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Summary 14 

 15 
Insights into animal behaviour play an increasingly central role in species-focused conservation practice. 16 
However, progress towards incorporating behaviour into regional or global conservation strategies has been 17 
more limited, not least because standardised datasets of behavioural traits are generally lacking at wider 18 
taxonomic or spatial scales. Here we make use of the recent expansion of global datasets for birds to assess the 19 
prospects for including behavioural traits in systematic conservation priority-setting and monitoring 20 
programmes. Using IUCN Red List classifications for >9500 bird species, we show that the incidence of threat 21 
can vary substantially across different behavioural categories, and that some types of behaviour—including 22 
particular foraging, mating and migration strategies—are significantly more threatened than others. The link 23 
between behavioural traits and extinction risk is partly driven by correlations with well-established 24 
geographical and ecological factors (e.g. range size, body mass, human population pressure), but our models 25 
also reveal that behaviour modifies the effect of these factors, helping to explain broad-scale patterns of 26 
extinction risk. Overall, these results suggest that a multi-species approach at the scale of communities, 27 
continents and ecosystems can be used to identify and monitor threatened behaviours, and to flag up cases of 28 
latent extinction risk, where threatened status may currently be underestimated. Our findings also highlight 29 
the importance of comprehensive standardized descriptive data for ecological and behavioural traits, and 30 
point the way towards deeper integration of behaviour into quantitative conservation assessments.   31 
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1. Introduction 32 
 33 

Conservation biologists and behavioural ecologists have repeatedly called for closer links between their 34 
respective fields on the grounds that behavioural insights can contribute significantly to the success of 35 
conservation action (Clemmons & Buchholz 1997; Caro 1999; Caro & Sherman 2011; Greggor et al. 2016). 36 
However, this cross-disciplinary integration has progressed slowly, in part because the methods and central 37 
questions of behavioural ecology do not align closely with the needs of conservation practitioners (Greggor et 38 
al. 2016). For example, much of behavioural ecology focuses at the level of the individual, and identifies 39 
selective mechanisms acting on genes or organisms, whereas conservation typically operates at the level of 40 
populations (Caro 2007). This misalignment is perhaps most pronounced at macroecological scales where 41 
global analyses are playing a vital role in conservation science and policy (e.g. Newbold et al. 2015) but 42 
generally include only the most basic behavioural information. 43 

One reason for the low profile of behaviour in comprehensive broad-scale analyses is because it is 44 
difficult and costly to measure standardised behavioural traits across species, space and time (Anthony & 45 
Blumstein 2000). The major contributions of behavioural research to conservation have dealt with factors such 46 
as individual movements, sensory ecology, animal personality or cultures, and the extent to which they 47 
mediate various kinds of human pressures, including disturbance, habitat loss and hunting (Greggor et al. 48 
2016, Brakes et al. 2019). The key behavioural metrics under this framework are context-dependent, highly 49 
plastic both within and between individuals, and typically estimated through detailed observation and 50 
experimentation. They are often inappropriate for quantitative assessments at the wider level of communities 51 
or ecosystems because they are (1) only available for a small fraction of species, and (2) not readily 52 
incorporated into species-level analyses. For instance, the case-dependent intricacies of how behaviour 53 
influences effective population size (Ne) are useful to conservation (Anthony & Blumstein 2000), but we are 54 
decades away from having these data available for comprehensive global studies. 55 

Global or regional conservation assessments are largely restricted to comprehensive species-level 56 
datasets accessible at the relevant scale (see figure 1). Most macroecological analyses have therefore tested 57 
whether species conservation status is predicted by human impacts, biogeographical factors such as latitude 58 
or range size, and environmental factors such as climate or habitat (Bennett & Owens 1997, Owens & Bennett 59 
2000, Cardillo et al. 2004, Cardillo et al. 2005, Lee & Jetz 2011, Keinath et al. 2017), or reversed the process to 60 
predict the conservation status of poorly known species (Jetz & Freckleton 2015, Santini et al. 2019). Using 61 
freely available GIS layers, these socio-economic, biogeographical and environmental variables can be 62 
extracted for specimen localities or geographical range polygons, which in some vertebrate groups are 63 
reasonably accurate. The other main components of macro-scale assessments have been demographic factors, 64 
including population size and density, and rates of population decline, all of which are theoretically related to 65 
extinction risk (Keinath et al. 2017; Santini et al. 2019). In general, only crude population estimates are 66 
included in global-scale analyses because very few attempts have been made to quantify population sizes and 67 
trends across entire global ranges (Tobias & Seddon 2002, Tobias & Brightsmith 2007). Previous studies have 68 
shown that both extrinsic biogeographic and demographic factors are correlated with extinction risk, leading 69 
to their widespread inclusion in regional and international conservation status assessments. 70 

Perhaps the most influential global assessment is the IUCN Red List (IUCN 2001), an indicator of 71 
biodiversity status and change linked to international convention targets (Butchart et al. 2005). The 72 
conservation status categories systematically generated by the Red Listing process are enshrined in legislation 73 
and widely used in macroecological research (Rodrigues et al. 2006). Previous assessments of predictors of 74 



