
Fast Privacy-Preserving Network Function
OutsourcingI

Hassan Jameel Asghara,b,∗, Emiliano De Cristofaroc, Guillaume Jourjonb,
Mohammed Ali Kaafara,b, Laurent Mathyd, Luca Melisc, Craig Russellb,

Mang Yub

aMacquarie University, Sydney, Australia
bData61, CSIRO, Sydney, Australia

cUniversity College London, London, UK
dUniversity of Liège, Liège, Belgium

Abstract

In this paper, we present the design and implementation of SplitBox, a sys-
tem for privacy-preserving processing of network functions outsourced to cloud
middleboxes—i.e., without revealing the policies governing these functions. Split-
Box is built to provide privacy for a generic network function that abstracts the
functionality of a variety of network functions and associated policies, includ-
ing firewalls, virtual LANs, network address translators (NATs), deep packet
inspection, and load balancers. We present a scalable design aiming to provide
high throughput and low latency, by distributing functionalities to a few virtual
machines (VMs), while providing provably secure guarantees. We implement
SplitBox inside FastClick, an extension of the Click modular router, using In-
tel’s DPDK to handle packet I/O. We evaluate our prototype experimentally to
find its bottlenecks and stress-test its different components, vis-à-vis two widely
used network functions, i.e., firewall and VLAN tagging. Our evaluation shows
that, on commodity hardware, SplitBox can process packets close to line rate
(i.e., 8.9Gbps) with up to 50 traversed policies.

Keywords: NFV, Privacy, Middlebox

IThis article is based, in part, on [1] published at the 3rd ACM SIGCOMM Workshop on
Hot Topics in Middleboxes and Network Function Virtualization (HotMiddleBox 2016).
∗Corresponding author
Email addresses: hassan.asghar@mq.edu.au (Hassan Jameel Asghar),
e.decristofaro@ucl.ac.uk (Emiliano De Cristofaro), guillaume.jourjon@data61.csiro.au
(Guillaume Jourjon), dali.kaafar@mq.edu.au (Mohammed Ali Kaafar),
Laurent.Mathy@ulg.ac.be (Laurent Mathy), uca.melis.14@ucl.ac.uk (Luca Melis),
craig.russell@data61.csiro.au (Craig Russell), g100335@gmail.com (Mang Yu)

Preprint submitted to Elsevier September 20, 2019

1. Introduction

Network functions support a variety of functionalities – typically config-
ured via a set of policies – including network address translation (NAT), deep
packet inspection, and firewalling. Traditionally, network functions have been
implemented on hardware middleboxes deployed at the edge of an organiza-
tion’s network, however, these appliances often yield high infrastructure and
management costs [2]. As a result, more and more organizations have taken
advantage of advances in cloud computing and virtualization technologies to
adopt Network Function Virtualization (NFV) [3]. With NFV, functions are
implemented as software processes, outsourced to virtual machines running on
commodity servers, leading to a significant reduction in associated costs and
complexity, as well as flexibility in re-purposing generic hardware for a multi-
tude of functions [3, 4, 5, 6, 7, 8, 9, 10].

At the same time, however, outsourcing network functions to third parties
may introduce serious security and privacy threats. Consider, for instance, the
case of a firewall: in the traditional setting, firewall rules (or policies) are hid-
den from potentially prying eyes, except for what can be inferred from observing
incoming/outgoing traffic. Whereas, with NFV, policies could be accessed by
third parties running processes on the same cloud infrastructure, and are in-
herently available to a cloud provider that may be compromised or not fully
trusted [11]. This raises worrying concerns as the disclosure of the policies may
reveal sensitive details about an organization’s network, such as the IP addresses
of hosts or the topology of the private network [12, 13].

These concerns motivate the need to enable network function outsourcing
while protecting the confidentiality of the policies. There are at least two ap-
proaches to do so: one is to rely on virtual machine isolation [14], aiming to
guarantee that a (client’s) virtual machine is isolated from the rest of the pro-
cesses/virtual machines running on a given server. Alas, this is far from trivial
and infeasible with commodity virtual machine hypervisors. Another approach
is to build on cryptographic primitives that provably minimize the amount of
information disclosed to the cloud provider [15]. In theory, one could rely on
tools like garbled circuits and fully homomorphic encryption to perform compu-
tation or evaluate functions, privately, without disclosing sensitive information.
However, these tools are too expensive for most NFV settings [15], where low
latency and minimization of computational overhead are crucial requirements.

Arguably, optimal solutions to the problem should not only guarantee con-
fidentiality of the network policies—and with minimal trust assumptions—but
also basic performance requirements such as low latency and high throughput.
Moreover, clients (whose network functions are being outsourced) should be as
thin as possible, otherwise outsourcing would only be nominal. Additionally,
one should also provide compatibility with existing infrastructure (i.e., third
parties do not need to implement new protocols) and support a wide range
of functionalities. Previous work, thoroughly reviewed in Section 7, has made
several attempts in this direction [12, 13, 15, 16, 17], but has fallen short of
simultaneously achieving all these requirements. For instance, some of them are

2

limited to simple firewalls [12, 13], whereas, we support more general network
functions in which packets can be (privately) modified in different ways (e.g.,
changing destination IP). Other works such as Embark [16] provide a more gen-
eral applicability to network functions, but at the cost of relying on the client
itself to perform a significant portion of the functionality.

In this paper, we present the design, analysis and implementation of Split-
Box, a system that supports fast and privacy-preserving network function out-
sourcing with high throughput and low latency. The privacy goal is to hide
the policies governing the network functions from the VMs implementing the
functions, thus not allowing the cloud (and third parties) learn network func-
tion policies of the client. Our intuition is to leverage the distributed nature of
cloud VMs: rather than relying on a single one, we distribute functionality to
a few VMs residing on multiple clouds or multiple compute nodes in the same
cloud, and provide a scalable and provably secure solution. SplitBox supports
the privacy-preserving modification of a packet’s contents through the notion of
secret sharing [18], ensuring that a collusion of any number of compute nodes
less than the total does not reveal the modified content (including whether the
packet has been tagged for a drop for the specific case of firewalls). This en-
ables us to add more complex modifications, thus addressing a challenging open
problem. In summary, we make the following contributions:

1. We introduce an abstract mathematical definition of a network function
which is rich enough to capture many network functions, including, but not
limited to, firewalls, virtual LAN (VLAN) tagging, and NAT. This helps
us build solutions that guarantee privacy for a generic network function,
and can be applied to many network functions used in practice.

2. We design and implement SplitBox, a system geared for privately and ef-
ficiently computing the aforementioned abstract network function, so that
the “honest-but-curious” cloud, modeled as several VM middleboxes, can-
not learn network policies. SplitBox relies on the distributed nature of
cloud VMs, assuming that an adversary does not corrupt all middleboxes
simultaneously, and only uses relatively inexpensive cryptographic primi-
tives, while supporting a wide range of network policies (specifically, those
that can be modeled as substring matching and replacement of packet con-
tents). We provide security proofs of our construction using the real/ideal
simulation paradigm [19].

3. We present an extensive evaluation of SplitBox, considering two network
functions as examples, to thoroughly assess its feasibility in the wild. We
consider a firewall application since it is widely used, including in related
work [12, 13, 16], as well as VLAN tagging. The latter is more complex in
terms of functionality, since it modifies packet header rather than simply
allowing/dropping a packet. We show that on a firewall test case, SplitBox
achieves the same throughput of the non-private version with 9.4Gbps
and 1.5kB-sized packets when up to 10 rules are fired, and a decrease in
performance limited to 5% (i.e., 8.9Gbps) with 50 rules.

Paper Organization. The rest of the paper is organized as follows. Next sec-

3

Cloud A Cloud B

Node 1

Node 2

Internal/Private
 Network

Incoming
traffic

 = Middlebox

 = Compute Node

Legend

A

B1

B2

B3

C

B(t)

Figure 1: Our system model with Cloud A hosting MB A as a VM in one of its compute
nodes. Cloud B hosts the MBs B(t) with t = 3 as VMs (not all t reside on the same compute
node). The client MB C resides at the edge of the client’s internal network. A and B(t)
collaboratively compute network functions for the client.

tion presents the threat model as well as a generic model of network functions
which abstracts the functionality of network functions. Then, Section 3 intro-
duces the design of the SplitBox system and its security analysis, while Section 4
discusses our prototype implementation. After presenting an experimental eval-
uation of SplitBox in Section 5, Section 7 reviews related work. Finally, the
paper concludes in Section 8.

2. System Model

2.1. Problem Statement

The problem addressed in this paper is where a client outsources one or
more of its network functions (e.g., firewall) to the cloud. The cloud processes
these network functions on behalf of the client, i.e., executes policies on incom-
ing network traffic destined to the client, and sends the processed packets to
the client. In the traditional setting, these network functions would be imple-
mented at the edge of the client network. Hence any third-party can only see
inbound/outbound traffic to/from the client network. In particular, third par-
ties do not learn the policies implemented by the network functions (beyond
what is deducible by observing the traffic). The client wishes that the same pri-
vacy be applicable to its network functions when they are being processed in the
NFV setting, where the cloud is executes these network functions on behalf of
the client. In particular, any third party, including the cloud, should not learn
the policies implemented by these network functions. This essentially means
that the cloud should process these policies correctly while remaining oblivious
to them. In the following, we define the setting and these requirements more
precisely, including trust assumptions, describe our proposed solution and prove
its security and correctness.

