
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

Super-resolution enhancement of Sentinel-2 image 1 

for retrieving LAI and chlorophyll content of summer 2 

corn 3 

Mingzheng Zhang 1, 2, Wei Su 1, 2*, Yuting Fu 3, Dehai Zhu 1, 2, Jing-Hao Xue 4, Jianxi Huang 1, 2, Wei 4 
Wang 1, 2, Jiayu Wu 1, 2, Chan Yao 1, 2 5 

1 College of Land Science and Technology, China Agricultural University, Beijing 100083, China 6 
2 Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing 7 

100083, China; 8 
3 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 9 
4  Department of Statistical Science, University College London, London, WC1E 6BT, UK 10 
* Correspondence: suwei@cau.edu.cn; Tel.: +86 010-6273-7855 11 
Received: date; Accepted: date; Published: date 12 

Abstract: Sentinel-2 satellite is a new generation of multi-spectral remote sensing technique with 13 
high spatial, temporal and spectral resolution. Especially, Sentinel-2 incorporates three red-edge 14 
bands with central wavelength at 705, 740 and 783 nm, which are very sensitive to vegetation 15 
changing, heath and variations. Unfortunately, their spatial resolution is only 20 m, which is lower 16 
comparably. This spatial resolution brings difficulties for mining the potential of Sentinel-2 image 17 
in vegetation monitoring. Therefore, we focus on enhancing the spatial resolution of Sentinel-2 red 18 
edge band images to 10m using the SupReME algorithm. Furthermore, the summer corn canopy 19 
leaf area index (LAI), leaves chlorophyll content (LCC) and canopy chlorophyll content (CCC) were 20 
retrieved by the linear and physical models for the corn growth monitoring purpose. The results 21 
showed that the spatial resolution of Sentinel-2 images had been enhanced to 10m from original 22 
20m, and the estimation accuracy (EA) was over 97% for pixels planted by summer corn. Moreover, 23 
the accuracy of summer corn canopy LAI, LCC and CCC was improved respectively using 24 
enhanced Sentinel-2 images by SupReME method. During these three parameters retrieval, the 25 
red-edge bands or SWIR bands were introduced into optimal cost function and vegetation index 26 
which the accuracy of these models was high. The SupReME algorithm provides a valuable way for 27 
Sentinel-2 images enhancement, which is of great potential to mining Sentinel-2 images and 28 
multitude its application. 29 

Keywords: Sentinel-2 image; SupReME algorithm; LAI; chlorophyll content; radiative transfer 30 
model 31 

 32 

1. Introduction 33 
Accurate estimation of vegetation biophysical variables with high spatial and temporal 34 

resolution plays an important role in global climate change monitoring, comprehensive monitoring 35 
of land use/cover change, estimating the total amount of ecological resources etc.(Guan et al., 2016, 36 
2017; Houborg et al., 2007; Boegh et al., 2002; Huang et al., 2015). Simultaneously, parameters 37 
obtained from remote sensing observation data are very important inputs for energy and material 38 
exchange models between vegetation and the external environment (Baret et al., 2006,2007; 39 
Darvishzadeh et al., 2008), including leaf area index (LAI), leaves chlorophyll content (LCC) and 40 
canopy chlorophyll content (CCC) and so on.  41 

Optical satellite imagery is one of the important data sources for vegetation biophysical 42 
variables estimation. With the development of aerospace technology, there are more and more 43 
available satellite images with increased temporal resolution, spatial resolution and spectral 44 
resolution (Gascon et al., 2009). Sentinel-2 is a new generation of multi-spectral imagery with 13 45 
spectral bands, including three red-edge bands which are sensitive to the chlorophyll content of 46 
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vegetation (Sibanda et al., 2015; Atzberger et al., 2012; Pu et al., 2003). It is an ideal data source for 47 
vegetation growth monitoring and is used for terrestrial observations of global high resolution and 48 
high revisiting capabilities, biophysical change mapping, monitoring of coastal and inland waters, 49 
and risk and disaster mapping to support the continuity of SPOT-5 and Landsat satellite data 50 
(Wang et al., 2017; Clevers et al., 2013). The difference in spatial resolution constrained by technical 51 
conditions and cost inputs also appears in other satellite images, for instance, MODIS, Landsat and 52 
Worldview-3. The Sentinel-2 image is in the same way, with 20m spatial resolution within three red 53 
edge bands and not balance to the 10m spatial resolution of visible bands and Near Infrared (NIR) 54 
band. It is a balancing strategy of high Signal Noise Ratio and spatial resolution for each channel. 55 
However, the availability of 10m images provides an opportunity to improve the resolution of other 56 
20m images, leading to an effective means to maximize output without increasing input costs. 57 

Image super-resolution enhancement is a prospective approach to using signal processing 58 
techniques to obtain a high spatial resolution image (or sequence) from observed multiple 59 
low-resolution images (Park et al., 2003). At present, many researchers have focused on 60 
super-resolution enhancement and developed a variety of feasible algorithms. The pan-sharpening 61 
approach refers to the fusion of panchromatic and multispectral images which could improve the 62 
spatial resolution of the multispectral images and reduce spectral distortion synchronously 63 
(Thomas et al., 2008). Vivone et al. (2015) used five data sets acquired by different satellites to 64 
evaluate the performance of various pansharpening algorithms, including component substitution 65 
and multiresolution analysis (MRA), and their results indicate that the overall performance of MRA 66 
was generally better than those of others. Wang et al. (2015, 2016) proposed an algorithm called 67 
area-to-point regression kriging (ATPRK) that used MODIS bands 1 and 2 with 250m spatial 68 
resolution to downscale the 500m spatial resolution of MODIS bands 3-7 to produce a set of 250m 69 
spatial resolution MODIS images. The result of ATPRK was of high quality and showed great 70 
potential in MODIS images applications. Pardo-Iguzquiza et al. (2011) extended the method of 71 
spatially adaptive cokriging filter for fusing the high spatial resolution panchromatic band 8 image 72 
(i.e., 15m) and the low spatial resolution multispectral band 2 (i.e., 30m) of Landsat ETM+ to 73 
generate image with 15m resolution. In these studies, the high-resolution images used are the 74 
panchromatic bands, the average values of several high-resolution images or one high-resolution 75 
image which has similar central wavelength with low-resolution image. However, they cannot 76 
make full use of the advantages of multispectral high-resolution images. Lanaras et al. (2017) 77 
proposed a high-quality solution algorithm called SupReMe that took only one step to get the 78 
highest available resolution image in all lower-resolution channels. The SupReMe algorithm is 79 
based on variable segmentation to obtain an equivalent constrained optimization formula, and then 80 
it is solved by the augmented Lagrangian method (Afonso et al., 2010). Furthermore, this approach 81 
has been tested on simulated and real Sentinel-2 images, and the best results have been obtained 82 
compared with other methods. 83 