Red List status have generally focused on standard biogeographic or climatic variables, without delving far 75 
into behavioural or ecological factors. Indeed, the only ecological and behavioural traits incorporated into 76 
most global models of conservation risk are body mass, diet and habitat preferences (Lee & Jetz 2011; 77 
Newbold et al. 2015, Keinath et al. 2017). To convert these variables into species-level traits, body mass is 78 
typically averaged from small numbers of published estimates, while diet and habitat are classified into broad 79 
categories on the basis of published descriptions in secondary literature (Wilman et al. 2014). By contrast, 80 
many other behavioural or ecological variables have not been comprehensively estimated at global scales and 81 
are often difficult to convert into species-level traits (figure 1).  82 
 The most relevant behavioural traits to conservation assessment include those that mediate sensitivity 83 
to habitat loss, fragmentation, and climate change (Greggor et al. 2016). Factors relating to dispersal behaviour 84 
are particularly pertinent because they impinge on the ability of species to cross unsuitable habitat and thus 85 
maintain interconnected metapopulations after habitat fragmentation (Lees & Peres 2009). Dispersal-related 86 
traits may also regulate the ability of species to track shifting geographical ranges in response to climate 87 
change (Early & Sax 2011, Howard et al. 2018), and predict susceptibility to threats like wind farms (Thaxter et 88 
al. 2017). In addition, behavioural dimensions of species interactions may be important determinants of 89 
responses to a variety of threats. For example, studies focused at the level of species pairs or communities find 90 
evidence that interspecific competition leads to population declines or local extinction following habitat loss 91 
and fragmentation (Bregman et al. 2015, Grether et al. 2017) while reproductive interference may threaten 92 
populations of closely related species interacting or hybridising when climate-driven range shifts lead to 93 
secondary contact (Hochkirch et al. 2007, Greggor et al. 2016). However, while standardised estimates of 94 
dispersal ability and interspecific competition are available for restricted samples of species, they are not 95 
readily available at macroecological scales, except in the form of extremely coarse categories (e.g. whether an 96 
organism can fly or not; Keinath et al. 2017).  97 
 Other variables potentially relevant to conservation status can be placed on a continuum from 98 
primarily ecological to primarily behavioural (figure 1). At the ecological end are aspects such as microhabitat 99 
preferences, while other factors such as foraging mode, migration, sexual selection, territoriality, reproductive 100 
strategy and nesting behaviour have an increasingly behavioural dimension. Previous research suggests that 101 
species sensitivity to land-use or climate change can be related to microhabitat (e.g. in the form of vertical 102 
stratum of vegetation), foraging behaviour (e.g. gregarious foraging), and reproductive strategy (e.g. breeding 103 
system) (Kokko & Brooks 2003, Bueno et al. 2018). Similarly, territorial strategy is linked to species sensitivity 104 
to habitat fragmentation (Ulrich et al. 2017), suggesting that elevated interspecific competition via behavioural 105 
mechanisms can increase threats associated with land-use and climate change (Jankowski et al. 2011, Grether 106 
et al. 2017). Until recently, such inferences were based on relatively restricted species sampling, but this 107 
constraint is changing as the compilation and dissemination of global trait datasets gathers pace.  108 
 To assess whether recent progress in data availability can pave the way for behavioural perspectives 109 
to be explicitly included in global conservation strategies, we compiled information on a variety of ecological 110 
and behavioural traits for all bird species, including estimates of sexual selection (Dale et al. 2015; Cooney et 111 
al. 2017), breeding system (Jetz & Rubenstein 2011), foraging strategy (Pigot et al. 2016, Felice et al. 2019), 112 
territorial behaviour (Tobias et al. 2016), and nest placement (Stoddard et al. 2017). We then ran multivariate 113 
models to evaluate the extent to which behaviour predicts IUCN Red List status at macroecological scales and 114 
in relation to a range of standard biogeographical and environmental variables. Unlike many studies focused 115 
on explaining variation in tolerance to human-induced environmental changes (Tuomainen & Candolin 2011, 116 
Sol et al. 2013), the aim is not to examine how behaviour influences sensitivity to particular threats, 117 



particularly as this would require a different analytical approach. Instead, our goal is to assess the current 118 
landscape of behavioural data availability and the prospects for more nuanced conservation assessments and 119 
priority-setting.   120 
 121 

2. Methods 122 
 123 

(a) Data 124 
 125 
We assembled data on species threat status from the 2016 Red List (IUCN 2016) along with a range of 126 
potential drivers of variation in status, including biogeographic, ecological and behavioural traits, as well as 127 
the exposure of each species to human impacts. Geographic range size is consistently identified as the 128 
strongest predictor of threat status (Lee & Jetz 2011; Jetz & Freckleton 2015). Although this is not surprising 129 
given that two of the main Red List criteria (A and B) are partly based on either Extent of Occurrence (EOO) or 130 
Area of Occupancy (AOO), it is nonetheless important to include range size when modelling threat predictors 131 
and their correlates. We estimated range size (EOO) for each species based on maps of species breeding 132 
distributions (BirdLife International, 2012). Human population pressure is also known to influence extinction 133 
risk (Cardillo et al. 2004; Scharlemann et al. 2005; Davies et al. 2006). To quantify the exposure of species to 134 
human impacts, we first extracted polygon range maps onto an equal area grid (resolution of 110 km ≈ 1° at 135 
the equator) and used this grid to sample human population density, human appropriation of net primary 136 
productivity (HANPP) and night-time light intensity, an indicator of urbanisation and development. We 137 
calculated the mean value of each metric, averaged across all grid cells overlapping with each species range. 138 