4

2.2. Entities

As illustrated in Figure 1, SplitBox involves two types of cloud middleboxes
(MBs): an entry MB A, hosted on a cloud provider (Cloud A) and a set of t ≥ 2
cloud MBs, B(t), which collaboratively compute a network function on behalf
of a client, e.g., hosted on Cloud B. The client has its own client MB, denoted
as C, at the edge of its internal network. At a high level, A receives a packet,
performs some computation on it, “splits” the result into t parts, and forwards
part j to Bj ∈ B(t). Bj performs local computations and forwards its part to
C, which reconstructs the network function’s final result. (Note that there is
also a direct link between A and C which is not illustrated in Figure 1 to ease
presentation.)

2.3. Threat Model

Our main privacy goal is to limit information leakage of client’s network poli-
cies. In a way, we set to emulate the “traditional” setting where the network
function, in its entirety, is implemented client-side, i.e., at C, thus revealing no
information to the cloud. We assume an honest-but-curious adversary [20] with
access to one or more compute nodes in the cloud, which can only learn whether
or not the current packet “matches” some unknown policy of the network func-
tion. More specifically, we assume that the adversary does not control (have
access to) both A and a MB in B(t) at the same time, which reflects our vision
in which A runs on a different cloud provider (cloud A) than B(t) (cloud B). The
adversary can control up to t−1 MBs from B(t), i.e., it does not compromise all
the MBs at the same time, as not all MBs in B(t) reside on the same compute
node. In other words, our threat model reduces to assuming that the adversary
does not have access, simultaneously, to more than one cloud provider, and to
all compute nodes in cloud B, in line with recent proposals around the idea of
a super cloud [21].1 Finally, note that the system model in Figure 1 implicitly
targets inbound traffic. Outbound traffic is in general trusted, hence, we only
focus on inbound traffic.

Out-of-scope Threats. In our setting, entry MB A or a third-party adversary
could observe traffic inbound to A and traffic outbound from C to infer policies.
But notice that this is also possible in the traditional setting if traffic is not
encrypted. Even if traffic is encrypted, it still does not provide protection against
an adversary generating traffic destined to the client. Thus, we can assume
that the initial packet (at least its header) can remain in the clear. If privacy
of packet contents (not just policies) is required, encryption can be used to

1Note that we are making a distinction between a compute node (physical server) and a
virtual machine (MB). Our assumption is that only some of the physical servers in cloud B
are accessible to the adversary. Hence we require the MBs from B(t), i.e., virtual machines, to
not be running on the same physical server. This can be implemented in policy, requiring each
of the MBs from B(t) to run on a different compute node. With this policy, our assumption
translates to the adversary having access to at most t − 1 compute nodes in cloud B (and
hence at most t− 1 MBs from B(t)).

5

provide privacy against third-party adversaries, and/or traffic can be sent to C
first before sending to A. However, this is beyond the scope of this work.

Difference with Embark [16]. In our solution, inbound traffic goes directly
to the cloud MB, as opposed to other approaches, such as Embark [16], where
inbound traffic first goes to the client MB, which pre-processes it (e.g., encrypts
it) and then routes it to the cloud MB, which in turn processes and sends the
traffic back to the client MB. This is an inherently easier problem, as the client
MB knows exactly which policies a given packet is expected to match, and can
therefore “embed” the answers within the packet, as is done in Embark. In
contrast, in our setting, the traffic goes straight to the cloud, which yields a
harder problem, as these policies need to be hidden from the cloud. Note that
there does not seem to be a straightforward way to modify Embark to provide
privacy in our setting without compromising efficiency.

2.4. Network Function Model

We define a packet x as a binary string of arbitrary length, However, network
functions will be applicable to the first n bits of x only. We define a matching
function as m : {0, 1}n → {0, 1}, and its complement (i.e., 1 −m) as m. Note
that both are boolean functions. We also define action functions as transfor-
mations a : {0, 1}n → {0, 1}n. Functions are evaluated on the first n bits of x,
so, if |x| > n, a keeps x unaltered after the n-th bit. We also define the identity
action function I(x) = x.

Let M and A, respectively, denote finite sets of matching and action func-
tions. We define a network function, ψ = (M,A), as a binary tree with edge set
M and node set A such that each node is an action function a ∈ A and each
edge is either a matching function m ∈ M or a complement m of a matching
function m ∈M . A node is either a leaf or a parent node, the latter having two
children. The left child is I, the edge to the right child is a m ∈ M , the one
connecting the left child is its complement m. The root node is I. Examples of
network functions are given in Figure 2.

Policies. Let ψ = (M,A) be a network function. Then, there is a binary
relation from M to A, such that for each (m, a) from this relation, there exists
a parent node in ψ whose left child is connected via m and the right child via
m, and the right child is a. We call each pair (m, a) in ψ a policy. A policy can
also be represented as a subtree of ψ as shown in Figure 2(a). Policies serve
as building blocks of a network function. The set of policies of ψ is the set of
distinct policies (m, a) in ψ.

Network functions. A network function ψ(x) is evaluated on a packet x using
Algorithm 1. We create a separate writeable copy xw to ensure the matching
functions are applied on the “unmodified” x, i.e., xr, and not on xw, which is
modified by the action functions. When a leaf node is entered, the network
function terminates. Figure 2(b) shows a network function with k distinct poli-
cies: whenever a match is found, the corresponding action is performed and
the function terminates. The function in Figure 2(c) has 3 distinct policies,

6

I

I a

m m

(a) Policy (m,a)
as a tree.

I

I a1

I a2

I

I ak

m1 m1

m2 m2

mk mk

(b) Network function
with k distinct poli-
cies.

I

I a1

I a2

m1 m1

m2 m2

I a2

m2 m2

I a3

m3 m3

(c) Network function with
3 distinct policies.

Figure 2: Examples of network functions as binary trees.

Algorithm 1: Traversal

Input: Packet x, network function ψ.
1 Make a read-only copy xr and a writable copy xw of x.
2 Start from the root node.
3 Compute xw ← a(xw), where a is the current node.
4 if the current node is a leaf node then
5 output xw and stop.
6 else
7 Compute m(xr), where m is the right hand side edge.
8 if m(xr) = 1 then
9 Move to the right child node.

10 else
11 Move to the left child node.

12 Go to step 3.

(m1, a1), (m2, a2) and (m3, a3), and (m2, a2) is repeated twice. This function
does not terminate immediately after a match has been found (e.g., path m1m2).
Since a ◦ I = I ◦ a = a, we can easily “plug” individual policy trees to construct
more complex network functions.

Remark. Our (abstract) definition of network functions yields several advan-
tages compared to a standard representation using vectors of elements corre-
sponding to different fields of a packet, and defining network functions as func-
tion composition [15]. First, defining packets as strings removes the need for
padding. Second, we can support branching, i.e., network functions that do not
necessarily apply all policies on a packet, by including multiple exit points (leaf
nodes in our tree model).

7

2.5. Restriction of Policies

We restrict m and a, respectively, to substring matching and substitution.
We introduce the “don’t care bit”, denoted by ∗ in our alphabet. Given strings
x ∈ {0, 1}n and y ∈ {0, 1, ∗}n, x = y if x(i) = y(i) for all i ∈ [n] s.t. y(i) 6= ∗.
A matching function m is defined as m(x) = 1 if x(1, n) = µ and 0 otherwise,
where µ ∈ {0, 1, ∗}n. We call µ the match of m.

Example 1. Let n = 4. And let the match µ of a matching function m be
µ = 10 ∗ 0. Let x1 = 1010, x2 = 1000 and x3 = 1001 be three different packets.
Then m(x1) = m(x2) = 1, whereas m(x3) = 0.

To define the action function, we introduce substring replacement: given
x ∈ {0, 1}n and z ∈ {0, 1, ∗}n, x ← z represents replacing each x(i) with z(i)
if z(i) 6= ∗, and leaving x(i) as is if z(i) = ∗, for all i ∈ [n]. Then, a is defined
as a(x) = x(1, n) ← α, where α ∈ {0, 1, ∗}n. We call α the action of a. For
the identity action function I, α = ∗n. Given z ∈ {0, 1, ∗}n, the projection of
z, denoted πz, is a string ∈ {0, 1}n, s.t. πz(i) = 1 if z(i) ∈ {0, 1} and πz(i) = 0
if z(i) = ∗. Masking a packet x, using πz ∈ {0, 1}n, is denoted as ω(πz, x),
returning x′ s.t. x′(i) = x(i) if πz(i) = 1 and x′(i) = 0 otherwise. Although
ω(πz, x) is defined for x ∈ {0, 1, ∗}n, we will use it exclusively for an x ∈ {0, 1}n.
Figure 3 illustrates the projection and masking functions.

Lastly, we use H : {0, 1}n → {0, 1}q for a cryptographic hash function; ⊕ for
bitwise XOR, wt(x) for the Hamming weight of x, while x ←$ {0, 1}n denotes
sampling a binary string of length n uniformly at random.

Example 2. Consider a simple firewall with the policy that only packets with
destination ports 80 or 22 are allowed. This can be represented by the tree shown
in Figure 4. Here m1 is described by the match µ1 whose bits corresponding
to the destination port are set to the binary representation of 80 and the rest
by the don’t care bit ∗. Likewise m2 corresponds to destination port 22. The
match µ3 of matching function m3 is set to ∗n, and therefore accepts every
packet. The action function a is x(1, n) ← 0n, which we model as dropping a
packet.2

2.6. Generic Network Functions

Coverage. Our abstract definition of network functions captures many network
functions used in practice. These include firewalls, access control lists (ACLs),
NATs, virtual LANs (VLANs), and load balancers. These usually go through
a matching step to inspect some “parts” of a packet, and, if a match is found,
modify contents. With firewalls, this might also entail dropping a packet. In
our model, packets are not dropped at B(t), but are (privately) tagged to be
dropped. When C receives the packet parts from B(t), the reconstructed packet

2This is not the only way to model dropping. In our implementation, we introduce another
bit which acts as a flag to indicate dropping/blocking a packet.

