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Abstract
This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial
geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach
can handle large sets of images, acquired from a nearly planar or infinitely distant scene at different resolutions in object domain
and under variable local or global illumination conditions. It allows for efficient user guidance as its progressive nature provides
a valid and consistent reconstruction at any moment during the online refinement process.
Our approach avoids global optimization techniques, as commonly used in the field of image refinement, and progressively
incorporates new imagery into a dynamically extendable and memory-efficient Laplacian pyramid. Our image registration
process includes a coarse homography and a local refinement stage using optical flow. Photometric consistency is achieved by
retaining the photometric intensities given in a reference image, while it is being refined. Globally blurred imagery and local
geometric inconsistencies due to, e.g. motion are detected and removed prior to image fusion.
We demonstrate the quality and robustness of our approach using several image and video sequences, including handheld
acquisition with mobile phones and zooming sequences with consumer cameras.
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1. Introduction

The visual appearance of real-world objects and scenarios spans
multiple scales, and yet, despite an impressive rise in sensor res-
olution, photographic imaging hardware is hardly able to simul-
taneously capture visual details across all of these scales. Several
algorithmic approaches have been proposed to overcome the reso-
lution limits of digital imaging, creating higher resolution images
by fusing information from multiple observations.

Super-resolution techniques obtain a high-resolution image from
multiple low-resolution images [PPK03], exploiting sub-pixel shifts
between the individual images and solving the related inverse prob-
lem involving the camera’s point-spread function by means of global
optimization. Super-resolution techniques are mainly applied to
overcome hard physical acquisition limits, such as in satellite imag-
ing, microscopy or computed tomography [NM14].

In contrast, computational methods for image recombination and
fusion have been developed that address the acquisition of scenes

or objects that cannot be captured with a single photograph. Ex-
amples are panoramic photography, photo montage [ADA*04],
multi-perspective image combination [YMS08] and photo explo-
ration techniques based on partial 3D scene reconstruction from un-
structured collections of photographs [SSS06]. Multi-perspective
imaging combines images that are acquired under different per-
spectives using non-standard, potentially non-physical camera mod-
els [YMS08] such as computational zoom [BGKS17], which allows
modifying image composition parameters, such as the relative mag-
nification of objects or the extent of perspective distortion.

Panoramic photography extends image resolution laterally, by
creating a wide-angle mosaic from a set of images with a narrower
field of view and small overlapping regions [SS97]. Both align-
ment and stitching are usually formulated as global optimization
problems, constrained by assuming that all images share the same
viewpoint. The achievable panorama size is generally unlimited and
allows for gigapixel imaging [KUDC07], while the object-space
resolution is determined by the resolution and focal length of the
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(a) (b) (c)

Figure 1: A sample result of our progressive refinement imaging pipeline applied to the House of Neptune and Amphitrite mosaic data
set comprising one reference image I0 that is refined using six additional images captured with six different cameras over the period of
10 years. Compared to prior work, our method successfully generates photometrically and geometrically consistent results in an online and
memory-efficient fashion without global optimization.

camera used. Alternatively, a low-resolution reference image that
completely covers a scene of interest can be enriched with high-
resolution details from close-ups [EESM10]; our proposed method
takes a similar approach.

All methods mentioned above have in common that they pro-
cess images in batch mode, after capture. Inspired by progressive
acquisition approaches in 3D scene reconstruction [ZSG*18], we
avoid global optimization and super-resolution, and deliberately
aim at a progressive framework that allows for continuous addition
of observations, resulting in a lightweight and robust image acqui-
sition approach that allows (1) unconstrained input imagery, e.g.
handheld video or mixed-field-of-view images, without requiring
calibration, pre-alignment, external tracking, lighting adjustment
or other intervention; (2) online user guidance for casual capture
and dynamic refinement, even in fleeting situations; and (3) fusing
hundreds of images by continuously eliminating redundancy, thus
taking the burden of efficiency-conscious view planning from the
user.

Similar to prior work [EESM10], our progressive refinement pro-
cedure aims at the addition of high-resolution details to a reference
image that covers the region of interest (see Figure 1). At the core of
our method is an adaptive and expandable Laplacian image-pyramid
representation that is used to accumulate further observations into
the reference image and which locally increases image resolution
and expands the image laterally on demand. Due to its progressive
nature and low costs of decoding, this representation provides a
valid and consistent adaptive-resolution reconstruction at any mo-
ment during the progressive imaging process. Similar to conven-
tional panoramic imaging, our implementation assumes absence of
strong parallax in the input images. However, our approach allows

for general camera viewpoints spanning a wide range of resolutions
and imagery with strongly varying lens characteristics.

In summary, we propose a simple, still effective approach to pro-
gressively integrate an open set of images into a single geometri-
cally and photometrically consistent image of a near-planar scenery.
Unique strengths and contributions of our approach are

� the ability to robustly process uncalibrated, potentially unsharp,
geometrically and photometrically inconsistent images at differ-
ent levels of object resolution and from different viewpoints,

� the continuous local resolution adjustment to meet the resolution
and extent of the incoming images and

� the scalability into gigapixel range while maintaining near-
constant update times upon incoming images.

