
On Routing Wide-Area Network Traffic
with High Utilization and Low Latency

Nikola Gvozdiev

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

August 20, 2019

2

I, Nikola Gvozdiev, confirm that the work presented in this thesis is my own. Where informa-

tion has been derived from other sources, I confirm that this has been indicated in the work.

Abstract

An ISP’s customers increasingly demand delivery of their traffic with low latency. The ISP’s topol-

ogy, routing, and traffic engineering, often over multiple paths, together determine congestion and

latency within its backbone. In this thesis we first consider how to measure a topology’s capacity

to route traffic without congestion and with low latency. We introduce low-latency path diversity

(LLPD), a metric that captures a topology’s flexibility to accommodate traffic on alternative low-

latency paths. We find, perhaps surprisingly, that topologies with good LLPD are precisely those

where routing schemes struggle to achieve low latency without congestion. We examine why these

schemes perform poorly, and offer a new routing system called Low Delay Routing (LDR)—an exis-

tence proof that a practical routing scheme can achieve a topology’s potential for congestion-free,

low-delay routing.

LDR dynamically places aggregates to avoid congesting the network, while also minimizing

their completion times, by routing aggregates on paths that minimize end-to-end delay. LDR’s

centralized controller finds a latency-optimal placement of thousands of aggregates in less than a

second, keeping pace with traffic dynamics seen in today’s backbones. LDR also exhibits less churn

in traffic placement when demand or the network topology changes. In simulations of real-world

wide-area topologies, using real-world packet traces, we show that LDR is able to overcome both

short and long-term variability in today’s backbone traffic and can successfully run links at high

utilization without incurring significant queuing delay.

Impact Statement

Computer networks provide two fundamental resources to end users: bandwidth, or how much

information the network can carry, and delay, or how quickly information propagates. Given that

the capacity of desirable low-delay network paths is limited, those two resources are often at odds.

While in the past propagation delay was largely ignored, nowadays a new crop of bandwidth-

hungry, delay-sensitive applications is forcing network operators to be more flexible and dynami-

cally adjust the routing in their networks in order to minimize delay while maximizing bandwidth.

Maintaining the precarious balance between bandwidth and delay in an environment where

the network operator lacks direct control over senders and receivers is an exciting open research

problem that we explore in this thesis. We provide an existence proof that it is possible to build a

routing system which dynamically balances traffic to both achieve high utilization and low delay

with off-the-shelf routing and switching hardware. In addition to obvious commercial benefits

for network operators, such a system also has the potential to provide the network’s end users

with better end-to-end service. But, fundamentally, even the best routing system is limited by the

physical topology that it operates on top of. We map out the design space of low-delay routing and

explore what network topologies are most amenable to providing bandwidth without sacrificing

delay. We expect this analysis to be beneficial inside, as well as outside academic research. We

outline a number of new promising research directions that emerge from our work.

Acknowledgements

I am deeply grateful to my supervisors Mark Handley and Brad Karp for their guidance. Without

their experience and unyielding support this thesis would not have been possible. Their deep in-

sights and attention to detail never ceased to amaze me and served to inspire me during my time

at UCL. In addition, I would like to thank Stefano Vissicchio whose help and advice were invalu-

able in shaping the work, as well as our submissions’ anonymous reviewers whose feedback was

essential.

I offer my thanks to my wife Svetlana and to my parents Boriana and Lyubomir who were

always encouraging and understanding. They were with me every step of the way and certainly

without their moral support the journey would have been a lot more difficult.

And last, but not least, I would like to thank Lynne Salameh, Astrit Zhushi, Petr Marchenko

and Georgios Nikolaidis, my fellow PhD students at UCL, whose friendship I value greatly.