8

0 * * * 01

1 0 0 0 11

1 0 0 0 *0

1 * 1 1 *0

0 0 0 0 01

z

πz

ω(πz, z)

ω(πz, x)

x

Figure 3: The projection and masking functions.

I

I I (allow)

I I (allow)

I a (drop)

m1 m1 (dst port = 80?)

m2 m2 (dst port = 22?)

m3 m3 (any other packet)

Figure 4: Network function for a simple firewall.

can have a bit within x(1, n) set to 0 in case it is supposed to be dropped.
Likewise, some QoS functions (e.g., rate limiters) can also be implemented by
inserting a drop bit within the first n bits of a packet x.

Stateful network functions. Some network functions are stateful, i.e., they
maintain a table of states, somewhat resembling dynamically generated policies.
Upon arrival of a packet, the state table is consulted first, if no match is found,
it is further processed as per the regular (static) policies. For instance, a stateful
firewall may keep a list of currently open TCP/IP connections. Since a state can
be modeled as a dynamically generated policy, our model of network functions
can easily handle this by appending dynamic policies on top of the policy tree.
However, in SplitBox, these dynamic policies can only be added by C. We
discuss this in more detail in Section 6.

Chaining. Our definitions also support function chaining, e.g., ψ1’s output is
ψ2’s input. However, in our “default” SplitBox solution, chaining is not possible
as outputs of the MBs in B(t) need to be combined in order to reconstruct a
transformed packet. For chaining to work, ψ2 needs to know the output of
network function ψ1, but, if ψ2 only needs the original input x, instead of the

9

overwritten copy xw, chaining can work by giving ψ2 an auxiliary input – i.e.,
the share resulting from network function ψ1, on which it can apply its own
actions. We discuss this again in Section 6.

3. SplitBox

This section presents the design of the SplitBox system.

3.1. Requirements

SplitBox is designed by taking into account four main requirements: privacy,
efficiency, thin client, and compatibility, as discussed next.

Privacy. Ideally, SplitBox should simulate a setting where A learns only the
input packet, and B(t) learn neither the input nor the modified packet. We
come close to achieving this as the MBs B(t) learn the projection πµ and the
output m(x) for each m ∈ M , however, they do not learn the match µ for any
m ∈ M beyond what can be learned from πµ. Although this could potentially
reveal which field of the packet the current matching function corresponds to,
it is not a major limitation as this information might anyway be obvious from
the type of NFV considered. For instance, in case of a firewall, the IP fields will
obviously be part of its policies.

Efficiency. SplitBox should be computationally fast, i.e., processing traffic
at near-to-typical middlebox line rates, and limit MB-to-MB communication
overhead. This makes it impossible to use (expensive) public-key operations
as well as some simple solutions: for instance, one could let A compute all
the matches from the set of matching functions M , then send the (encrypted)
results of these matches to B(t), which could in turn execute actions based on
the network tree. However, communication complexity would be proportional
to |M |: depending on the number of policies, this may result in significantly
larger packets sent to B(t) and severely affect throughput. Moreover, based on
the network tree, not all matches need to be computed beforehand, and in this
case this approach would be very inefficient. Note that we cannot reveal the
result of the match to A, as A already receives the packet x in the clear, and
could deduce the match of the matching function. Likewise, any solution that
requires back and forth communication between A and B(t) is not desirable as
it would effect throughput.

Thin client. It is also crucial to impose minimal overhead on C, otherwise we
would nullify the benefits provided to the client by the outsourcing paradigm,
i.e., reduced infrastructure costs, efficiency, and flexibility.

Compatibility. Third-parties should be oblivious to the virtual setting. This
precludes implementing custom protocols for third-parties sending/receiving
traffic from/to the cloud, which is done for instance by BlindBox [17].

10

Split
Packet

Global SetupSetup
Lookup
Tables

Hide
Match

Split
Action

Private Traversal

Compute
Match

Compute
Action

Merge
Shares

packet in

packet out

Middleboxes

Setup

Packet
Processing

A B(t) C

Figure 5: Breakdown of algorithms executed by each MB in SplitBox.

3.2. The SplitBox System

To illustrate the idea behind SplitBox, let us assume that the set of policies
ψ only includes a single policy, (m, a). The strategy followed by SplitBox to
hide m is to let C blind µ by XORing it with a random binary string s, and
sending the hash of the result to each MB in B(t). Then, to hide a, C computes
t shares of the action α using a t-out-of-t secret sharing scheme, and sends share
j to Bj . When a packet x arrives, A encrypts it by XORing it with the blind s,
and sends the encrypted version to the MBs in B(t), which can then compute
matches and actions on this encrypted packet.

In the rest of this section, we present SplitBox using a set of algorithms,
grouped based on the MB executing them. Figure 5 shows a high-level overview
of all the algorithms computed by each MB. We assume ψpriv to be the pri-
vate version of ψ, whose matching and action functions are replaced by unique
identifiers.

Middlebox C. The initial setup is performed by C via Algorithm 2. This
includes creating lookup tables (Algorithm 3), hiding the matching functions
(Algorithm 4), and splitting the action functions (Algorithm 5). There are two
lookup tables in Algorithm 3: S for A and S̃ for B(t). Table S contains l
“blinds” which are random binary strings used to encrypt a packet. For each
s ∈ S and m ∈ M , the portion of the blind corresponding to the projection of
the match µ is extracted and then XORed with µ. Finally, this value is hashed
using H and stored in the corresponding row of S̃. The Hide Match algorithm
simply sends the projection πµ of each match µ to B(t). This tells B(t) which

11

Algorithm 2: Global Setup (C)
Input: Parameters n and l, network function ψ = (M,A).

1 for j = 1 to t do
2 Send ψpriv to Bj .
3 Run Setup Lookup Tables with parameter l, M .
4 for each m ∈M do
5 Run Hide Match algorithm.
6 for each a ∈ A do
7 Run Split Action algorithm.

Algorithm 3: Setup Lookup Tables (C)
Input: Parameter l, set M .

1 Initialize empty table S with l cells.

2 Initialize empty table S̃ with l × |M | cells.
3 for i = 1 to l do
4 Sample si ←$ {0, 1}n.
5 Insert si in cell i of S.
6 for j = 1 to |M | do
7 Compute s̃i,j = ω(πµj , si), where µj is the match of mj .
8 Compute H(µj ⊕ s̃i,j).
9 Insert H(µj ⊕ s̃i,j) in cell (i, j) of S̃.

10 Send S to A.
11 Send S̃ to B(t).

Algorithm 4: Hide Match (C)
Input: Matching function m ∈M with match µ.

1 Send πµ to B(t).

12

locations of the incoming packet are relevant for the current match. The Split

Action algorithm computes t shares of the action α and action projection πα,
for each a ∈ A, and sends them to B(t).
C uses one more algorithm, Algorithm 6, to reconstruct the transformed

packet. This algorithm XORs the cumulative action shares α′j and cumulative
action projection shares β′j from Bj to compute the final action α′ and action
projection β′. It also XORs the encrypted packet received from A with the
current blind s in the lookup table S, in order to reconstruct the final packet.
Note that dropping a packet is modeled as setting x(1, n) to 0n.

Middlebox A. This MB only runs Algorithm 7, which keeps a counter initial-
ized to 0 and incremented when a new packet x arrives. The value of the counter
corresponds to a blind in the lookup table S, thus, its range is [l] (barring the
initial value of 0). The algorithm makes two copies of an incoming packet x, xr
(read-only copy) for matching to be sent to B(t), and xw (writeable copy) for
action functions to be sent to C. Both xr and xw are XORed with the blind in
S corresponding to the counter. The current counter value is also given to B(t)
and C.

Algorithm 5: Split Action (C)
Input: Action function a ∈ A with action α.

1 Sample α1, α2, . . . , αt−1 ←$ {0, 1}n.
2 Let α̃ = ω(πα, α). Compute αt = α̃⊕ α1 ⊕ · · · ⊕ αt−1.
3 Sample β1, β2, . . . , βt−1 ←$ {0, 1}n.
4 Compute βt = πα ⊕ β1 ⊕ · · · ⊕ βt−1.
5 for j = 1 to t do
6 Give αj , βj to Bj .

Algorithm 6: Merge Shares (C)
Input: Index i, packet copy xw, α

′
j and β′j from Bj for j ∈ [t].

1 Compute α′ ← α′1 ⊕ · · · ⊕ α′t.
2 Compute β′ ← β′1 ⊕ · · · ⊕ β′t.
3 Compute x← xw ⊕ si, where si ∈ S.
4 for i = 1 to n do
5 if β′(i) = 1 then
6 x(i)← α′(i)

7 if x(1, n) = 0n then
8 Drop x.
9 else

10 Forward x.

Middleboxes B(t). Each MB Bj performs a private version of the Traversal

algorithm as shown in Algorithm 8. Bj first initializes cumulative action strings

13

Algorithm 7: Split Packet (A)

Input: Packet x, lookup table S.
1 Get the index i ∈ [l] corresponding to the current value of the counter.
2 Let xw ← x⊕ si (writeable copy), where si ∈ S.
3 Compute xr ← x(1, n)⊕ si (read-only copy), where si ∈ S.
4 for j = 1 to t do
5 Send xr, i to Bj .
6 Send xw, i to C.

