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Abstract
Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous de-
scending pain modulation and are deficient in a large proportion of chronic pain 
patients. However, the pathways involved remain only partially determined with 
several cortical and brainstem structures implicated. This study examined the role of 
the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefron-
tal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal 
horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields 
in anaesthetised sham‐operated and L5/L6 spinal nerve‐ligated (SNL) rats. Evoked 
neuronal responses were quantified in the presence and absence of a conditioning 
stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a het-
erotopically applied conditioning stimulus, an effect that was absent in neuropathic 
rats. Intra‐DRt naloxone had no effect on spinal neuronal responses to dynamic 
brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL 
rats. In addition, intra‐DRt naloxone blocked DNIC in sham rats, but had no effect 
in SNL rats. Intra‐ILC lidocaine had no effect on spinal neuronal responses to dy-
namic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and 
SNL rats. However, differential effects were observed in relation to the expression 
of DNIC; intra‐ILC lidocaine blocked activation of DNIC in sham rats but restored 
DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediat-
ing DNIC but can modulate its activation and that DRt involvement in DNIC requires 
opioidergic signalling.
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1  |   INTRODUCTION

The adage that “pain inhibits pain” is underpinned by dif-
fuse noxious inhibitory controls (DNIC)—a descending 
pain modulatory mechanism, recruited by a distant noxious 
stimulus, that can suppress firing of convergent second‐order 
sensory neurones (Le Bars, Dickenson, & Besson, 1979). 
The human counterpart measure, now referred to as condi-
tioned pain modulation (CPM), is considered to be the psy-
chophysical outcome of activating DNIC, and has received 
renewed interest in recent years as a sensory testing tool. 
CPM/DNIC likely reflect the net balance between descend-
ing inhibitory and facilitatory signalling; hence, the study 
of DNIC in rodents represents a useful translatable measure 
linking pre‐clinical and clinical investigations (Bannister 
& Dickenson, 2017). Inefficient CPM might provide in-
sight into underlying pathophysiological mechanisms, and 
disturbances have been reported in neuropathic pain, irri-
table bowel syndrome, cluster headache and fibromyalgia 
(Albusoda et  al., 2018; Kosek & Hansson, 1997; Perrotta 
et  al., 2013; Yarnitsky, Granot, & Granovsky, 2014). This 
proposal has also garnered support of mechanism‐led treat-
ment of neuropathic patients as CPM efficiency inversely 
correlates with pain relief from tapentadol and duloxetine 
(Niesters et al., 2014; Yarnitsky, Granot, Nahman‐Averbuch, 
Khamaisi, & Granovsky, 2012). Drawing parallels with ro-
dent studies, tapentadol restores absent DNIC in neuropathic 
rats (Bannister, Patel, Goncalves, Townson, & Dickenson, 
2015), but fails to enhance functional DNIC in uninjured rats 
(Lockwood & Dickenson, 2019). Furthermore, pre‐operative 
patients with low CPM levels were at greater risk of devel-
oping chronic post‐operative pain (Wilder‐Smith, Schreyer, 
Scheffer, & Arendt‐Nielsen, 2010; Yarnitsky et  al., 2008), 
consistent with animal data demonstrating that susceptibil-
ity to pain chronicity after nerve injury related to the ability 
to engage descending inhibitory pathways (De Felice et al., 
2011; Xu, Kontinen, & Kalso, 1999).