The multispectral images with high spatial resolution obtained by downscaling provides 84 
reliable data support for accurate inversion of vegetation growth parameters (Huang et al., 2015, 85 
2016). It is also an important and promising product widely used in the remote sensing field. Few 86 
investigators have focused on the capability of super-resolution fusion image (i.e. 10m for all bands) 87 
on quantitative estimation and evaluation of vegetation growth for Sentinel-2 satellite. At present, 88 
there are two kinds of inversion programme, statistical regression models and physical models, and 89 
more band choices make these two methods have broad application prospects. Firstly, prior 90 
investigations (Turner et al., 1999; Carlson & Ripley, 1997; Chen & Cihlar, 1996) have demonstrated 91 
that there is a significant linear relationship between vegetation growth parameters and vegetation 92 
index. Although it is simple and efficient, it depends on the measured data and vegetation types on 93 
the ground and has poor universality. Besides that, physical models are an important way to 94 
understand the relationship between vegetation spectrum and vegetation growth (Darvishzadeh et 95 
al., 2008; Houborg et al., 2007, 2008; Gastelluetchegorry et al., 1996; Kuusk, 1995). The physical 96 
models could simulate a complete spectral curve (400-2500nm) by inputting vegetation parameters 97 
and we can use the limited satellite observation channels to approximate this curve as far as 98 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 3 of 20 

 

possible, then retrieve the corresponding vegetation parameters (Combal et al., 2003). Compared 99 
with the earlier satellites, which only have four effective bands of blue, green, red and NIR, the 100 
latest satellite Sentinel-2 with 13 bands has more obvious advantages in vegetation inversion. 101 

Therefore, this study is focusing on enhancing Sentinel-2 multi-spectral images with different 102 
spatial resolutions to generate high spatial resolution multi-spectral images using the SupReMe 103 
algorithm, aiming at improving the retrieving accuracy of summer corn canopy LAI, LCC and CCC. 104 
For this purpose, we have formulated following study contents:  105 
(i) Analyzing the performance, stability and effect of the SupReMe algorithm in 106 

super-resolution enhancement ; 107 
(ii) Retrieving summer corn canopy LAI, LCC and CCC using empirical model and physical 108 

model, and discussing the ability variance in retrieving parameters between enhanced 109 
images and original Sentinel-2 images; 110 

(iii) Exploring the effects of band combinations on retrieval of LAI, LCC and CCC by ordering 111 
combination; 112 

(iv) To evaluate the retrieval accuracy of LAI, LCC and CCC, for mining the potential of 113 
Sentinel-2 images with SupReMe algorithm in agriculture.  114 

2. Materials and Methods  115 

2.1. Study area 116 
The study area is located in Yongqing County, Anci District and Guangyang District of 117 

Langfang City, Hebei Province (39°05′N~39°40′N,116°20′E~116°55′E), which is located the 118 
middle-east of North China Plain (as shown in Fig.1). It is in the mid-latitude zone with warm 119 
temperate continental monsoon climate. The average annual temperature is about 10~12°C and the 120 
average annual precipitation is 554.9 mm. The dominated terrain is plains with an average elevation 121 
of about 13m. The predominant tillage pattern is an intensive dual-cropping system between winter 122 
wheat, spring corn, summer corn, soybean, potatoes, and vegetables and so on. In general, the 123 
growing season of summer corn in study area is from the end of June to the early October. 124 

 
Fig. 1. The research area (R/G/B=Band4/Band3/Band2) 

2.2. Sentinel-2A image and preprocessing 125 
The Sentinel-2A Level-1C images with 10m and 20m spatial resolution (Fig. 1) were used in this 126 

study, and the spatial resolution and spectral range were listed in Table 1. The cloudless Level-1C 127 
products were acquired on 21 August 2018 at 11:05 UTC with UTM/WGS84 projection were used for 128 
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image enhancement. Sen2cor (Muller-wilm et al., 2013) model (version sen2cor-2.5.5) was used to do 129 
atmospheric correction for studied Sentinel-2A image, which converted the top of atmosphere 130 
reflectance to the bottom of atmosphere reflectance. In order to get the same amount of pixels for 131 
each image band the nearest neighbor method was used to resample the 20m images to 10m (specific 132 
bands were shown in Table 1). This resampling operation guarantee the consistency of pixel size and 133 
reflectance before and after image enhancement. In the next step, the supervised classifier was used 134 
to extract the corn planted area for corn canopy LAI and chlorophyll content retrieval. 135 

Table 1. List of Sentinel-2 image band parameters 136 
Spatial resolution (m)     Band Central wavelength (nm) Band width (nm) 

10 

Band2-Blue 490 65 
Band3-Green 560 35 
Band4-Red 665 30 
Band8-NIR 842 115 

20 

Band5-Red edge 705 15 
Band6-Red edge 740 15 

Band7-Edge of the NIR plateau 783 20 
Band8a-Narrow NIR 865 20 

Band11-SWIR 1610 90 
Band12-SWIR 2190 180 

2.3. Field campaign 137 
The in-situ measurements of corn canopy parameters were done in the study area from 22 to 26 138 

August, 2018. The phenological stage of corn in the study area ranged from the heading stage to the 139 
milky stage because of the difference of planting time between different fields. Corresponding to 140 
Sentinel-2 image resolution (10m), 113 quadrats with the size of 5m×5m were selected to do in-situ 141 
measurements (Fig. 1). The measured parameters included LAI, average leaf inclination angle 142 
(ALIA), LCC. The location of all the quadrats was provided using a Huace i80 real-time kinematic 143 
(RTK) GPS receiver (Huace Ltd., Shanghai, China). The sampling pattern in each quadrat and the 144 
sketch of leaf chlorophyll content measurements were shown in Fig. 2. In one quadrat, LAI and LCC 145 
were measured at location A and B (the location of A and B is random, but the distance between the 146 
two points is 2-3 meters); C represents the center of the quadrat and we only measured the 147 
coordinates at C by RTK to indicate the position of the quadrat. 148 

 149 

 
Fig. 2. Sampling pattern in each quadrat and the sketch of leaf chlorophyll content measurements: A and B 

represent two corn plants with uniform growth in the sample; C represents the center of the sample and 
records coordinates with RTK; B1~B3 represent the location of LCC measured by SPAD-502Plus in one leaf. 