2. Related Work

2.1. Photo montage

In the mid-19th century, photo montage evolved as a photographic
art form. Rejlander [Rej57], for example, composed the allegorical
photo ‘The Two Ways of Life’, a photomontage of 32 carefully
composed and feathered pictures, and Robinson [Rob69] discusses
principles on how to arrange form, light and shadow to create the
perfect photo composition in the context of the aesthetics ideal of the
‘Picturesque’, a concept popularized in the mid-18th century. Today,
applications of photo montage have gone well beyond the artistic
medium, and digital workflows employ modern-day equivalents that
build upon works such as digital image mosaicing [Mil75] and
photomontage [ADA*04].
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In the digital domain, the main technical challenge is to recom-
bine images without leaving visible traces at the seams where im-
ages are composited. Previous works explored strategies for visu-
ally least disruptive placement of seams [Mil75, EF01, KSE*03,
ADA*04, LSTS04] and blending operations to obscure image dif-
ferences across a seam, such as linear feathering [Mil75], Pois-
son blending [HLSH17, SUS11, PTX10, ADA*04] and the multi-
resolution spline approach [BA83] that gave rise to the Laplacian
image pyramid [Bur84, OABB85]. Laplacian image pyramids allow
for computationally efficient multi-scale image representation in a
localized, frequency-oriented way [AAB*84, PHK11]. Burt and
Adelson [BA83] were the first to fuse images generating smooth
transitions by using Laplacian pyramids and spatial blending. Burt
and Kolczynski [BK93] extend this idea by addressing the objec-
tive of combining several, pre-aligned source images into a single
composite image retaining specific image regions while discarding
other image portions.

2.2. (Very large) Panoramic images

Panoramic photography is strongly related to seamless photomon-
tage, as it attempts to combine several images into a consistent,
artefact-free image. Geometric registration is facilitated via feature
matching, either based on simple landmarks [Mil75] or on more
complex features like SIFT [BL07]. For image composition, blend-
ing strategies including Poisson, Laplacian and multi-band blending
are used [SS97, BL07, PTX10, SUS11, HLSH17].

Kopf et al. [KUDC07] introduced a system to acquire gigapixel
images, i.e. wide angle images of extremely high resolution. Their
source imagery consists of robotically captured, geometrically un-
calibrated high dynamic range (HDR) image stacks that are au-
tomatically undistorted using feature matching. Overall geometric
consistency is achieved via global bundle adjustment. Photometric
consistency results from an exposure adjustment utilizing the linear
intensity domain of the HDR imagery and a photometric align-
ment and composition technique [EUS06]. The final composition
is achieved using a graph-cut. Kazhdan and Hoppe [KH08] pro-
posed new methods for editing gigapixel images. Their out-of-core
multi-grid approaches allow for gradient-domain image-editing op-
erations involving the solution of Poisson equations that exceed the
main memory capacity in the case of gigapixel images. Follow-
up work on gradient-domain editing of gigapixel images extends
the gigapixel approach towards wide-angle, high-resolution loop-
ing panoramic videos synthesis [HLSH17].

In our work, these challenges do not occur, as our blending oper-
ation takes place directly on the hierarchical Laplacian representa-
tion.

2.3. Photo collections

Several works have extended the idea of panoramic photography
to more general image sources. Snavely et al.’s Photo Tourism
system [SSS06] processes unstructured photo collections of pop-
ular internet sites, taken with various different cameras, at differ-
ent times of the day, different seasons or from various unknown

positions. Instead of generating a single output image, their system
merely recovers the camera poses and a sparse point cloud, and
offers a 3D interface to browse through these photographs within
their 3D context. Similarly, Ballan et al. [BBPP10] source both
still images as well as handheld videos to create a browsable 3D
representation that embeds original camera views in a rough 3D
spatially and temporally synchronized reconstruction of the event.
While these works circumvent the challenge of creating a seamless
reconstruction, the use of unstructured collections of photographs,
similar to our approach, requires robust alignment of uncalibrated
photographs. Further work in this direction demonstrates the explo-
ration of video collections within the panoramic context of the same
place [TPS*13] and the embedding of video clips within gigapixel
scale imagery [PCD*12].

Eisemann et al.’s Photo Zoom [EESM10] pursues a similar
goal to ours, automatically constructing a high-resolution im-
age from an unordered set of zoomed-in photos, but requires
global, post-capture processing. Furthermore, they (1) tackle
colour inconsistencies using a recursive gradient domain fusion
approach that cannot handle strong local variations such as reflec-
tions, (2) only apply homographies to register images and mask out
regions with inconsistent content, (3) expect all input images to be
focused and (4) only fuse a comparable small number of images.
On the flip side, their system synthesizes detail in undersampled re-
gions.

2.4. Progressive reconstruction

In a sense, our solution falls into the class of simultaneous local-
ization and mapping (SLAM) algorithms that gradually build up a
world model while reconstructing sensor location and orientation
(in our case a camera pose) by relating any observations to the model
built up so far [TBF05, ND10]. Many of these methods share a fea-
ture detection and matching stage, similar to the one employed by
our method. Apart from that, a multitude of works combines sensors
that range from laser range scanners, through 2D cameras, to hand-
held depth cameras and merge their observations into various types
of environment models (sparse features [PVA*17], collections of
range maps [ND10], volumetric grids [IKH*11, NZIS13], oriented

Table 1: List of conventions.

Ij j th input image, whereas I0 is the reference image and
Ij , j > 0 an observation

M Model (refined reference image)
I l

j , Ml Ij and M decomposed in Laplacian pyramid levels

l ∈ [l
Ij
min, l

Ij
max] and l ∈ [lMmin, lMmax], respectively

l
Ij

i , lMi Level with a specific scale factor with respect to I0,
where i is the level’s index in the pyramid

T
Ij

(p, q), l , T M
(p, q), l I l

j and Ml split into tiles with 2D array position (p, q)

cl
Ij

, cl
M Confidence map of I l

j and Ml

FIj
, FM Local feature set in Ij and M

Hj Homography warping Ij to M
Lj Level map of Ij storing real-valued level numbers per

pixel with respect to the model pyramid
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Figure 2: Our progressive refinement imaging pipeline.

points [KLL*13], to name a few). To our knowledge, however, none
of these works involves direct updates of an unbounded multi-scale
world representation.