We collated data on a selection of ecological traits, including mean species body mass (g), habitat type, 139 
diet and island dwelling, all of which have been linked to extinction risk (Bennett & Owens 1997; Owens & 140 
Bennett 2000; Cardillo et al. 2005; Lee & Jetz 2011; Jetz & Freckleton 2015). We extracted body mass from 141 
Wilman et al. (2014). Using literature to score habitat use, we assigned species to broad habitat categories 142 
(coastal, terrestrial, freshwater, sea) according to the predominant habitat utilised across their geographic 143 
distribution. We assigned species to one of ten dietary categories: aquatic animals, aquatic plants, terrestrial 144 
invertebrates, terrestrial vertebrates, terrestrial carrion, nectar, seeds, fruit, other terrestrial plant matter (e.g. 145 
leaves), and omnivore, based on the dominant resource present in their diet (see Supplementary material). 146 
Data on proportional resource use were first obtained from Wilman et al. (2014), and then modified and 147 
updated based on comprehensive literature searches. Our dietary classification differs from Wilman et al. 148 
(2014) in that we subdivided each animal or plant-based resource type into separate aquatic and terrestrial 149 
categories (see Felice et al. 2019). This helps us to avoid highly heterogenous categories such as invertivores, 150 
which spans a wide variety of species from insectivorous warblers to squid-eating albatrosses and crustacean-151 
eating flamingos (Wilman et al. 2014). Our approach separates warblers (diet: “terrestrial invertebrates”) into a 152 
different category from albatrosses and flamingos (diet: “aquatic animals”). Using the geographical range 153 
polygons described above, we classified species as island dwelling if more than 25% of their geographic range 154 
occurred on small islands (landmass <2000 km2). Further details of data compilation methods are given in 155 
supplementary materials.  156 

To assess the association between IUCN threat status and key behavioural traits, we assembled data 157 
on foraging strategy, nest placement, breeding system, mating behaviour, the mean clutch size of broods, 158 
territoriality and migratory behaviour (figure 2). Following the method described by Felice et al. (2019), we 159 
used literature searches to assign species to one of eight foraging strategies (‘Aerial screen’, ‘Bark glean’, 160 



‘Aerial sally’, ‘Arboreal glean’, ‘Ground forage’, ‘Aquatic plunge’, ‘Aquatic surface’ and ‘Aquatic dive’). We 161 
classified each species according to the predominant behavioural strategy used to acquire resources, and 162 
assigned species utilising multiple foraging strategies as generalists (i.e. nine categories in total, see 163 
Supplementary material). Nest placement was scored into a simple three-way system: ground, elevated or 164 
cavity (see Stoddard et al. 2017 for details). We used a binary score of breeding system based on a published 165 
classification of cooperative and noncooperative breeders (Jetz & Rubenstein 2011). Mating behaviour was 166 
scored as strict monogamy, monogamy with infrequent (<5% males) polygyny, monogamy with frequent (5-167 
20% males) polygyny, and polygamy (>20% males and females). These categories are based on the index of 168 
sexual selection developed by Dale et al. (2015). Clutch size data was based on Jetz et al. (2008). Using data 169 
from Tobias et al. (2016), we assigned all species to three categories according to the degree of territoriality: 170 
‘strong’ (territories maintained throughout year), ‘weak’ (weak or seasonal territoriality, including species 171 
with broadly overlapping home ranges or habitually joining mixed species flocks), and ‘none’ (never 172 
territorial or at most defending very small areas around nest sites). Finally, we assigned the migratory 173 
behaviour of species as either sedentary, partially migratory (minority of population migrates long distance or 174 
most individuals migrate short distances) and migratory (majority of population undertakes long-distance 175 
migration) (Tobias et al. 2016). 176 

Most variables were available for the vast majority (i.e.>99%) of species but the identity of species 177 
with missing values differed across variables. For categorical predictors, we imputed missing values using the 178 
modal class for each genus, if the genus contained at least 2 species and the modal class was present across at 179 
least 75% of species. If these conditions were not met, we used the same criteria to impute missing values at 180 
the family level. After removing all species with any missing values, our final dataset included n = 9658 181 
species.  182 
 183 

(b) Statistical analysis 184 
 185 
To model the effects of each predictor variable on extinction risk, we treated threat as a binary variable (0, 1) 186 
according to the IUCN Red List categories. All species listed as Vulnerable, Endangered, Critically 187 
Endangered, Extinct (including Extinct in the Wild) were classified as Threatened; the remainder (Near 188 
Threatened, Least Concern and Data Deficient) were classified as non-Threatened. We modelled threat using a 189 
generalised linear mixed effects model in the R package ‘lme4’ (Bates et al. 2015). We implemented a binomial 190 
error structure and included taxonomic family as a random effect to control for the phylogenetic non-191 
independence of species when identifying predictors of threat. To ensure our results were robust to way 192 
random effects were modelled, we repeated our main analysis using phylogenetic generalised mixed model 193 
using the R package ‘phylolm’ (Ho & Ane 2014).  194 