The neural networks that subserve DNIC appear par-
tially distinct to the more established and characterised de-
scending pain modulatory network. In terms of ascending 
pathways, activation of parabrachial‐projecting NK1 + spi-
nal neurones is required to recruit both pontospinal and 
bulbospinal modulatory pathways (Rahman, Suzuki, Hunt, 
& Dickenson, 2008; Suzuki, Morcuende, Webber, Hunt, 
& Dickenson, 2002), whereas both spinoparabrachial and 
spinoreticular pathways are involved in activating DNIC 
(Lapirot et  al., 2009; Suzuki et  al., 2002; Villanueva, 
Peschanski, Calvino, & Le Bars, 1986). In the descending 
arm of the loop, perhaps surprisingly, DNIC are conserved 
following lesioning of the periaqueductal grey, rostral ven-
tromedial medulla and locus coeruleus (Bouhassira, Bing, 
& Le Bars, 1990, 1992; Bouhassira, Chitour, Villanueva, & 
Le Bars, 1993), but are diminished following lesion of the 

dorsal reticular nucleus (DRt), also referred to as the sub-
nucleus reticularis dorsalis (Bouhassira, Villanueva, Bing, 
& le Bars, 1992). However, more recent studies confirm 
noradrenergic signalling comprises a significant compo-
nent of DNIC (Bannister et al., 2015; Peters et al., 2015; 
Wen et al., 2010), but also implicate a broader role of de-
scending monoaminergic signalling systems (Chebbi et al., 
2014; Lapirot et al., 2011).

Imaging studies in pain‐free individuals reveal that cortical 
influences on brainstem circuitry determine conditioned pain 
modulation (Piche, Arsenault, & Rainville, 2009; Sprenger, 
Bingel, & Buchel, 2011; Youssef, Macefield, & Henderson, 
2016a,b) and that low CPM was associated with enhanced 
functional connectivity between the prefrontal cortex and DRt 
(Youssef et al., 2016a). Rodent studies of cortical involvement 
in DNIC are lacking, and the precise mechanisms within the 
DRt are not fully understood. DNIC is partly mediated via an 
opioidergic mechanism (Le Bars, Chitour, Kraus, Dickenson, 
& Besson, 1981), and opioidergic interneurones in the DRt re-
ceive projections from multiple cortical regions (Martins et al., 
2015a). These interneurones might be recruited during DNIC, 
and we investigated this possibility by inhibiting with nalox-
one. By silencing with lidocaine, we additionally investigated 
whether the infralimbic (ILC) region of the medial prefrontal 
cortex (mPFC) forms part of DNIC circuitry in rats with func-
tional DNIC, and in a model of neuropathy characterised by an 
absence of DNIC (Bannister, Lockwood, Goncalves, Patel, & 
Dickenson, 2017; Bannister et al., 2015).

2  |   MATERIALS AND METHODS

2.1  |  Animals
Sham or spinal nerve‐ligated (14–18 days post‐surgery) male 
Sprague‐Dawley rats (250–300  g) were used for electro-
physiological experiments (Biological Services, University 
College London, UK). Animals were group‐housed (maxi-
mum of 4) on a conventional 12‐hr: 12‐hr light–dark cycle; 
food and water were available ad libitum. Temperature 
(20–22°C) and humidity (55%–65%) of holding rooms were 
closely regulated. All procedures described here were ap-
proved by an internal ethics committee and sanctioned by 
the UK Home Office (licence IEEC97183), adhered to the 
Animals (Scientific Procedures) Act 1986/directive 2010/63/
EU, and were designed in accordance with ethics guidelines 
outlined by the International Association for the Study of Pain 
(Zimmermann, 1983). A total of 12 sham and 13 SNL rats 
were used in this study; one neurone was recorded per rat.

2.2  |  Spinal nerve ligation (SNL) surgery
Spinal nerve ligation surgery was performed as previously 
described (Ho Kim & Mo Chung, 1992). Rats (130–140 g) 
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were maintained under 2% v/v isoflurane anaesthesia de-
livered in a 3:2 ratio of nitrous oxide and oxygen. Under 
aseptic conditions, a paraspinal incision was made and the 
tail muscle retracted from the spinal column. Part of the L5 
transverse process was removed to expose the left L5 and L6 
spinal nerves, which were then isolated with a glass nerve 
hook (Ski‐Ry, London, UK) and ligated with a non‐absorb-
able 6‐0 braided silk thread proximal to the formation of the 
sciatic nerve. The surrounding skin and muscle was closed 
with absorbable 4‐0 sutures, and lidocaine cream (5% w/w) 
was applied topically to the closed incision. Sham surgery 
was performed in an identical manner omitting the nerve 
isolation and ligation step. All rats groomed normally and 
gained weight in the following days post‐surgery.