LAI was measured in the field using the Plant Canopy Analyzer LAI-2000C (LICOR Inc., 150 
Lincoln, NE, USA). The method was the indirect optical method that the LAI and ALIA were 151 
calculated by Beer-Lambert law from the transmittance of the canopy (Welles and Norman, 1991). 152 
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We measured LAI at each quadrat on the position A and B, and the average value was used as the 153 
inputs of PROSAIL model. Meanwhile, the SPAD-502Plus Leaf Chlorophyll Meter (MINOLTA, Inc.) 154 
was used to measure the chlorophyll content of corn leaves nondestructively (Campbell et al., 1990) 155 
on the position A and B. When measuring chlorophyll content, two or three corn plants were 156 
selected to measure chlorophyll content per leaf in each sample plot; six leaves on the top of plant 157 
were selected, and three chlorophyll values were measured from the base to the tip of each leaf. The 158 
SPAD readings (unitless) are highly correlated with leaf chlorophyll content (LCC, μg/cm2) in leaves 159 
which could be converted by means of an empirical calibration function (Darvishzadeh et al., 2011; 160 
Markwell et al., 1995): 161 

                    (1) 
where      was the reading value of the SPAD-502Plus; and M means molar mass of chlorophyll, 162 
and the average value 907g/mol was used in this study. The average value of all in-situ measured 163 
leaf chlorophyll content values within one sampling plot was used as the chlorophyll content of 164 
studied sampling plot. Furthermore, the canopy chlorophyll content (CCC) was calculted by the 165 
product of leaf chlorophyll content and LAI: 166 

                                                                               (2) 167 
The measured LAI, ALIA and LCC for 113 quadrats were analyzed in this sutdy. It was found 168 

that these growth parameters of summer corn in study area were approximately Gaussian 169 
distributed (as shown in Fig.3), which also provided a priori knowledge for parameter input and 170 
sensitivity analysis of the later physical model. 171 

 
Fig. 3. The probability density distribution of the measured LAI, LCC and ALIA 

2.4. Image enhancement by SupReME algorithm 172 
The super-resolution enhancement method used in this study is SupReME (Super-Resolution 173 

for Multispectral Multiresolution Estimation) algorithm (Lanaras et al. 2017). The advantage of this 174 
algorithm is that it has high automation and fast computational efficiency which could process all 175 
bands of Sentinel-2 image once to generate data sets with the high spatial resolution of 10m. This 176 
method relies on the observation model of the imaging (blurring and down sampling) process that 177 
generates the low-resolution images, i.e. the output image      

        
        (a fixed image 178 

area contains   high-resolution pixels) is blurred and downsampled as the observed image 179 
              with   spectral bands. Vectorise   as                   ,   and   are related 180 
through 181 

      (3) 
where the blur matrix   is a block-circulant-circulant-block matrix where each block represents a 182 
2D cyclic convolution, and   is block-diagonal and the blocks represent the sampling of   to 183 
represent   and      represents a set of vectors consisting of all     dimensional vectors. 184 

In the continuous spectral curve, the two adjacent bands have strong correlation. Therefore, 185 
dimensionality reduction of high-dimensional hyperspectral images can be carried out without 186 
losing information. We assume that the columns of   lies in a subspace spanned by the columns of 187 
 , i.e.     , vectorise form:         , where   is an identity matrix with suitable 188 
dimensions. 189 

Estimation of the subspace  : 190 
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(i) Upsample all the bands of   to the same high resolution, using bicubic interpolation. 191 
(ii) Blur each band, such that the blur of all the bands is equivalent to the strongest blur. 192 
(iii) Perform singular value decomposition on the blurred data. Retain the singular vectors of   193 

largest singular values as the columns of  . 194 
Then image fusion can be formulated as a convex optimization problem: 195 

   
 

                               (4) 
where      is a quadratic regularisation term, based on weights     and   is the regularization 196 
strength; and              are two block-diagonal linear operators (each with identical blocks) 197 
that approximate horizontal and vertical derivatives of the images in  . For simplicity, we treat these 198 
matrices with periodic boundary conditions as cyclic convolutions. 199 

The above minimization problem (Eq 4) is equivalent to 200 
   

          
                         

              
       
       

(5) 

The Augmented Lagrangian of Eq 4 is 201 
                      

                          
 
 

                 
 
 

        

      
 
 

              

(6) 

where          are scaled Lagrange multipliers and weight     202 
Iteratively optimize three parameter blocks: ,           and            we can obtain the 203 

optimal  , and then get   by         . For more information, you can see in Lanaras et al. 204 
(2017) and the code of the SupReME algorithm can be downloaded publicly on the 205 
GitHub (https://github.com/lanha/SupReME). 206 

To quantify the performance of the SupReME algorithm, the reflectance of enhanced images 207 
and original images were calculated for each band and the following statistics were calculated 208 
(Eqs.7-9): coefficient of determination (R2), the root mean squared error (RMSE) and estimation 209 
accuracy (EA). In detail, the calculation formulas are as follows: 210 

   
           

   

          
   

 (7) 

                 
   

 
 

(8) 

      
    

  
       (9) 

where   is the number of pixels,     is the estimated value of pixel in the fusion image,    is the 211 
average value of pixel in the original image, and    is the value of pixel in the original image. 212 

2.5. Corn canopy parameters estimation using vegetation index 213 
Vegetation index (VI) is an empirical measurement of vegetation activity, which is calculated by 214 

combining two or more spectral observation channels (Meroni et al., 2004). Vegetation index, as a 215 
means of characterizing surface vegetation coverage and growth in the field of remote sensing, has 216 
higher sensitivity than single-band detection vegetation growth and is widely used to invert 217 
vegetation biophysical parameters, such as LAI and LCC. There are two forms of vegetation index in 218 
common use (Darvishzadeh et al., 2008), ratio index (RI, Eq.7) and normalized difference index 219 
(NDI, Eq.8): 220 

   
  

  
 (10) 

    
     

     
 (11) 

where    and    represent the two spectral channels of the Sentinel-2 image, respectively. There 221 
are 10 bands with the enhanced 10m Sentinel-2 image which makes it possible to retrieve an optimal 222 
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band combination. We traversed all two bands combination to build a linear model, and then 223 
analyzed the result of R2 and RMSE to find the optimal model. Finally, they were validated by the 224 
measured data. (Zhao et al., 2007).  225 

