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Abstract Introduction: Impaired long-term memory is a defining feature of mild cognitive impairment
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(MCI). We tested whether this impairment is item specific, limited to some memoranda, whereas
some remain consistently memorable.
Methods: We conducted item-based analyses of long-term visual recognition memory. Three hun-
dred ninety-four participants (healthy controls, subjective cognitive decline [SCD], and MCI) in
the multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE)
were tested with images from a pool of 835 photographs.
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Results: We observed consistent memorability for images in healthy controls, SCD, and MCI, pre-
dictable by a neural network trained on another healthy sample. Looking at memorability differences
between groups, we identified images that could successfully categorize group membership with
higher success and a substantial image reduction than the original image set.
Discussion: Individuals with SCD and MCI show consistent memorability for specific items, while
other items show significant diagnosticity. Certain stimulus features could optimize diagnostic
assessment, while others could support memory.
Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Alzheimer’s disease (AD); Subjective cognitive decline (SCD); Mild cognitive impairment (MCI); Memorability;
Diagnostic assessment; Image analysis
1. Background

Recent work in healthy individuals has found that certain
images are intrinsically memorable or forgettable across ob-
servers [1,2]; there are images of faces or scenes that most
people remember or forget, regardless of their different
individual experiences. This memorability of an image can
be quantified and predicts 50% of the variance in people’s
performance on a memory test [2]. It is intrinsic to the image
itself, stable across different image contexts [3], tasks [4,5],
and timing [6,7]. Viewing memorable images automatically
elicits specific neural signatures [8,9], and the memorability
score of an image can be predicted by computational models
[10,11]. However, image attributes such as esthetics,
emotionality, typicality, or what people believe will be
memorable do not fully predict memorability [2,12], and
memorability is an automatically processed image
property that is resilient to the effects of attention [4]. This
means that researchers can predict in advance what images
a person is likely to remember or forget and use such infor-
mation to create memorable educational materials or design
well-balanced memory tests.

Althoughmemorability has so far been characterized based
on healthy participants’ memory behavior, it is unclear if
memorability is also consistent in populations with memory
impairments at increased risk for Alzheimer’s disease, such
as mild cognitive impairment (MCI) or subjective cognitive
decline (SCD) [13]. Consistent memorability in SCD and
MCI would enable better prediction of what images are likely
to be remembered or forgotten. Furthermore, changes in
memorability patterns across disease stages could improve
cognitive staging and design of cognitive progression markers.
By avoiding highly memorable images, cognitive tests could
be made more time efficient and more sensitive. Understand-
ing which stimulus features improve or impair memorability
could provide insights into the cognitive processes that are
impaired. Furthermore, knowledge about memorability could
aid in the design of memorable environments or allow clini-
cians to focus on aiding memory for forgettable items.

In the present study, we analyzed the performance of 394
individuals, including those with SCD, MCI, and healthy con-
trols (HCs), on a visual recognition memory test in which each
participant had to memorize a randomly selected subset of 88
photographs from a pool of 835. This randomization afforded
us the possibility to assess memorability unconfounded by
systematic effects of stimulus-selection or stimulus-order
effects. First, we find significant similarities across groups in
the images they remember and forget, and similarities to a con-
volutional neural network (CNN) trained on memorability,
allowing the precise prediction of memory performance for
each group. Second, we find a separate set of images that
can reliably differentiate groups, withmeaningful implications
for diagnosis. Finally, using a large-scale online experiment to
score the images, we analyze what image features might lead
to the memorability and diagnosticity of different images.
2. Methods

2.1. Study design

Visual memory tests were analyzed from the DZNE-
Longitudinal Cognitive Impairment and Dementia Study
(DELCODE), an observational, longitudinal memory
clinic–based study across 10 sites in Germany. Specific
details about this study, the visual memory task, and data
handling and quality control are reported in the studies by
Jessen et al. [14] and D€uzel et al. [15]. The data analyzed
in this study were from the second data release of the DEL-
CODE study comprising 700 individuals of which 394 par-
ticipants with complete data sets were analyzed, including
136 participants with SCD, 65 with MCI, and 193 HCs. In-
dividuals with SCD and MCI were recruited through refer-
rals and self-referrals, whereas HCs were recruited through
public advertisements. Group membership was determined
using the CERAD neuropsychological battery [16]. MCI in-
dividuals were defined as those with test performance under
1.5 standard deviations below the age-, sex-, and education-
adjusted mean performance. SCD and HC individuals were
defined as those with performance above this cutoff, but
SCD individuals subjectively reported decline in cognitive
functioning with concerns.