Contents

1 Introduction 16

1.1 Cutting Latency by Increasing Connectivity . 19

1.2 Problem Statement . 21

1.3 Thesis Roadmap . 21

1.4 Contributions . 23

2 Literature Review 24

2.1 Single-path Routing . 24

2.2 Routing Over Multiple Paths . 28

2.3 Solution Space . 32

3 The Challenges of Routing for Low Latency 35

3.1 The Bandwidth-Propagation Delay Tradeoff . 35

3.1.1 Greedy Routing and Varied Link Capacities 38

3.1.2 Greedy Routing and Local Aggregates . 38

3.1.3 The Need for Non-Greedy Routing . 39

3.2 Assessing Topologies’ Potential for Low Latency . 41

3.2.1 Low-Latency Path Diversity . 41

3.2.2 Path Diversity is Hard to Use . 43

3.3 The Headroom Dial . 50

3.3.1 Headroom vs. Latency . 51

3.3.2 How Much Headroom is Needed? . 51

3.4 Summary of Findings . 58

4 Routing Goals and Design Overview 59

4.1 Requirements . 60

4.1.1 Requirement: Explicitly Target Low Delay 61

4.1.2 Requirement: Adapt to Variable Demand . 61

4.1.3 Target Behavior . 62

Contents 7

4.1.4 Greedy Heuristic or Closer-to-Optimal Solution 63

4.2 LDR’s Design . 64

4.3 Installing Network State . 65

5 Optimization 67

5.1 Objective . 67

5.2 Minimizing Omax Across all Links . 71

5.3 Adding Paths Iteratively . 73

5.4 Path Addition Heuristic for Large Networks . 74

5.5 Prioritizing Traffic in LDR . 76

5.6 Reordering, Jitter and Control Plane Overhead . 80

5.6.1 Changes in Per-aggregate Demands . 81

5.6.2 Changes in Per-aggregate Flow Counts . 82

5.6.3 Limited Optimization . 82

6 Characterizing Demand 84

6.1 Counting Flows . 84

6.2 Aggregate Demand . 85

6.2.1 Adding Headroom . 85

6.2.2 Statistical Multiplexing . 86

6.2.3 Predicting Mean Traffic Level . 87

6.2.4 Assessing Link Multiplexing . 87

6.3 Dealing With Unexpected Variability . 91

6.3.1 Triggered Optimization . 91

6.3.2 Low-priority Marking . 92

6.3.3 Triggered Optimization and Headroom . 92

7 Evaluation 94

7.1 The Impact of Latency on Path Selection . 95

7.2 Generating Traffic Matrices . 98

7.3 Static Components of LDR . 101

7.3.1 Low vs. High LLPD . 101

7.3.2 Performance Under Varied Load and Locality 103

7.3.3 Fraction of Flows Routed on Shortest Path 105

7.3.4 Absolute delay . 106

7.3.5 Path Count . 108

7.3.6 Runtime . 111

7.3.7 Suboptimality of LDR . 112

Contents 8

7.3.8 Reordering and Jitter . 113

7.3.9 Prediction Algorithm . 115

7.4 Short and Long-Term Variability in Demand . 117

7.4.1 Performance of the Convolution Algorithm 117

7.4.2 Predictability of Short-term Variability . 119

7.4.3 Long-term Variability and Headroom . 121

7.4.4 Triggered Optimization and Limited Optimization 122

8 Conclusions 125

8.1 Limitations in LDR’s Evaluation . 126

8.2 Modern enterprise networks. 126

8.3 Resilience to Failures . 127

8.4 Influence of Routing on Topology . 128

8.4.1 Multi-step Upgrade Using LLPD . 129

8.4.2 Single-step Upgrade . 129

8.5 Future Research . 131

8.6 Closing Remarks . 133

Bibliography 135

List of Figures

1.1 A subset of NTT’s European network. Drawn to scale. 19

2.1 All links have the same bandwidth; may need to route packets from aggregates

A→D and E→D over both the top path (A→ B→ C→ D) and the bottom path

(E→ B→ F → G→ D) to avoid congestion. 25

2.2 Figure 2.1 with one VRF per aggregate at B; each outgoing link is associated with

two different costs, depending on the VRF. Two different shortest-path trees will

be used; the paths taken by each aggregate are highlighted. 27

2.3 Figure 2.1 with link weights for ECMP; the “.5” labels indicate that traffic is split

evenly among outgoing links; with ECMP packets from A→D and E→D will share

A→ B→C→ D and E→ B→ F → G→ D which have the same weight. 28

2.4 Link-based MinMax formulation: A and L are the sets of all aggregates and links

respectively, the demand of an aggregate a is Ba and the capacity of a link l is Cl .

We want to find the each aggregate’s flow fa(i, j) that needs to be sent over each

link (i, j)which will minimize the maximum link utilizationUmax. One variable per

link, per aggregate. 30

2.5 All links are 10 Gbps; MinMax can fail to minimize utilization in links with uti-

lization below the utilization of the link with minimum maximal utilization; the

MinMax utilization is 0.9, the split of bottom aggregate is undefined. 30

2.6 All links are 10 Gbps; the MinMax utilization is 0.9 regardless of path choice and

splits; with MinMax among the many solutions of the same minimal utilization, it

is undefined whether packets take the high or the low delay path. 31

2.7 Path-based MinMax formulation; Pal is the set of aggregate a’s paths that cross link

l and the variable xap is the fraction of a that goes on path p. One variable per path. 31

