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The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize

the transport of multiple fluid networks in the brain, which overcomes the problem

of conducting separate analyses on individual fluid compartments and losing the

interactions between tissue and fluids, in addition to the interaction between the different

fluids themselves. In this paper, the blood perfusion results from MPET modeling are

partially validated using cerebral blood flow (CBF) data obtained from arterial spin

labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as

an endogenous tracer to measure CBF. Two subjects—one healthy control and one

patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation

test. The comparison shows several similarities between CBF data from ASL and blood

perfusion results from MPET modeling, such as higher blood perfusion in the gray matter

than in the white matter, higher perfusion in the periventricular region for both the healthy

control and the patient, and asymmetric distribution of blood perfusion for the patient.

Although the partial validation is mainly conducted in a qualitative way, it is one important

step toward the full validation of the MPET model, which has the potential to be used as

a testing bed for hypotheses and new theories in neuroscience research.

Keywords: poroelasticity, multiple fluid networks, finite element method, cerebral blood flow, blood perfusion,

arterial spin labeling, magnetic resonance imaging, brain

INTRODUCTION

Computational modeling has shown great potential in biomedical engineering research. The main
advantage is that computational methods can translate mathematical formulations that describe
the inherent complexity of biological systems into computer programs and solve them in a timely
manner. Many software suites have been developed for mechanistic modeling of biological systems,
such as SfePy (Rohan and Cimrman, 2012), FEBio (Maas et al., 2012), and FEniCS (Logg et al.,
2012). In this respect, one of the promising tools is applying the multiple-porosity/multiple-
permeability poroelastic model for modeling of fluid transport and tissue deformation in the brain,
which is called theMultiple-network PoroElastic Theory (MPET). The brain parenchyma is treated
as a deformable solid matrix, permeated by multiple fluid networks (Tully and Ventikos, 2011).
In general, the number of fluid networks can be customized to specific research. For current
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brain modeling, four coupled fluid networks are taken into
account: an arterial network (a), an arteriole/capillary network
(c), a cerebrospinal fluid/interstitial fluid (CSF/ISF) network (e)
and a venous network (v). The directional flows between the
fluid networks are shown in Figure 1, which link all four fluid
compartments together to form a coupled and integrated fluid
domain. The separation of arterial and arteriole networks is
based on the consideration of different resistances between large
and small arteries. Similar implementation was adopted in the
modeling of coronary blood flow in the heart (Smith et al.,
2002; Lee and Smith, 2012), where the arterial tree consists
of several compartments. In general, arterioles are defined as
the primary resistance vessels that enter an organ to distribute
arterial blood into capillary beds, which provides more than 80%
of the resistance to blood flow in the body (Mulvany andAalkjaer,
1990; Christensen and Mulvany, 2001; Martinez-Lemus, 2011).
Therefore, the arterial blood compartment is further segmented
into a high-pressure arterial network and a lower-pressure
arteriole/capillary network (Tully and Ventikos, 2011).

The MPET theory has been successfully used in the modeling
of biomechanical problems, e.g., hydrocephalus (Levine, 2008;
Tully and Ventikos, 2011; Sobey et al., 2012), cerebral oedema
(Vardakis et al., 2016), and Alzheimer’s disease (Guo et al.,
2018; Vardakis et al., 2019). However, there still lacks thorough
and rigorous validation using experimental and clinical data.
Computational tools developed in other fields of biomedical
engineering has shown that once sufficiently validated, they can
be used as testing beds for clinical research, e.g., analyzing risks
and exploring new treatments for diseases (Chen et al., 2018).

The MPET model can generate a wide range of output results,
such as the pressure and Darcy velocity (filtration velocity) of
fluids and brain tissue deformation. This gives the users great
advantage to have a full picture to understand the biomechanical
mechanisms at multiple scales. However, it also brings difficulty
to the validation of the model. Due to the complexity of the
algorithms and the large number of parameters needed to define
the MPET model, it is not feasible to validate the entire model in
one validation test. Therefore, a series of validation tests need to
be designed and conducted to fully validate the numerical model
and this paper aims to be as one step in this process.