In view of the limitation of spatial and spectral resolution of early satellite, the vegetation index 226 
is usually composed of red band and NIR band. Undeniably, ground experiments proved that the 227 
red-edge band (670-760nm) is an important indicator band for describing the state of plant 228 
pigments and health (Vina et al., 2011; Brantley et al., 2011). Therefore, the red-edge band is an ideal 229 
channel for remote sensing to investigate vegetation status and estimate vegetation parameters 230 
(Delegido et al., 2011). Thus, we also tested three other commonly used VIs, including Modified 231 
Chlorophyll Absorption Ratio Index (MCARI) (Daughtry et al., 2000), MERIS Terrestrial 232 
Chlorophyll Index (MTCI) (Dash & Curran, 2007) and the Angular Insensitivity Vegetation Index 233 
(AIVI) (Li et al, 2016). The formulas and references are as follows: 234 

                                        
     
     

 (12) 

     
           
           

 (13) 

     
                                       

                   
 (14) 

The pixel size of enhanced image is 10m×10m, and the reflectance of a single pixel is a mixed 235 
spectrum of the whole vegetation canopy. We inverted LAI and CCC directly from canopy spectra, 236 
and then calculated LCC by the ratio of CCC to LAI.  237 

In this study, we separated the measured data of 113 quadrats by the stratified sampling. That is 238 
all sample points are divided into five layers according to the size of LAI value, and sample points of 239 
each layer are randomly divided into two parts. Finally, 63 of them were used for calibration of 240 
linear model and 50 of them were used for accuracy validation of LAI, LCC and CCC retrieval. 241 

2.6. Corn canopy parameters retrieval using PROSAIL model 242 
Compared with vegetation indexes, the physical radiative transfer model is based on rigorous 243 

mathematics, physics and biology process, which can explain clearly the interaction mechanism 244 
between solar radiation and the canopy, and has strong applicability. Furthermore, the physical 245 
model can determine the bidirectional reflectance distribution function of the canopy to 246 
quantitatively describe the distribution of light in the canopy (Roy et al., 2017; Bousquet et al., 2005). 247 
Therefore, we retrieve LAI and chlorophyll content using PROSAIL-D (Berger et al., 2018) radiative 248 
transfer model in this study. The PROSAIL-D model is the coupling of the leaf-scaled PROSPECT-D 249 
(Féret et al., 2017) model and the canopy-scaled Scattering by the Arbitrarily Inclined Leaves (SAIL) 250 
model (Jay et al., 2017; Jacquemoud et al., 2009) (see Fig. 4). The PROSECT-D model is used for dense 251 
and non-dense leaf vegetation that describes the transmission of light on the surface and inside of 252 
leaves, which increases the anthocyanin content (Canth) of leaves compared with PROSECT-5 (Allen 253 
et al., 1969; Féret et al., 2009). The SAIL model is one of the commonly used models for descripting 254 
vegetation canopy and it assumes that vegetation canopy is a mixture of horizontal, homogeneous 255 
and infinitely extended isotropic leaves with random azimuth distribution. 256 

 
Fig. 4. Simulation the canopy reflectance by PROSAIL-D model 
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The ill-posed problem always exists in vegetation canopy parameters retrieval, such as 257 
retrieving LAI, canopy chlorophyll content etc. In other words, the vegetation canopy parameters 258 
cannot be directly obtained by inputting canopy reflectance with less prior information. Improved 259 
Look-up table (LUT) (Darvishzadeh et al., 2012) and cost function (J(x)) (Casa & Jones, 2004; Nilson 260 
& Kuusk, 1989) are used to alleviate this problem in this study.  261 

A summary of the range and distribution of PROSAIL model inputs used in this study is shown 262 
in Table 2, which are used to determine the dimension of LUT. The distribution and range of 263 
parameter LCC, LAI and ALIA are obtained from the measured data in field campaign. These inputs 264 
including Car, Canth, LCC, Cm, Cw, N, ρsoil and Hot, are determined by referencing the prior 265 
knowledge and data base of Leaf Optical Properties Experiment 93 (Andreoli & Hosgood, 1994). 266 
Parametric SZA and OZA are recorded in the header file of the Sentinel-2 image, and rAA is 267 
determined by subtracting the azimuth angles of the sun and satellite. The observation zenith angle 268 
and observation azimuth angle of Sentinel-2 are different in each band, but generally less than 5°. In 269 
this study, we used the average value of the observation zenith angle and observation azimuth angle 270 
of satellite to retrieve vegetation parameters. 271 

Table 2. The ranging and distribution of PROSAIL-D model inputs for producing the LUT 
Parameters Units Max Min Mean Std Distribution 

LCC μg/cm2 70 30 55 15 Gaussian 
Car μg/cm2 10 2 6 2 Gaussian 

Canth μg/cm2 10 2 6 2 Gaussian 
Cbp μg/cm2 —— —— 0.2 —— default 
Cm cm 0.006 0.003 0.004 0.001 Gaussian 
Cw g/cm2 0.03 0.01 0.0131 0.005 Gaussian 
N —— —— —— 1.518 —— default 

ρsoil —— —— —— 0.8 —— default 
LAI m2/ m2 6 1 3.5 2 Gaussian 

ALIA ° 65 45 50 10 Gaussian 
Hot —— —— —— 0.1 —— default 
SZA ° —— —— 30.22 —— default 
OZA ° —— —— 7.73 —— default 
rAA ° —— —— 135.21 —— default 
When the LUT is generated, the minimum cost function (J(x)) can be used to retrieve the 272 

simulated reflectance closest to the observed reflectance, and then extract the corresponding 273 
vegetation canopy parameters. The cost function is 274 

        

 

   

   
      

                     
     

 

   

 
 

(15) 

where   is the number of bands in the cost function,    is the weight of ith band (for LAI,     , for 275 
LCC,       

        ),  
    the simulated canopy reflectance obtained from the PROSAIL-D model, 276 

  
        is the canopy reflectance observed by Sentinel-2 images,  is the number of penalty 277 

function parameters,   is the input of the parameter   of the model in the LUT,     is the limit of 278 
parameter  ( if   <       or          , then     is a maximum value(such as       )else,    279 
 ).In the retrieval of summer corn canopy LAI, LCC and CCC, the estimated results of them using 280 
empirical vegetation indexes are used as prior knowledge to obtain the      of penalty function. 281 
Generally, we take the 10% fluctuation of the results from the optimal linear model as its limit. 282 

Furthermore, the band combination used for cost function is an important factor affecting the 283 
retrieval accuracy. The number of combinations M can be expressed as: 284 