2.3  |  In vivo electrophysiology
Anaesthesia was initially induced with 3.5% v/v isoflu-
rane delivered in 3:2 ratio of nitrous oxide and oxygen. 
Once areflexic, a tracheotomy was performed and rats were 
subsequently maintained on 1.5% v/v isoflurane for the 

remainder of the experiment (approximately 3–4 hr; core 
body temperature was maintained throughout with the use 
of a homeothermic blanket). Rats were then secured in a 
stereotaxic frame, a midline incision was made across the 
scalp, and after the skull‐exposed co‐ordinates for either the 
ILC or DRt were calculated in relation to bregma (Watson 
& Paxinos, 2006). A small craniotomy was performed with 
a high‐speed surgical micro‐drill. A laminectomy was sub-
sequently performed to expose the L4–L6 segments of the 
spinal cord, and two spinal clamps were applied to stabilise 
the spinal column. Extracellular recordings were obtained 
from deep dorsal horn wide dynamic range (WDR) lamina 
V/VI neurones with receptive fields on the glabrous skin of 
the left hind toes using 127‐μm‐diameter 2 MΩ parylene‐
coated tungsten electrodes (A‐M Systems, Sequim, WA). 
The search stimulus consisted of light tapping of the left 
hind paw as the electrode was manually lowered. Neurones 
were characterised from depths relating to deep dorsal horn 
laminae (sham: 752 ± 94 μm; SNL: 626 ± 49 μm) (Watson, 
Paxinos, Kayalioglu, & Heise, 2009) and were classified as 
WDR on the basis of sensitivity to dynamic brushing, and 

F I G U R E  1   Experimental protocol for single‐unit dorsal horn recordings (a). A range of low intensity and noxious mechanical and thermal 
stimuli were applied to the receptive field approximately 50–60 s apart. The effect of a concurrently applied conditioning stimulus (CS; noxious 
clamp applied to left ear) was tested on the neuronal response to a test stimulus (60 g von Frey); individual baseline values represent mean of two 
tests (grey box). Following drug delivery, stimulus‐evoked responses were quantified at 10 and 30 min post‐dosing. Spike trace of a deep dorsal 
horn wide dynamic range neurone following electrical stimulation of the receptive field at 3 times the C‐fibre threshold; note afferent‐evoked 
activity in the Aβ, Aδ and C‐fibre conduction range (b). Schematic representation of tract termination sites (bregma +3 and −13.9 images chosen 
for illustrative purposes) (c). Ac, acetone; Ec, ethyl chloride; DRt, dorsal reticular nucleus; ILC, infralimbic cortex
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noxious mechanical (60 g) and heat stimulation (48°C) of 
the receptive field. WDR neurones recorded at these depths 
receive convergent Aβ, Aδ and C‐fibre input (Figure 1b), 
as previously observed (Patel, Kucharczyk, Montagut‐
Bordas, Lockwood, & Dickenson, 2019). The signal was 
amplified (×3,000) and bandpass‐filtered (low/high‐fre-
quency cut‐off 150/2,000  Hz); data were captured and 
analysed by a CED1401 interface coupled to a computer 
with Spike2 v4 software (Cambridge Electronic Design, 
Cambridge, United Kingdom).