One important output that can be seen fromMPET modeling
is blood perfusion, which is represented by the filtration velocity
of the arteriole/capillary blood compartment. Blood perfusion in

FIGURE 1 | The four-network poroelastic model (4-MPET) used for mechanistic modeling of the brain.

the brain can be quantified by cerebral blood flow (CBF), which
is an important parameter to define brain function. For example,
by quantifying regional CBF, Chen et al. (2011) demonstrated
that normal aging has different effects on regional CBF and
gray matter atrophy, although age-related reductions are more
common in cortical perfusion than subcortical CBF. Lassila
et al. (2018) observed evidence of hypoperfusion being associated
with mild cognitive impairment (MCI) status. Moreover, much
research have been conducted to explore the possibility of using
CBF as a biomarker for early diagnosis of Alzheimer’s disease
(AD) and other dementias. One of the findings is decreased blood
flow in praecuneus and/or posterior cingulum, and in the lateral
parietal cortex (Alsop et al., 2010); other studies in AD (Alsop
et al., 2008; Dai et al., 2009; Fleisher et al., 2009) found elevated
CBF in the hippocampus. The hippocampus is associated with
spatial and episodic memory; for example, reduced hippocampal
volume results in an amnestic syndrome, which is a core feature
of AD (Halliday, 2017).

Several methods can be used to measure CBF, such as
computed tomography perfusion (CT perfusion), positron
emission tomography (PET), and single-photon emission
computed tomography; however, CBF measured by different
methods normally cannot be compared directly (Kudo et al.,
2003; Guibert et al., 2013). In addition to the methods mentioned
above, an increasingly popular method to quantify CBF is to
use arterial spin labeling (ASL) magnetic resonance imaging
(MRI). Arterial spin labeling (ASL) is a non-invasive imaging
technique using standard magnetic resonance imaging (MRI)
equipment. The basic idea is that an MRI image can be sensitized
to the effect of inflowing blood spins, if the spins are in a
different magnetic state from that of the static tissue. The
ASL technique based on this idea uses magnetically labeled
arterial blood water as a nominally diffusible tracer for blood
flow measurements. There are several schemes for labeling
arterial blood water, including continuous labeling, pseudo
continuous labeling, and pulsed labeling (Calamante et al., 1999).
Continuous ASL means continuously rotating arterial spins
as they pass a labeling plane just beneath the imaged region
(Williams et al., 1992). Pulsed labeling means rotating arterial
spins in a slab of tissue at one time (Wong et al., 1997),
which is most often used in functional magnetic resonance
imaging (fMRI). The physiological basis for the MRI contrast
mechanisms of ASL is well-known so it provides a biomarker
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for brain function that is portable across scanning platforms or
time (Alsop et al., 2010). ASL perfusion MRI has been used
as a diagnostic tool in clinical practice (Detre et al., 2012;
Alsop et al., 2015), and also in human neuroscience research
(Detre et al., 2009; Shin et al., 2013).

The objective of this paper is to partially validate the blood
perfusion obtained from 4-MPET modeling using CBF data
from ASL images. The paper is organized in the following way.
First, the image collection, including T1-weighted MRI and ASL
MRI, is introduced. The T1-weighted MRI is segmented to
create geometry and mesh for numerical modeling. Second, the
numerical formulation of the 4-MPET model, and the boundary
conditions and parameters used for modeling are described.
Third, the numerical results of blood perfusion are compared
with CBF data obtained from ASL images, and similarities and
differences are discussed. Lastly, some conclusions are drawn
from the validation tests and future work is suggested.

MATERIALS AND METHODS

Clinical Data Collection and Processing
The clinical data were collected at the People’s Liberation Army
(PLA) General Hospital in Beijing, China. Two subjects—one
healthy control and one patient with unilateral middle cerebral
artery (MCA) stenosis, are included in this paper. The ethics
committee of the PLA General Hospital approved the study and
both participants gave informed consent prior to participation in
the study. After data collection, T1-weighted (T1w) MR images
were segmented to create three-dimensional geometries and
meshes of parenchymal tissue and the cerebral ventricles for
numerical modeling; Arterial spin labeling (ASL) MR images
were processed to generate cerebral blood flow (CBF) maps,
which were used for validation of the numerical results.

T1-Weighted MRI
A high-resolution T1w dataset using a 3D Ax FSPGR (fast
spoiled gradient-recalled echo) sequence was acquired and
used to generate masks. The scan parameters were as follows:
repetition time/echo time (TR/TE), 5.9960/2.5400ms; inversion
time, 450ms; bandwidth,±16 kHz; slice thickness, 1mm; matrix,
512 × 512; flip angle, 15◦. Subsequently, these MR images were
segmented to create anatomically accurate three-dimensional
brain geometries using FreeSurfer (Fischl, 2012). The emphasis
here is to capture detailed cortical and subcortical features, such
as the gray and white matter and the cerebroventricular system.
Initially two closed surfaces were created from segmentation—
the outer surface represents the cortical surface of the brain
parenchyma and the inner surface represents the ventricular
wall. Next, the volume formed by the ventricular wall was
deducted from the volume formed by the cortical surface via
a Boolean operation, so the final volumetric domain used for
numerical modeling is the brain parenchyma between the cortical
surface and the ventricular wall (Figure 2). Furthermore, the
brain parenchyma was segmented into separate regions of white
matter and gray matter to characterize their different mechanical
properties (Figure 3), which makes this model more realistic
than previous models using homogeneous representations of