We assessed collinearity between predictor variables by first estimating Pearson correlation 195 
coefficients between each pair of continues variables. We used a threshold of 0.7 as an indicator of potential 196 
collinearity. On this basis we excluded HANPP from our analysis because it was strongly correlated with 197 
human population density (0.74), which is a standard predictor of extinction risk used in many previous 198 
studies. In order to deal with possible associations among categorical predictors we used generalised variance 199 
inflation factors (GVIF) accounting for the number of degrees of freedom associated with each predictor. A 200 
GVIF value of 5 or 10 is commonly used as a threshold to remove collinear predictors (Dormann et al. 2013). 201 
GVIF values for each predictor were always less than two and so all other predictors were retained in our 202 
analysis (Table S1). Predictor variables exhibiting right skew were log transformed prior to analysis. 203 



In contrast to previous assessments of the predictors of extinction risk in birds (e.g. Lee & Jetz 2011), 204 
we are particularly interested in how behaviour and its covariation with other putative drivers of extinction 205 
risk alter the incidence of threat. First, to assess the overall association between each predictor and threat, we 206 
ran a series of single predictor (i.e. univariate) models. Second, we fitted a full multivariate model including 207 
all predictor variables. We assessed the contribution of each predictor by removing, and then reinserting, each 208 
term from the model and calculating the change in the Akaike Information Criterion (∆AIC). Third, to assess 209 
the overall effect of behaviour, we ran a model including all ecological predictors along with metrics of human 210 
exposure and range size, but excluding all behavioural traits. Finally, to examine how behaviour may mediate 211 
the effects of other extinction drivers, we tested for significant interactions between each behavioural trait and 212 
each of the core predictors of threat identified in our full model (range size, body size and human population 213 
density). We first added and then removed each individual interaction term from our full model to identify 214 
those contributing to a significant improvement in model fit (∆AIC > 2). We then included all of the significant 215 
interaction terms in the full model and performed step-wise model simplification, removing those interaction 216 
terms resulting in the smallest change in model support. We stopped when the removal of any interaction 217 
term resulted in a ∆AIC > 2.   218 

To examine how the definition of threat may influence the predictors of extinction risk, we repeated 219 
our analysis considering only threatened species (n = 1251), predicting lower (0 [Vulnerable]) or higher (1 220 
[Endangered, Critically Endangered, Extinct]) levels of threat. Given that range size was included as a 221 
predictor in our model, we also repeated our analysis removing the 321 species that were listed as threatened 222 
due to small or declining geographic range sizes (i.e. criteria B). To assess how the predictors of threat may 223 
change across broad habitat types, we repeated analyses on different subsets of our data including all species 224 
(n = 9658), terrestrial species (n = 8495) and aquatic (n = 767) species. We excluded habitat type as a predictor 225 
when fitting models to terrestrial and aquatic species. In addition, we excluded diet and mating behaviour 226 
when fitting models to threatened and aquatic species, respectively, because models including these terms 227 
failed to converge.  228 
 229 
Results 230 
 231 

(a) Overall predictors of threat in birds 232 
 233 
Our results identified a number of core predictors of threat status that align closely with previous assessments 234 
indicting that variation in threat across all birds arises as a combination of geography, ecology and human 235 
impacts (figure 3). Specifically, the strongest predictor of threat status is geographical range size, with 236 
additional strong effects of body mass, island dwelling and the mean human population density across the 237 
species geographic range, a metric of exposure to human impact. In both univariate and multivariate models, 238 
the incidence of threat decreases with geographic range size (figure 4a) and increases with body size (figure 239 
4b, table S2). When tested in isolation, the incidence of threat is higher on islands. However, in the full 240 
multivariate model accounting for other factors including range size, this effect is reversed, with a lower 241 
incidence of threat on islands (figure 4d, table S2). We note that this counter-intuitive pattern of a lower risk of 242 
threat among island dwelling species when accounting for their smaller geographic range size has previously 243 
been reported (Manne et al 1999). Similarly, in a univariate model, we found that threat decreases with human 244 
population density, but this switches to a positive effect after accounting for variation in geographic range size 245 
in the full multivariate model (figure 4c, table S2). In contrast to the positive effect of human population 246 



density on threat, threat was only weakly and inconsistently related to night light density (figure 3, table S2). 247 
Finally, while there was no consistent relationship between habitat type and threat, we found significant 248 
variation in the likelihood of threat across dietary categories, with the highest threat among scavengers, 249 
aquatic predators and vertivores compared to invertivores and primary consumers (i.e. frugivores, granivores, 250 
nectarivores and herbivores) (figure 4e).  251 

In addition to these established predictors, we also identified a significant effect of behaviour on extinction 252 
risk (figure 3). Although the improvement in explanatory power is modest (marginal R2 excluding versus 253 
including behaviour = 0.48 versus 0.51 respectively), a full multivariate model including all predictors is 254 
significantly better supported than a model excluding behavioural traits (delta AIC = 60). All of these key 255 
results relating to the core predictors of threat and the role behaviour were robust to the exclusion of species 256 
listed as threatened on the basis of small or declining range size and when modelling the non-independence of 257 
species on the basis phylogenetic relatedness rather than taxonomy (table S2, figure S1, S2).   258 
 259 