2.8 A map of the solution space of routing based on the routing system’s objective;

systems that directly control traffic sources in enterprise environments are colored

red. The positions of the points are notional and do not correspond to specific

quantitative values. 33

List of Figures 10

3.1 CDF of the fraction of links that, when removed from each topology, converts it

into a spanning tree; 237 real-world topologies from the Topology Zoo [50] dataset. 36

3.2 Simple scenario drawn to scale; all links have capacity of one unit. SP routing with

ECMP, MPLS-TE, and B4 exhibit congestion when a new link is added whether cost

is hop count or propagation delay; these routing schemes fail to fit offered demand

because they greedily place each aggregate’s flows onto their shortest paths first. . . 37

3.3 Greedy routing gets stuck in local minimum, fails to avoid congestion; all links have

the same delay and the same unit capacity, except for A→ D, whose capacity is 2

units. 38

3.4 Greedy routing yields high delay on mesh-like networks; all links have a capacity

of one unit and the two aggregates have a demand of one unit. The long-haul

aggregate (shown in blue) has a second best path that is of slightly longer latency

than its shortest path, while the second best path of the local aggregate (show in

red) is significantly worse. 39

3.5 Congestion-free solution that is unattainable by SP routing regardless of assign-

ment of weights; thick lines have a capacity of 2 units. 39

3.6 CDF curves of APA for all networks, given path stretch limit of 40%. Five random

curves are highlighted. The vertical line at 0.7 indicates PoPs 70% of whose shortest-

path links can be routed around without excessive delay. 42

3.7 GTS’s Central Europe topology . 44

3.8 Networks with high LLPD tend to concentrate traffic when using SP routing. The

x-axis shows the topologies sorted according to their LLPD, and the y-axis reports

the fraction of source-destination pairs that experience congestion. 44

3.9 Effects of active routing on congestion and delay. The top part of each graph shows

the fraction of all non-zero demands in the traffic matrix that end up crossing at

least one congested path, the bottom part shows latency stretch. For each x value

(different topology) we plot themedian and 90th percentile from runs across a range

of traffic matrices. The gray line indicates the span of the distribution. 46

3.10 Inadvertent congestion on GTS using B4. The greedy nature of B4’s path alloca-

tion causes both directions of the first link on the V → G path to quickly become

saturated, at which point there are no alternative paths for the V → G traffic. . . . 47

List of Figures 11

3.11 Excessive latency in the GTS topology using B4. As much as possible of each ag-

gregate is routed on the shortest paths (the two solid lines) causing fully allocated

links (like the one labeled) to be shared between the two aggregates; traffic from

both aggregates is then sent on second-best paths. Note that even though the sec-

ond best path of the red aggregate has comparable delay to its best path, the second

best path of the blue aggregate is significantly longer—it would have been better to

route more of the red aggregate on its second-best path. This real-world example

is reminiscent of the synthetic one presented in Figure 3.4. 48

3.12 Link utilization in GTS. 50

3.13 Latency stretch as headroom is increased. 51

3.14 Minute to minute change of mean traffic level in the CAIDA dataset 52

3.15 Minute to minute change of standard deviation. 53

3.16 A short-term spike in traffic level; from 2016 CAIDA packet trace of uncongested

U.S. Tier-1 ISP link. 54

3.17 Hurst parameters at different chunk sizes . 56

3.18 Hurst parameters at 100ms bin size . 57

3.19 A minute from a combined hour-long trace with H = 0.8 57

4.1 MinMax and B4 do not explicitly target low delay, and so do not achieve minimal-

delay paths. All links are of 1 Gbps capacity. 60

4.2 The solution to the left is the same as the ideal one in Figure 4.1d. The solution

to the right has the same total propagation delay as the one on the left, but is less

desirable due to excessive stretch. 62

4.3 High-level operation: controller and ingress points. 64

5.1 All links are 10 Gbps; Omax = 2, attained at the top links. If the optimizer uses the

objective in 5.1 the bottom aggregate’s traffic may end up congesting one of the

bottom paths even though there is capacity for it to fit. 69

5.2 Same scenario as in Figure 5.1, but the bottom aggregate’s demand is 30Gbps and

not satisfiable by the two bottom paths. This creates two regions of different over-

subscription in the network. A single application of Equation 5.3 will minimize

oversubscription in the top part of the network, but not in the bottom one. 72

5.3 Obtaining paths and per-path aggregate fractions, assuming each aggregate’s de-

mand is known. This is a two-stage process: the inner loop uses Equation 5.3 to

minimize both delay and oversubscription for a given set of paths (Section 5.2) and