the brain parenchyma (Guo et al., 2018). The final geometric
model was discretized into 4-node tetrahedra elements using
ANSYS (ANSYS, Inc., Canonsburg, USA). The mesh size satisfies
the criterion proposed from mesh sensitivity tests in a previous
paper (Guo et al., 2018) to make sure the numerical results
are convergent.

Arterial Spin Labeling MRI
In order to obtain cerebral blood flow (CBF) data for the
validation of numerical results, the participants were scanned
using 3D pseudo-continuous arterial spin labeling (pCASL)
technology (Discovery 750, GE Healthcare). The technical
parameters are listed as follows: sequence repetition time/echo
time (TR/TE), 5,327/10.5ms; field of view, 240× 240mm;matrix
size, 128 × 128; number of slices, 36; slice thickness, 4mm;
labeling duration, 1,500ms; post-labeling delay, 1,525ms; and
number of excitation, 2; background suppressed. Then the ASL
perfusion maps were expressed as cerebral blood flow (CBF) by
the supporting software of the MR scanner. A skull stripping
function was implemented in the ASL image processing workflow
so the scalp tissues can be removed on the CBF maps by creating
a tissue mask from T1-weighted images (Deibler et al., 2008).
The CBF results are compared with numerical results in section
Results and Discussion.

Multiple-Network Poroelastic Model
Finite Element Model
The multiple-network poroelastic model incorporates
mechanical equilibrium for elastic deformation, mass
conservation of fluids and Darcy’s law for fluid flow in a
coupled manner. The governing equations of the 4-MPET
model are listed as follows, where the primitive variables are the
displacement of the parenchymal tissue (u) and the pressures of
the four fluid networks pi (i= a, c, e, v).

G∇2u+ (G+ λ)∇ε = αa∇pa + αc∇pc + αe∇pe + αv∇pv (1)

Sa
∂pa

∂t
+ αa

∂ε

∂t
=

ka

µa
∇2pa + sca (2)

Sc
∂pc

∂t
+ αc

∂ε

∂t
=

kc

µc
∇2pc + (sac + sec + svc) (3)

Se
∂pe

∂t
+ αe

∂ε

∂t
=

ke

µe
∇2pe + (sce + sve) (4)

Sv
∂pv

∂t
+ αv

∂ε

∂t
=

kv

µv
∇2pv + (scv + sev) (5)

Equation 1 is the equilibrium equation, which describes the
momentum balance in the porous medium. Here, u is the
displacement of the tissue; pi is the pressure in each fluid network;
G is the shear modulus; λ is the Lamé’s constant; ε is the
dilatational strain; αi is the Biot–Willis coefficient for each fluid
network which satisfies φ ≤ αa + αc + αe + αv ≤ 1 (Berryman,
1992; Wang, 2000), where φ is the total porosity. In this paper,
only four fluid networks are considered so the total porosity φ

equals the sum of the porosities of the four individual networks
(Bai et al., 1993; Tully and Ventikos, 2011). It is worth noting
that the shear modulus G and the Lamé’s constant λ are not
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FIGURE 2 | Subject-specific brain geometry obtained by segmentation of T1w MR images and the application of the Boolean operation. The finished model is a

volumetric domain with a cavity representing the ventricles. The tetrahedral mesh created for numerical modeling is demonstrated by cross-sections cut in three

orthogonal directions. The red color represents the ventricular wall.

FIGURE 3 | White and gray matter in the brain model (shown in the horizontal cross-sectional slices). The white matter is represented by the blue color and the gray

matter is represented by the red color.

constant in the domain; they have different values in the gray
matter and the whitematter. Body forces (e.g., gravity) and inertia
terms are neglected in the governing equations based on the
assumption that the acceleration frequencies are low in biological
flows (Tully and Ventikos, 2011; Chou et al., 2016). It should
also be noted that the cross-porosity storage effect (Mehrabian
and Abousleiman, 2014) is not considered in this paper due to
the lack of experimental data to quantify the parameters in a
physiologically realistic way (Vardakis et al., 2017).