Algorithm 8: Private Traversal (B(t))

Input: Index i, read-only copy xr, network function ψpriv.
1 Initialize empty strings α′j ← 0n and β′j ← 0n.
2 Start from the root node.
3 Update α′j and β′j by running the Compute Action algorithm on the current

node a.
4 if the current node is a leaf node then
5 Send i, α′j and β′j to party C and stop.
6 else
7 Run Compute Match algorithm on i, m and xr, where m is the right hand

side edge.
8 if Compute Match outputs 1 then
9 Go to the right child node.

10 else
11 Go to the left child node.

12 Go to step 3.

α′j and cumulative action projection strings β′j as strings of all zeros. Within
the Private Traversal algorithm, Bj executes the action functions using Al-
gorithm 9 and matching functions using Algorithm 10. The Compute Action

algorithm essentially updates α′j and β′j by XORing with the action share and
action projection share of the current action. The Compute Match algorithm
uses the read-only copy xr. It extracts the bits of xr corresponding to the cur-
rent match projection πµ. It then looks up the counter value i (sent by A)

and the index of the matching function in the lookup table S̃ and extracts the
hashed match. This is then compared with the hash of the relevant bits of xr.

3.3. Analysis

Correctness. Given ψ = (M,A), for a matching function m ∈ M , SplitBox
correctly computes the match as long as m is represented as substring matching.
If m is an equality or range test for powers of 2 in binary (e.g., IP addresses
in 127. ∗ . ∗ .32 to 127. ∗ . ∗ .64), then it can also be computed. Our model
also allows for arbitrary ranges by dividing m into smaller matches that check
equality matching of individual bits. SplitBox can correctly compute action
functions as long as: (a) they are applied to the initial packet x only, and not
on its transformed versions; (b) any two action projections βi and βj do not

14

Algorithm 9: Compute Action (B(t))

Input: Pair of cumulative action and cumulative action projection shares
(α′j , β

′
j) of Bj , pair of action and action projection shares (αj , βj) of

action function a ∈ A of Bj .
1 Compute α′j ← α′j ⊕ αj .
2 Compute β′j ← β′j ⊕ βj .
3 Output α′j , β

′
j .

Algorithm 10: Compute Match (B(t))

Input: Read-only copy xr, index i ∈ [l], lookup table S̃, index j ∈ [|M |] of
mj ∈M with match µj .

1 Lookup table S̃ at index (i, j) to obtain H(s̃i,j).
2 Extract x̃r ← ω(πµj , xr).
3 Compute H(x̃r).
4 if H(x̃r) = H(µj ⊕ s̃i,j) then // m(x) = 1
5 Output 1.
6 else // m(x) = 0
7 Output 0.

overlap on their non-zero bits. However, this does not restrict the number of
times the identity function I can be applied, as its action projection is 0n.

Security. We divide our security analysis in two parts. We first prove that an
honest-but-curious A does not learn the network function ψ = (M,A) including
the number of matching and action functions, i.e., |M | or |A|. Then we prove
that any coalition of less than t MBS in B(t) does not learn the match µ of
each matching function in M , and the action or the action projection of every
action function in A for up to l packets (where l is the number of blinds in the
lookup table). The coalition may learn the match projection (the bits of the
packet the match applies to), or the result of the unknown match (i.e., whether
it evaluates to 1 or not). We also discuss additional security strategies, e.g., how
to ensure security for greater than l executions. Overall this ensures security of
our proposed solution with the assumption that clouds A and B do not collude
(as required). In the following, we make these assumptions more rigorous and
provide formal proofs of security under these assumptions.

As explained in Section 2, we assume a passive (honest-but-curious) adver-
sary E which can either corrupt A, or up to t− 1 MBs from B(t). Let Π denote
our SplitBox scheme. Before a formal security analysis, we first discuss the
assumptions and privacy requirements of the scheme Π:

• The parameter n is public.

• A should not know the network function ψ = (M,A) (not even |M | or
|A|). It does however see x in clear.

• Each Bj ∈ B(t) knows the projection πµ of the match µ of each match-
ing function m ∈ M . It should not, however, learn the match µ of any

15

matching function m ∈M (beyond what is learnable through πµ). It also
knows the result of all the matching functions; this may include matching
functions that are not necessary to compute ψ(x) for each packet x, i.e.,
the subset of matching functions that are in the path that exit the graph
ψ given x. Since Bj can always access the hash function H offline, it can
check all matching functions m ∈ M for their output (not necessarily in
the path of ψ). We therefore need to make this explicit.

• Each MB Bj ∈ B(t) should not know x. Furthermore, for any two packets
x1 and x2, it should not know which bits of x1 and x2 are the same,
beyond what is learnable through the result of the subset of the matching
functions used in ψ(x1) and ψ(x2). In particular, if a matching function
m has projection πµ for its match µ, it should only learn that the bits
corresponding to πµ are the same if m(x1) = m(x2) = 1. If m(x1) 6=
m(x2), Bj should not learn whether individual bits corresponding to πµ
are the same or different (except when wt(πµ) = 1). This is the reason for
using the hash function H and the encryption of packet through XORing
with the blinds in our scheme. We call this property, indistinguishability
of packet contents.

• Any coalition of t− 1 MBs in B(t) should not be able to learn the action
α and the action projection β of every action a ∈ A.

Let us denote random variables I and O denoting the input and output of
an MB (or a subset of MBs) corrupted by E .Further denote the random variable
X representing the packet x, and D representing the description of the network
function ψ. The output of the network function ψ on input from X is denoted
ψ(X). We first describe the ideal functionality, denoted ideal, followed by the
real setting, denoted real.

ideal(ψ,S). We assume a trusted third party T , which communicates with
each of the MBs via a secure and private link. T is given the network function
ψ = (M,A). MBs B(t) are given the “index set” of M (i.e., {1, 2, . . . , |M |})
together with the matching projections πµ, for the match µ of each matching
function m ∈ M . Notice that, since in our protocol, we leak this information,
we need to make this explicit. MB A receives a packet x and hands it over to
T . T computes x′ = ψ(x). It hands over x′ to C. Since in our protocol, we leak
the information about the output of the matching functions, T also hands over
the result of each matching function m ∈M to the parties B(t). The simulator
S serves as the adversary in the ideal setting. Succinctly, ideal(ψ,S) is the
tuple (I,O, X, ψ(X), D), where the random variables correspond to the MB (or
subset of MBs) controlled by S.

real(Π, E). Our real setting is simply the execution of our scheme in the
presence of the adversary E . It again represents the tuple (I,O, X, ψ(X), D)
where each random variable corresponds to the MB (or subset of MBs) corrupted
by E . Naturally, depending on whether E corrupts MB A or upto t− 1 MBs in
B(t), the simulator S in the ideal setting will be different (and so will be the
random variables in the tuple (I,O, X, ψ(X), D)).

16

With these two settings, we want to show that for every probabilistic poly-
nomial time adversary E there exists a probabilistic polynomial time adversary
S, such that

real(Π, E) ≈c ideal(ψ,S),

where ≈c denotes computational indistinguishability. If the above holds, we say
that Π privately processes ψ. In our proofs, we implicitly use the assumption
that given binary strings c and c1, . . . , ct such that c1, . . . , ct−1 are random
binary strings in {0, 1}n, and ct = c1 ⊕ · · · ⊕ ct−1 ⊕ c, then for any subset of
strings from c1, . . . , ct, denoted C(t− 1), with cardinality ≤ t− 1, the following
holds: P[c|C(t − 1)] = P[c] = 2−n. The proof of this assumption is standard.
We use this result whenever we talk about t-out-of-t shares in our proposed
solution.

Our main results are as follows.

Theorem 1. The scheme Π privately processes ψ against an honest-but-curious
E = A.

Proof. Before receiving any packet, the simulator S samples l uniformly random
strings si ∈ {0, 1}n to construct the lookup table S and gives it to E . It initializes
its counter to 0. Upon receiving a packet x, S forwards it to T . For E , S first
gets the current value of the counter i ∈ [l]. It further samples a uniformly
random r ∈ {0, 1}n and constructs xw ← x ⊕ r. It computes t shares of r, the
jth share of which is denoted rj . Finally it obtains xr ← x(1, n)⊕ si by looking
up the counter value i in the table S. Finally S gives xr, i, xw and the t shares
of r to E . Once the counter i reaches l, S resets it to 0.

Since the input to partyA is the same as the input packet x, we have that I =
X (which holds both in the ideal and real setting). The output O is distributed
in the exact same manner in the two worlds. Since the output is generated
without any knowledge of the network function ψ, we have that D is the same
in the ideal and real world. Finally, the output of ψ is not revealed in the two
worlds. Hence real(Π, E) = ideal(ψ,S)⇒ real(Π, E) ≈c ideal(ψ,S).

As discussed in Section 3.3, if the match of a matching function is small,
the adversary can brute-force the hash function H to find its pre-image. Thus,
our security proof for E ⊂ B(t) requires that the minimum Hamming weight
of a match µ in the set of matching functions M should be large enough for
brute-force to be infeasible. Furthermore, our security proof applies only when
the blinds are used once, i.e., for counter values ≤ l without reset. See the
discussion following the next theorem for our proposed mitigation strategy for
security, when the counter completes its cycle.