      
 

  

   

 
 

(16) 
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In our case, n=10 and the number of combinations M is 1023. We built all kinds of cost function 285 
combinations, and validate the retrieval accuracy using these all kinds of cost functions with in-situ 286 
measured LAI and LCC in field campaign. The R2 and RMSE are used to validate and find the 287 
optimal retrieving result. 288 

3. Results and analysis 289 

3.1. Evaluation of consistency between enhanced and original image reflectance 290 
In order to evaluate the enhanced reflectance results from the developed SupReME algorithm, 291 

we validated the enhanced image qualitatively and quantitatively. Fig. 5 shows a detailed spatial 292 
comparison between original and enhanced Sentinel-2 reflectance images. We can find that the 293 
spatial details of the enhanced image (Fig. 5c and e) are in good agreement with that of the original 294 
10m image (Fig. 5a). Compared with the original 20m images (Fig. 5b and d), there are clearer land 295 
objects boundaries, more detailed and clearer textural features for enhanced image, with the 296 
consistent spectral variation between different land objects between the original 20m image and the 297 
enhanced 10m image. In detail, the circled area is cropland planted with vegetables and summer 298 
corn, within which there is a trench full of algae passes through. In the original 10m natural color 299 
image (Fig.5a), it is difficult to distinguish the type of land objects because the spectrum of ditches 300 
which was covered with a thick layer of algae is similar to that of vegetation on the ground. In the 301 
original 20m images (Fig.5b, d), the difference between the ditch and the cropland can be seen 302 
roughly and weakly. Moreover, the boundaries of these two kinds of land objects are indistinct 303 
because of the small area of the objects and the low spatial resolution of the images. Comparably 304 
speaking, the boundary between the ditch and the farmland in the super-resolution 10m images 305 
(Fig.5c, 5e) is clearer and more distinct. Moreover, we can identify clearly the spectral characteristics 306 
of the objects are water and cropland, and the ditch is distinct, too. Therefore, we can conclude that 307 
the addition of multiband (Band5~7, 8a, 11, 12) can identify more spectral features of land objects. In 308 
general, the spatial resolution of the enhanced image has improved from 20m to 10m, and the 309 
spectral characteristics have not changed greatly before and after the image enhancement. 310 

  
Fig. 5. Image fusion results using super-resolution algorithm: (a) Original 10m true color image, 

R/G/B=Band4/Band3/Band2; (b) Original 20m false color image, R/G/B=Band7/Band6/Band5; (c) enhanced 
10m false color image, R/G/B=Band7/Band6/Band5; (d) Original 20m false color image, 

R/G/B=Band12/Band11/Band8a; (e) enhanced 10m false color image, R/G/B=Band12/Band11/Band8a. 
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Moreover, we evaluate the spectral consistency quantitatively between the enhanced 10m 311 
image using super-resolution method with the original 20m spatial resolution images (Band5~7, 8a, 312 
11, 12), and focused on analyzing the spectral difference before and after super-resolution 313 
enhancement of Sentinel-2 image. Table 3 shows the spectral correlation for all bands of the original 314 
image and the enhanced image in the ranging area of 6000×6000 pixels.  315 

From the analyzed spectral correlation in Table 3, we found that the reflectance of enhanced 316 
image was highly correlated with the original image. And correlation coefficient (R2) between the 317 
original bands and enhanced bands are all greater than 0.87. The band with the highest correlation 318 
value is Band12 with R2=0.99, and the band with the lowest correlation is Band11 with R2 = 0.87. The 319 
EA of the whole image is higher than 79%, including corn planted area, roads, water etc. 320 
Fortunately, the EA in corn planted area is higher than 97% with the significant value at the 0.01 321 
level. The correlation results in Table 3 revealed that the enhanced image using SupReME algorithm 322 
improves the spatial details of the image while maintaining the invariance of the spectrum. We 323 
found that the EA in the vegetation pixels of SupReME algorithm is higher than that of buildings, 324 
especially for Band11 and Band12. 325 

Table 3. Correlation analysis result of image reflectance before and after enhancement 
Band Regression Equation R2 RMSE EA% EA%(R<0.6) 
Band5 y=0.88x+0.0130 0.90** 0.0177 83.74 98.23 
Band6 y=0.91x+0.0227 0.89** 0.0227 91.04 97.73 
Band7 y=0.90x+0.0312 0.91** 0.0258 91.55 97.42 

Band8a y=0.88x+0.0397 0.91** 0.0273 91.54 97.25 
Band11 y=0.82x+0.0375 0.87** 0.0268 86.55 97.31 
Band12 y=0.88x+0.0164 0.99** 0.0277 79.29 97.22 

 

Notes: ** Correlation is significant at the 0.01 level. 326 

3.2. Estimating results of LAI and chlorophyll content using vegetation indexes 327 
We developed RI and NDI by combing every two bands of the Sentinel-2 images and found the 328 

optimal vegetation index (Table 4) with the highest accuracy of corn canopy LAI and chlorophyll 329 
content estimation. Fig. 6 shows the comparations of the R2 distributions retrieval results from 330 
different bands combination of enhanced image and original image. From Fig.6, it can be seen that 331 
the R2 distributions of RI and NDI using enhanced image are similar, with the minor quantitative 332 
difference. The linear model (Fig. 6) has high accuracy when    = Band 3-Band 6 and    = Band 333 
7-Band 11 for the original image and enhanced image. The difference between enhanced image and 334 
original image lies in that the enhanced image has higher R2 than the original image. Moreover, we 335 
found that the result of RI and NDI has the highest R2 in the LAI and CCC estimation when   = 336 
Band 8a and    = Band 3. For the original image, RI and NDI all have the best R2 for the LAI and 337 
CCC estimation when    = Band 8 and   = Band 3,.  338 
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Fig. 6. The R2 distribution results of LAI and CCC are inverted by different band combinations. The x and y 
axes are the respective bands of the image: (a, e) are R2 of LAI estimated by RI of enhanced image and 

original image respectively; (b, f) are R2 of LAI estimated by NDI of enhanced image and original image 
respectively; (c, g) are R2 of CCC estimated by RI of enhanced image and original image respectively; (d, h) 

are R2 of CCC estimated by NDI of enhanced image and original image respectively. 
Furthermore, the MCARI, MTCI and AIVI (Table 4) were calculated for corn canopy LAI and 339 