Equations 2–5 are continuity equations, which describe the
mass balance of the four fluid networks, respectively. Si is the
specific storage; ki is the permeability for each of the four fluid
networks; µi is the viscosity of each fluid. The assumption
adopted in this paper is that the four fluid domains are isotropic;
therefore ki is a constant. If spatially varying parameters are
available, such as permeability tensors extracted from diffusion-
weighted imaging (DWI), the permeability k can be defined on a
heterogeneous and anisotropic basis (Guo et al., 2018).

The sij terms on the right-hand side of Equations 2–5
(also demonstrated in Figure 1) define spatially varying source
(sij > 0) or sink (sij < 0) terms (Tully and Ventikos, 2011;
Vardakis et al., 2013), which are assumed to be driven by
a hydrostatic pressure gradient of the form, sij = ωij(pi –
pj), where ωij is the transfer coefficient scaling the flow from
network i to network j. The transfer of fluid between the
four fluid networks is derived from physiological considerations
(Tully and Ventikos, 2011) and required to obey the law of
continuity for the entire domain; hence, directionality between
fluid compartments must be accurately specified. These are listed
as follows:

1. Directional fluid transport always occurs from the arterial
network to the arteriole/capillary network:

sac = −sca = |sac| ≥ 0 (6)
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2. Fluid transport from the arteriole/capillary network enter the
CSF/ISF network or the venous network:

sce = −sec = |sec| ≥ 0 (7)

scv = −svc = |svc| ≥ 0 (8)

3. CSF flows into the venous compartment:

sev = −sve = |sev| ≥ 0 (9)

Next, the governing equations are discretized by the finite
element method and implemented in an in-house Fortran code.
Both the displacement field u and the pressures of the four fluid
networks pi (i = a, c, e, v) are approximated in the continuous
piecewise linear polynomial space. The discretized form of the
equilibrium equation is derived from the principle of minimum
potential energy,

Ku−
(

Qapa +Qcpc +Qepe +Qvpv
)

= F (10)

where

K =

∫

�

BTDBd� (11)

Qi =

∫

�

αiB
Thd� (12)

F =

∫

�

NTbd� +

∫

ŴN

NTtNdŴ (13)

K is the stiffness matrix; Qi is the load on the solid phase
contributed from the ith fluid network (i = a, c, e, v); b is
the vector of body force, which is neglected in this paper; N is
the matrix of continuous piecewise linear polynomial functions
(shape functions); and tN is the external force acting on the
boundary ΓN .

The continuity equations of the fluid networks are discretized
using the method of weighted residuals and the continuous
Galerkin formulation. The discretized form of the continuity
equation for one of the four fluid networks is,

Aṗ+ Cp = P (14)

The elements in matrices A, C, and vector P are

Aij = S

∫

�

NiNjd� (15)

Cij =
k

µ

∫

�

(

∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)

d� (16)

Pi =

∫

�

sNid� − α

∫

�

ε̇Nid� +

∫

Ŵ2

qNidŴ (17)

Ni is the continuous piecewise linear polynomial function at
node i; and q is the flux prescribed in the Neumann boundary
condition acting on the boundary Γ 2.

The temporal discretization of the governing equations
is implemented using the method of weighted residuals. In
this paper, an implicit backward Euler scheme is used for
time discretization. The final system of discretized governing

equations is solved by the standard KSP linear equation solver
in the PETSc library (Balay et al., 2018a,b). The highly coupled
equations are solved sequentially in a tightly coupledmanner, i.e.,
the pressure and displacement solutions are solved sequentially
during a time-step until a convergence tolerance is reached. At
the end of each time-step, Darcy’s law is used to calculate Darcy
velocities (filtration velocities) of the four fluid networks.

v = −
k

µ
∇p (18)

where v is the Darcy velocity for each of the four fluid
compartments, i.e., the volume of fluid crossing a unit area per
unit time. It should be noted that the focus of this paper is
to validate one of the outputs from 4-MPET modeling—blood
perfusion; here the blood perfusion is represented by the Darcy
velocity of the arteriole/capillary compartment.

Boundary Conditions and Poroelastic Parameters
As illustrated in Figure 2, the simulation domain of the
parenchymal tissue is bounded by two surfaces—the outer
boundary represents the cortical surface and the inner boundary
represents the ventricular wall, both of which need boundary
conditions for the solid phase and the four fluid networks,
respectively; therefore, a total of 10 boundary conditions are
listed in Table 1.