3. Overview

Our proposed refinement pipeline comprises several processing
stages as depicted in Figure 2. We expect the first input image
I0 fed into our pipeline to be a reference image, covering the region
of interest for all following input images Ij , j > 0. Within this
region initialized by I0, our system results in a geometric and pho-
tometric consistently refined image representation. In the following,
we call this representation model M. Outside of the region defined
by the reference image, we still achieve geometric but no photo-
metric consistency. See Table 1 for a complete list of conventions
used.

The main stages of our pipeline can be summarized as follows:

3.1. Image registration

While the reference image’s viewing direction defines the default
view for the refinement process, further observations Ij , j > 0 can
be acquired from different positions and viewing directions. To
match the model’s pixel grid, we perform an image registration
first. This is done by aligning the observation globally using a ho-
mography estimated with the help of local features. Afterwards, we
locally fine-correct the registration based on an estimated flow field
(see Section 5.1).

3.2. Laplacian pyramid generation

In this pipeline stage, the registered observation Ij is decomposed
into Laplacian pyramid levels I li

j ∈ [I lmin
j , . . . , I lmax

j ] that will be
(potentially) merged with their corresponding Laplacian model lev-
els Ml . These levels are generated by differences of low-pass fil-
tered and downscaled versions of Ij using the Gaussian-like kernel
[0.0625 0.25 0.375 0.25 0.0625] in 1D [Bur84]. Thus, each level
contains the frequencies of a specific band. Depending on the view-
ing direction and position, the Laplacian observation level I l

j may
contribute to the corresponding model level Ml by adding new in-
formation in several ways. They can provide (1) high frequencies not
present in the model so far, (2) lower frequencies already present,
but with less precision and/or (3) new spatial coverage not observed
so far (see Section 5.2).

3.3. Outlier removal

As an incoming observation Ij may have different deficiencies, we
conduct a two-level outlier removal. Firstly, we apply a global re-
liability check to make sure that Ij provides valuable frequency
information that is consistent with the so far accumulated model
M, or if it is out of focus, e.g. due to an incorrect autofocus or
motion artefacts. On the second outlier removal stage, we compute
a pixelwise error on the Laplacian level to recognize local registra-
tion errors due to, e.g. inaccuracies in the optical flow estimation
(Section 5.3).

3.4. Model expansion

We do not restrict the accumulation of observations into the model
in terms of scale, resolution or coverage in object domain. Our
model representation is an adaptive Laplacian pyramid that can be
expanded in both resolution and lateral dimensions to incorporate
novel information in either of these directions. Our Laplacian pyra-
mid model M comprises an adaptive tile-based representation in
which tiles are allocated on-demand (see Sections 4 and 5.2).

3.5. Merging Laplacian levels

At the core of our technique lies the merging of specific Lapla-
cian levels lmin, . . . , lmax of the current observation Ij and the
model M that depends on specific resolution and/or lateral in-
formation provided by Ij . Merging Laplacian levels is based on
per-pixel confidence values cl

Ij
(x, y) for the Laplacian levels of Ij

and the corresponding model values cl
M(x, y). By comparing these

confidence values, we are able to decide which pixels are capable
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Figure 3: Adaptive Laplacian pyramid. Top: On each pyramid
level, a virtually infinite tile array is set up. The nodes in the array
form the bounding box (green box) of potential tiles (white squares)
and, if required, allocated tiles (green squares). Bottom: Corre-
sponding tiles related to the tile row marked in orange on different
pyramid levels (as 1D layout), where two neighbouring tiles are
downsampled to a single tile.

of refining our model and how the observation and the model pixel
values of the Laplacian levels are combined (see Section 5.4). Note
that we never merge the top Gaussian levels of the model and the ob-
servation pyramid, but only Laplacian levels, thus retaining global
photometric consistency.

Optionally, we render a visualization to steer the user towards
image areas that need further refinement according to his or her
needs and interests (see Section 5.5).

4. Adaptive Model Representation

Our preliminary goal is to progressively refine a given model im-
age M by new input images (observations) Ij that can be taken at
different scales or resolutions in the object domain and that cover
potentially different regions. Thus, instead of using a flat representa-
tion, an adaptive Laplacian pyramid is an appropriate representation
for our model M. Our adaptive Laplacian pyramid efficiently stores
the model by means of localized detail information at different res-
olutions stored in Laplacian levels. Provided that two images (the
observation and the model image in our case) are properly registered,
Laplacian pyramids offer the advantage of directly comparing and
manipulating detail information on corresponding resolution levels
without the computational burden of an explicit frequency analysis;
see Burt et al. [BA83] for further technical details.

4.1. Initialization

Generating the standard Laplacian pyramid for the initial reference
image I0 defines the initial modelM, and thus, serves as a reference
view onto the scene. Pyramid level lMi describes a model level with a
specific scale factor with respect to I0, where i is the level’s index in
the pyramid. Index i = 0 refers to the full resolution of I0, whereas
levels lMi with i > 0 and i < 0 contain coarser and finer image
resolutions, respectively (see Figure 3). From levels lMi to lMi+1, the
resolution decreases by one octave, i.e. if level lM0 is defined as
sampling distance 1, level lMi has sampling distance 2i . All further
incoming observations that are potentially acquired from different
positions under different view directions are warped appropriately
to match this reference view.

