information on land-use type and traffic flow into the methodology to simulate dynamic charging 
demand and thus to assist in planning for charging stations in the real world. In addition, the 
degradation of EV batteries can be considered in a detailed powertrain model to explore life-time 
utilization of batteries. 
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Appendix 
 

A1. Uncontrolled charging strategy 
 

 
Fig.A1 Algorithm of uncontrolled charging strategy 

Step 1: The probability of charging for a given state of charge (SOC), expressed by p(SOC), 
and the battery electricity needed for the next trip, expressed by SOCtrip, are calculated at 
the beginning of the process. If the current battery SOC is sufficient for the next trip (20% 
SOC is designed for battery protection), the charging event is determined according to 
p(SOC). If p(SOC) is true, the EV will charge immediately. If p(SOC) is false, the EV will not 
charge. The probability density functions (PDFs) for p(SOC) at different locations and its 
related real-world data based SOC distribution are shown in Fig. A2. SCOtrip is calculated as 
Formula A1. 
𝑆𝑂𝐶/df* = 2 × 𝑑/ × 𝐸/𝐶                                                  (A1) 
Step 2: If the SOC is not sufficient for the next trip, the EV has to charge immediately. The 
minimum SOC before leaving, expressed by SOCmin, and the corresponding charging time 
tc,min at Level1/2 SE are calculated for the selection SE. If the time for charging the battery 
to its full capacity is longer than the parking time, i.e. mtc > td, or the parking time is shorter 
than 0.5 hour, the EV will charge at the Level 3 SE. Otherwise, the EV will charge at the Level 
1/2 SE. The SOCmin and tc,min are calculated according to Formula A2 and A3, where P and e 
represent the charging power and efficiency of Level 1/2 SE. 
𝑆𝑂𝐶`f$ = 𝑚𝑖𝑛(100%, 20%+ 𝑆𝑂𝐶/df*)                                     (A2) 
𝑡Z,`f$ = (𝑆𝑂𝐶`f$ − 𝑆𝑂𝐶) ∙ 𝐶/(𝑃 ∙ 𝑒)                                        (A3) 
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Fig.A2 PDF of p(SOC) and the distribution of SOC at the start of charging events   
Source: calculated from [38]. 

A2. Off-peak charging strategy 
 

 

Fig.A3 Algorithm of smart charging strategy 
Step 1: SOCday represents the electricity needed for the next day’s trip and it is calculated as 
Formula A4. 
Step 2: If the remaining SOC cannot afford the travel in the next day or p(SOC) is true, the 
algorithm is launched to calculate tr, tc and tc,min and Ts. tr represents the remaining time 
with the valley price of the TOU mechanism and it is calculated according to Formula A5. tc 
represents the time for charge a battery from its current SOC to full capacity. TL and TH are 
the start and end time points for the lower price period of the TOU. T1 is the departure time 
in the next day and, if the EV is not used in the next day, T1 equals to TH. 
𝑆𝑂𝐶"a¨ = (𝑑/,& + ⋯+ 𝑑/,$)𝐸/𝐶	                                           (A4) 
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𝑡d = v24 −𝑚𝑎𝑥
(𝑇, 𝑇𝐿) + 𝑚𝑖𝑛(𝑇&, 𝑇𝐻) 							𝑇 ≥ 𝑇𝐻

𝑚𝑖𝑛(𝑇&, 𝑇𝐻) − 𝑇																																					𝑇 < 𝑇𝐻                             (A5) 

A3. Basic information for the model 
Table A2. Basic information of the EV 

EV 
Battery Capacity 

(kWh) 
Energy Consumption 

(kWh/km) 
Charging Efficiency 

(%) 
Nissan Leaf 24 0.212 86.4 

 
Table A3. Time-of-use pricing mechanism [35] 

Time 0:00-
7:00 

7:00-
10:00 

10:00-
13:00 

13:00-
18:00 

18:00-
23:00 

23:00-
24:00 

pgrid 
(RMB/kWh) 0.475 0.900 1.346 0.900 1.346 0.475 
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