(b) The effects of behavioural traits on threat 260 
 261 
The strongest behavioural predictor of threat in birds was migratory behaviour (figure 3), whereby long-262 
distance migration confers a higher risk of threat (figure 4i). We note that, in a univariate model, long distance 263 
migrants are significantly less threatened than partial migrants or sedentary species (figure 3c, table S2). This 264 
contrasting finding arises because on average migrants have larger breeding ranges than sedentary species 265 
(figure S3a). Thus, while our multivariate model shows that migratory behaviour promotes threat, migrants 266 
are nonetheless less likely to be threatened overall because of their large geographic ranges. In addition, we 267 
found that the effect of migratory behaviour is also mediated by body size. Specifically, threat increases more 268 
rapidly with body size among sedentary compared to partially migratory species (figure 4b). Another key 269 
predictor was clutch size, which was inversely related to the incidence of threat. Although not supported as a 270 
main effect in the full multivariate model (figure 3), we detected a significant interaction between clutch size 271 
and range size, indicating that large clutch size increases threat among species with restricted geographic 272 
distributions but reduces threat among large-ranged species (figure 4a). 273 
 In contrast to migratory behaviour, some behavioural traits were unrelated to threat, regardless of 274 
whether they were considered in isolation or in the full multivariate model. In particular, we found no 275 
support for an effect of nest placement (figure 4k) or breeding system (figure 4h) in our models (figure 2, table 276 
1). In other cases, threat exhibited significant associations with behaviour, but with effects that varied 277 
depending on whether we accounted for other putative drivers of extinction risk (table S2). When tested in 278 
isolation, weakly territorial species are less likely to be threatened than non-territorial species but this effect of 279 
territoriality is not supported in the full multivariate model accounting for other predictors of threat (figure 2, 280 
4j). Conversely, when tested in isolation, we found no effect of mating behaviour on threat (figure 3b, Table 281 
S2), while in the full multivariate model, the likelihood of threat is significantly higher among polygamous 282 
than monogamous species (figure 2, 4g). This suggests that polygamy may enhance the risk of extinction but 283 
that its effects are masked due to covariation with other factors that decrease threat. Indeed, polygamous 284 
species have smaller body size on average than monogamous species, potentially explaining why the effect of 285 
mating behaviour is only evident in a multivariate model including body size (figure S3b).  286 

Models including or excluding foraging behaviour received almost equal support (figure 2), but an 287 
effect of foraging behaviour was nevertheless statistically significant (table S2). The incidence of threat is 288 
relatively high in species using aquatic plunging and diving behaviours. In addition, while threatened status 289 



is currently low among bark climbing and aerial screening birds, our models show that these foraging 290 
strategies may nevertheless promote threat (Figure 4f). In contrast, our models show that threat is lower 291 
among foraging generalists suggesting that behavioural niche breadth may buffer species from extinction 292 
(figure 4f). In addition to these main effects, we found that threat generally increases with human population 293 
density but that within some foraging strategies this relationship was weak or even reversed (figure 4c), 294 
suggesting that foraging behaviour may mediate the effects of exposure to higher human population density. 295 

 296 
(c) Behavioural predictors across different threat levels and environments 297 

 298 
Our results suggest that the role of behaviour in predicting threat varies across different thresholds of 299 
extinction risk in birds (figure 3). In particular, we found that while migratory behaviour is a core predictor of 300 
whether species are threatened or not, it does not predict the level of threat (i.e. whether a species is 301 
Vulnerable versus Endangered, Critically endangered or Extinct). As a result, a model excluding all 302 
behavioural traits is more strongly supported than a full model incorporating all predictors (table S2). The 303 
only behavioural trait that is strongly supported as a predictor of threat level is foraging behaviour (figure 2). 304 
Finally, we found that the core predictors of threat and the effects of behaviour varied depending on the 305 
environment (figure S1). As with our overall analysis, our models highlighted the primary role of migratory 306 
behaviour and weaker effects of foraging and mating behaviour among terrestrial species (figure S4). This is 307 
expected given that the majority of all birds are terrestrial. In contrast, foraging strategy was the only 308 
behaviour significantly associated with threatened status of aquatic species (figure S5), which was instead 309 
primarily driven by range size, human exposure and island dwelling (figure S1). 310 
 311 
 312 
Discussion 313 
 314 
We have shown that global-scale ecological and behavioural datasets predict variation in IUCN Red List 315 
status of birds. Some behavioural traits were only significant predictors when behaviour was analysed 316 
independently (e.g. territoriality), becoming non-significant when other core predictors of threat were 317 
included in the model. Conversely, other behavioural traits (e.g. mating behaviour) were not significant 318 
predictors when tested in isolation, and their effect was only evident when accounting for correlations with 319 
factors such as body size, geographical range size and human impacts. These findings are consistent with 320 
previous reports that most ecological and behavioural traits have relatively weak associations with 321 
conservation status when incorporated into regional or global models as a species-level trait (Lee and Jetz 322 
2011, Newbold et al. 2015, Keinath et al. 2017). However, although we find little evidence that the recent 323 
expansion of behavioural datasets can revolutionise conservation strategies at these wider scales, our results 324 
nonetheless show that behavioural traits act as modifiers that can improve explanatory power in conservation 325 
assessments, and thus presumably in other predictive exercises (e.g. range shift modelling).  326 
 The traits with strongest influence on conservation status were foraging strategy and migration. 327 
Although migratory species are less threatened overall than sedentary species, this trend is driven by the 328 
larger breeding range size of migratory species and, having accounted for this, we found the migratory 329 
behaviour promotes extinction risk. This is expected because migrants are sensitive to human pressures not 330 
only in their breeding distribution but also along their migratory routes and in their wintering range 331 
(Hardesty-Moore et al 2018). We also show that this effect of migration interacts with body size to determine 332 