4.2. Adaptivity

As our model has to be dynamically expanded in order to represent
so far unobserved content, i.e. higher or lower Laplacian levels
or new lateral regions, we use a tile-based representation of our
Laplacian pyramid. As storing a complete Laplacian pyramid would
be extremely memory inefficient, we set up a simple regular grid
per pyramid level and a 2D node array covering the bounding box
of the tiles. While tiles with data are stored in an unordered list, the
2D node array stores the actual layout of the tiles forming a pyramid
level of model M. A node points either to the allocated data of its
tile or stores −1 if no memory is allocated so far. This 2D node
array can be extended in lateral direction and new levels can easily
be added to represent new resolution levels (see Figure 3). New tiles
get allocated and assigned to the virtual nodes on demand. We use
tiles of size 512× 512 pixels.

4.3. Confidence maps

We log the confidence of the accumulated model pixels Ml(x, y)
by storing pixelwise confidence values cl

M(x, y) for each Laplacian
model level l. Together with the confidence values cl

Ij
(x, y) com-

puted for the current observation Ij , the model’s confidence values
determine the merging result (see Section 5.4).

5. Progressive Refinement

Our progressive refinement pipeline uses the Laplacian pyramid of
the first input image I0 of our image sequence as initialization of
the model M (see Section 4). This first input image defines the
reference view and the region of interest of the observed scene.
Following observations Ij are integrated if they provide further
information in terms of finer details or new lateral image regions.
To simplify notation, we omit frame index j in the following, i.e.
the current observation Ij , j > 0 is denoted by I.

5.1. Image registration

As we expect the current observation I to be captured with a differ-
ent focal length and/or from a different camera pose than the refer-
ence view of modelM, we first estimate the homography between I
and M. Therefore, we detect a set of local features FI in I and use
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Figure 4: An observation is positioned within the adaptive Lapla-
cian model pyramid. The observation pixels are warped to the next
lower corresponding level to match its pixel grid (covering the blue
marked areas). Thus, the observation contributes high frequencies
to the Laplacian model level lM0 and the new level lM−1 that our model
pyramid will adapt to.

the so far accumulated model features FM, detected in previous ob-
servations. Each set F = {(xk, yk, fk) | k = 1, . . . , n} of n detected
features is defined by its position xk, yk and its descriptor fk . In our
pipeline, we use speeded-up robust features (SURF) [BTVG06] as it
provides a fast and robust detection. The homographyH is estimated
by applying a RANSAC matching [FB81] to the feature sets FI and
FM. As we assume some spatial coherence between consecutive
input images, which is especially true in case of video sequences,
we use the homography of the previous frame as initialization. To
accumulate features for later usage without having to reconstruct
the model pyramid, we replace all features FM positioned within
the observed area by new features FI , if the observation passes the
full image outlier check in Section 5.3. Since all positions (xk, yk)
of FM are related to the finest model level lMmin, we transform the
positions of FI accordingly. This re-positioning is also performed
on FM after the model gets extended to finer levels.

Using the homography H, we now position the observation I
with respect to lateral and (real-valued) level position in the model
pyramid (see Figure 4). This yields the minimal and maximal levels
lmin, lmax in the model pyramid that bound the scale of I. As we
want to avoid information loss due to downsampling, we warp the
observation to the corresponding pyramid level lmin (e.g. level lM−1 in
Figure 4). To maintain the original level positioning, we compute a
corresponding level map L by storing the real-valued level number
with respect to the model per pixel (see also Section 5.4).

As we take uncalibrated observations as input, we expect mis-
matches especially in border and corner regions applying the ho-
mography only. To reduce this mismatch to a minimum, we fine-
correct the registration locally. To achieve this, we need to compute
the displacement for each pixel of I so that the photometric consis-
tency between I and M of the observed area is as high as possible.
A dense optical flow [HS81, LK*81] estimates the pixelwise mo-
tion between two frames, resulting in a 2D flow field that contains
the required displacement vectors. Therefore, we perform a back-

ward optical flow between M and I of the observed area on level
max(lmin, l

M
min), where lMmin is the lowest level before the model ex-

pansion. After potentially resizing the flow field to level lmin, we
resample I accordingly. In our implementation, we use an OpenCV
function with GPU acceleration that implements an optical flow
variant presented by Farnebäck et al. [Far03].

5.2. Generation of the Laplacian pyramid

Considering Ml and I l , the Laplacian pyramids of the model and
the warped observation, their finest levels are defined by lMmin and
lImin, whereas lMmax and lImax are the coarsest levels. Since we generate
a new pyramid for each observation, lImin = lI0 always holds, and
the corresponding levels in the adaptive model pyramid are defined
by the same scale in object domain (e.g. in case of Figure 4, lM−1

and lI0 are corresponding levels). Furthermore, we have allocated
model and observation tiles T M

(p, q), l and T I
(p, q), l , where (p, q) is the

tile’s position in the 2D tile array and l the pyramid level with l ∈
[lMmin, lMmax] for model tiles and l ∈ [lImin, lImax] for observation tiles.
When capturing the scene from different positions, an observation
can contribute content for merging into the model considering three
cases:

Contributing finer image information. The new observation
shows the scene captured from a closer distance, e.g. after mov-
ing the camera towards the scene or zooming in. In this case, some
observation tiles T I

(p, q), l are not yet in the model pyramid, but cor-
responding tiles on coarser levels are. Thus, we extract the required
tiles of the Laplacian level from the observation and add them to
the model pyramid. As observation tiles also contribute to already
existing model tiles, a merging of the model and the observation is
applied in this case (see Section 5.4).