CCC estimation. The optimal estimation results of LAI and CCC using RI and NDI calculated from 340 
enhanced image and original image showed that the narrow NIR band (Band 8a) had superiority 341 
and potential for estimating LAI and CCC, compared with NIR band (Band 8) which has similar 342 
central wavelength and the same spatial resolution. Comparably speaking, the narrow NIR band is 343 
more sensitive to corn growth difference and its changes. 344 

The other three VIs used at least three bands in the process of construction, in which at least 345 
one band was red edge band with an original spatial resolution of 20 m. In conclusion, the 346 
estimated results using MCARI, MTCI and AIVI showed that the improvement of Sentinel-2 spatial 347 
resolution using the SupReME algorithm can improve the estimation accuracy of LAI and CCC. 348 

Table 4. The estimation model of LAI and CCC using vegetation indexes 349 
VI Enhanced image Original image 

LAI CCC LAI CCC 
RI y=0.49e0.23x y=0.11e0.34x y=0.58e0.21x y=0.13e0.32x 
 R2=0.53** RMSE=0.52 R2=0.60** RMSE=0.30 R2=0.51** RMSE=0.59 R2=0.52** RMSE=0.35 

NDI y=0.01e7.48x y=0.0002e11.64x y=0.02e0.81x y=0.0005e10.61x 
 R2=0.55** RMSE=0.55 R2=0.63** RMSE=0.28 R2=0.50** RMSE=0.61 R2=0.56** RMSE=0.36 

MCARI y=0.74e0.21x y=0.19e0.31x y=0.77e0.20x y=0.18e0.31x 
 R2=0.49** RMSE=0.62 R2=0.56** RMSE=0.37 R2=0.40** RMSE=0.76 R2=0.50** RMSE=0.48 

MTCI y=0.92e0.21x y=0.28e0.30x y=0.88e0.20x y=0.25e0.30x 
 R2=0.57** RMSE=0.48 R2=0.57** RMSE=0.3 R2=0.45** RMSE=0.66 R2=0.52** RMSE=0.43 

AIVI y=0.56e0.43x y=0.14e0.63x y=0.49e0.45x y=0.10e0.68x 
 R2=0.52** RMSE=0.50 R2=0.57** RMSE=0.29 R2=0.49** RMSE=0.60 R2=0.54** RMSE=0.36 
Notes: ** Correlation is significant at the 0.01 level with n=63, x denotes the VIs and y denotes LAI or CCC. 350 
Table 4 is the estimation accuracy of LAI and CCC using the optimal vegetation indexes, which 351 

are assessed using 50 in-situ measured samples in filed campaign. And the LCC was calculated by 352 
the ratio of the estimated CCC and LAI. For the reason that the value ranges of the three estimated 353 
parameters (i. e. LAI, CCC and LCC) are different, the normalized root mean square error (nRMSE) 354 
is chosen for the accuracy comparison. The calculating formulas is as followed: 355 

      
    

         
 (17) 

where      and      are the maximum and minimum values of the measured data in field work, 356 
respectively. 357 

 Fig. 7 showed the R2, RMSE and nRMSE between the measured and estimated LAI, CCC and 358 
LCC. It could be seen clearly that the estimation accuracy using the enhanced image (LAI with  359 
R2=0.54, RMSE=0.44 and nRMSE=0.128; CCC with R2=0.65, RMSE=0.28 and nRMSE=0.112; LCC with 360 
R2=0.46, RMSE=3.95 and nRMSE=0.119, respectively) were higher than that using the original image 361 
(LAI with R2=0.49, RMSE=0.47 and nRMSE=0.137; CCC with R2=0.54, RMSE=0.32 and nRMSE=0.127; 362 
LCC with R2=0.32, RMSE=4.19 and nRMSE=0.127, respectively). Within these three estimated results, 363 
the estimation accuracy of CCC is the highest, followed by LAI and LCC. 364 
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Fig. 7. Accuracy assessment results of LAI, CCC, and LCC estimated using vegetation indexes of enhanced 

images (a~c) and original images (d~f).  
Notes: ** Correlation is significant at the 0.01 level (n=50): (a) MTCI, (b) NDI with Band 8a and Band 3, (d) RI 
with Band8 and Band3, (e) NDI with Band 8 and Band 3. 

3.3. Retrieval results of LAI and chlorophyll content using PROSAIL model 365 
For the reason that the remotely sensed vegetation indices such as NDVI, computed using the 366 

red and near infrared bands re of limited value since they saturate in dense vegetation (Mutanga & 367 
Skidmore, 2004), the PROSAIL radiative transfer model were used to retrieve corn canopy LAI and 368 
leaf chlorophyll content in this study. Fig. 8 was the comparation of retrieved LAI and LCC using 369 
1023 kinds of cost functions of PROSAIL model, and there were 50 same in-situ measured samplings 370 
were used to do accuracy assessment, too. And Fig. 8 showed the R2 distribution of retrieved LAI 371 
and LCC from the cost function using different band combinations. It could be seen from these four 372 
statistical results that the cost function using different bands were quite different, and the retrieved 373 
result with the lowest accuracy had no correlation with the measured values with R2 is 0, actually. 374 
Comparing Fig. 8a, b, c and d, we found that the correlation coefficient (R2) between the measured 375 
and retrieved LAI and LCC using enhanced image was significantly higher than that using the 376 
original image for all band combinations. It also showed that the corn canopy LAI and leaf 377 
chlorophyll content retrieval could be improved by the enhancement of Sentinel-2 image using the 378 
SupReME super-resolution algorithm. 379 
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Fig. 8. The R2 distribution results of retrieved LAI and LCC using different cost functions. The X-axis is 

the number of combinations of different cost functions, Y-axis is the number of bands in the cost function: (a, 
c) are R2 of LAI and LCC estimated by enhanced image; (b, d) are R2 of LAI and LCC estimated by original 

image. 
The comparation of accuracy assessment using the best cost functions by combining different 380 

bands were as followed (Fig.9). Accuracy assessment results showed that the R2 of measured LAI 381 
and retrieved LAI using enhanced Band 2, Band 3, Band 5 and Band 6 was 0.65, RMSE was 0.31 and 382 
nRMSE was 0.09. The R2 of measured LAI and retrieved LAI using original Band 2, Band 4, Band 6, 383 
Band 11 and Band 12 was 0.53, RMSE was 0.49 and nRMSE was 0.143. And the R2 of measured LCC 384 
and retrieved LCC using enhanced Band 2, Band 4, Band 6, Band 11 and Band 12 was 0.36, RMSE 385 
was 3.32 and nRMSE was 0.1. When original Band2, Band4, Band6, Band11 and Band12 were used 386 
for cost function, the R2 of measured and retrieved LCC was 0.37, RMSE was 6.34 and nRMSE was 387 
0.192. The CCC was calculated by the product of LAI and LCC. Accuracy assessment results showed 388 
that R2 of measured CCC and retrieved CCC was 0.69, RMSE was 0.16 and nRMSE was 0.064 using 389 
enhanced image, while R2 was 0.66, RMSE was 0.35 and nRMSE was 0.139 using original image. 390 
Comparatively, the retrieving accuracy using original Sentinel-2 image is lower. Although there was 391 
little difference between the R2 of LCC retrieved from original image and enhanced image, the RMSE 392 
of LCC retrieved from original image was much higher than that of enhanced image. In generally, 393 
the corn canopy LAI and chlorophyll content retrieval accuracy using enhanced image was higher 394 
than that using original Sentinel-2 image. 395 
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Fig. 9. Optimal results of LAI, LCC, and CCC inverted by PROSAIL-D model based on enhanced images 