threat. Specifically, threat increases with body size more rapidly among sedentary compared to partially 333 
migratory species, perhaps indicating that poorly dispersing large bodied species are particularly at risk. In 334 
the case of foraging, we found that significant relationships between behaviour and conservation status were 335 
mainly driven by a subset of strategies. For example, bird species foraging by diving or plunging from air to 336 
water are highly threatened and these strategies appear to promote extinction risk. Other foraging strategies 337 
that appear to promote threat include aerial screening and bark gleaning but the level of threat is currently 338 
lower in these categories. One possibility is that species utilising these foraging strategies have been less 339 
exposed to human pressure but this seems unlikely given that we found little or no effect of human 340 
population density on threat in these groups (figure 4c). A more likely explanation, therefore, is that there are 341 
other as yet unknown traits associated with these foraging strategies that reduce sensitivity. A number of 342 
other species-level behaviours, including variation in breeding system, territoriality, and nest placement, had 343 
little predictive power in explaining variation in IUCN Red List status regardless of how they were entered 344 
into models. This does not necessarily indicate that such factors are unimportant to conservation, as it is well 345 
known that they play a role in some contexts (e.g. nest design and placement has important implications for 346 
predation risk in modified landscapes; Wilcove 1985). However, our models show that these effects are 347 
relatively minor and often overwhelmed by other non-behavioural factors at global scales.  348 

Behaviour has proved difficult to integrate into global conservation assessment frameworks, 349 
including the IUCN Red List criteria. Our results do not point to any straightforward method of achieving this 350 
integration, at least in birds. However, the accuracy of Red List assessments might be improved by using life 351 
history and behaviour to scale terms in the criteria which are difficult to assess or define, such as “number of 352 
mature individuals”, “future rate of decline” and “severe fragmentation” (IUCN 2001). These factors are 353 
typically judged with a considerable degree of inference (see Tobias & Seddon 2002, Tobias & Brightsmith 354 
2007). The IUCN Red List Guidelines (IUCN Red List Standards and Petitions Committee 2018) on how to 355 
assess parameters such as these could usefully be augmented with further guidance in relation to ecological 356 
and behavioural factors such as mating systems, sex ratios, reproductive rate and predation pressure, 357 
dispersal ability, gap-crossing ability and ecological specialism. Moreover, for Red List assessors considering 358 
what constitutes “severe fragmentation”, future versions of the criteria may be improved with guidelines on 359 
how best to account for dispersal ability, gap-crossing ability and ecological specialism.  360 
 361 

(d) Challenges 362 
 363 
Previous case studies have highlighted the many vital contributions behavioural insights can offer 364 
conservation, including more broadly when identifying behavioural factors that predict tolerance to 365 
environmental change (Tuomainen & Candolin 2011, Sol et al. 2013). However, our findings highlight the key 366 
challenge of applying behavioural data over larger spatial and taxonomic scales, namely that behavioural 367 
traits can have a major influence in particular species or contexts, yet only reduced effect in global analyses. 368 
This occurs for two main reasons. First, behavioural traits are often highly flexible, varying within and 369 
between individuals and over time, according to factors such as age, season and context. This makes them 370 
relatively difficult to estimate by averaging across entire species or populations. Second, behaviour is often not 371 
consistently or independently associated with extinction risk in the same way as, for example, low population 372 
size, small geographic range and slow reproductive output (Cardillo 2005, Lee and Jetz 2011).  373 

This point can be illustrated by year-round territoriality, a system of resource defence most 374 
widespread in tropical birds (Tobias et al. 2016). Intense year-round territorial behaviour can increase the risk 375 



of extinction in some contexts, such as mountaintop species driven to extinction through costly agonistic 376 
interactions with lower elevation replacements moving upslope in response to climatic warming (Jankowski et 377 
al. 2011, Freeman et al. 2018). The costs of territoriality are asymmetric, producing both lower-elevation 378 
winners and upper-elevation losers. Moreover, the pattern of non-overlapping elevational ranges for highly 379 
territorial species holds largely true for some species pairs and localities (Freeman et al. 2019), but not others 380 
(Boyce & Martin 2019), particularly in lowland systems where species do not tend to occupy rare climatic 381 
niches or to share parapatric range boundaries with close ecological competitors. Given that the relationship 382 
between territoriality and extinction risk is bidirectional and context-dependent, it makes sense that we find 383 
no overall link between territoriality and IUCN Red List status. 384 