Theorem 2. Suppose δ = minµ wt(πµ), for all matching functions m ∈ M .
The scheme Π privately processes ψ for up to l inputs (packets), against an
honest-but-curious E ⊂ B(t) in the random oracle model.

Proof. Let R : {0, 1}∗ → {0, 1}q denote the random oracle. Before receiving
any packet, the simulator S simulates the lookup table S̃ as follows. For each

17

m ∈M , given the projection πµ of its match µ, it generates l binary strings by
sampling a random bit where πµ(i) = 1 and placing a 0 otherwise. For each
such string, S samples a uniform random binary string of length q. S creates
two tables. One is the lookup table S̃, and the other its personal table Ŝ. The
table Ŝ contains the pre-images of the entries in S̃. It hands over S̃ to each MB
in E . For each policy (m, a) ∈ ψ, it generates |E| random binary strings αj and
βj of length n, for 1 ≤ j ≤ |E|, and gives each pair (αj , βj) to a separate MB in
E . S initiates a counter i initially set to 0.

Upon receiving the result of the matching functions in M from T , indicating
the arrival of a new packet, S first generates a random binary string as xw and
|E| random binary strings of length n (to simulate the rj ’s). S initializes an
empty string xr. For each matching function m that outputs 1, S looks up its
table Ŝ and the projection πµ, where µ is the match of the matching function,
and replaces the corresponding bits of xr with the corresponding bits of the
input string to the lookup table Ŝ. Finally, for all bits of xr that are not set, S
replaces them with uniform random bits. It hands over xw, xr and rj to each
MB in E , together with the current counter value i.

For any oracle query from an MB Bj ∈ E , S first looks at its table Ŝ and
sees if an entry exists. If an entry exists, S outputs the corresponding output
from the table Ŝ. If an entry does not exist, E outputs a uniform random string
of length q, and stores the input and the output by appending it to the table Ŝ.

It is easy to see that the distribution of the variables (I,O, X, ψ(X), D) for
each MB in E is the same as in the real setting, for any E , such that |E| < t,
for any value of the counter i ≤ l, and for a polynomial in δ number of oracle
queries. Therefore real(Π, E) ≈c ideal(ψ,S).

Security Consequences. Here we highlight two important points. First,
if SplitBox is used for match projections with low Hamming weight, then an
adversarial MB in B(t) could brute-force H to find its pre-image. This would
reveal µ⊕ s for some blind s, allowing the adversary to learn more than simply
looking at the output of m. Namely, if m(x) = 0, she learns which relevant bits
of an incoming packet x do not match with the stored match. This is why we
use the hash function H, as it does not allow B(t) to learn more than the output
of m.

Second, the length of the look-up table l should ideally be large enough so
that the same blind is not re-used before a long period of time. However, high
throughput would require a prohibitively large value of l. Thus, we adopt the
following strategy: with probability 0 < 1 − ρ < 1, A sends a uniform random
string from {0, 1}n (dummy packet), rather than the next packet in the queue.
As a result, any middlebox in B(t) that attempts to compare two packets using
the same blind (according to the value of the counter i ∈ [l]) does not know
for certain whether or not the result corresponds to two actual packets (the
probability is ρ2). This however reduces the (effective) throughput by a factor
of ρ. Naturally, A needs to indicate to C which packet is dummy. This can be
done by sending a bit through B(t) to C, using a t-out-of-t secret sharing scheme

18

Immutable Shared data

NIC (DPDK Rx and Tx rings)

Thread 0 Thread 1 Thread 2 Thread 3

Core 0 Core 2Core 1 Core 3

1

2

3

Synchronisation Ring buffer

Immutable Shared data

NIC (DPDK Rx and Tx rings)

Thread 0 Thread 1 Thread 2 Thread 3

Core 0 Core 2Core 1 Core 3

1

2

3

pull/push to DPDK

conditional push to DPDK

read on immutable data

update on ring buffer

Entry (A) and Processor (B) Architecture Client (C) Architecture

Figure 6: The setup of three SplitBox elements: Entry, Processor, and Client.

(XORing with random bits).

4. Implementation

We now present a prototype implementation of SplitBox.3 Later in Section 5,
we will also present a thorough evaluation of its performance in real-world set-
tings. We implement SplitBox, in C++, inside FastClick [22], an extension of the
Click modular router [23]. We choose FastClick as it provides fast user-space
packet I/O and easy configuration via automatic handling of multi-threading
and multiple hardware queues. We also use Intel DPDK [24] as the underlying
packet I/O framework.

More specifically, we implement three FastClick elements: (i) an element
Entry corresponding to A; (ii) Processor realizing B; and (iii) Client corre-
sponding, to C. Figure 6 outlines the setup of these elements as well as their
interactions with concurrent shared data structures. The shared data structures
are presented in Table 1, along with their associated sizes and location. Specif-
ically, Figure 6 presents how each element is processing packets from the time
they are pulled from, till the time they are pushed to DPDK rings.

In particular, note that all elements follow a Run-to-Completion model and
that both Processor and Entry rely on the same architecture where they only
perform read operations to shared data structures, while Client needs to write
in a shared ring buffer in order to execute the Merge Shares algorithm.

Network Functions. We choose to implement and evaluate two network func-
tions – namely, a stateless, ACL-based firewall and VLAN tagging network
management – which follow a decision tree similar to the one in Figure 2(b).
These two functions are implemented in a similar way, and rely on a “SplitBox
Byte” (SByte), as shown in Figure 7. The purpose of SByte is to “mark” a
packet, e.g., marking a packet for blocking (in the case of a firewall). SByte is
used in the Processor element marking the packet from 0 to 255. Each value

3FastClick Elements are available on https://bitbucket.csiro.au/users/jou008/repos/

splitbox-source/

19

https://bitbucket.csiro.au/users/jou008/repos/splitbox-source/
https://bitbucket.csiro.au/users/jou008/repos/splitbox-source/

Shared Data Size A B C

Blinds l × n X × X
Actions |A| × n × X ×
Action Projections |A| × n × X ×
Hashes l × |M | × q × X ×
Synchronization/

3× |M | × pkt size × × X
Merge Ring

Table 1: Data structures shared among cores and their size. M is the set of matching functions,
A the set of action functions, n the mask size, l the number of rows in the lookup table and
q the hash size.

IP header

dataSequence
Number

Origin
number IP header

data

Sbyte

dataSequence
Number

Origin
number (Sbyte + IP + data) blinded

Sequence
Number

Origin
number (Sbyte + IP + data) blinded

Mask size

Payload of origin Packet

Payload of Packet from
Entry to Client (decrypted)

Payload of Packet from
Entry to Client (encrypted)

Payload of Packet from
Entry to Processor

Sequence
Number

Origin
number Projection (encrypted)Action (encrypted) Payload of Packet from

Processor ro Client

Figure 7: Packet structures in SplitBox.

corresponds to an action function configured by C using Algorithm 5. In the
Client element, this algorithm configures up to |M | ClickOS out-going pipes
with various actions. For the firewall, one of these pipes corresponds to the
blocking action, and implements ClickOS’s discard() action, whereas, in the
VLAN setting, each pipe encapsulates the packet in an Ethernet frame with the
VLAN ID corresponding to the SByte number.

Entry. The Entry element is responsible for the Split Packet algorithm. It
follows the processing model shown in Figure 6, where each thread pulls packets
from the Rx ring from DPDK, obfuscates m bytes from the original packets,
and then sends via the Tx ring the obfuscated packet to the Client and the
obfuscation part to the Processors. In these packets, as shown in Figure 7, the
Entry adds three fields at the beginning of the payload: the sequence number,
the origin number, and the SByte. The sequence number identifies packets from
each element during the merging (synchronization) algorithm and is incremented
once per packet in the Entry. The origin number allows the Client to identify
the provenance of a packet with a given sequence number. We use 0, 1, and 2
to identify, respectively, the Entry, Processor 0, and Processor 1. Finally, we
add one more byte (SByte), and blind it in order to mark and perform any kind
of policies as explained above. Overall, during this process, an Entry thread
requests a read per packet from the shared structure Blind.

20

Processor. The Processor element implements the Bj MBs, and executes the
Private Traversal, Compute Match, and Compute Action algorithms. Similar
to the Entry, each thread in the Processor pulls packets from DPDK Rx ring,
performs the algorithms in a Run-To-Completion configuration, and sends to
the Client a packet containing the sequence number, an updated origin num-
ber, and the correct action and projection. The structure of these packets is
illustrated in Figure 7. Note that H is implemented using OpenSSL’s SHA-
1, aiming to achieve a compromise between security, digest length, and speed.
While faster hashing functions are available, they are not cryptographic hash
functions, thus they might be invertible and/or lead to larger amount of col-
lisions. On the other hand, we do not want hash functions which have very
large message digests (leading to overly large lookup tables), or which are more
computationally expensive. Overall, this element performs a significant number
of lookups in the shared data structures (Projection, Action, and Hashes from
Table 1), however, multiple hash computations per packet yield relatively low
overhead, as we show in Section 5.

Client. Finally, the Client element implements C, executing the Merge Shares

algorithm. This algorithm is based on a ring buffer (Merge Ring in Table 1)
shared among all threads on this element. In our C++ prototype, this ring
buffer is implemented as a std:vector class of fixed size 1024. Each entry in
this structure stores the packet from the Entry and the two Processor elements.
As shown in Figure 6, this corresponds to an update on the shared structure,
per packet, and, potentially, one push to DPDK Tx ring when the three packets
have been received. The other algorithms of C, used to configure the above three
elements, are executed outside the FastClick elements.