the outer loop adds new paths (Section 5.3). 72

List of Figures 12

5.4 A simple pathological example. All links have the same 20Gbps capacity and there

is a single aggregate whose shortest path passes through C; the top path via E has

longer propagation delay than any other path from A to B. LDR’s iterative path

addition process will have to add all paths that go through the densely connected

region before the only viable path via E is discovered. 74

5.5 Adding paths to a single aggregate, assuming the aggregate’s set of paths is pre-

populated to contain its shortest path. When the longest path in the set is oversub-

scribed, k shortest paths are added until either a non-oversubscribed path is found,

the aggregate’s path set has grown to the per-aggregate limit (L) or the global soft

path limit is hit (Lso f t). After either of those limits is reached paths are skipped to

avoid exploring densely connected regions as in Figure 5.4. No paths are added if

the hard limit (Lhard) is reached. 75

5.6 Optimization process with extended aggregates; each aggregate is defined as a com-

bination of 〈ingress,egress, f ilter〉. 77

5.7 Different priority modifiers. 78

5.8 Effect of a single large aggregate’s demand decrease 81

5.9 Effect of a single aggregate’s flow count change . 82

6.1 Picking rates to cope with short-term variability . 86

7.1 Ladder topology . 95

7.2 Ladder topology MinMax / MinMaxK10 . 95

7.3 Ladder topology B4 . 95

7.4 Ladder topology LDR . 95

7.5 Ladder topology completion times . 96

7.6 Cumulative fraction of total volume in Cogent’s topology that travels a given

shortest-path distance. 100

7.7 Maximum flow stretch; LLPD < 0.5; no headroom 101

7.8 Maximum flow stretch; LLPD> 0.5; where the CDF fails to reach 1.0, this indicates

that in the remaining scenarios the routing system could not find a placement that

would fit all the traffic . 102

7.9 Maximum flow stretch under different load and locality values; LLPD > 0.5; no

headroom; where the CDF fails to reach 1.0, this indicates that in the remaining

scenarios the routing system could not find a placement that would fit all the traffic 104

7.10 Fraction of flows that are routed on the shortest path under different load and lo-

cality values; LLPD > 0.5; no headroom . 106

7.11 Absolute stretch in median topologies; only showing the top 20% of each distribution. 107

List of Figures 13

7.12 Maximum path count under different load and locality values; LLPD> 0.5; no head-

room . 109

7.13 Fraction of aggregates that have only one path under different load and locality

values; LLPD > 0.5; no headroom . 110

7.14 Runtime of optimization algorithms. Each point is the runtime of running LDR

with and without k shortest paths caching on a traffic matrix from the set of results

that are shown in Figures 7.8 to 7.13. We also present the runtime of a traditional

link-based multi-commodity flow formulation. 111

7.15 Sub-optimality with LDR. Plot shows median latency stretch at 39% and 40% head-

room. The two curves are for LDR and MinMax, which is the optimal multi-

commodity flow solution that minimizes link utilization. 112

7.16 CDF of the fraction of total network volume that changed paths. Each point is a

separate traffic matrix, the load of whose aggregates is randomly uniformly dis-

tributed +/- 5%. 113

7.17 CDF of the fraction of total network volume that moved to shorter paths. 114

7.18 CDF of the total number of paths updated. 115

7.19 CDF of max single-aggregate volume change . 115

7.20 Predictions of mean traffic level (Tier-1 ISP) . 116

7.21 Perfect next-minute mean level prediction; convolution algorithm has access to

current traffic counters. Mean link utilization (left) andmaximum queue size (right)

for the first minute. Links are ranked based on the utilization of LDR (NC). 118

7.22 Perfect next-minute mean level prediction; convolution algorithm uses previous

minute’s traffic to assess short-term variability. Mean link utilization (left) and

max queue size (right) for the first three minutes. Links are ranked based on the

utilization of LDR (NC). 119

7.23 Traffic that crosses link rank 20 from Figure 7.22; time is in milliseconds; traffic is

binned in 100 ms bins and each point is the mean of a bin. In this experiment LDR

is given the exact mean traffic levels for the upcoming minute, but this knowledge

of the future is of little use as the unexpected change happens mid-minute. 120

7.24 155 sec to 161 sec zoomed in from Figure 7.23; time is in milliseconds; bin size is