An important viewpoint to bear in mind is that the models presented here treat behaviour as an 385 
independent species-level trait whereas the influence of behaviour is often dependent on inter-relationships 386 
among species. Staying with the example of territoriality, the key factor is not so much whether a particular 387 
species aggressively defends territories year-round, but whether it directly competes with a closely related 388 
taxon that does the same. Thus, future versions of global models or associated conservation assessments 389 
should consider scoring behavioural interactions rather than behaviour per se. Advancing towards this goal is 390 
particularly urgent given that species interactions are sensitive to environmental effects. Both climate and 391 
land-use change can potentially influence the behaviour of multiple interacting species, as well as their 392 
phenology, physiology and relative abundance, and we ideally need to quantify a range of behavioural 393 
interactions and responses to understand how environmental changes affect interaction-based ecosystems 394 
(Tylianakis et al., 2008; Meise et al., this issue). Again, the key challenge is that the role of behaviour in 395 
heterotrophic systems can be complex and highly flexible (Ness & Bressmer 2005), creating difficulties for 396 
multi-species models. Nonetheless, we may improve predictions by incorporating behaviour in more 397 
sophisticated ways using interaction-based models, starting at local scales and expanding to larger scale 398 
ecological networks when data become available.  399 

A related point is that, although we have largely focused on how particular behaviours may influence 400 
extinction risk, such factors may yet prove to be less important than behavioural flexibility itself (Sol et al. 401 
2016). Individual organisms with the ability to modify their behaviour through adaptability (i.e. plasticity) 402 
may be better able to survive when confronted with novel environmental conditions and selection pressures 403 
imposed by anthropogenic change. Defining and developing general indices of behavioural flexibility and 404 
innovation remains a challenge (Audet & Lefebvre 2017), but may nevertheless be broadly predictable by 405 
morphometric traits that are increasingly available at large scales (Sol et al. 2005). For instance, differences in 406 
relative brain size across species is positively associated with rates of behavioural innovation in birds, an effect 407 
that may explain the apparently greater success of large brained species in colonising and persisting in more 408 
unpredictable environments (Sayol et al. 2006, Sol et al. 2008), including cities, the most highly altered of 409 
human environments (i.e. the ‘cognitive buffer’ hypothesis) (Sol et al. 2013). 410 
 411 

(e) Opportunities  412 
 413 
Although they extend the number of behavioural traits compiled across a major global radiation, our analyses 414 
are limited by the patchy availability of trait datasets and thus remain highly incomplete (figure 1). A major 415 
omission is dispersal behaviour, which we only include as a simple score of migration. Dispersal has long 416 
been considered relevant to the conservation of fragmented populations and the optimum design of reserve 417 
networks (Caro 1999). However, despite the likely importance of dispersal to understanding biodiversity 418 



responses to habitat loss and fragmentation, most broad-scale models (e.g. Newbold et al. 2013, Bregman et al. 419 
2014) lack estimates of dispersal behaviour simply because they are generally not available as a standardised 420 
organismal trait at macroecological scales. This problem may be addressed by the fast-moving field of 421 
movement ecology, with GPS trackers and loggers deployed over increasing numbers of species (Kays et al. 422 
2015), and data compilation accelerated by new satellite tracking systems, such 423 
as ICARUS (https://icarusinitiative.org). Given that it could take decades for these technological innovations 424 
to generate comprehensive dispersal estimates across major taxonomic groups, one potential stopgap solution 425 
is to use morphometric indices of dispersal or flight ability. Dispersal indices, such as hand-wing index in 426 
birds, can be estimated by measuring museum specimens to provide a fuller picture of spatial ecology and 427 
movement behaviour across multiple species in macroecological analyses (e.g. Pigot & Tobias 2015) and 428 
comparative studies of anthropogenic threats (e.g. Thaxter et al. 2017). Such indices, along with further 429 
missing data on factors such as reproductive rate and sensitivity to disturbance (figure 1) should be compiled 430 
and applied to conservation assessments at global scales.  431 
 Another area where behavioural indices may prove useful is ecological forecasting. At present, 432 
dispersal is usually ignored in global range shift models, or only included on the basis of crude metrics, such 433 
as geographical range size (e.g. Hof et al. 2018). Similarly, species interactions are difficult to quantify and, 434 
while most range shift forecasting models acknowledge the limitation, they are generally not included in 435 
analyses. Future models should explore the possibility of estimating the strength of species interactions using 436 
either pairwise morphometric trait divergence or scores of territorial behaviour, both of which have been 437 
shown to limit geographical range overlap in pairs of avian sister species (Pigot & Tobias 2013, Freeman et al. 438 
2019). Theoretically, suites of behavioural traits and associated morphometric indices can be incorporated into 439 
species distribution modelling in much the same way proposed for detailed physiological traits (Chown 2012). 440 
 The associations we detect between behaviour and conservation status (figure 3) suggest that future 441 
research could use similar techniques to identify “threatened behaviours” or suites of behaviours. Using 442 
global analyses to look beyond species conservation and instead to identify behaviours that are rare or 443 
declining might be a useful step towards targeting conservation action towards maintaining behavioural trait 444 
diversity. Similarly, the completion of rich behavioural trait datasets for entire taxonomic groups would pave 445 
the way towards multi-dimensional community-based analyses of behavioural diversity (BD) metrics, 446 
adopting methods from the functional diversity (FD) literature (Petchey & Gaston 2002, Villéger et al. 2008). 447 
Setting strategic conservation priorities based on rare behaviours or BD may have important implications for 448 
ecosystem function, particularly when focusing on behavioural traits linked to key ecological processes, such 449 
as trophic interactions (pollination, seed dispersal, etc.). In addition, there are opportunities for including 450 
behaviours in models designed to pinpoint likely future shifts in conservation status by estimating latent 451 
extinction risk (Cardillo et al. 2006). The way these models work is to predict threat status for any taxon based 452 
on a wide range of attributes and then compare predictions with their observed threat status, thus flagging up 453 
any species currently ‘flying under the radar’ (i.e. likely more threated, and thus a higher conservation 454 
priority, than indicated by their current conservation status).  455 
 456 