5. Performance Evaluation

We now discuss maximum achievable throughput of our prototype while
maintaining a packet loss rate inferior to 0.1% (PLR < 0.1%) and the associated
latency per packet as a function of traversed rules. Note that a PLR of less
than 0.1% is merely used as a benchmark for an acceptable limit of packet
loss. This is well below what is normally considered a problematic packet loss
rate. In all experiments, we present aggregated results from both VLAN and
firewall network functions. Overall, based on a thorough analysis, we show that
SplitBox’s cryptographic layer does not significantly affect overall performance
as opposed to shared-data structures look-ups.

5.1. Experimental Setup

Experiments were performed using a lab testbed of four identically config-
ured commodity servers (Dell PowerEdge R210s), respectively for one Entry,
two Processors, and one Client elements. Each server is equipped with a
quad-core Intel X3430 2.4GHz CPU and 16GB of RAM, as well as a dual-port
Intel X710 NIC controlled by Intel DPDK for packet transmission between the

21

 0

 2

 4

 6

 8

 10

 12

 14

 16

128 256 512 1024 1500

 200

 400

 600

 800

 1000

T
hr

ou
gh

pu
t (

G
bi

t/s
)

P
ac

ke
ts

 p
er

 s
ec

on
d

(x
1k

)

Packet Size (Bytes)

Throughput 5 traversed rules
Throughput 10 traversed rules
Throughput 20 traversed rules

Packets per second, 5 traversed rules
Packets per second, 10 traversed rules
Packets per second, 20 traversed rules

Figure 8: Maximum achievable throughput (PLR<0.1%) and packet per second in function
of packet size and number of traversed rules.

elements (in addition to a separate Linux-controlled NIC for management ac-
cess). The servers run Ubuntu 16.04.1 LTS with Linux kernel 4.4.0-57, and Intel
DPDK version 2.2.0. We used a topology similar to that depicted in Figure 1,
with two Cloud B middleboxes running as Processor elements. To generate
test traffic, we used a Spirent TestCenter chassis equipped with a 2-port Hy-
permetrics CV 10G SFP+ module, running firmware version 4.24.1026. The
Spirent generator acts as both traffic source and sink, allowing us to measure
performance metrics very accurately, including throughput, loss, and latency
for multiple concurrent flows, while generating traffic up to 10Gbps.

In all our tests, we set both our system and the baseline IP filter to al-
ways store 1000 possible rules and matches. We configured the Spirent traffic
generator to create various types of traffic in order to stress-test the network
functions. In particular, we considered two traffic flow distributions emulating
both a worst-case scenario and a more realistic type of load. With the former,
we generated uniformly distributed traffic where each flow accounts for the same
amount of traffic, and matches a single rule in the VLAN tagging or the firewall
scenarios. For instance, when considering 10 rules, we generated 10 different
flows, each of them accounting for 10% of the total traffic. With the latter,
each flow accounts for a different portion of the total traffic, following a Zipf
distribution, since prior work has shown that, in a production firewall/network
management infrastructure, only a few rules get matched most of the time [25].

5.2. Throughput and Delay

Our first experiment aimed to explore how packet size affects overall perfor-
mance of SplitBox. Figure 8 shows performance in terms of maximum achievable
throughput, as well as packets per second, as a function of packet size and num-
ber of traversed rules. In this experiment, we configure SplitBox to perform

22

 0

 2

 4

 6

 8

 10

 5 10 15 20 30 50 75 100 200 500

T
hr

ou
gh

pu
t (

G
bi

t/s
)

Number of traversed rules

Uniform Distribution
Zipf Distribution
ClickOS IPFilter

Figure 9: Maximum achievable throughput (PLR<0.1%) vs number of rules.

VLAN tagging on 5, 10, and 20 different flows using the uniform distribution.
Overall, we observe that SplitBox can handle a constant number of packets/s,
regardless of the packet size, which is crucial vis-à-vis our requirement to handle
generic network functions. The number of packets per second degrades when
the number of traversed rules is larger than 10, following the same proportion
for all packet sizes. This implies that our system bottleneck does not reside, at
10Gbit/s, in the packet-handling function.

In order to further analyze the scalability of SplitBox, we studied the max-
imum achievable throughput as a function of the number of rules traversed.
Figure 9 shows it, using packets of size 1500 bytes, vis-à-vis uniform and Zipf
distribution (as explained above) and the ClickOS IPFilter elements. (Note
that this element also uses Intel DPDK with FastClick.) Overall, as expected,
the ClickOS element maintains line rate regardless of the number of rules. On
the other hand, however, we observe that, with the uniform distribution, the
line rate is achieved for rules between 2 and 15, the throughput starts to de-
crease quasi-linearly with the number of rules. The Zipf distribution behaves
in a similar way, with the throughput decreasing with more rules following a
similar pattern. However, in this case SplitBox is capable to sustain acceptable
throughput (i.e. more than 8Gbit/s) for up to 100 traversed rules.

In Figure 9, we have identified the point in which SplitBox’s throughput
starts decreasing, leading to packet loss at very high speed. To further under-
stand this issue, we measure the average and minimum latency when varying
the number of traversed rules between 5 and 500, for both uniform and Zipf dis-
tributions – see Figure 10. We observe that the average latency increases with
the number of rules, reaching a plateau for both distributions that corresponds
to the time before we start losing packets either in (i) the synchronization ring
buffer as an entry would be overwritten, or (ii) the Intel DPDK ring buffer on
the Processor. This suggests that SplitBox’s bottleneck either stems from nu-
merous hash function evaluations, or potential cache misses in the shared data
structure of the Processor, or both.

23

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 30 50 75 100 200 500

La
te

nc
y

(u
s)

Number of traversed rules

Uniform Distribution (Average)
Zipf Distribution (Average)
Uniform Distribution (Min)

Zipf Distribution (Min)

Figure 10: Latency vs number of rules at maximum achievable throughput (PLR<0.1%).

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

La
te

nc
y

(u
s)

Flow ID

Average Latency 2 traversed rules
Average Latency 5 traversed rules

Average Latency 10 traversed rules
Average Latency 15 traversed rules

Figure 11: Average Latency per flow vs number of rules at maximum achievable throughput
(PLR<0.1%).

In order to check if the hash function is contributing significantly to the
latency, we present, in Figure 11, the average latency observed by each flow
when increasing the number of rules from 2 to 15 in the uniform distribution
scenario. Figure 11 shows that, on average, latency observed in all the flows is
identical and monotonically increasing with the number of rules. This indicates
that, with a relatively small number of rules, hash function evaluations in
Processors does not significantly impact latency. Indeed, if hashing con-
tributed significantly to the latency, in Figure 11, we would observe a difference
in latency between the 2 rules and 15 rules setup, since the latter calls the hash
function 14 more times for the flow number 15 compare to flow number 1.

We then turn to check whether cache access and potential cache misses are
the reasons for the bottleneck in SplitBox. In Figure 12, we plot the number
of hardware (RAM) cache references and misses observed per thread and per

24

 0

 5

 10

 15

 20

 25

 5 10 20 30 50 75 100 200 500

C
ac

he
 A

cc
es

s
(M

ill
io

n
pe

r
se

co
nd

)

Number of rules

Processor References Uniform Distribution
Processor References Zipf Distribution
Processor Misses Uniform Distribution

Processor Misses Zipf Distribution

Figure 12: Cache reference vs number of rules at maximum achievable throughput
(PLR<0.1%).

Table 2: Efficiency of Processor’s shared structure cache.

5 traversed 10 traversed 20 traversed 50 traversed
rules rules rules rules

Hashes hits 648 611 425 358
Action hits 58 69 54 95
Hashes misses 48 (6.9%) 54 (8.1%) 52 (10.9%) 49 (12%)
Action misses 0 0 0 0

second in Processors.4 This coarse-grained plot presents both Intel DPDK
cache references and our element cache references, highlighting that the number
of memory references initially yields a linear increase in the number of rules for
both flow distributions. The difference between the two curves can be explained
as, in the Zipf distribution, the first rule is more likely to be matched and
thus we do not reference, as much as in the uniform distribution, the Hashes
structure (lookup table) from Table 1 since we are exiting the search loop after
one iteration.

In Table 2, we present a sample of number of cache hits and misses for the
Processor shared structures. We observe that, while the number of packets per
second is more than halved going from 5 to 50 traversed rules, the percentage
of cache misses increases from 6.9% to more than 12%. This increase in cache
misses is explained by the size of the Hashes structure that is, as shown in
Table 1, proportional to both the number of blinds and number of rules.

From these results we conclude that the performance bottleneck in SplitBox
is mainly due to cache misses as the number of rules increases. We discuss
different strategies to overcome this and other limitations and avenues for further

4Cache references and misses in Entry and Client are proportional to the number of packets
per second, thus, we omit them.

25

performance optimization in SplitBox in the next section.

6. Discussion

Hardware limitations. As discussed earlier, our SplitBox prototype achieves
near line rate throughputs under realistic loads. Performance starts decreasing
when the number of traversed rules is larger than 50 for both VLAN tagging and
the firewall scenarios, mainly due to the shared data structures management in
the Processor element. We now discuss a few possible strategies to improve
it. First, we observe that, since we do not perform any update on the data
structures, increasing the number of cores and the amount of local core memory
would have a significant impact on performances. Also, our experiments are
run on relatively outdated CPUs – namely, Intel X3430, launched in late 2009
– with limited cache size (8MB shared cache size). Therefore, upgrading our
testbed to state-of-the-art cloud technologies should result in maintaining line
rate throughputs for larger number of traversed rules and/or smaller packets.