The study protocol was approved by all involved centers’
institutional review boards and ethical committees, and all
participants gave written informed consent. DELCODE is
retrospectively registered at the German Clinical Trials
Register (DRKS00007966) (04/05/2015).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.2. Visual memory test

Participants performed a functional magnetic resonance
imaging (fMRI) scene image encoding and retrieval task
[17]. First, while in the fMRI scanner, participants studied
88 novel scene target images (44 indoor and 44 outdoor
scenes) and 44 repetitions of two prefamiliarized images
(one indoor and one outdoor, 22 times each). All images
were 8 bit gray scale, presented on an MRI-compatible LCD
screen (Medres OptoStim), scaled to 1250 ! 750 pixel reso-
lution and matched for luminance, with a viewing horizontal
half-angle of 10.05� across scanners. Each image was pre-
sented for 2500 ms (with an optimized jitter for statistical ef-
ficiency), and participants categorized them as “indoor” or
“outdoor” with a button press. Outside of the scanner after a
70-minute delay, participants completed a recognition mem-
ory task with these 88 images and 44 novel foil images (22
indoor and 22 outdoor). Participants indicated their recogni-
tionmemorywith a 5-point scale: (1) I am sure that this picture
is new, (2) I think that this picture is new, (3) I cannot decide if
this picture is new or old, (4) I think I saw this picture before, or
(5) I am sure that I did see this picture before. Results from the
fMRI study are reported in D€uzel et al. [17].

Although each participant was tested on 88 target images
and 44 foil images, these images were randomly sampled
from a larger set of 835 scene images, allowing us to conduct
image-based analyses on a large set of images (see Fig. 1 for
example images). This randomization allowed us to avoid
confounding effects of image selection and image order on
memory performance. On average, each image served as a
target image for 20.3 HC, 14.3 SCD, and 6.8MCI individuals.
2.3. Analyzing similarity of MCI, SCD, and healthy
individuals: Predicting performance

We first asked whether there are consistencies in memory
performance for MCI and SCD just as there are for healthy
Fig. 1. Example images and group performance. The scatterplot shows the distribu

(HCs) versus individuals with mild cognitive impairment (MCI). The diagonal lin

Based on performance, images can be conceptually sorted into four quadrants: (1

images that are memorable to HC but forgettable to MCI (blue), (3) images that

to MCI but forgettable to HC (red). Example images and performances at the e

work that follows, we analyze these four groups of images and determine if they
individuals [1]; that is, whether there are certain images
that they tend to remember or forget, and, if such consis-
tencies exist, to what degree they align with the images
that tend to be remembered and forgotten by HCs.

To address this question, Spearman’s rank correlations of
hit rate (HR) performance on images in the visual memory
task were calculated between the different groups. To assess
memorability consistency, we conducted a consistency anal-
ysis as described in Isola et al. [1], where participants are split
into random halves (across 1000 iterations) and their HRs are
calculated for all images, and a Spearman’s rank correlation is
calculated between the two halves.We also examinedwhether
a CNN that is significantly able to predict memory perfor-
mance in healthy individuals [11] could predict memorability
for SCD and MCI groups. MemNet is a CNN with the archi-
tecture and pretraining set of hybrid-CNN [18], a CNN able to
classify object and scene images, then trained to predict the
memorability score of an image (i.e., the likelihood for that
image to be remembered by any given person). The training
of MemNet was originally conducted with a separate set of
images in a separate set of healthy adults recruited online
[11], and here, we tested it with new images and data across
participant groups from the present study. Specifically, we
obtained MemNet scores for each of the 835 stimulus images
and used Spearman’s rank correlations to test the degree to
which memorability CNN-predicted memory scores were
correlated with participant group memory scores.