Contributing new scene areas at existing pyramid levels. The
observation may provide new areas outside the current image bound-
aries, which allows more of the scene to be included in the re-
construction. In this case, we use all pyramid levels up to lMmax

for incorporation into our model representation. Tiles that are not
present in the model will be added, existing tiles will be merged (see
Section 5.4). Note that in this situation, photometric inconsistencies
may occur on the top Gaussian level of the model pyramid outside
of the region defined by the reference image I0.

Contributing coarser image information. Similar to the prior
case, moving the camera farther away or zooming out results in
newly observed regions, but also in coarser Laplacian levels not
yet present in the model, i.e. lImax > lMmax. Thus, we additionally
have to add higher pyramid levels into our model. In this case,
we expand the model’s Laplacian pyramid to the same level as
the one of the observation, i.e. to lImax. Again, as in the prior case,
photometric inconsistencies may occur on the top Gaussian level of
the model pyramid.

5.3. Outlier removal

Before merging the Laplacian levels of the current observation I
into our model pyramid, we apply an outlier removal in a full image
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and in a per-pixel stage. Here, outlier refers to image details of
the observation I that are inconsistent to the so far accumulated
model M, and thus, should not be merged into our model. The
main reasons for photometric inconsistencies are out-of-focus or
motion blurred images that should be rejected completely, and local
inconsistencies due to inaccurate flow estimations or dynamic scene
parts (see Section 5.1).

5.3.1. Full image outlier

We check for global consistency by comparing the finest Laplacian
levels of the warped observation I and the modelM. Here, we apply
a simple rule assuming that the novel observation contains at least
as many fine details as the current model. Therefore, we compute
the standard deviation of I l and Ml on Laplacian level lImin. If the
standard deviation of the observed Laplacian level is smaller than
the model values, we conclude that the observation does not provide
additional image details and we drop I.

5.3.2. Per-pixel outlier

If the observation I passed the full image outlier check, we compute
a per-pixel matching error that accounts for imperfect local warps
due to flow estimation insufficiencies or to dynamic scene parts.
As local error metric, we use the relative absolute error E(x, y)
on Laplacian levels l ∈ [lmin, lmax[, with lmin := max(lMmin, lImin) and
lmax := lImax. Note that we exclude the top Gaussian level lmax for
comparison due to its susceptibility to false positives if local photo-
metric inconsistencies exist between I and M. Moreover, in order
to reduce the effect of considering new incoming details as outliers,
we do not include high-frequency levels that are only present in I,
as lmin is the finest level that exists in both pyramids. The per-pixel
error is computed as

E(x, y) =
∑

l∈[lmin, lmax[

∣∣Ml(x, y)− I l(x, y)
∣∣

min
(∣∣Ml(x, y)

∣∣, ∣∣I l(x, y)
∣∣) .

In all our experiments, we discard observation pixels with E(x, y) >

10 in the case of low geometric distortions and with E(x, y) > 1 in
the case of strong geometric distortions, i.e. for data sets Moving
cars in Figure 10 and Streetart fisheye in Figure 11. The idea behind
this decision is that the model contains consistent detail informa-
tion across the Laplacian levels. The error will become large, if the
observation adds specifically high values in areas, where the model
contains very small values only, or vice versa. This is a clear indica-
tion that the observation is locally inconsistent. For reasons of noise
removal and filling in gaps, the resulting mask is post-processed by a
morphological opening followed by a closing. For these operations,
we use a disk-shaped structuring element with radius r = 3 pixels
and r = 4 pixels, respectively. If the observation contributes new im-
age regions, and thus, the model does not contain any data, we add
the observation content anyway.

5.4. Merging of model and observation Laplacian levels

In the following, we consider individual pixels Ml(x, y) in the
Laplacian model pyramid at level l that already contain data and for

Figure 5: Rendering the confidence map shows the so far refined
areas (green). The brighter the green colour, the finer the available
geometric detail (i.e. the lower l for which Ml(x, y) exists). Red
areas indicate regions with potential photometric inconsistency.

which we have observation pixels I l(x, y) that need to be merged,
i.e. the pixels have passed the outlier test (see Section 5.3). Further-
more, we have the level map L that contains the real-valued level
numbers of the pixels of I with respect to the model pyramid levels
(see Section 5.1).

Inspired by online 3D scene reconstruction [ZSG*18], we ad-
ditionally compute confidence values cl

I (x, y) for the Laplacian
observation levels l of I l that refer to the reliability of the pixels
I l(x, y). The model confidence values are stored in cl

M for Ml . In
the case of image fusion, we relate the confidence to the contrast
in a focused image, which can be measured using the modulation
transfer function (MTF) of a camera; see, for example, Williams
and Becklund [WB89]. Independent of the specific camera used,
the MTF clearly states that coarser frequency levels contain more
contrast. Consequently, any observation closer to the imaged object
should be superior to other observations taken from farther dis-
tances. As our outlier removal accounts for unfocused images and
misaligned image regions (see Section 5.3), we simply set the ob-
servation’s confidence values cl

I (x, y) to level map values of L and
replace corresponding pixels on all Laplacian model levels, i.e.

Ml(x, y) ←
{
I l(x, y) if cl

I (x, y) < cl
M(x, y),

Ml(x, y) else.

cl
M(x, y) ← min{cl

I (x, y), cl
M(x, y)}.

This operation guarantees that the model stores the observation
closest to the scene on a per-pixel level, i.e. the model contains
a single and reliable observation with maximal contrast. As we
replace the model frequencies also on coarser Laplacian levels, we
retain a photometrically and geometrically consistent reconstruction
without any further post-processing.