Figure  1a summarises the experimental protocol. The 
receptive field was stimulated using a range of natural 
stimuli (brush, von Frey filaments 8 and 60  g, and heat 
42, and 48°C) applied over a period of 10 s per stimulus. 
The heat stimulus was applied with a constant water jet 
onto the centre of the receptive field. Acetone and ethyl 
chloride (100 μl) were applied as an evaporative innocuous 
cooling and noxious cooling stimulus, respectively (Leith, 
Koutsikou, Lumb, & Apps, 2010), and responses quanti-
fied over 10 s post‐application. Evoked responses to room 
temperature water (25°C) were minimal, or frequently 
completely absent, and subtracted from acetone and ethyl 
chloride evoked responses to control for any concomitant 
mechanical stimulation during application. A noxious clamp 
(using a 35‐mm bulldog serrefine (InterFocus, Linton, 
UK)) was applied to the left ear as a conditioning stimu-
lus concurrently to stimulation of the hind paw with a 60 g 
von Frey filament. In this and previous studies (Bannister 
et al., 2015; Bannister, Lockwood, et al., 2017), we have set 
the conditioning stimulus at a level to produce sub‐maxi-
mal DNIC in order to align the effect size with CPM in 
humans (Nir, Granovsky, Yarnitsky, Sprecher, & Granot, 
2011). After three consecutive stable baseline responses 
to evoked stimuli (data were averaged to give control val-
ues), 0.5 μl 2% w/v lidocaine (Sigma, Gillingham, UK) or 
5  μg/0.5  μl naloxone hydrochloride (Sigma, Gillingham, 
UK) dissolved in normal saline was injected into the ILC 
(RC + 3 mm, ML −0.6 mm, DV −5.2 mm) and DRt (RC 
−13.9  mm, ML  +  1.7  mm, DV −8.4  mm), respectively. 

Correct placement of the drug was verified after sectioning 
of brains (Figure  1c). Neuronal responses to mechanical 
and thermal stimuli were tested at 10 and 30 min post‐dos-
ing; for all data sets, the 10 min of time point is plotted. 
The injection volume and time points were chosen to mit-
igate the effect of drug diffusion (likely to be between 0.5 
and 1  mm); however, drug effects in neighbouring brain 
regions cannot be ruled out. All drug effects were transient 
indicating that these cannot be attributed to tissue damage 
caused by drug delivery. Injection of 0.5 μl saline into the 
neighbouring anterior cingulate cortex (Bannister, Qu, 
et al., 2017) or rostral ventromedial medulla (unpublished 
observation) does not affect spinal neuronal excitability, in 
contrast to gabapentin or lidocaine injection, respectively, 
supporting that the injection volume alone does not disrupt 
normal cortical and brainstem function.

2.4  |  Statistics
Statistical analyses were performed using SPSS v25 (IBM, 
Armonk, NY). Drug effects on DNIC, and heat and mechani-
cal coding of neurones were compared with a 2‐way repeated‐
measures (RM) ANOVA, followed by a Bonferroni post hoc 
test for paired comparisons. Where appropriate, sphericity was 
tested using Mauchly's test; the Greenhouse–Geisser correction 
was applied if violated. Collated baseline DNIC responses, and 
cold‐ and brush‐evoked firing were compared with two‐tailed 
paired Student's t test. All data represent mean ± 95% confi-
dence interval (CI). * p < .05, **p < .01, ***p < .001.

3  |   RESULTS

3.1  |  DNIC are abolished by naloxone 
injection into the dorsal reticular nucleus in 
sham rats but are unaltered in neuropathic rats
Heterotopic application of a noxious ear clamp reliably and 
reproducibly activated DNIC in sham rats as demonstrated 
by a reduction in neuronal firing (60 g: 842.6 ± 117.4 spikes; 

F I G U R E  2   DNIC are active in sham‐operated rats but deficient in a neuropathic state. Collated baseline single‐unit neuronal responses to 
60 g von Frey stimulation in the absence of and presence of a heterotopic conditioning stimulus (CS) in sham and SNL rats (a). Histogram traces 
depict representative neuronal responses during a baseline trial (b). Sham: n = 12, SNL n = 13. Asterisks (*) denote difference from control 
response, ***p < .001
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60 g + CS: 631.1 ± 109 spikes, 25.1% decrease, Cohen's 
d  =  −1.186) in response to a test stimulus (t  =  13.583, 
df  =  11, p  =  .00000003; Figure  2a, b). In contrast, the 
presence of a conditioning stimulus had no effect on neu-
ronal responses (60 g: 797.4 ± 125.8 spikes; 60 g + CS: 

797 ± 126.2 spikes, 0.005% increase, Cohen's d = 0.018) to 
the test stimulus in SNL rats (t = 0.043, df = 12, p = .966) 
(Figure 2a, b).