The details of the boundary conditions explained from a
physiological perspective can be found in previous publications
(Tully and Ventikos, 2011; Vardakis et al., 2013; Guo et al., 2018);
a summary is given here and their values can be found in Table 2.
One of the boundary conditions that is closely related to the
modeling in this paper is the arterial blood flow at the cortical
surface (Equation 20). The arterial blood supply to the brain is
mainly provided by two pairs of arteries—internal carotid arteries
and vertebral arteries (Tortora and Derrickson, 2009). Due to the
lack of explicit characterization of vasculature in the 4-MPET
model, the arterial blood supply to the brain is simplified into
a flux boundary condition (Neumann boundary condition) Qa

at the cortical surface, which is applied as pulsatile waveforms
(Figure 4). The numerical simulations run 50 cycles of arterial
blood waveforms to reach a periodic steady state; only the output
data from the final steady state are used for validation in section
Results and Discussion.

For the arteriole/capillary blood compartment, the production
of CSF from the blood results in a pressure drop in the
arteriole/capillary blood (Equation 23), where κc→vent is the
resistance of the flow from the capillary network to the ventricles
(through the choroid plexus), and Qp is the rate of CSF
production. Two assumptions are adopted in this boundary
condition. First, there is no separation of the two extracellular
fluid compartments in the brain—the cerebrospinal fluid (CSF)
and the interstitial fluid (ISF) in the 4-MPET model, which
assumes that all of the CSF/ISF is produced within the ventricles
from blood at a production rateQp. However, it has been reported
that ∼20% of CSF in the human brain originates from brain ISF
(Edsbagge et al., 2004; Lei et al., 2017). In the current 4-MPET
model, this part of CSF production is implicitly embedded in
the combined CSF/ISF compartment. Second, the main site of
CSF production in the ventricles is the choroid plexus, which is
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TABLE 1 | Boundary conditions used in the 4-MPET modeling.

Cortical surface Ventricular wall

Displacement u = 0 (19) No displacement constraints

Arterial blood ∇pan = Qa (20) ∇pan = 0 (21)

Arteriole/capillary blood ∇pcn = 0 (22) κc→vent∇pcn = −Qp (23)

CSF/ISF pe = pv + µeRQ0 (24) Qp = πd4

128µeL

(

pe − pcortial surfacee

)

−
4πke
µe

(

r1 + un1

)2
∇pen+ 4π

(

r1 + un1

)2
u̇ (25)

Venous blood pv = pbp (26) ∇pvn = 0 (27)

TABLE 2 | Poroelastic parameters used in the 4-MPET modeling.

Parameters Values Units Parameters Values Units

αac 0.25 ωac 1.5 × 10−7 m2N−1s−1

αe 0.49 ωcv 1.5 × 10−7 m2N−1s−1

αv 0.01 ωev 1.0 × 10−6 m2N−1s−1

λg 505 Pa ωce 1.0 × 10−8 m2N−1s−1

Gg 216 Pa pbp 650 Pa

λw 1,010 Pa Qp 5.8 × 10−9 m3s−1

Gw 432 Pa Q0 5.8 × 10−9 m3s−1

Sac 2.9 × 10−4 m2N−1 κc→vent 6.0 × 10−4 m6N−1s−1

Se 3.9 × 10−4 m2N−1 µe 8.9 × 10−4 m−2Ns

Sv 1.5 × 10−5 m2N−1 R 8.5 × 1013 m−3

ka,e,v 1.0 × 10−10 m2 d 4.0 × 10−3 m

kcg 1.0 × 10−8 m2 L 7.0 × 10−2 m

kcw 1.0 × 10−10 m2

FIGURE 4 | Arterial blood supply to the brain, which is applied as a flux

boundary condition of the arterial blood compartment at the cortical surface.

a highly vascularized tissue located within each ventricle of the
brain and develops from several locations along the dorsal axis
of the neural tube (Lun et al., 2015). The classical hypothesis
involves the production of CSF at the choroid plexus of the
lateral, third, and fourth ventricles. However, it is still speculative
as to the exact proportions of CSF production in the various

choroid plexus sites (Gupta et al., 2009; Vardakis et al., 2013).
The 4-MPET model simplifies the production of CSF as a
uniform distribution on the entire ventricular wall, instead of
at specific locations. This simplification is consistent with the
homogenization approach adopted for the 4-MPET model.