2.4. Analyzing dissimilarity of MCI, SCD, and healthy
individuals: Differentiating groups

An equally important question is whether there is a set of
images in which consistencies in memory performance
reliably differ between memory-impaired populations and
healthy individuals. If such images exist, then they could
form an optimized test to distinguish memory-impaired indi-
viduals from healthy controls with high efficiency.
tion of memory performance (hit rate) for all 835 images for healthy controls

e indicates the points at which performance is equal between both groups.

) images that are memorable to both HC and MCI individuals (green), (2)

are forgettable to both groups (yellow), and (4) images that are memorable

xtreme ends for each quadrant are arranged around the scatterplot. In the

can be used meaningfully to predict memory performance.
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To explore this question, we conducted an analysis we
call the Iterative Image Subset (IIS) Analysis to compare
the groups. Here, we describe the analysis comparing MCI
to HC; however, the same analysis was also conducted
with SCD versus HC. First, the HC participant pool was
randomly downsampled so that the same number of HCs
were used in the analysis as MCI individuals. The entire
pool of participants was then split into two random halves
(group A and group B). HR on the memory task was
calculated for each image for the HC (HRGroupA, Healthy)
and for the MCI individuals (HRGroupA, MCI) in group A.
Using this performance metric, we formed three subsets of
images. The number of images used in each subset was
selected iteratively for all possible subset sizes, ranging
from 0% to 100% of images (835 images) in 1% increments,
to determine the optimal image subset size. Only images
with at least 4 individuals’ data were included in the analysis.
The three resulting subsets were as follows:

1. “H . M”, the top set of images where HCs outper-
formed MCI (i.e., maximizing HRGroupA, Healthy -
HRGroupA, MCI; note that it is “H. S” for a comparison
with SCD)

2. “H , M”, the top set of images where MCI outper-
formed HCs (i.e., maximizing HRGroupA, MCI -
HRGroupA, Healthy)

3. “H 5 M”, the top set of images where HCs
performed most similarly to MCI (i.e., minimizing
j HRGroupA, Healthy - HRGroupA, MCI j).

We then assessed the performance of classifying subjects in
group B using each of the three subsets of images. Specifically,
using just the images in a single subset (e.g., H.M), we deter-
mined the HR for each of the individuals in group B
(HRGroupB). We then performed a receiver operating character-
istic analysis to determine the diagnostic ability of this subset of
images, applying a range of HR cutoffs from 0 to 1 to classify
an individual from group B as either HC or MCI,
using HRGroupB. We calculated the accuracy of this test based
on true groupmembership and contrasted successfulMCI diag-
nosis (sensitivity, or true-positive rate) with misclassification of
HC (specificity, or 12 false positive rate). We assessed classi-
fication performance by area under the curve (AUC), where a
score of 1 indicates perfect performance, while 0.5 indicates
chance performance. This complete analysis was conducted
across 100 random participant splits into group A and B.
2.5. Finding image attributes that distinguish these image
sets

To see what aspects of the images may determine their
membership into different image sets, we conducted an
experiment using the online crowdsourcing platform
Amazon Mechanical Turk. For each of the 835 images, 12
online participants rated the scene in the image on five rele-
vant properties identified in previous scene perception and
memorability research [12,19] using a 5-point Likert scale:
size (the perceived size of the portrayed scene, not the image
pixel size), clutter, esthetics, interest, and whether they think
they would remember the image (subjective memorability).
They also indicated whether the image showed a natural or
manmade scene and if there was a person present. Four hun-
dred fifty people anonymously participated in the study and
provided consent, and this study was approved by the
National Institutes of Health Office of Human Subjects
Research Protections. Two main comparisons were tested
for each attribute, using paired-samples t-tests: 1) forget-
table versus memorable images with similar performance
between HC and MCI/SCD individuals, 2) diagnostic versus
nondiagnostic images, where HC and MCI/SCD individuals
differed in their performance. Forgettable and memorable
images were identified as the top set of images where both
HC and impaired individuals had average performance
below or above (respectively) median performance, and
the difference between groups was minimized (i.e.,
H5M). Diagnostic and nondiagnostic images were selected
from the sets resulting from the IIS analysis (Section 2.4), for
example, H . M and H , M image sets, respectively. The
number of images in each set was taken as the optimal
number of images identified from the IIS analysis.