The impact of intra‐DRt naloxone injection on spinal neuro-
nal excitability (in the absence of conditioning) was examined. 

F I G U R E  3   Intra‐DRt naloxone blocks the expression of DNIC in sham rats but has no effect in SNL rats. Effect of intra‐DRt naloxone on 
mechanical‐, cold‐ and heat‐evoked spinal neuronal responses, in the absence of conditioning, in sham rats (a). Effect of intra‐DRt naloxone on the 
expression of DNIC in sham rats (b), and time course of corresponding single‐unit responses pre‐ and post‐dosing (c). Effect of intra‐DRt naloxone 
on mechanical‐, cold‐ and heat‐evoked spinal neuronal responses, in the absence of conditioning, in SNL rats (d). Effect of intra‐DRt naloxone on 
the expression of DNIC in SNL rats (e), and time course of corresponding single‐unit responses pre‐ and post‐dosing (f). Histogram traces represent 
typical single‐unit responses. Sham: n = 6, SNL n = 6; data represent mean ± 95% CI. Asterisks (*) denote difference from control response, 
***p < .001. Ac, acetone; BL, baseline; CS, conditioning stimulus; DRt, dorsal reticular nucleus; Ec, ethyl chloride
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Blocking opioidergic signalling in the DRt of sham rats had 
no effect on spinal neuronal responses to dynamic brushing 
(t = −0.222, df = 5, p = .833), punctate mechanical (2‐way RM 
ANOVA, main effect: F1,5 = 0.237, p = .939), innocuous (ace-
tone: t = −1.715, df = 5, p = .147) and noxious (ethyl chloride: 

t = −1.129, df = 5, p =  .647) evaporative cooling, and heat 
stimulation (2‐way RM ANOVA, main effect: F1,5  =  0.371, 
p  =  .569; Figure  3a). However, the expression of DNIC at 
the spinal level was abolished by intra‐DRt naloxone (2‐way 
RM ANOVA, interaction: F1,5 = 22.89, p = .005; Figure 3b, 

F I G U R E  4   Intra‐ILC lidocaine blocks the expression of DNIC in sham rats but restores DNIC in SNL rats. Effect of intra‐ILC lidocaine on 
mechanical‐, cold‐ and heat‐evoked spinal neuronal responses, in the absence of conditioning, in sham rats (a). Effect of intra‐ILC lidocaine on the 
expression of DNIC in sham rats (b), and time course of corresponding single‐unit responses pre‐ and post‐dosing (c). Effect of intra‐ILC lidocaine 
on mechanical‐, cold‐ and heat‐evoked spinal neuronal responses, in the absence of conditioning, in SNL rats (d). Effect of intra‐ILC lidocaine on 
the expression of DNIC in SNL rats (e), and time course of corresponding single‐unit responses pre‐ and post‐dosing (f). Histogram traces represent 
typical single‐unit responses. Sham: n = 6, SNL n = 7; data represent mean ± 95% CI. Asterisks (*) denote difference from control response, 
**p < .01, ***p < .001. Ac, acetone; BL, baseline; CS, conditioning stimulus; Ec, ethyl chloride; ILC, infralimbic cortex
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c). Likewise, in SNL rats intra‐DRt naloxone injection had 
no effect on spinal neuronal responses to dynamic brush 
(t = −1.499, df = 5, p =  .194), punctate mechanical (2‐way 
RM ANOVA, main effect: F1,5 = 0.033, p = .862), innocuous 
(acetone: t = 0.461, df = 5, p = .664) and noxious (ethyl chlo-
ride: t = −1.942, df = 5, p = .11) evaporative cooling, and heat 
stimulation (2‐way RM ANOVA, main effect: F1,5  =  3.941, 
p =  .104; Figure 3d). In addition, intra‐DRt naloxone did not 
alter the expression of DNIC in SNL rats (2‐way RM ANOVA, 
interaction: F1,5 = 0.127, p = .736; Figure 3e, f).