Remark Our choice of replacing frequencies instead of blending
them is mainly motivated by the goal of being able to fuse several
hundred images without global optimization. We evaluated several
blending strategies that have been able to retain fine geometric
details for a small set of input images, but our experiments revealed
that slight misalignments and improper masks lead to gradually
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increasing blur when applied to larger images sets. Due to the non-
perfect nature of image registration, blending all observations will
wash out geometric details that will never be fully recovered by
further blending operations. See the Supporting Information for
a comparison.

5.5. Refinement guidance

After the refinement, we render our confidence model map in order
to make the user aware of the current model composition in terms of
geometric detail. Figure 5 shows such a visualization for an example
refinement. Using this visual guidance, the user can steer the acqui-
sition process according to his or her needs and interests. We also
visualize areas in which the initial scene area defined by the refer-
ence image I0 has been extended by further observations, as in this
region, our approach does not guarantee photometric consistency
(red areas in Figure 5).

6. Results

We evaluate the quality and the robustness of our progressive re-
finement imaging approach using 26 data sets, from which eight are
presented in the paper; the remaining data sets can be found in the
Supporting Information. The data sets consist of photos as well as
videos, captured with 29 different camera models (plus 19 unknown
cameras). For each record, the reference image I0 is locally refined
by inserting additional images of the same scene taken closer to the
object or by zooming.

We compared our approach to 18 state of the art photo stitching
methods using a sequence of panorama photos captured with differ-
ent zoom levels and with moderate illumination changes (data set
Panorama) as well as the data sets Deësis mosaic and House of Nep-
tune and Amphitrite mosaic. These comparisons are available in the
Supporting Information. Most of these methods fail to process the
data sets properly and we observe the following behaviours: (1) The
method reported that no matching of the input frames is possible. (2)
The method did not achieve any refinement, i.e. the merged image
did not contain the fine details provided by the zoomed images. (3)
The method enforced a typical panorama scenario, resulting in a
merged image, where the input images are aligned horizontally.

AutoStitch [Bro, BL07] and Kolor Autopano Giga [Kol], which
is using the AutoStitch technology, were the only systems, able to
reach a refinement. Unfortunately, AutoStitch crashes if the res-
olution of the merged image exceeds 30 942 pixels in one di-
mension. Furthermore, we had no access to Eisemann et al.’s
Photo Zoom [EESM10], which precludes experimental compari-
son.

In the following, we compare our approach to the unrefined input
and the result of Autopano Giga [Kol]. To maintain the input images
with the highest resolution in the final reconstruction, Autopano has
to be operated using appropriate settings; see the Supporting Infor-
mation.

6.1. Refinement using different sources of imagery

For this experiment, we use photos that were captured from different
sources on different dates using different cameras from various

unknown positions. We use publicly available photos, e.g. from
Flickr or Wikimedia Commons, which are unedited and labelled for
reuse with modification by the author.

House of Neptune and Amphitrite mosaic: A photo of the mosaic
at the House of Neptune and Amphitrite in Herculaneum cap-
tured with a Pentax Optio S7 by Johnboy Davidson [Dav07] is
refined using six additional close-up photos captured with six
different cameras (FUJIFILM FinePix F900EXR, Panasonic
DMC-ZS6, Nikon D7100, 3 unknown cameras) in the years
2007, 2006, 2014, 2011, 2017, 2014 and 2009, respectively
(see Figure 1).

This data set comprises challenging illumination variations due
to different camera hardware and post-processing. Feeding this data
set into Autopano Giga results in a geometric consistent, but pho-
tometric inconsistent image, as Autopano Giga tries to generate
smooth transitions between the individual photos. In contrast, our
method yields photometric and geometric consistency.

6.2. Robustness evaluation

In this section, we compare our method to Autopano Giga under
varying conditions regarding illumination (Section 6.2.1) and geo-
metric consistency (Section 6.2.2).

6.2.1. Inconsistent illumination

The robustness against illumination changes is evaluated using the
following four data sets:

Panorama at different daytimes: A panorama shot is refined
using nine additional zoomed-in photos that were taken at
different daytimes with approximately 1 h time difference
in the afternoon, showing the same scene with decreasing
sunlight, locally changing shadows and clouds, and with a
fixed camera position (see Figure 6). All photos were captured
with a Panasonic DMC-FZ28 (3648× 2736 pixels mode).

Wall painting at different daytimes: A photo of an outside wall
painting is refined using 38 additional photos that were taken
at different daytimes during a single day, showing the same
scene with varying sunlight and locally changing shadows on
the wall from strongly varying camera poses (see Figure 7).
All photos were captured with a Samsung Galaxy S8 build-in
camera (4032× 1960 pixels mode).

Glossy poster: The first frame of a video sequence capturing
a glossy poster is refined using the remaining 847 frames
that were captured closer to the scene (every other frame
of a 57 s video clip). The video was acquired with a Sam-
sung Galaxy S8 build-in camera in 1080 pixels mode. This
sequence comprises frames with very strong photometric in-
consistencies in terms of reflections (see Figure 8).

Deësis mosaic: An overview photo of the Mosaic of the Deësis
in the Hagia Sophia captured by Steven Zucker [Zuc12] is
refined using nine additional close-up photos, where sunlight
passes through the windows, resulting in a pattern of differ-
ently illuminated areas. All photos were captured with a Sony
DSC-RX100 (see Figure 9).
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(a) (b) (c)

Figure 6: Panorama at different daytimes.

(a) (b) (c)

Figure 7: Wall painting at different daytimes.