10ms. 120

7.25 Increase in delay due to adding a fixed amount of headroom to all links. 121

7.26 Mean link utilization (left) and max queue size (right) for the first ten minutes; 10%

headroom target for the mean level estimation algorithm. Links are ranked based

on the utilization of LDR (NC). 122

List of Figures 14

7.27 Mean link utilization (left) and max queue size (right) for the first ten minutes; 5%

headroom target for the mean level estimation algorithm. Links are ranked based

on the utilization of LDR (NC). 123

7.28 Mean link utilization (left) and max queue size (right) for the first ten minutes;

10% headroom target for the mean level estimation algorithm; limited optimization

enabled. Links are ranked based on the utilization of LDR (NC). 124

8.1 Same shortest-path routing data as in Figure 3.8, but with Google’s topology (LLPD

= 0.875) added. 126

8.2 Latency benefits of network growth; graph shows median and 90th percentile of

path stretch before and after growing networks to increase their LLPD; each letter is

a different topology: Packetexchange (P), Deutsche Telekom (D), Hurricane Electric

(H) and Tinet (T). 128

8.3 Fraction of flows whose delay increases/decreases when an existing link is up-

graded in Hurricane Electric’s network . 130

8.4 Fraction of flows whose delay increases/decreases when a new link is added to

Hurricane Electric’s network . 131

8.5 AS-level topology, ingress and egress devices shown. 132

List of Tables

5.1 Limits used when adding paths . 76

7.1 Route changes sent by the controller during the simulation from Figure 7.26. 123

7.2 Route changes sent by the controller during the simulation from Figure 7.26, but

with limited optimization enabled. 124

Chapter 1

Introduction

In recent years, low-latency communication has taken on a new importance. In a widely publicized

study a decade ago Amazon found that increasing latency by 100 ms reduces revenue by millions

of dollars [74]. Today, as desires of users have evolved, lower delay has become even more crucial

from financial services installing microwave towers across Europe [6] and willing to invest billions

to reduce the round trip time between London and Tokyo [5], to online gaming companies building

their own backbone just to shave off several milliseconds of the delay across the US [33]. Given

this strong economic incentive, it is only natural that lowering delay has received a lot of attention

from both industry and the research community [75]. Different approaches to reducing delay can

be grouped into three main categories.

The first category consists of solutions that focus on making transport protocols better suited

for low latency communication across the Internet. Much effort has been put into improving TCP

loss recovery [28], and deploying congestion control that tries not to build queues [17]. New trans-

port protocols for the web are rapidly being deployed [53], specifically tailored to reduce the num-

ber of round trip times small web requests make.

A second category looks at the datacenter. User requests will often trigger distributed compu-

tation (e.g., a map reduce) across multiple machines physically located within the same datacenter,

or even within the same rack. Due to the very low round trip times and high capacity between

thosemachines, custom solutions have been devised to increase the utilization of the networkwhile

avoiding transient congestion due to effects such as incast [18]. There has been much research

ranging from prioritizing certain types of traffic [2] to latency-minimizing datacenter-specific con-

gestion control mechanisms [4] and protocols [10, 39].

A third category focuses on the wide area. While content providers have invested great effort

to move static content closer to users, a lot of dynamically generated traffic is likely to still need

to cross the Internet. This involves potentially traversing multiple ISPs’ networks where the user’s

packets are at the mercy of the paths chosen by the routing scheme employed by the network’s

administrator. In this thesis we will focus on the latency that a user’s traffic experiences while

17

traversing a single ISP’s network. While this may seem like a straightforward routing problem,

choosing low-propagation-delay paths is not enough: as queuing inflates latency, a low-latency

placement of traffic also must not congest the ISP’s network.

Fundamentally, the rate of any data transferwill be limited by the hopwith the lowest available

capacity along the end-to-end path. This hop, which we will refer to as the bottleneck, is where

packets experience congestion, queuing delay and potentially drops. Usually the bottleneck hop is

close to the end user, with access link speeds a couple of orders of magnitude lower than core links—

e.g„ a typical 10-100 Mbps broadband access link versus a 40 Gbps core fiber link. By changing

its own routing the ISP can influence the propagation delay experienced by packets that cross its

network. As long as the bottleneck remains close to the end user, outside of the ISP’s own network,

such routing change will not have a significant effect on queuing delay. If the ISP, however, makes

a routing change that congests one or more of its core links, the bottlenecks of a large number of

its customers will be moved from their respective access links to the ISP’s own core. In that case

the affected customers customers will experience unpredictable queuing and loss. Clearly, ISPs

have a strong incentive to avoid congestion within their backbones: customers may jump ship to

a competitor if they find their transit traffic experiences significant loss. Given the importance of

latency to user experience, competing on latency also ought to help ISPs attract customers. Can a

wide-area ISP minimize both propagation and queuing delay to offer the lowest possible latency?