3.2  |  DNIC are abolished by lidocaine 
injection into the infralimbic cortex in sham 
rats but restored in neuropathic rats
The impact of intra‐ILC lidocaine injection on spinal neu-
ronal excitability (in the absence of conditioning) was exam-
ined. Blocking activity in the ILC of sham rats had no effect 
on spinal neuronal responses to dynamic brushing (t = 0.76, 
df = 5, p = .482), punctate mechanical (2‐way RM ANOVA, 
main effect: F1,5  =  0.007, p  =  .939), innocuous (acetone: 
t = −0.865, df = 5, p =  .427) and noxious (ethyl chloride: 
t = −1.386, df = 5, p = .224) evaporative cooling, and heat 
stimulation (2‐way RM ANOVA, main effect: F1,5 = 0.356, 
p  =  .577; Figure  4a). The expression of DNIC at the spi-
nal level was abolished by intra‐ILC lidocaine (2‐way RM 
ANOVA, interaction: F1,5 = 69.09, p =  .00041; Figure 4b, 
c). Likewise, in SNL rats intra‐ILC lidocaine injection had 
no effect on spinal neuronal responses to dynamic brush 
(t = 1.715, df = 6, p =  .137), punctate mechanical (2‐way 
RM ANOVA, main effect: F1,6 = 0.079, p = .788), innocu-
ous (acetone: t = −0.63, df = 6, p = .552) and noxious (ethyl 
chloride: t = −0.62, df = 6, p = .558) evaporative cooling, 
and heat stimulation (2‐way RM ANOVA, main effect: 
F1,6 = 0.052, p = .828; Figure 4d). However, in a neuropathic 
state DNIC were restored by inhibition of the ILC (23.2% 
decrease, Cohen's d = −0.897; 2‐way RM ANOVA, interac-
tion: F1,6 = 25.60, p = .0023) (Figure 4e, f).

4  |   DISCUSSION

These data suggest that DRt involvement in DNIC requires 
an endogenous opioidergic mechanism, and secondly, the 
ILC is unlikely to be directly involved in mediating DNIC 
but can modulate its activation in differing pain states. These 
observations underscore the translational value of DNIC as an 
endpoint in rodent studies. Given that imaging studies cannot 
differentiate between excitatory and inhibitory neuronal activ-
ity, and the potential confound of expectations or attentional 
shifts in interpreting data, the current approach allows direct 
study of supra‐spinal influences on spinal sensory transmis-
sion at noxious intensities above withdrawal threshold.

Compared to brainstem nuclei, less is known about the 
role of cortical circuitry in descending modulation of pain. 
The mPFC is critical for executive functions and decision 
making, and cognitive impairment is commonplace in pa-
tients with chronic pain (Moriarty, McGuire, & Finn, 2011). 
Corticolimbic signalling assigns an emotional valence to sen-
sory inputs (Corder et al., 2019; Thompson & Neugebauer, 
2018), but mPFC projections to brainstem structures can 
also mediate top‐down regulation of sensory transmission 
(Cheriyan & Sheets, 2018; David‐Pereira et al., 2017; Jodo, 
Chiang, & Aston‐Jones, 1998). When a sensory signal is re-
ceived, its salience must be determined and once the imme-
diate threat is evaluated appropriate goal‐directed behaviours 
can be initiated. Following on from this, aversive learning 
guides future responses, and the prelimbic and infralimbic 
cortices in rodents mediate top‐down control of emotion‐
driven behaviours such as fear conditioning and extinction 
(Giustino & Maren, 2015).