Global illumination changes. The first two data sets, i.e.
Panorama at different daytimes (Figure 6) and Wall painting at
different daytimes (Figure 7), contain major changes in global illu-
mination, while Panorama at different daytimes additionally con-
tains geometric inconsistencies due to changes in cloudiness. While
Autopano Giga has major difficulties in handling the illumination
changes, the geometric variations (Panorama at different daytimes)
and the different camera poses (Wall painting at different daytimes),
our approach is able to combine both data sets into a photometric
and geometric consistent image. The provided close-ups of the re-
fined images demonstrate the proper handling of photometric and
geometric information of our method during progressive image
refinement.

Local illumination changes. The second two data sets, i.e. Glossy
poster (Figure 8) and Deësis mosaic (Figure 9), contain strong lo-
cal illumination variations due to photoflash reflections and shadow

casts by a window grating, respectively. In both scenarios, Autopano
Giga is incorporating local illumination constellations from differ-
ent close-up images into the reconstruction, resulting in very in-
consistent intensity distributions in the output image. Our proposed
progressive method is able to generate a photometric consistent re-
sult even under these extreme lighting conditions (see also Figure 5
for a visualization of the refined areas for the Glossy poster data
set).

6.2.2. Inconsistent scene geometry

The robustness against strong geometric variations is evaluated us-
ing the following two data sets:

Moving cars: A panorama shot showing a freeway is refined using
two additional zoomed-in photos, where the cars have been
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(a) (b) (c)

Figure 8: Glossy poster: The four sample frames (top) are part of the input video sequence, showing that the clip contains strong reflections.

(a) (b) (c)

Figure 9: Deësis mosaic.

moving (see Figure 10). All photos were captured with a
Panasonic DMC-FZ28 (3648× 2736 pixels).

Streetart fisheye: An ultra-wide-angle shot of a street art graffito
captured with an unknown camera with a fisheye lens by
Mike Lambert [Lam14] is refined using an additional photo
captured with a normal lens (see Figure 11).

We additionally depict the local outlier masks generated for both
data sets; see Figures 10 and 11 and Section 5.3.

The main difference between both data sets is the type of geo-
metric inconsistency. While the Moving cars data set comprises lo-
cally unconstrained geometric variations, the Streetart fisheye data
set suffers from strong lens distributions that can be seen as glob-
ally constrained geometric inconsistencies. Both scenarios exhibit
the different approaches taken by Autopano Giga and our method.
While Autopano Giga generates visually pleasing output images
in both cases, they both contain a mixture of all provided images

leading to, e.g. duplications of moving cars (see yellow circles in
Figure 10b) and a blended, deformed geometry in case of strongly
varying lens artefacts (see Figures 11 and 13). In contrast, our
method takes the initial image as photometric and geometric ref-
erence, and adjusts subsequent images to match this reference as
closely as possible before adding details. Therefore, our approach
delivers a consistent geometric result, i.e. there are no multiple in-
stances of moving objects or unexpected lens properties. Autopano
Giga, however, always selects scene fragments with maximal fo-
cus, whereas our approach does not refine moving objects in the
reference image, potentially leaving unsharp objects untouched; see
Figure 10c. Consulting the local outlier masks, we can evaluate the
overall quality of our two-stage registration process described in
Section 5.1; see also the discussion in Section 6.3. In the Moving
cars data set, mainly driving cars and moving trees are discarded and
in the Streetart fisheye data set, the strong lens distribution cannot
be fully compensated by the optical flow stage.
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(a) (b) (c)

Figure 10: Moving cars.

(a) (b) (c)

Figure 11: Streetart fisheye.

Remark Image parallax due to non-planar scenes can be seen as
a geometric inconsistency that is fixed by our local outlier removal.
Consequently, image areas are not refined if the variation of the
camera viewpoint leads to geometric inconsistencies due to strong
depth inhomogeneities (see Supporting Information).

6.3. Influence of pipeline stages

In the following, we discuss the influence of essential processing
stages of our progressive image refinement pipeline; see Figure 2.
For this evaluation, we additionally use another data set:

Starlight: A sequence of five photos captured free hand with a
Samsung Galaxy S8 build-in camera with 1920× 1080 pixels
resolution, taken from an advertising poster.

The Fine Registration stage has a strong impact on the quality
of the final result. Figure 12 demonstrates the effect of the locally
refined image registration using optical flow on the Starlight data

(a) (b)

Figure 12: A close-up comparison of the Starlight data set without
(left) and with locally refined image registration (right).

set. Even for the comparable small lens distortion in this data set, we
observe that the additional optical flow significantly improves the
local matching of object details. This becomes even more apparent
when images with strong optical distortions, such as the one in the
Streetart fisheye, are considered that cannot be modelled using a
homography; see Figure 11.
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(a) (b) (c)

Figure 13: Influence of per-pixel outlier removal (top: Moving cars, bottom: Streetart fisheye).

Table 2: Resources required for the complete refinement process, given for each data set with the number of input photos/pixels in total (AMD Ryzen
Threadripper 1950X, 128 GB RAM, Nvidia Geforce GTX1080Ti). For the Glossy poster data set, the timings per pipeline stage for our approach are: Image
registration: 06:48 (min:s)/Pyramids generation: 03:23/Outlier removal: 01:20/Model expansion: <00:01/Merging Laplacian levels: 02:43.