We also examined how memorability and diagnosticity
relate to more meta-cognitive attributes: similarity to other im-
ages and confidence ratings of the participants. First, it is
possible that the memorability or diagnosticity of an image is
related to how similar that image is to other images in a set
(e.g., memorable images are more visually unique). To assess
image similarity, we used an object classification CNN called
AlexNet CNN [20]. This classification CNN is often used as
a model for the human visual system, showing similarities to
the brain for visual processing of objects [21] and scenes
[22]. This CNN can thus approximate the neural representa-
tions of an image at different levels of extraction (i.e., low-,
mid-, and high-level visual features). For each classification
CNN layer, we obtained the outputs for all 835 images and
calculated their average Pearson correlation to all other images.
Second, we also analyzed proportion of high confidence ratings
given to each image by participants in the main experiment, to
see if memory confidence is related to image diagnosticity.
3. Results

3.1. Consistencies in the memories of participant groups

As expected, participant groups with increasing memory
impairment showed decreases in average memory perfor-
mance (HC: M 5 0.68, SD 5 0.17; SCD: M 5 0.62,
SD 5 0.18; MCI: M 5 0.53, SD 5 0.26). However, there
were also impressive correlations across groups in the im-
ages they remembered best or worst (Fig. 2). HC and SCD
had a significant Spearman’s rank correlation of r 5 0.50
(P5 1.03! 10254), whereas HC and MCI had a significant
correlation of r 5 0.28 (P 5 1.34 ! 10216), and SCD and
MCI had a significant correlation of r 5 0.31



Fig. 2. Consistencies across groups and the memorability neural network. The scatterplots show a comparison of hit rates for each of the 835 images between all

pairings of the experimental groups (healthy controls, HC; subjective cognitive decline, SCD; mild cognitive impairment, MCI), as well as predicted hit rate

from the memorability prediction convolutional neural network (CNN). Spearman’s rank correlation (r) is shown for each plot, and asterisks (*) indicate sig-

nificant correlations. Scatterplot points are colored by quadrant (as in Fig. 1), and the diagonal line indicates points where both groups show equal performance.
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(P 5 2.12 ! 10219). HC performance was significantly
more similar to SCD performance than MCI performance
(Z 5 6.13, Pw0), and SCD performance was significantly
more similar to HC performance than MCI performance
(Z 5 5.42, Pw0). These results indicate that all participant
groups tended to remember the same images as each other.
All groups were also internally consistent (HC: r 5 0.42;
SCD: r 5 0.32; MCI: r 5 0.22; all P , .0001), meaning a
memory-impaired individual will still tend to remember
similar images to someone else with the same diagnosis.

TheMemNet CNN trained to predict image memorability
showed significant correlations with HC (r 5 0.24,
P 5 3.29 ! 10212) and SCD behavior (r 5 0.23,
P 5 1.84 ! 10211), while MCI behavior correlations did
not pass significance thresholds (r 5 0.06, P 5 .080).
3.2. Differentiating memory-impaired groups from healthy
controls

As a first test, we examined the ability to differentiate HC
and MCI individuals. The IIS analysis shows that the H.M
image subset consistently outperforms the H 5 M and
H,M image subsets at all subset sizes, in diagnosing indi-
viduals as MCI versus HC (Fig. 3). This means that images
that are highly memorable to healthy controls but highly
forgettable to MCI individuals are best able to distinguish
these two groups. Surprisingly, H . M image subsets as
small as 23% of the original image set were able to surpass
the original image set in diagnostic ability. With only 192
total images (or 18.3 images seen per participant), the
diagnosis AUC was 0.77, while using the full set of 835
images resulted in an AUC of 0.76. At this 192-image subset
size, the difference between subsets is also clear: the H5M
set only reaches an AUC of 0.70, while the H , M set
performs worse with an AUC of 0.65.