A natural approach taken by some network operators today is to use prioritization. Not all

traffic is created equal and some traffic types (e.g., non-interactive streaming video) are more tol-

erant to delay and packet loss than others (e.g., web browsing). If the operator has an intimate

knowledge of the traffic that crosses the network, and the traffic itself is readily classifiable, it is

possible to give precedence to delay sensitive traffic so that it does not compete with other traffic

for network resources, using techniques such as differentiated services [61].

Throughout the bulk of this thesis we will consider the more general problem of providing

low latency when low-latency traffic cannot be separated from other traffic. As we discuss in

Section 5.5, when it is possible to tease apart latency sensitive from latency insensitive traffic, the

approaches discussed in this work can either be trivially adapted, or can be used complementary

to prioritization-based approaches.

In general, an ISP has two design choices at its disposal that principally determine the con-

gestion and delay experienced by traffic within its backbone: the topology and the placement of

traffic on that topology, as determined by some combination of routing and traffic engineering.1

Traffic Placement

As it turns out, ISPs’ present-day approach to avoiding congestion within their backbones affords

flexibility in path choice that can be harnessed to route traffic so as to minimize latency. ISPs avoid

1In the interest of brevity, we will often refer to this combination as routing.

18

congestion by overprovisioning—by ensuring that link capacities exceed demand. But as adding

capacity over the wide-area is very costly, ISPs tend to avoid the high cost of provisioning a single

path that can carry the entire aggregate between one ingress router and one egress router. Rather,

they provision multiple, shared paths between an ingress and egress, each typically of different

delay, and use traffic engineering to split aggregates across these paths.

Today’s traffic engineering schemes do notminimize the delay experienced by traffic, though—

they focus primarily on avoiding congestion in a fashion that can often lengthen delay relative to

the shortest path. Approaches such as TeXCP [47] and MATE [29] spread traffic across all available

paths to maximize the unused capacity on all those paths—and thus place traffic on paths longer

than necessary. Approaches for within an enterprise, where demand is easier to predict, such as

B4 [45] and SWAN [42] “pack” traffic on an enterprise WAN’s links to achieve high link utilization.

Normally, filling links to near their capacity risks congestion should demand increase. But B4 and

SWANdo not need to copewith demand variability. As the operator controls both end hosts and the

WAN’s routers, these systems assume rate limits for sources that are known to the routing system.

Alas, an ISP has no such control of demand. Shortest-path routing on delay-proportional link

metrics concentrates traffic on the shortest path(s), and forces ISPs to overprovisionmore than they

would need to when using the aforementioned traffic engineering schemes, which can fit traffic on

multiple unequal-delay paths. (Indeed, the high overprovisioning cost of shortest-path routing is

the very motivation for these traffic engineering schemes.) None of these approaches reliably finds

delay-minimizing paths, as we illustrate with simple, pedagogical examples in Section 4.1 and in

simulations of real-world ISPs’ topologies in Chapter 7.

The Interplay Between Topology and Routing

The ability of the routing system to minimize delay is closely related to the network’s topology.

Historically, Internet providers have run their backbones so as to provide end-to-end reachability

with adequate capacity, with a measure of redundancy for resilience to backbone link failures.

This arrangement falls out of the interaction between a backbone’s topology and the intra-domain

routing system the provider employs. For example, failure resilience requires some degree of path

diversity and a routing system that can choose paths, while providing adequate capacity depends

on whether the routing system avoids concentrating traffic on some of those paths and congesting

them. Given this close interaction, it is natural not only that network topology has influenced

routing system design, but also that routing system design influences topology: a provider will

deploy links in light of what the routing system will do with them.

Early backbones used shortest-path (SP) intra-domain routing; first distance-vector [56], then

link-state [57, 60, 16]. These algorithms worked well when relatively sparse topologies were run at

low utilization. More recently, cost pressures have pushed ISPs toward higher link utilization. SP

routing has a natural tendency to concentrate traffic and cause congestion, so ISPs have augmented

1.1. Cutting Latency by Increasing Connectivity 19

Frankfurt

Vienna

Budapest26 x 10Gbps

13 x 10Gbps

Warsaw

3 x 10Gbps

Berlin

1 x 10Gbps

1 x 100Gbps
to Marseille

to Amsterdam
12 x 10Gbps
1 x 100Gbps

Figure 1.1: A subset of NTT’s European network. Drawn to scale.