Peak total RAM usage (GB) Processing time (min:s)

Autopano Giga Ours Autopano Giga Ours

Deësis mosaic (10 photos/0.12 gigapixel) 31.16 5.12 01:52 00:40
Glossy poster (848 frames/1.76 gigapixel) 121.53 2.23 70:34 14:14
House of Neptune and Amphitrite mosaic (7 photos/0.01 gigapixel) 17.52 1.45 01:25 00:06
Moving cars (3 photos/0.03 gigapixel) 4.15 2.00 00:26 00:05
Panorama at different daytimes (10 photos/0.10 gigapixel) 14.97 2.57 01:18 00:27
Streetart fisheye (2 photos/0.03 gigapixel) 7.38 2.52 00:33 00:05
Wall painting at different daytimes (39 photos/0.31 gigapixel) 68.73 7.56 06:13 02:35

The effect of the Per-Frame Outlier Removal is demonstrated in
the Panorama at different daytimes data set; see Figure 6. Here, the
last input frame, which has been captured in very weak sunlight,
has not passed the check, i.e. it has been discarded for model image
refinement, since it does not provide additional image details. In
comparison, Autopano Giga performs a histogram equalization and
incorporates the last frame, overwriting the details of the previous
frames, which results in a loss of detail and increased noise in the
refined image. For the Glossy poster data set, 2.01% of the input
frames were rated unable to contribute finer details (full image out-
lier reject), hence only newly observed areas were incorporated into
the model if available. The Per-pixel Outlier Removal as described
in Section 5.3 is evaluated in Figure 13, which contains close-ups
of the Moving cars and Streetart fisheye scenarios, for which we
lowered the threshold for discarding pixels to E(x, y) > 1. Deac-
tivating the local outlier removal yields artefacts visible as slight
ghosting of cars and of mismatching seams in the Moving cars and
Streetart fisheye scenarios, respectively. Both effects vanish nearly
completely if the per-pixel outlier removal gets activated.

6.4. Comparison of required resources

Table 2 shows for each data set a comparison of peak total RAM
usage and processing time for the whole refinement process for
both Autopano Giga and our proposed method. This comparison
demonstrates that global optimization significantly increases mem-
ory requirements and runtime. This is unavoidable as global opti-
mization methods have to keep all relevant images in memory in
order to process them jointly. Especially for the video data set Glossy
poster, the memory requirements increase severely by a factor of
approximately 40, whereas the processing time increases by a factor

of 5. In contrast, our approach of progressively refining the image
is much more lightweight and continuously eliminates redundancy,
substantially lowering resource requirements.

In our implementation, we mainly optimized our adaptive Lapla-
cian pyramid as described in Section 5, while the main image pro-
cessing stages, such as feature extraction, optical flow and basic
image operations, are taken from OpenCV as is.

6.5. Limitations and discussion

Our current pipeline can guarantee photometric consistency only
within the region of the scene observed by the initially captured
reference frame I0. Our system is capable of incorporating im-
ages that are partially outside this initial region, but at the seam
to I0, it yields geometric but no photometric consistency. Further-
more, since the refined image is always consistent to the reference
image, unintended photometric effects in I0, e.g. photoflash reflec-
tions, will not be compensated by additional photos. Moreover, our
current implementation is not re-entrant, i.e. it does not support the
continuation of a previously acquired model image represented in a
Laplacian pyramid as described in Section 4. Although the imple-
mentation of this functionality is of some practical importance, we
consider it an engineering task. While the system is truly progres-
sive, in that information is fed frame-by-frame without any global
optimization (across several images), the current implementation is
interactive but not real time. So far, we have not fully optimized
and tightly integrated the pipeline components in order to achieve
optimal load and compute balancing, e.g. by leveraging concur-
rency. Apparently, faster executions of dense image processing op-
erations, e.g. optical flow, will have direct impact on the performance
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(see Table 2). Furthermore, the fine image registration using optical
flow cannot correct strong optical distortions or parallax; however,
our per-pixel outlier removal compensates for this error almost en-
tirely; see Figure 13.

7. Conclusions

We presented a simple, yet very effective and efficient technique
for the progressive incorporation of large image sequences into a
single, geometrically and photometrically consistent model image.
Conceptually, our approach has no restriction to object resolution,
camera-to-object distance, camera intrinsics or acquisition setup.
Additionally, our approach does not require a global optimization
applied to the complete input image set, or to parts thereof. Our ap-
proach achieves geometric registration using a two-stage approach
that combines a homography and an additional local refinement us-
ing a flow field. It can handle strong illumination changes, yielding
photometrically consistent results. Due to its progressive nature,
our approach allows for a valid and consistent reconstruction at any
moment during the refinement process without any post-processing.
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Figure 1: A Burial at Ornans.

Figure 2: Amalfi cathedral.

Figure 3: Brandenburg Gate.

Figure 4: Coronation of Napoleon.

Figure 5: Dendera crypt relief.

Figure 6: Glorification of Saint Ignatius.

Figure 7: House at Lake Garda.
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Figure 8: Lake Garda.

Figure 9: Pewter figures.

Figure 10: Raft of the Medusa.

Figure 11: Ship painting.

Figure 12: Streetart.

Figure 13: The Wedding Feast at Cana.

Figure 14: Villa of the Mysteries (back wall).

Figure 15: Villa of the Mysteries (left wall).

Figure 16: Winter scene in Brooklyn.

Figure 17: Starlight (five images): five photos captured with a Sam-
sung Galaxy S8 build-in camera were merged.

Figure 18: Starlight (477 frames): comparison between the blending
(middle) and the replacement merge strategy (right) applied to a
477 frames sequence captured with a Samsung Galaxy S8 build-in
camera, downsampled to 960x540 pixels.

Table 1: Panorama: comparison to state-of-the-art photo stitch-
ing methods.

Table 2: Deësis mosaic: comparison to state-of-the-art photo stitch-
ing methods.

Table 3: House of Neptune and Amphitrite mosaic: comparison to
state-of-the-art photo stitching methods.
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