Differentiating HC from SCD individuals shows similar
results, although the two groups have more similar memory
performance. The AUC of the H. S set is higher than those
of H5 S and H, S at all image subset sizes, and the H. S
subset first overtakes performance of the full image set at
only 92 images in the subset. The AUC for the full image
set is 0.59, while with the 92-image subset, the AUC of



Fig. 3. Finding the optimal number of images to diagnose MCI. (A) This scatterplot of image performance shows an example of the three possible subsets the

images can be divided into: H,M (red), H5M (yellow), and H.M (blue). (B) Area under the curve (AUC) by image set and number of images in the set.

Testing each of these subset types at different set sizes, we find that the H.M set (blue line) consistently outperforms the other image subsets at all set sizes.

Importantly, the H.M set also outperforms the all-image set (gray dotted line) at a surprisingly small number of images, first overtaking the all-image set at

only 192 images versus the 835 images used in the all-image set. From this set of 192 images, each participant saw on average only 18.3 images. (C and D)

Receiver operating characteristic (ROC) curves for two peaks—the first peak where H.M overtakes the all-image set, and the max peak where H.M has the

largest difference from the all-image set. (E and F) Participant classification performance, averaged across 100 iterations of participant split-halves, at a sample

cutoff (determined as the point where the sensitivity 1 specificity is at its maximum), broken down by participant type for the different image sets. Error bars

indicate standard error of themean across the 100 iterations. Note that the optimizedH.M image subset particularly shows a boost inMCI diagnosis sensitivity

over all other image sets.
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H . S is also 0.59. In regard to the other image subsets, the
AUC for H 5 S is 0.57, and for H , S, it is 0.55. H . S
reaches a maximum of performance at a subset size of 367
images, with an AUC of 0.61.

We also determined if the image subsets generalized
across groups. We performed the IIS analysis by training
on MCI data to determine the image subsets, but then testing
those images with SCD data. We find these subsets gener-
alize to each other: the H . M image subset shows higher
performance than the other image subsets (H 5 M,
H , M), and first overtakes performance of all images
(AUC 5 0.60) at a subset size of only 100 images
(H . M: AUC 5 0.60; H 5 M: AUC 5 0.50; H , M:
AUC 5 0.55). The H . M image subset reaches its peak
in performance at 417 images, at an AUC of 0.63.

These results show that using a small, honed subset of
images results in higher diagnostic performance than a large,
exhaustive set of images, for both SCD and MCI
populations. In addition, using a poor set of images
(e.g., H , M) could result in a high diagnosis failure rate.
We also find that diagnostic images can successfully transfer
across groups; using images that identify MCI can also
successfully identify SCD. Because all the aforementioned
tests use separate halves of the participants to determine
the diagnostic images and to predict group membership,
this image diagnosticity is likely to translate to other partic-
ipant samples as well as other experimental contexts.
3.3. Image attributes that distinguish these image sets

Finally, we investigated image attributes related to why
an image is memorable to both groups, or why it is diag-
nostic (Fig. 4). Focusing on images that have highly corre-
lated performance between memory-impaired individuals
and healthy controls, memorable scene images tended to
contain more clutter (t(191) 5 2.84, P 5 .005), appeared



Fig. 4. Average attribute ratings based on image set. (Left) Comparison of average attribute ratings between images that are forgettable versus memorable to

both HC and individuals with MCI or SCD. (Right) Comparison of average attribute ratings between images from the poorly diagnostic image set (H , M)

versus highly diagnostic set (H.M). (Both) All attributes are rated on a Likert scale of 1 (low) to 5 (high). “Remember” is a rating of how likely participants

believed they would be able to remember the image. Asterisks indicate significant differences in a paired-samples t-test (P, .05). Error bars indicate standard

error of the mean.
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more interesting (t(191)5 3.30, P5 .001), and were subjec-
tively more memorable to healthy controls (t(191) 5 3.59,
P 5 4.17 ! 1024). However, they were not different in
scene spatial size (P5 .567) or esthetics (P5 .752). In terms
of content, memorable versus forgettable images tended to
be manmade rather than natural (forgettable: 76.6% man-
made, memorable: 87.0%; Z(191) 5 2.64, P 5 .008) but
were equally likely to be indoors (forgettable: 52.1% in-
doors; memorable: 50.5%; P 5 .76) and contain people
(forgettable: 7.8% contained people; memorable: 13.0%;
P 5 .09). Finally, memorable images showed no significant
differences in across-image similarity based on responses
across layers of a CNN trained on image classification, sug-
gesting that memorable images are not more visually distinc-
tive than forgettable images (Supplementary Table 1).