Next, better spatial locality of caching would also improve performance.
Indeed, the number of blinds affects the size of all shared structures, and it
is given to all elements as a function of the sequence number. To reduce this
redundancy, one can extend the current Intel DPDK hashing function – Receive
Side Scaling (RSS) – to always send the packet with the same blind number to
the same core, thus reducing the size of all data structures by the number of
cores. Unfortunately, this is not supported in the current version of the Intel
DPDK framework since RSS does not give access to UDP payloads.

Increasing cloud MBs (B(t)). Increasing the number of cloud MBs in B(t),
i.e., increasing t, naturally strengthens the security of SplitBox. On the other
hand, increasing t has an adverse impact on the packet loss ratio (PLR) to
maintain a given level of throughput. The main performance bottleneck in
terms of throughput at each MB in B(t) is table lookup. As shown previously,
if the packet arrival rate is higher than table lookup speed, the receiving packet
ring fills up quickly inducing end-to-end delay and driving the overall packet loss
rate in the system. Indeed, in our performance evaluation we have considered
the maximum achievable throughput while maintaining an overall successful
delivery rate greater than 99.9%, i.e., PLR < 0.1%. Let ρ be the probability of
packet loss at a cloud MB B for a given throughput and number of traversed
rules. Let Pr[no loss] be the probability of not losing any packets from all the
B’s. Then, since the probabilities ρ are independent, we get Pr[no loss] = ρt.
Thus, increasing the number of cloud MBs will result in proportional packet
loss. This represents a tradeoff between increased security and reliability.

Real World Implications. Our experiments are conducted by simulating the
execution environment of the real world in which the MBs (entry, cloud and
client MBs) all reside on different compute nodes (hence the use of four com-
modity servers). Thus, the environment faithfully simulates execution in a real

26

cloud environment, except for perhaps the additional latency expected in a set-
ting where the compute nodes are relatively highly remote. However, note that
this would also have a proportional performance impact in the traditional NFV
setting (where no security is provided against an honest-but-curious adversary).
As long as the latency between clouds A and B is reasonable, the overhead in
a real setting beyond the results of our experiments would be minimal. Never-
theless, as we discuss in Section 8, in the future, we plan to test SplitBox in a
more real-world cloud environment.

Removing lookup tables. We note that performance does not depend on the
number of traversed rules per se, i.e., the number of different matching functions
evaluated, but on the number of different match projections of these matching
functions. For many middleboxes, the number of different match projections
might be limited. With this observation, SplitBox could be substantially opti-
mized. A special case of this is when there is a single match projection, e.g.,
a network function whose policies span the whole IP 5-tuple. In this case, we
do not need any lookup tables! Omitting details, this is achieved by A only
sending the hash of the relevant packet content to the B’s, and each Bj doing
a string match in the hashed domain to detect any matches. This can be mod-
ified slightly to provide indistinguishability of packet contents (cf. Section 3.3),
without compromising efficiency.

Stateful network functions. A stateful network function is a function that
processes packets based on its current state. The state itself can be modeled as
dynamic policies that are generated and deleted as packets flow. An example is
that of a stateful firewall, that keeps the state of a current TCP/IP connection.
We discussed before that states in our network function model can be handled by
simply adding policies (policy tree) on top of the network tree. These can then
be removed once the state is deleted. However, to implement this in SplitBox,
we require C to send l new hashes to each party in B(t), one for each blind si,
and requiring them to update their lookup tables. While this is one solution,
it is not optimal in terms of communication complexity. A somewhat different
solution is to require C to maintain the state table at its end. This means that
while the static policies are kept at the cloud, any dynamically generated state is
maintained by C. Notice that prior approaches [16] have also used this solution
to maintain state tables. In either case, our solution is generic enough to handle
state tables. It remains an open problem to handle the case where the cloud
dynamically generates and maintains states without knowing the contents of
the state and without involving any communication with C, except may be at
the setup.

Chaining. SplitBox does not straightforwardly allow network function chain-
ing, if the next network function requires the packet modified by the previous
network function as its input. This is because the parties B(t) only possess
shares of the action, from which the modified packet can only be constructed by
receiving the original packet and all shares. Obviously, for privacy reasons, this
is done by C in our scheme. However, network function chaining can be done

27

if we then let C forward the modified packet to party A of the next network
function. In this way, the traffic loops through the client MB A until the last
of the network functions has been applied.

7. Related Work

The first work to study privacy-preserving network functions outsourcing is,
to the best of our knowledge, by Khakpour and Liu [12], who propose a scheme
based on Bloom Filters (BFs) to privately outsource firewalling. Besides only
considering one use case (that of a firewall), their solution is not provably secure
as BFs are not one-way. Shi et al. [13] focus on the same problem, using CLT
multilinear maps [26], which were however shown to be insecure [27]. Also note
that both [12] and [13] do not consider network functions that modify packet
contents, whereas, we aim to cover a broader range of network functions in-
cluding but not limited to firewalls. Jagadeesan et al. [28] introduce a secure
multi-controller architecture for SDNs based on secure multiparty computation,
which could be employed for NFV. They focus on identifying heavy hitters in
a network consisting of two controllers, however, it takes more than 13 min-
utes to execute with 4096 flow table entries. Melis et al. [15] investigate the
feasibility of provably-secure private NFV for generic network functions: they
introduce two constructions based on fully homomorphic encryption and public-
key encryption with keyword search (PEKS) [29], but with high overhead (e.g.,
it takes at least 250ms in their experiments to process 10 firewall rules), which
makes it unfeasible for real-world deployment. Recent proposals [30, 31] also
rely on homomorphic encryption for privately outsourcing, respectively, firewall
policies [31] and image transcoding [31], again achieving poor performances due
to the expensive cryptographic primitives they employ. Somewhat related but
limited solutions to private NFV rely on auditing [32] and verification of cor-
rectness [33] of outsourced functions.

Yuan et al. [34] support deep packet inspection over encrypted traffic, so
that inspection rules or the payloads are not disclosed, relying on an encrypted
rule filter and on secret sharing to enable secure inspection on the rules. They
evaluate their solution on an Amazon Web Service instance with 500 concurrent
connections and achieve a throughput of up to 3.6K packets/s per connection.
Note that the system only considers general actions that do not modify the
content of the packets.

Asghar et al. [1] introduce the main idea behind SplitBox, presenting a brief
evaluation of a proof-of-concept implementation using a simple firewall as a test
case. They achieve an average 2Gbps throughput, with 1 kB packets while
traversing up to 60 firewall rules. Compared to [1], this paper presents a full-
blown prototype implementation of SplitBox and a thorough system evaluation
on commodity hardware using a Spirent traffic generator to create various types
of traffic in order to stress-test the network functions. The experimental eval-
uation is done vis-à-vis two applications, namely, firewall and VLAN tagging,
considering an uniformly distributed traffic flow distribution, which emulates the
worst case scenario, as well as a Zipf distribution resembling a more realistic

28

production firewall [25]. Overall, our prototype achieves the same throughput
of the non-private solution with 9.4Gbps and 1.5kB packets when up to 10 rules
are fired, and a decrease in performance by up to 5% for 50 rules. We also
demonstrate that the latency introduced by SplitBox’s prototype implementa-
tion, with large rule sets, is not due to the cryptographic layer, but to the data
structures in the Processor element provided by the FastClick framework.

Blindbox [17] considers a setting in which a sender (S) and a receiver (R)
communicate via HTTPS through a middlebox (MB) which has a set of rules for
packet inspection that only it knows. The MB cannot decrypt traffic between
S and R, while S and R do not learn the rules. Authors achieve 166Mbps
throughput, however, the connection setup requires around 1.5 minutes, thus
suggesting that BlindBox may not be practical for applications with short-lived
connections. It also operates in a different setting than ours, where R sets
and knows the rules (policies), while S and MB do not. Moreover, Blindbox
only considers middlebox actions limited to drop, allow or report to network
administrator, without defining action as modifying packet contents (e.g., for a
NAT), while we do support modifying packet contents too. Recently, Canard et
al. [35] introduces an extension of Blindbox [17] based on public-key encryption,
which suffers from the same limitations of the original scheme.

Embark [16] allows a cloud provider to support middlebox outsourcing, such
as firewalls and NATs, while maintaining confidentiality of an enterprise’s net-
work packets and policies. It employs the same architecture as APLOMB [5],
where the middlebox functionalities (e.g. firewall) are outsourced without greatly
damaging throughput, but traffic going through the service provider (SP) is en-
crypted in order to protect privacy. Embark relies on symmetric-key encryption
and introduces a novel scheme, PrefixMatch, used to encrypt a set of rules for
a middlebox type. The encrypted rules are generated by the enterprise(s) and
then provided to the SP at setup time. The other scheme used in Embark is
KeywordMatch adopted from [17]. Both the KeywordMatch and PrefixMatch
methods require the client gateway to effectively insert the “encrypted” match
for the cloud which in SplitBox is outsourced to the cloud MBs in B(t). The
cloud middleboxes at SP then process the encrypted traffic against the encrypted
rules, and send back the produced encrypted traffic to the enterprise, which per-
forms the decryption. Thus, Embark does not satisfy our requirement of a thin
client. Furthermore, Embark loops the traffic through the client which receives
the traffic, encrypts it, sends to the cloud, who processes it (in the encrypted
domain), and sends the modifications to the client, which then decrypts the
packet. Providing privacy for such a system model is easier than the model
considered in this paper, in which the traffic goes straight to the cloud. More
specifically, since the client already knows the rules, it can effectively compute
part of the matching functionality before sending the encrypted packet to the
cloud. Another advantage of our scheme over Embark is that we provide a
formal proof of security.