The CSF/ISF compartment has a Dirichlet boundary
condition at the cortical surface and a mixed boundary condition
at the ventricular wall. At the cortical surface, the boundary
condition (Equation 24) represents the pressure rise resulted
from the absorption of CSF into the venous network, where
pbp is the venous blood pressure at the cortical surface, µe is
the viscosity of CSF, R is the resistance to outflow through
the arachnoid granulations, and Q0 is the out-flux of CSF at
the skull (the rate of absorption Q0 is assumed to be equal
to the production rate Qp in the quasi-steady approach). At
the ventricular wall, the boundary condition (Equation 25)
represents the conservation of the mass of fluid in the ventricles.
Within the ventricles, it is assumed that any CSF that is
produced (Qp) and does not flow through the cerebral aqueduct
(Poiseuille’s law) or the parenchyma must accumulate within
the ventricles, where d and L are the diameter and length of
the cerebral aqueduct, respectively, r1 is the distance from the
center to the ventricular wall, and un1 is the displacement at the
ventricular wall.

Two subject-specific brain models are simulated in this
paper—one healthy control and one patient with unilateral
(right) middle cerebral artery (MCA) stenosis. Unilateral MCA
stenosis and other intracranial artery stenosis are common causes
of ischemic stroke (Mazighi et al., 2006). Previous research
reported a reduced lumen diameter of <50% between normal
and MCA stenosis by Transcranial Doppler (TCD) (Wang et al.,
2014). To account for the reduced blood supply to the right
cerebrum, the arterial blood boundary condition at the cortical
surface is decreased to 50% for the patient.

Table 2 gives the poroelastic parameters used in the numerical
simulations of this paper. These parameters are introduced in
the traditional consolidation theory of poroelastic media (Biot,
1941; Wilson and Aifantis, 1982), and also interpreted from a
physiological sense for the cerebral environment. Most of the
parameters have been used before and the detailed descriptions
can be found in previous studies (Tully and Ventikos, 2011;
Vardakis et al., 2013; Guo et al., 2018).

The main difference of parameters compared with previous
research of MPET modeling (Tully and Ventikos, 2011; Vardakis
et al., 2013; Guo et al., 2018) is the differentiation between the

gray matter and the white matter. In previous work, the entire
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brain parenchyma was treated as a homogeneous domain from
a mechanical perspective; therefore, there was only one value
for elastic constants—shear modulus G and Lamé’s constant λ

(Table 2), respectively. An assumption of single permeability (kc)
was also adopted for the arteriole/capillary fluid network. In
this paper, the segmentation of T1w MR images (section T1-
Weighted MRI) defines separate regions for the gray matter
and the white matter (Figure 3); therefore, different values are
assigned for the mechanical properties of the gray matter and
the white matter. More specifically, previous work of MPET
modeling used a Young’s modulus of 584 Pa (Taylor and Miller,
2004) for the entire brain. However, experiments have found the
gray matter is significantly more compliant than the white matter
(Finan et al., 2017; Testu et al., 2017). Therefore, in this paper the
Young’s modulus of the white matter is twice the value for the
gray matter (Weickenmeier et al., 2017), which results in higher
values of shear modulus G and Lamé’s constant λ for the white
matter (with subscript w) than the gray matter (with subscript g).

Another difference from previous MPET simulations is that
different values of the permeability of the arteriole/capillary
fluid network (kc) are assigned for the white matter and the
gray matter. In the theory of poroelasticity, the permeability
defines the ability of the porous medium to transmit fluids
(Wang, 2000). In general, higher permeability enables the
fluid to flow faster through the porous medium according
to the Darcy’s law (Equation 18). The focus of this paper
is to validate the blood diffusion (Darcy velocity of the
arteriole/capillary compartment) by CBF data from ASL images,
so it is important to characterize the permeability associated with
the arteriole/capillary compartment at a more detailed level than
the other three fluid compartments. The normal average cerebral
blood flow (CBF) in adult humans is about 50 ml/100 g/min
(Lassen, 1985; Fantini et al., 2016) with lower values in the white
matter and higher values in the gray matter (Vavilala et al., 2002);
therefore, in this paper the permeability of the arteriole/capillary
compartment (kc) in the gray matter (with subscript g) is set to
be 100 times the value for the white matter (with subscript w).

RESULTS AND DISCUSSION

The cerebral blood flow (CBF) data from arterial spin labeling
(ASL) images and the numerical results obtained from 4-MPET

modeling are compared in this section. The 4-MPET model
used for numerical simulations can output a wide range of
results. The focus of this paper is to validate the blood perfusion;
therefore, only the Darcy velocity (filtration velocity) of the
arteriole/capillary compartment is shown in this section.