SP routing with traffic engineering (TE) mechanisms such as MPLS-TE [23] that offload traffic onto

longer paths. However, the sparseness of topologies has not greatly changed over the last 15 years,

as we will explore in Section 4.1. This status quo—SP routing augmented with TE, running over

sparse topologies—does a good job of delivering capacity to end users. It also provides a clear path

for upgrades: add capacity to links where TE is needed to reduce congestion.

There has been little systematic study of the interaction between a topology’s design and the

behavior and performance of routing schemes when run on it. A topology’s designer must, even if

only implicitly, take into account how the routing system will behave on that topology. Similarly, a

new routing system’s designer would have in mind (again, perhaps implicitly) topologies on which

routing should perform well. Each of these approaches starts by fixing a “legacy” design (either the

routing or the topology) and attempts to tailor the other to it. If either legacy design isn’t a good

fit with placing traffic to avoid congestion and achieve low latency, the ability of the ensemble to

meet those aims will suffer.

One aim of this thesis is to break with this approach and develop an understanding of exactly

which sorts of ISP topologies fundamentally have the potential to deliver traffic with both low

propagation and low queuing delay under time-varying demand. As monetary cost is central to

how ISPs develop their networks and we have no model for the economic and geopolitical con-

straints that gate new link deployment, throughout most of this work we will focus our analysis

on existing ISP topologies.

1.1 Cutting Latency by Increasing Connectivity
One seemingly promising strategy for cutting latency is to introduce links that carry demand along

a more direct geographic path, shortcutting a previous, more circuitous one. Unfortunately, legacy

SP routing directly hampers the introduction of latency-cutting links into a backbone’s topology, mak-

ing it hard to build low-latency, more connected backbones. When augmented by TE, SP fares

somewhat better, but as we will show, this combination still falls short.

To see where SP struggles, consider Figure 1.1, which depicts a portion of the European net-

work of NTT, a large global ISP [1]. Most hops in this part of NTT’s network consist of bundles of

1.1. Cutting Latency by Increasing Connectivity 20

individual 10 Gbps links. Clearly this structure is the result of incremental upgrades—once a hop

starts to approach capacity, NTT adds a new 10 Gbps link.

In NTT’s network, note that traffic from Budapest to Vienna must go via Frankfurt, and thus

experience higher latency than strictly necessary. Suppose, for the sake of argument, that the traffic

from Budapest to Vienna varies between 7 Gbps and 20 Gbps depending on time of day. Suppose

further that traffic has grown such that the Budapest→ Frankfurt link is running uncomfortably

close to capacity. The operator must add capacity. One option is to add another 10 Gbps to the

Budapest → Frankfurt link; another is to add a new 10 Gbps link direct between Budapest and

Vienna. Both would help with capacity, but the new link would also improve latency and might

well be cheaper, as it is shorter.

In practice, though, the routing system’s limitations make using this direct link difficult. 2

At off-peak times, the 7 Gbps of traffic fits, but at peak times SP routing would result in heavy

congestion as 20 Gbps of demand tries to fit down a 10 Gbps link. What the operator would like

is for the 10 Gbps link to run at fairly high utilization all the time, but for excess traffic to take

the indirect path—if only 10 Gbps are added there is no solution that satisfies peak capacity with

the best possible latency. In this way, capacity is provided cheaply, and at least some traffic sees

improved latency.

TE schemes [47, 42, 31, 29, 7] can, in principle, solve this problem. To do so, they would split

the Budapest→ Vienna traffic unequally among multiple, unequal delay paths as necessary, and

do so automatically and dynamically depending on the time of day and level of traffic. However,

such schemes primarily concern themselves with capacity; none places traffic within a backbone

so as to minimize delay and fit offered load. Indeed, as we explore in Section 4.1, on mesh-like

networks, neither SP routing (with or without ECMP) nor state-of-the-art TE schemes can achieve

delay minimization while fitting user demands.

ButWAN routing is not only about choosing paths and deciding how to split aggregates among

paths. A central challenge when adapting wide-area intra-domain routing to traffic demands is cop-

ing with variability in those demands. A routing scheme that aims for low-latency traffic placement

will have to, by definition, load paths that provide low propagation delay to a very high level of

utilization, but it must at the same time remain congestion-free and must not congest links when

traffic demands vary over time. A simple way to guard against overloading links when demands

increase is to enforce headroom: to reserve some minimum fraction of each link’s capacity to ac-

commodate foreseen but rare demand increases. Putting capacity aside to soak up demand spikes,

however, can be seen as changing the topology; a capacity-aware routing scheme may move some

traffic to longer paths when the capacity of a short-delay path is “reduced.” We explore this inter-

play, and show that one may view the design space of congestion-free, low-delay routing schemes

2NTT may, of course, have other reasons for arriving at this topology. Regardless, adding and using the direct link is
difficult.