SICS [36] enables secure service function chain outsourcing. It extends
APLOMB to support private processing of traffic through a sequence (chain)
of middleboxes. Similar to Embark, SICS relies on AES encryption. However,

29

Table 3: Comparison of existing private NFV solutions

Stateful Thin Line VM Standard
Client Rate Isolation Hardware

Melis et al. [15] X × × × X
Blindbox [17] X × X × X
SICS [36] X × X × X
Embark [16] X × X × X
SplitBox (our solution) X X X × X
Safebricks [37] X X X X ×
LightBox [38] X X X X ×

actions applied to the packets are determined by labels attached to the packets.
These labels are attached by the gateway (similar to our client MB), which also
encrypts the packet header. Thus, once the encrypted packet along with the
assigned label is sent to the cloud, the cloud MB readily knows which action to
apply based on the label received.

Overall, our work differs from Embark [16] and SICS [36] as we allow complex
actions to be performed on the packet directly without involving the client MB
to aid the cloud MB. Thus, the traffic in our setting enters directly into the
outsourced network function without looping through the client.

Finally, a parallel stream of work on secure network function outsourcing
is the use of trusted computing environments in the cloud. This includes
Safebricks [37] and LightBox [38] to name a few. As discussed in Section 1, this
approach, which assumes that an adversary does not have access to the code
or data in the protected “enclave” (trusted computing environment), is simi-
lar to ensuring VM isolation for secure network function outsourcing. Hence,
it is orthogonal to the approach taken in this paper as it requires specialised
hardware.

We present in Table 3 a summary of the comparison between our work and
state-of-the-art privacy-preserving and secure NFV techniques. The compar-
ison is based on whether the private NFV solution handles stateful network
functions, the degree of client MB’s involvement in real-time processing (thin
client), achieving line rate, whether the solution is based on virtual machine
isolation (as opposed to a cryptographic solution), or if the solution works with
standard commodity servers (standard hardware).

8. Conclusion

This paper presented the design and implementation of SplitBox, a scal-
able system that allows a cloud service provider to privately compute network
functions on behalf of a client, in such a way that the cloud does not learn
the network policies. It provides strong security guarantees in the honest-but-
curious model, based on cryptographic secret sharing. We performed a thorough
system evaluation on commodity hardware, and created various types of traf-
fic in order to stress-test firewall and VLAN tagging as network functions. Our
evaluation shows that SplitBox achieves the same throughput of the non-private

30

solution with 9.4Gbps and 1.5kB-sized packets when up to 10 rules are fired,
and a decrease in performance limited to 5% (i.e., 8.9Gbps) with 50 rules.

In future work, we intend to deploy and evaluate SplitBox on more powerful,
cloud-grade hardware, rather than on our commodity servers, re-evaluating its
bottlenecks when operating on middleboxes equipped with more cores, cache,
and/or memory. We also expect to improve performance by means of better
management of shared data structures and better spatial locality of caching.
Finally, we plan to extend SplitBox for: (i) full support of stateful network
functions, (ii) function chaining, which at the moment could be done if we
replace the client MB C with the entry MB A of another cloud, and (iii) handling
network functions involving actions overwriting previous actions.

Bibliography

[1] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro, M. A. Kaafar, and
L. Mathy, “SplitBox: Toward Efficient Private Network Function Virtual-
ization,” in ACM SIGCOMM Workshop on Hot Topics in Middleboxes and
Network Function Virtualization (HotMiddlebox), 2016.

[2] J. Sherry, S. Ratnasamy, and J. S. At, “A survey of enterprise middlebox
deployments,” Technical Report, https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-24.pdf, 2012.

[3] European Telecommunications Standards Institute, “NFV Whitepaper,”
https://portal.etsi.org/nfv/nfv white paper.pdf.

[4] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing Network Functional-
ity,” in ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2012.

[5] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making Middleboxes Someone Else’s Problem: Network Pro-
cessing as a Cloud Service,” in ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2012.

[6] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Usenix Sym-
posium on Networked Systems Design and Implementation (NSDI), 2012.

[7] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The middle-
box manifesto: enabling innovation in middlebox deployment,” in ACM
Workshop on Hot Topics in Networks, 2011.

[8] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
in Usenix Symposium on Networked Systems Design and Implementation
(NSDI), 2014.

31

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf

[9] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network function
control,” ACM SIGCOMM Computer Communication Review, 2015.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Enforc-
ing Network-Wide Policies in the Presence of Dynamic Middlebox Actions
using FlowTags.” in Usenix Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[11] Privacy Rights Clearinghouse, “Chronology of data breaches: Security
breaches 2005–present,” https://www.privacyrights.org/data-breaches,
2009.

[12] A. R. Khakpour and A. X. Liu, “First Step Toward Cloud-Based Fire-
walling,” in IEEE International Symposium on Reliable Distributed Sys-
tems (SRDS), 2012.

[13] J. Shi, Y. Zhang, and S. Zhong, “Privacy-preserving Network Functionality
Outsourcing,” http://arxiv.org/abs/1502.00389, 2015.

[14] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized Cloud
Infrastructure Without the Virtualization,” in International Symposium on
Computer Architecture (ISCA), 2010.

[15] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar, “Private Pro-
cessing of Outsourced Network Functions: Feasibility and Constructions,”
in ACM Workshop on SDN-NFV Security, 2016.

[16] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Se-
curely Outsourcing Middleboxes to the Cloud,” in Usenix Symposium on
Networked Systems Design and Implementation (NSDI), 2016.

[17] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep Packet
Inspection over Encrypted Traffic,” in ACM Conference on Special Interest
Group on Data Communication (SIGCOMM), 2015.

[18] A. Shamir, “How to share a secret,” Communications of the ACM, 1979.

[19] G. Oded, Foundations of Cryptography. Basic Applications, vol. 2. Cam-
bridge University Press, New York, 2004.

[20] M. Goodrich and R. Tamassia, Introduction to computer security. Addison-
Wesley, 2010.

[21] Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon,
“Supercloud: Opportunities and challenges,” SIGOPS Oper. Syst. Rev.,
vol. 49, no. 1, Jan. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2723872.2723892

[22] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”
in ANCS, 2015.

32

https://www.privacyrights.org/data-breaches
http://arxiv.org/abs/1502.00389
http://doi.acm.org/10.1145/2723872.2723892
http://doi.acm.org/10.1145/2723872.2723892

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, 2000.
[Online]. Available: http://doi.acm.org/10.1145/354871.354874

[24] Intel, “Intel Data Plane Development Kit,” http://dpdk.org/.

[25] E. W. Fulp, “Optimization of network firewall policies using ordered sets
and directed acyclical graphs,” in IEEE Internet Management Conference,
2005.

[26] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Practical Multilinear Maps over
the Integers,” in IACR CRYPTO, 2013.

[27] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle, “Cryptanalysis of the
Multilinear Map over the Integers,” in IACR Eurocrypt, 2015.

[28] N. A. Jagadeesan, R. Pal, K. Nadikuditi, Y. Huang, E. Shi, and M. Yu, “A
Secure Computation Framework for SDNs,” in ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2014.

[29] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Eurocrypt, 2004.

[30] H. Sheng, L. Wei, C. Zhang, and X. Zhang, “Privacy-preserving cloud-based
firewall for iaas-based enterprise,” in Networking and Network Applications
(NaNA), 2016.

[31] G. Biczók, B. Sonkoly, N. Bereczky, and C. Boyd, “Private vnfs for collab-
orative multi-operator service delivery: An architectural case,” in Network
Operations and Management Symposium (NOMS), 2016.

[32] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar, “Towards
verifiable resource accounting for outsourced computation,” in ACM SIG-
PLAN Notices, 2013.

[33] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable Network Func-
tion Outsourcing: Requirements, Challenges, and Roadmap,” in ACM SIG-
COMM Workshop on Hot Topics in Middleboxes and Network Function
Virtualization (HotMiddlebox), 2013.

[34] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep packet
inspection in outsourced middleboxes,” in IEEE INFOCOM, 2016.

[35] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt, “Blindids:
Market-compliant and privacy-friendly intrusion detection system over en-
crypted traffic,” in Asia Conference on Computer and Communications
Security, 2017.

[36] H. Wang, X. Li, Y. Zhao, Y. Yu, H. Yang, and C. Qian, “SICS: Secure In-
Cloud Service Function Chaining,” arXiv preprint arXiv:1606.07079, 2016.

33

http://doi.acm.org/10.1145/354871.354874
http://dpdk.org/

[37] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding
network functions in the cloud,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA, 2018.

[38] H. Duan, X. Yuan, and C. Wang, “Lightbox: Sgx-assisted secure network
functions at near-native speed,” arXiv preprint arXiv:1706.06261, 2017.

34

	Introduction
	System Model
	Problem Statement
	Entities
	Threat Model
	Network Function Model
	Restriction of Policies
	Generic Network Functions

	SplitBox
	Requirements
	The SplitBox System
	Analysis

	Implementation
	Performance Evaluation
	Experimental Setup
	Throughput and Delay

	Discussion
	Related Work
	Conclusion