The values of CBF data and blood perfusion from 4-MPET
modeling cannot be compared directly (Guibert et al., 2013). The
unit of CBF normally is ml/100 g/min, which means the blood
volume that flows per unit mass per unit time in brain tissue
(Fantini et al., 2016), whereas the unit of Darcy velocity (filtration
velocity) is m/s, which means the volume of blood crossing a unit
area per unit time. The unit of the filtration velocity (m/s) can be
converted to the unit of CBF (ml/100 g/min) by dividing it by the
density of the brain tissue 1.0 g/cm3 (Barber et al., 1970) and a
reasonable length scale at the order of the size of a gyrus (1 cm)
(Im et al., 2008).

The CBF data and blood perfusion results from 4-MPET
modeling for the healthy control and the patient with unilateral
(right) middle cerebral artery (MCA) stenosis are shown in
Figures 5, 6, respectively. The red color represents regions of
high blood perfusion and the blue color represents low blood
perfusion. There are several similarities that can be seen from
the comparison. The first one is that blood perfusion is higher
in the gray matter than in the white matter, which means a
higher permeability value of the arteriole/capillary compartment
in the gray matter is necessary in order to capture this difference.
Numerical simulations using identical permeability for the gray
matter and the white matter (results are not shown here)
demonstrate that different blood perfusion magnitudes in the
gray matter and the white matter cannot be reflected in these
simulations. In Figures 5, 6, the maximum value in the 4-MPET
modeling results is about 2.0 × 10−4 m/s, which is equivalent to
1.2× 102 ml/100 g/min—within the same order of magnitude of
the maximum value on the CBF maps, 1.1× 102 ml/100 g/min.

In numerical modeling, the blood perfusion is taken as the
Darcy velocity of the arteriole/capillary compartment; therefore
for a more quantitative validation it can also be compared
with published data of the blood flow velocity in capillaries
of the brain. For example, in a review article, Hudetz (1997)
suggested that the red blood cell (RBC) velocity falls in the
range of 5 × 10−4-1.8 × 10−3 m/s within the cerebral capillary
network; Hadjistassou et al. (2015) reported a mean capillary
blood velocity of 7.3 × 10−4 m/s (Lücker et al., 2018); used

FIGURE 5 | Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the healthy control.
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FIGURE 6 | Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the patient with unilateral

(right) MCA stenosis.

the red blood cell velocity between 4 × 10−4 and 2 × 10−3

m/s in their computation model. It can be seen from Figures 5,
6 that the blood perfusion results obtained from 4-MPET
modeling are at the same order of magnitude with these
published data.

The second similarity that can be seen from the comparison
is that there is clear symmetry between left and right cerebrums
in the healthy subject (Figure 5), whereas the patient with
unilateral (right) MCA stenosis shows lower blood perfusion
in the right cerebrum (Figure 6). This is consistent with
previous findings (Liu and Li, 2016; Lyu et al., 2016; Lou
et al., 2019), which reported that patients with unilateral MCA
stenosis have significantly lower CBF in the hemispheres of
the stenotic side. A more detailed comparison is shown in
Figure 7, where one slice in the horizontal plane is taken
from the healthy control and the patient, respectively. The
comparison shows that the healthy control has symmetric
distribution of blood perfusion; however, the patient with

unilateral (right) MCA stenosis has normal blood perfusion
in the left cerebrum (highlighted by red dashed lines and

arrows) but lower perfusion in the stenotic side (right). This
also demonstrates that the reduced arterial blood flow boundary

condition applied on the right cortical surface (section Boundary

Conditions and Poroelastic Parameters) is correctly reflected in
the output of blood perfusion, which means that the coupling
directional flow between the arterial blood compartment and the
arteriole/capillary blood compartment (Figure 1) is well-defined,
and is able to capture different flows.

The third similarity is that the periventricular region
shows relatively higher perfusion in the patient with unilateral
MCA stenosis, which can also be identified in the healthy
control (Figure 8). In 4-MPET modeling, this feature is partly
contributed by the local high magnitude of tissue strain in the
periventricular region, which demonstrates that the coupling
between solid deformation and fluid flow plays an important
role in capturing the correct mechanical response. The local

variances of blood perfusion in the periventricular region from

4-MPET modeling are shown in the insets of Figures 8B,D. It
should be noted that the ventricles are not completely visible
on the CBF maps due to resolution characteristics; however,
local regions of high perfusion can still be identified around the

FIGURE 7 | Comparison of symmetric and asymmetric blood perfusion

between the healthy control and the patient with unilateral MCA stenosis.