Focusing on images that show large differences between
healthy controls and memory-impaired individuals, success-
fully diagnostic images versus nondiagnostic images tended
to be of smaller spaces (t(191) 5 3.05, P 5 .003), were less
interesting (t(191) 5 2.81, P 5 .005), were less esthetic
(t(191) 5 4.04, P 5 7.70 ! 1025), and were judged to
seem more forgettable by healthy controls (t(191) 5 3.79,
P 5 2.05 ! 1024) but showed no difference in clutter
(P 5 .153). In terms of content, diagnostic images tended
to be manmade (nondiagnostic: 72.4%; diagnostic: 83.9%;
Z(191) 5 2.72, P 5 .007), indoors (nondiagnostic: 37.5%;
diagnostic: 55.7%; Z(191) 5 3.58, P 5 3.40 ! 1024) and
contained people (nondiagnostic: 5.2%; diagnostic: 17.7%;
Z(191) 5 3.85, P 5 1.20 ! 1024). Memorable images
were significantly more interesting (t(191) 5 2.80,
P 5 .006) and seemed subjectively more memorable
(t(191) 5 3.55, P 5 4.86 ! 1024) than diagnostic images.
This shows that diagnostic images that SCD and MCI indi-
viduals forget but healthy controls remember tend to be
those that are generally less esthetic or interesting, yet are
manmade, indoor scenes containing people. There were no
significant differences in across-image similarity between
diagnostic and nondiagnostic images as determined by
the image classification CNN (Supplementary Table 1),
suggesting that diagnostic images are not more visually
distinctive. In addition, a 2-way ANOVA (participant
group ! image diagnosticity) comparing proportion of
high-confidence memory ratings found a main effect of
participant group (F5 11.53, P5 1.12! 1025), but no sig-
nificant effect of image diagnosticity (P 5 .626), nor a sig-
nificant interaction (P 5 .350), suggesting no link between
memory confidence and diagnosticity.
4. Discussion

Although individuals with SCD and MCI have
decreased memory performance in comparison to HC,
there is a considerable overlap in the images that they
remember and forget. Thus, there are images that are highly
memorable and forgettable to everyone regardless of diag-
nosis. These consistencies in memorability exist not only
between impaired memory groups and healthy controls,
where consistencies in memorability are already well-
established for controls [1,2], but also within the SCD
and MCI groups themselves. Our questionnaire-based
assessment of image attributes revealed that this common
memorability is not related to esthetics or spaciousness,
but to being manmade scenes that contain more objects,
and are subjectively more memorable and interesting.
Although previous work has reported that ratings of
interestingness, subjective memorability, and esthetics are
ultimately not predictive of scene memorability at a fine-
grained scale for healthy populations [7], such attributes
may be important for guiding the selection of images that
are broadly memorable across population types. We also
find that memorable images are not necessarily the most
visually distinctive, as determined by a CNN trained on im-
age classification.

In addition, we show that a publicly available convolu-
tional neural network (MemNet [6]) trained to predict
image memorability aligns with performance of HC as
well as those with SCD and marginally with MCI. This
raises the possibility that computational methods may
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guide the selection of images for diagnostic or therapeutic
tools on the basis of memorability. Such tools may assist in
creating or adapting environments to ease memory bur-
dens on patients by avoiding low memorability items, or
focusing strategies on rehearsing particularly forgettable
information.