(a~c) and original images (d~f). 
Notes: ** Correlation is significant at the 0.01 level, * Correlation is significant at the 0.1 level (n=50). 

4. Discussion 396 

4.1. Comparison between enhanced image and original image 397 
Super-resolution enhancement has been widely used in satellite image processing which could 398 

achieve the high spatial resolution images with low cost. The single-sensor imaging has the 399 
advantages of uniform imaging time and imaging angle compared with multi-sensor imaging 400 
method. In addition, single-sensor imaging would reduce the uncertainties in the fusion process and 401 
improves the efficiency and accuracy of fusion (Wang et al., 2016; Lanaras et al., 2017). Our results 402 
showed that the SupReME algorithm can be used to enhance the spatial resolution of remote sensing 403 
image, in the meantime of maintaining the spatial details and spectral variation of original image 404 
(Fig. 5).  405 

In the comparison of super-resolution enhanced images (10m) and original low spatial 406 
resolution images (20m), we found that the R2 of the two kind images were higher than 0.87 of six 407 
bands, and the EA were higher than 79%. Note that the EA of vegetation pixels with reflectivity less 408 
than 0.6 were higher than 97% (Table 3). On the one hand, the results showed that the reflectivity of 409 
the enhanced image kept high consistency with the original image, and the spatial details were finer. 410 
On the other hand, the accuracy of the algorithm on vegetation pixels was higher than that on 411 
non-vegetation pixels. Results showed that the pixels with poor EA were generally existed in cities, 412 
especially those buildings with glass curtain walls or other high-reflective materials (such as 413 
shopping malls, high-speed railway stations or airports). This kind of ground object had undergone 414 
mirror reflection, which made the reflectivity of the original image abnormal (more than 100%), so 415 
the reflectivity accuracy of the enhanced image was low. However, the pixels with abnormal 416 
reflectance only accounted for about 1% of all pixels, and our research target was vegetation, and 417 
consequently, the error was negligible. 418 

The comparation of retrieved summer corn canopy LAI, CCC and LCC using enhanced image 419 
and original image was done to validate the improvement of enhanced image to the original image. 420 
The results showed that the accuracy of LAI, CCC and LCC retrieving using enhanced image were 421 
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higher than using original image (Fig. 7 and Fig. 9), especially for multi-band combination 422 
vegetation indices including at least one red-edge band with an original spatial resolution of 20m. 423 
When calculated vegetation index (MCARI, MTCI and AIVI), the enhanced image used the same 424 
band as the original image with different spatial resolution. The results (Table 4) showed that the 425 
parameter accuracy of the image enhanced by the SupReME algorithm was higher than that of the 426 
original image. Our work confirmed that the SupReME algorithm not only enhanced the spatial 427 
details of red-edge bands of Sentinel-2 image, but also improved the retrieving accuracy of summer 428 
corn canopy LAI, CCC and LCC.  429 

4.2. Effects of combination of different bands for LAI and chlorophyll content estimation 430 
Different vegetation canopy parameters are sensitive to different spectral wavelength. For 431 

example, the leaf chlorophyll content is sensitive to the wavelength ranging from 400nm to 800nm. 432 
LAI is more sensitive in the whole band (especially in the NIR band) and the equivalent water 433 
thickness is sensitive within the wavelength ranging from 1000nm to 2500nm (Verrelst et al., 2016). 434 
Some band combinations can increase the difference between vegetation and non-vegetation, or the 435 
vegetations with different growing condition, however some band combinations work hardly for 436 
depicting the vegetation difference (Zhao et al., 2007; Meroni et al., 2004). Therefore, the retrieval 437 
results of vegetation parameters could be different using different band combinations.  438 

There were two kinds of band combinations were used in cost function for vegetation 439 
parameters retrieval in this study: one was the vegetation index, the other was the original bands. 440 
The red-edge bands of Sentinel-2 were incorporated especially into vegetation indexes for LAI and 441 
CCC retrieval. For the combination of two bands, Fig. 6 showed that the retrieving accuracy of LAI 442 
and CCC are high using combination using one band from Band3 to Band6 with the other band 443 
from Band6 to Band11 (excepting Band6 & Band6 combination and Band6 & Band11 combination). 444 
Moreover, we found that the combination between Band8a and Band3 of enhanced image and the 445 
combination Band8 and Band3 of original image were the optimal results. It could be seen from the 446 
Table 1 that the central wavelength of Band8 was similar to that of Band8a, but the band width was 447 
much wider. This indicated that Band8a was better than Band8 for retrieving LAI and CCC. We also 448 
calculated other popular vegetation indices which contained at least three bands and one red edge 449 
band. The results (Table 4) showed that the LAI and CCC retrieved accuracy is high using red-edge 450 
bands. It further proved the advantages and potential of multi-channel satellite images, especially 451 
those with red edge channels, such as Sentinel-2, in the application of quantitative remote sensing 452 
of vegetation.  453 

4.3. Vegetation indexes vs. PROSAIL model 454 
Linear models and physical models are used commonly to retrieve vegetation canopy 455 

parameters. The vegetation indexes and the PROSAIL model were used to retrieve summer corn 456 
canopy LAI, CCC and LCC in this study. The retrieval accuracy showed that both of these two 457 
methods have their own advantages for retrieving LAI, CCC and LCC. Especially, the accuracy of 458 
retrieval of summer corn canopy LAI and CCC using PROSAIL model was higher than that using 459 
vegetation indexes, and the retrieving accuracy of LCC which was on blade scale using PROSAIL 460 
model was lower than that of using vegetation indexes. As a note, there should be more in-situ 461 
measured data for developing the relationship between vegetation index and vegetation growth 462 
parameters (LAI, CCC and LCC) in the linear models. By contrast, the PROSAIL-D model based on 463 
LUT could also retrieve vegetation growth parameters without relying on ground measurements, 464 
and the accuracy had been improved. 465 