(f) Conclusions 457 
 458 
Over recent years, there have been repeated calls for behavioural ecologists to increase their focus on 459 
conservation, not least because their study organisms are being driven to extinction by anthropogenic change 460 
(Caro & Sherman 2011). Previous authors have suggested that bridging the gulf between these fields might be 461 



achieved by applying the experimental or mechanistic approaches predominant in behavioural ecology to 462 
conservation research (Linklater 2004), or else returning to more descriptive forms of behavioural ecology 463 
potentially relevant to conservation (Caro 2007). However, neither of these approaches are exactly suited to 464 
the needs of global conservation assessments which call for simple standardised classifications of basic 465 
behavioural traits at ambitious scales, including natural history observations and morphometric 466 
measurements. Our analyses show how global behavioural classifications are now within reach for some 467 
major taxa, highlighting the need for continued sampling of basic descriptive information for massive samples 468 
of species and pointing the way forward to a deeper integration of the resultant datasets into conservation 469 
assessments at the scale of clades, communities and ecosystems. 470 
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 741 
 742 
 743 

Figure 1. Extrinsic and intrinsic factors associated with extinction risk or conservation status at global scales.  744 
Extrinsic factors include anthropogenic threats to species and the biogeographic and environmental context; 745 
intrinsic factors include population and ecological niche dimensions. This diagram summarises the types of 746 
traits that are either available or desirable when constructing models of conservation risk at macroecological 747 
(continental or global) scales; numerous additional factors may impinge on conservation assessments in 748 
particular clades or species. Red text indicates datasets currently available for all species in well studied 749 
groups like birds. Availability of data is currently biased towards environmental, biogeographical and 750 
population attributes, whereas data tend to be unavailable, uncertain or sparse for most ecological variables, 751 
and absent for behavioural variables.  752 
  753 



 754 

 755 
 756 
 757 
Figure 2. The percentage of threatened species in different behavioural categories: a) Foraging behaviour (1 758 
Foraging generalist, 2 Bark gleaning, 3 Aerial screening, 4 Aerial sallying, 5 Arboreal gleaning, 6 Ground 759 
foraging, 7 Aquatic plunge, 8 Aquatic dive, 9 Aquatic surface); b) Mating behaviour (1 Monogamy with 760 
infrequent polygyny, 2 Monogamy with frequent polygyny, 3 Monogamy, 4 Polygyny), c) Migratory 761 
behaviour (1 Migrant, 2 Partial or short-distance migrant, 3 Sedentary); d) Breeding system (1 Cooperative, 2 762 
Non-cooperative); e) Territoriality (1 Weak, 2 Strong, 3 None); f) Nest placement (1 Cavity, 2 Exposed 763 
elevated, 3 Exposed ground). The width of each segment indicates the proportion of all species (n = 9576) in 764 
each behavioural category. Segment heights indicate the % of species threatened in each category. Colours 765 
indicate threat level (Critically endangered [CR], Endangered [EN], Vulnerable [VU] and Near Threatened 766 
[NT]).   767 
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 771 
 772 
 773 
Figure 3. The relative contribution of anthropogenic, ecological and behavioural predictors to explaining a) 774 
threat across all birds (n = 9658) and b) level of threat (i.e. Vulnerable versus Endangered, Critically 775 
Endangered or Extinct) among threatened species (n = 1251). The contribution of each predictor is quantified 776 
as the difference in AIC between the full model and a model excluding each variable. Predictors are shaded 777 
according to variable type. The dashed line indicates a difference of two AIC units indicating strong support 778 
for predictor inclusion. 779 
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 782 
 783 
Figure 4. The influence of behaviour on levels of threat across the world’s birds (n = 9658). a) Effects of range 784 
size mediated by clutch size, b) effects of body size mediated by migratory behaviour, c) effects of human 785 
population density mediated by foraging behaviour, d) island dwelling, e) diet, f) foraging behaviour, g) 786 
mating behaviour, h) breeding system, i) migratory behaviour, j) territoriality, k) nest placement and l) clutch 787 
size. Results are from a generalized linear mixed effects model including all predictor variables and family as 788 
a random effect. Clutch size is a continuous variable but is here shown as a binary trait (small or large clutch 789 
size) to illustrate the interaction with range size (a). Bars indicate the 95% prediction interval. 790 
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