Although memorability is generally consistent across
HC, SCD, andMCI groups, we have also identified a specific
set of images that significantly differ between groups.
Namely, we find that there are images that are highly memo-
rable to HC, yet highly forgettable to MCI and SCD individ-
uals, and a certain subset of these images can be used to best
determine if an individual is likely to be healthy or haveMCI
or SCD. The images generalize across impairments; images
that differentiate MCI also successfully differentiate SCD,
indicating that SCD may show similar cognitive impair-
ments to those developed in MCI. This image set results in
as much as a 10% improvement in diagnostic performance
in comparison to a poorly chosen set of images (e.g., images
memorable to MCI but forgettable to healthy controls).
Furthermore, this optimized image set reaches peak diag-
nostic performance with as few as 18.3 images seen per
participant, classifying as well as the original set with 88 im-
ages per participant. This means that individuals with MCI
or SCD can be identified with higher certainty, and in a
quicker, easier test. In terms of content, these diagnostic im-
ages tended to be manmade, indoor scenes that contained
people. However, in contrast to memorable images, they
tended to be less esthetic, be less interesting, and seem sub-
jectively less memorable. Scenes containing people tend to
be the most memorable [12]; however, it is perhaps the com-
bination of memorable image content (e.g., people,
manmade objects) yet lack of memorable qualities
(e.g., interestingness, esthetics) that causes these images to
be remembered by healthy controls but forgotten by SCD
and MCI individuals.

Functional neuroimaging work with healthy individuals
has found that viewing memorable images results in auto-
matic, stereotyped activity patterns in the visual cortex
and medial temporal lobe [8,9]. In future work,
investigating the neural fate of memorable and
forgettable images in older individuals and those with
SCD or MCI may aid in understanding how patients may
differentially process images at different processing
stages of perception and memory encoding. In the
DELCODE study, we have indeed obtained fMRI data
alongside the behavioral data reported here [15] and will
be able to address this question in the future. A related
question is how Alzheimer’s pathology is related to memo-
rability. For instance, we have previously shown that
increasing levels of CSF total tau are related to decreasing
novelty responses in the amygdala and the hippocampus
[15]. These functional consequences of tau pathology
could influence memorability patterns in MCI or SCD.
Indeed, activity in medial temporal lobe regions shows
early and automatic sensitivity to the memorability of an
image in healthy individuals [8]. Furthermore, older adults
at risk for MCI first show volume decrease in the entorhinal
cortex, resulting in impairments in object location memory
[23,24] and object discrimination [25]. The diagnostic im-
ages, with their higher scene complexity and several man-
made objects, may be most affected by early object
processing deficits. Image diagnosticity as calculated in
this study could also be related to the biomarker status of
individuals, a possibility that we will be able to address
in the future with larger sample sizes. It will also be para-
mount to better understand the visual, semantic, and statis-
tical features of an image that drive it to be forgettable,
memorable, or diagnostic. Several studies are working to
examine memorability with more varied image sets, in a
variety of experimental image contexts, and using new
computational methods ([26] for a review). In addition, un-
derstanding the content that makes an image most sensitive
to differences between groups will allow for better identifi-
cation of early impairments. Using fine-grained confidence
rating scales or an information-dense metric of recollection
(such as drawing [27]) may provide a more nuanced under-
standing of the memory for these images. While the current
work uses a memorability CNN trained on healthy partici-
pant memory data to predict participant memory, as larger-
scale data from individuals with SCD, MCI, and
Alzheimer’s disease are collected, a CNN could learn to
identify images that would be particularly effective in diag-
nosis. Finally, although the present study does not find
consistent diagnostic ability in images remembered by
impaired individuals and forgotten by healthy controls,
this set of images may be particularly interesting to inves-
tigate in future work.

In sum, we show the importance of images themselves in
predicting what memory-impaired individuals are likely to
remember and differentiating them from healthy individuals.
Such insights will have a meaningful impact in how we
design cognitive assessment tools and tests for early diag-
nosis of memory impairments and in understanding how
and why we process and remember certain images over
others in our complex, visual world.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (e.g., PubMed) and
meeting abstracts. Memorability as an intrinsic im-
age property is a recent topic in psychology, and
we reviewed all recent literature.

2. Interpretation: Although memorability patterns are
partly preserved in individuals with subjective cogni-
tive decline and mild cognitive impairment and can
be predicted by a neural network, we also found a
set of images that could improve disease stage classi-
fication.

3. Future directions: Understanding memorability has
implications for improving cognitive assessment in
the future. In addition, a deeper understanding of the
stimulus features that improve memorability in mild
cognitive impairment can lead to new interventions
for supporting memory. A key next question will be
linking the performance of potentially diagnostic im-
ages to biomarker status and determining which brain
networks relate to high or low memorability.
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