In addition, we found that the retrieval accuracy of CCC, LAI and LCC using whether 466 
vegetation indexes or PROSAIL model were all in line of CCC > LAI > LCC (comprehensive R2, 467 
RMSE and nRMSE). This is consistent with previous research results (Zhang et al., 2005; 468 
Darvishzadeh et al., 2008; Combal et al., 2003). LAI and CCC are canopy scaled canopy parameters, 469 
which have little difference in the uniform growth pattern, and the scale effects in pixels are not 470 
obvious. Therefore, the retrieved accuracy using PROSAIL model was better that that using 471 
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vegetation indexes. Generally, high resolution image (centimeter or millimeter level) or 472 
hyperspectral image can be inverted to obtain higher accuracy, but it is not suitable for estimating 473 
LCC of crops in large area. The linear model is only a simple regression relationship, which can 474 
obtain better results in small areas, but it cannot ignore the spatial heterogeneity of crops, so it is 475 
not suitable for estimating vegetation parameters in large areas. The PROSAIL model can be used to 476 
estimate the chlorophyll content of vegetation leaves on a large scale. However, the resolution 477 
(meter level) of satellite image differs greatly from the scale of leaf, which results in the 478 
heterogeneity of reflectance of various objects in a single pixel. Additionally, the measured data can 479 
only take the average value of a finite number of points in a single pixel. Therefore, it is more 480 
difficult to retrieve LCC at regional scale based on the physical model than LAI or CCC. There are 481 
many input parameters in the physical model itself, and the superposition of uncertainties of each 482 
parameter will also reduce the accuracy of parameter estimation. In future research, the relationship 483 
between chlorophyll content at leaf scale and mixed reflectance of pixels should be explored, and 484 
the uncertainty analysis of the PROSAIL model should be added to the process of parameter 485 
inversion to improve the accuracy of chlorophyll content inversion by the PROSAIL model, so as to 486 
extend to large regional scale. 487 

4.4. Broader implications for agriculture applications at regional level 488 
Finally, our results showed that the Sentinel-2 images processed by the SupReME algorithm 489 

had advantages in crop parameter inversion, especially when incorporating the red-edge band. 490 
Currently, Sentinel-2 is the only satellite available free of charge which include multiple red-edge 491 
bands with medium spatial resolution (20m). However, it is possible to improve the resolution of 492 
the red-edge band because of other 10m spatial resolution images. The SupReME algorithm 493 
produced a series of image products with a spatial resolution of 10m without increasing any cost. 494 
Because these images come from the same sensor, the uncertainty of these super-resolution 495 
enhanced images is less affected by the observation angle, imaging time and spectral response 496 
function and other reasons. It can increase spatial resolution while maintaining spectral consistency 497 
(Table 3), and the product accuracy is higher (Lanaras et al. 2017).  498 

Due to the management style of household in China's rural areas, the area of most planting field 499 
is small. In addition, the difference of time, variety and management of crops planted by farmers, the 500 
difference between adjacent fields will be more obvious. In the application of agricultural 501 
quantitative remote sensing, the smallest unit of study is the pixel, which is used as the benchmark 502 
for the field measurement and all models. The purity or variability of the pixels has an important 503 
influence on the final results, especially when the field is fragmented (Huang et al., 2019). The 504 
spatial heterogeneity of vegetation in one pixel of 20m spatial resolution is greater than that of 10m 505 
spatial resolution (Zheng et al., 2017). Therefore, the 10m spatial resolution image could reduce the 506 
uncertainty caused by these reasons, which could be used to improve the accuracy of the crop 507 
canopy parameters retrieval, crop growth monitoring and estimation of crop yield. 508 

Using the SupReME algorithm, we can extend it to satellite images with multi-spectral bands 509 
and different spatial resolutions, such as MODIS image and Landsat 8 image. The combination of 510 
medium resolution multi-source satellites may provide the possibility to capture the dynamic 511 
changes of crop growth at field scale which has been proved in previous studies (Huang et al., 2019, 512 
2015) that it can effectively improve the accuracy of crop yield estimation. At the same time, the 513 
uniform high-resolution image can be obtained without increasing the cost of input, and other 514 
meteorological parameters with high spatial resolution can be retrieved, such as temperature and 515 
evapotranspiration, thus increasing the potential of practical applications and accuracy. 516 

5. Conclusions 517 
Sentinel-2 satellite is one of the important data sources for quantitative remote sensing of 518 

vegetation, for the reason that Sentinel-2 images are with high temporal resolution, high spatial 519 
resolution and multi-spectral bands. Since there are three different spatial resolutions for the 13 520 
bands of Sentinel-2 image, this study is focusing on fusing different bands of Sentinel-2 images and 521 
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generated a unified high spatial resolution image. In this paper, it substantiated the reliability of 522 
SupReME algorithm in super-resolution fusing Sentinel-2 images and the fact that enhanced images 523 
could improve the accuracy of vegetation growth parameter estimation. 524 

We enhanced the Sentinel-2 images using the SupReME algorithm for generating 10m 525 
multi-spectral images, retrieving LAI, CCC and LCC of corn canopy using linear model and physical 526 
model on large-scale regions. We draw the following conclusions: (1) The SupReME algorithm had 527 
high accuracy in fusing Sentinel-2 image, and its spectrum remained basically consistency as the 528 
original image; (2) vegetation index and cost function formed by band combination of enhanced 529 
images could achieve a higher accuracy of parameter inversion than those of original images; (3) the 530 
accuracy of LAI and CCC inversion of the physical model were higher than that of the linear model, 531 
while the accuracy of LCC inversion was lower than that of the linear model; and (4) the order of 532 
inversion accuracy of the three parameters was CCC > LAI > LCC. 533 

We demonstrated that the enhanced image had high application value by quantitatively 534 
analyzing the results. These results indicated that SupReME algorithm was an effective and 535 
promising approach to enhance the potential and value of Sentinel-2 image at a regional scale in the 536 
North China Plains. In future research, we will apply the SupReME algorithm to the Sentinel-2 537 
images with long time series and also consider the uncertainty of the physical model, and deep 538 
learning will be explored instead of cost function for monitoring vegetation growth and estimation 539 
of crop yield at regional scale. 540 
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