As revealed by silencing of the ILC, the current study 
supports that when two distant noxious stimuli are detected 
anti‐nociception is favoured; in chronic pain, where an ongo-
ing aversive state exists, a shift may occur towards pro‐no-
ciception. This may differ from the situation where a single 
noxious stimulus is given as no role of the ILC was observed 
on unconditioned responses. Prefrontal pyramidal neuronal 
excitability is suppressed in chronic inflammatory states, and 
much of this depressed activity derives from feedforward 
inhibition from GABAergic interneurones targeted by gluta-
matergic basolateral amygdala projections (Ji & Neugebauer, 
2014; Ji et  al., 2010). In addition, following nerve injury 
plasticity in cholinergic modulation can promote functional 
deactivation (Radzicki, Pollema‐Mays, Sanz‐Clemente, & 
Martina, 2017), and increased noradrenergic modulation 
drives aversive and anxiogenic behaviours (Hirschberg, Li, 
Randall, Kremer, & Pickering, 2017). Notably, both sensory 
and affective dimensions of pain can be ameliorated by aug-
menting this cortical activity as silencing GABAergic inter-
neurones (Zhang et  al., 2015), or optogenetic activation of 
pyramidal neurones (Lee et al., 2015), produces conditioned 
place preference in neuropathic animals in addition to revers-
ing mechanical and thermal hypersensitivity.

In the absence of nerve injury, local lidocaine block of the 
ILC decreases heat‐evoked withdrawal latencies revealing 
tonic anti‐nociceptive function (David‐Pereira et al., 2016). 
We did not observe similar effects on the heat‐evoked neu-
ronal endpoints in this study which could be attributed to 
the impact of anaesthesia on cortical–subcortical signalling. 
However, the abolition of DNIC was observed under these 
experimental conditions and is consistent with the ability of 
the ILC to engage descending inhibitory networks in a nor-
mal state. In the neuropathic rats, the most likely explanation 
is that inhibitory signalling from the ILC increases, and si-
lencing this activity restores DNIC. Stimulation of cortical 



8  |      PATEL and DICKENSON

regions such as the ILC and anterior cingulate can exert pro‐
nociceptive effects via the DRt revealing bidirectional con-
trol of nociceptive transmission (David‐Pereira et al., 2017; 
Zhang, Zhang, & Zhao, 2005). However, it would appear that 
the majority of GABAergic cortical projections to the DRt 
originate from the somatosensory, insula and motor cortices, 
and GABA release within the DRt is facilitatory by disinhib-
iting descending neurones (Martins et al., 2015a). It is also 
possible that intra‐ILC lidocaine disinhibits a wider descend-
ing pain modulatory network resulting in the restoration of 
DNIC, which may also involve the mid/anterior cingulate and 
the amygdala converging on final brainstem relays (Sprenger 
et al., 2011).

The DRt acts as an integrative relay for ascending sen-
sory information projecting to multiple cortical regions 
but also receives extensive projections from the cortex, 
amygdala, locus coeruleus, rostral ventromedial medulla 
and periaqueductal grey (Almeida, Cobos, Tavares, & 
Lima, 2002; Bernard, Villanueva, Carroué, & Le Bars, 
1990; Leite‐Almeida, Valle‐Fernandes, & Almeida, 2006). 
Anatomical, electrophysiological and behavioural evidence 
all support a descending facilitatory action of the DRt. 
Reciprocal connections between the DRt and spinal cord 
provide a neuroanatomical basis for nociceptive amplifica-
tion (Almeida, Tavares, Lima, & Coimbra, 1993), and this 
brainstem–spinal cord circuit via the parabrachial nucleus 
controls nocifensive behaviours in response to noxious stim-
uli (Barik, Thompson, Seltzer, Ghitani, & Chesler, 2018). 
Both unilateral lesioning and bilateral lesioning of the 
DRt lead to an increase in the tail flick latency (Almeida, 
Tjolsen, Lima, Coimbra, & Hole, 1996) and an attenua-
tion of formalin‐evoked nocifensive behaviours (Almeida, 
Storkson, Lima, Hole, & Tjolsen, 1999). Conversely, stim-
ulating the DRt decreases the tail flick latency (Almeida 
et  al., 1996) and increases the excitability of spinal wide 
dynamic range neurones (Dugast, Almeida, & Lima, 2003). 
Opioidergic interneurones within the DRt are positioned 
to provide feedback inhibition within the reticulospinal fa-
cilitatory loop, and these also express GABAB receptors 
(Martins et al., 2015a). We did not observe tonic opioidergic 
activity within the DRt in sham and SNL rats in response 
to acute noxious stimuli, however virally induced increases 
in endogenous enkephalin levels within the DRt produces 
hypoalgesia (Pinto et al., 2008), and this circuitry appears to 
be activated during DNIC as demonstrated by reversal with 
naloxone. The complexity of opioid systems in the circuits 
that regulate DNIC is supported by the finding that it is also 
attenuated by systemic morphine (Le Bars, Chitour, Kraus, 
Clot, et al., 1981), suggestive of concomitant inhibitory/dis-
inhibitory actions at multiple sites.