(A) CBF—healthy control; (B) Blood perfusion—healthy control;

(C) CBF—patient; (D) Blood perfusion—patient, the red arrows point to high

blood perfusion in the gray matter.

visible parts of the ventricular wall, which are highlighted by
red arrows.

It is worth pointing out that very low perfusion can be
seen in the white matter of 4-MPET modeling results, which
is mainly due to the separation of the arterial blood and the
arteriole/capillary blood compartments, and the assumption
of homogenization used in the 4-MPET modeling. The ASL
technique uses arterial blood water as an endogenous tracer to
measure CBF, whereas in the 4-MPET model the arterial blood
is further segmented into a high-pressure arterial network and a
lower-pressure arteriole/capillary network (Tully and Ventikos,
2011) at two separate scales. Therefore, the relatively higher
velocity of arterial blood cannot be seen in the arteriole/capillary
network. The other reason is the assumption of homogenization
adopted in the 4-MPET model, which means that there is no
explicit characterization of the vasculature in the simulations so
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FIGURE 8 | Comparison of blood perfusion in the periventricular region. (A) CBF—healthy control; (B) Blood perfusion—healthy control; (C) CBF—patient; (D) Blood

perfusion—patient. The red arrows point to high blood perfusion. It should be noted that in order to highlight the local variances in the periventricular region, the color

bar in the insets is different from the one used for the entire brain slice.

the regions of high perfusion are smoothed out. Hence, the very
low perfusion in the white matter does not correspond to very
low ASL signal that would be incompatible with a live person.

The numerical results presented in this paper mainly show
qualitative validation, with several limitations that need to be
addressed. First, it can be seen from Figures 7, 8 that the CBF
data from ASL images exhibit higher degree of heterogeneity
in the parenchyma than the blood perfusion results from 4-
MPET modeling. The main reason for this is that there is no
explicit characterization of subcortical structures and vasculature
as input conditions for numerical modeling; therefore, the
heterogeneous distribution of blood perfusion is smoothed out
due to this assumption of homogenization. Another reason is
that some of the high-perfusion regions found on the CBF maps
are large arteries, not arterioles; therefore the blood velocity
is considerably higher than the surroundings. One possible
solution is to assign different values of Young’s modulus by
simply allowing for some heterogeneity within a small range
in the parenchyma, in addition to differentiating between the
white and gray matter. Another possible solution to improve
this is to use heterogeneous properties (e.g., shear modulus)
obtained from magnetic resonance elastography (MRE), which
is a non-invasive imaging method to quantitatively assess the
mechanical properties of biological tissue in vivo (Green et al.,

2008). It is also worth noting that spatially varying permeability
tensors are not incorporated for the CSF/ISF compartment in

the current study, which is another reason for the lack of
heterogeneity in the numerical results. Second, only two subjects

are included in the validation, which makes the sample too

small to conduct a thorough statistical analysis. Once more
data are collected, machine learning, such as the differential

evolution (DE) algorithm for non-linear optimization of finite
element solutions (Storn and Price, 1997; Cao et al., 2006), can
be used to optimize the poroelastic parameters used in 4-MPET
modeling. Third, the partial validation of the MPET model in
this paper only focuses on the arteriole/capillary compartment,
which is not necessarily the most comprehensive scenario to
demonstrate the advantages of the MPET model as a whole—
ideally, experimental, or clinical data should be collected to show
the coupling effects between fluid compartments. Unfortunately,
such data are not available at the moment. Therefore, the strategy
is to validate the fluid compartments in the MPET model one by
one, and then validate the coupling effects once the required data
becomes available.

CONCLUSIONS

The paper demonstrates the extent to which the four-network
poroelastic model (4-MPET) agrees with arterial spin labeling
(ASL) images in terms of blood perfusion. Several similarities
can be found between 4-MPET modeling and cerebral blood
flow (CBF) data obtained from ASL images. First, the blood
perfusion is higher in the gray matter than in the white matter for
both the healthy control and the patient with unilateral middle
cerebral artery (MCA) stenosis. Second, the healthy control
shows symmetric distribution of blood perfusion, whereas the
patient has lower perfusion in the stenotic side of the brain.
Third, the blood perfusion is relatively higher in the local
periventricular region for both the healthy control and the patient
with unilateral MCA stenosis. Although the partial validation is
presented mainly in a qualitative way, it is one important step in
a series of tests toward the full validation of the 4-MPET model.
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This paper also explains the need for more experimental and
clinical data to optimize the boundary conditions and parameters
used in numerical modeling. The potential exists to use the 4-
MPET modeling workflow as a testing bed for hypotheses and
new theories in neuroscience research.
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