Neurones within the DRt receive convergent Aδ‐ and 
C‐fibre input and exhibit whole body receptive fields 
(Villanueva, Bouhassira, Bing, & Le Bars, 1988), and a 

heterotopic noxious stimulus has a negative influence on 
neuronal activity (Villanueva, Bing, & Le Bars, 1994). 
Human studies have not always conclusively supported 
an endogenous opioidergic mechanism of CPM (Sprenger 
et al., 2011; Willer, Le Bars, & De Broucker, 1990), but 
DNIC in rats are partially reduced by systemic nalox-
one (Le Bars, Chitour, Kraus, Dickenson, et  al., 1981), 
an effect that appears dependent on actions in the DRt, 
but independent of the rostral ventromedial medulla (de 
Resende, Silva, Sato, Arendt‐Nielsen, & Sluka, 2011). 
Given that individual DRt neurones can project to mul-
tiple targets, it is unclear how reduced neuronal activity 
within the DRt is permissive for DNIC. Cortical networks 
converging upon the DRt and the locus coeruleus could re-
sult in a reduction in facilitatory outflow from the former 
permitting inhibitory actions from the latter to predom-
inate. However, direct interaction between these regions 
also occurs. Noradrenaline has an excitatory influence in 
the DRt via α1 adrenoceptors in neuropathic rats (Martins 
et  al., 2015b). An alternate hypothesis could be a tonic 
inhibition from the DRt presiding over the locus coeru-
leus preventing DNIC, and thus, disinhibition would be 
permissive for DNIC to be fully activated. In neuropa-
thy, a disrupted balance of activity in descending mono-
aminergic systems will also impact the expression of 
DNIC. Descending noradrenergic pathways remain intact 
after nerve injury but are hypoactive (Hirschberg et  al., 
2017; Hughes, Hickey, Hulse, Lumb, & Pickering, 2013; 
Patel, Qu, Xie, Porreca, & Dickenson, 2018), and DNIC 
are restored following spinal delivery of a noradrena-
line reuptake inhibitor (Bannister et  al., 2015). Chronic 
pain states can also be associated with increased de-
scending facilitation, largely mediated via spinal 5‐HT2A 
and 5‐HT3 receptors (Patel & Dickenson, 2018; Suzuki, 
Rahman, Hunt, & Dickenson, 2004), and enhanced ex-
citatory drive can mask inhibitory signalling (Bannister 
et al., 2015; Nation et al., 2018; Okada‐Ogawa, Porreca, & 
Meng, 2009; Phelps, Navratilova, Dickenson, Porreca, & 
Bannister, 2019).

In summary, these data support the concordance of the 
mechanisms of CPM in humans and DNIC in rodents. These 
findings could form the basis of further explorations into cor-
tical mechanisms of top‐down descending control of pain to 
identify pathophysiological mechanisms.
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