1.2. Problem Statement 21

as falling along a continuum. At one extreme is a notional scheme that employs no headroom on

any links—and thus achieves the lowest delay a given topology can offer, at the expense of risk-

ing congestion when demand increases. At the other are MinMax schemes, which by definition

leave as much headroom on links as possible: as previously mentioned, they spread traffic across

multiple paths so as to maximize the free capacity across links, in so-called MinMax fashion. This

approach trades away high link utilization to hedge against demand variability: maximizing head-

room reduces the chance that a change in traffic causes congestion. In an ISP setting, where demand

isn’t known perfectly in advance, it is an open question where on this continuum a practical rout-

ing scheme should lie. Ideally, there should be a sweet spot with enough headroom to cope with

demand variability, yet not so much that paths are needlessly circuitous, incurring high latency.

1.2 Problem Statement
Today’s routing schemes fall short at extracting path-diverse ISP topologies’ potential for low-

latency, congestion-free traffic delivery. Can we build a routing system that is able to fully harness

this potential?

Delays in computer networks can either be propagation delays or queuing delays. Queuing

delay is much less predictable than propagation delay. Can a latency-minimizing routing scheme

minimize propagation delay while avoiding queuing?

Any delay-minimal routing scheme for the ISP settingmust cope with ever-changing demand—

it cannot rely on fully predictable, controlled demand, as can schemes tailored for the enterprise

setting. As there is a limit to how frequently any demand-sensitive routing scheme can change

the placement of traffic, to avoid congestion, can a delay-minimizing routing scheme also be able

to predict whether aggregates’ variable demands will statistically multiplex on a path in between

changes in traffic placement?

To use low-delay paths in the ISP efficiently, a routing scheme must run a subset of the ISP’s

links at high utilization. Regardless of how good the routing system’s traffic prediction is, doing so

under variable, uncontrolled demand risks congestion. Can a routing scheme adapt quickly when

demand for a link bumps up against that link’s capacity?

1.3 Thesis Roadmap
We begin by examining, in Chapter 2, prior work in the field of routing and traffic engineering,

and how it relates to low-latency routing.

In Chapter 3 we explore how connected today’s topologies are. We demonstrate using small-

scale synthetic examples that, as backbones get more connected, today’s routing and TE systems

fail to place traffic onto multiple alternative paths so as to satisfy user demands and minimize

delay. We then develop a routing-agnostic, first-principles understanding of exactly which sorts of

ISP topologies fundamentally have the potential to deliver traffic without congestion and with low

1.3. Thesis Roadmap 22

latency under time-varying demand: namely, those with diverse low-latency paths. We quantify the

extent to which 116 real ISP backbone topologies from the Internet Topology Zoo [50] exhibit this

potential. From there, we explore in detail howwell today’s widely known routing systemsmanage

to exploit these same ISP topologies’ inherent potential for congestion-free, low-latency traffic

placement. We verify the results from the synthetic examples and find, somewhat surprisingly,

that on topologies with diverse low-latency paths—precisely those with the greatest potential of

this sort—status-quo schemes from shortest-path routing to B4 and MinMax traffic engineering

(e.g., TeXCP) arrive at traffic placements that suffer congestion or high latency stretch. We reveal

why these routing designs encounter these poor outcomes on these promising topologies.

In Chapter 4 we present the overall goals and the design of LowDelay Routing (LDR), a routing

system for ISP backbones that offers users low latency by placing aggregates on paths so as to min-

imize the total latency experienced by flows, while also avoiding congestion. Ingress routers report

aggregate traffic demand measurements to LDR’s centralized controller, which periodically com-

putes minimal-delay placements of aggregates on paths. The controller reports these placements

to the ingress routers, which forward aggregates’ flows accordingly. Should demand abruptly in-

crease beyond expectation, ingress routers trigger an early recomputation of traffic placement.

In Chapter 5 we describe LDR’s optimization mechanism, which, given a traffic matrix and a

set of demands, is able to quickly produce a solution that avoids congesting links while minimizing

propagation delay.

Of course, real demand in a network is never fixed. As previously discussed, any solution

which minimizes propagation delay will need to run some links at high utilization. We cannot

simply apply LDR’s optimization in an uncontrolled ISP-like environment and expect low queuing

delay—we need to deal with variability. The mechanisms we describe in Chapter 6 allow LDR to

deal with both short- and long-term variability.

In Chapter 7 we evaluate the performance of LDR. Extensive simulations of LDR on real-world

ISP topologies [50] show that LDR consistently achieves lower delay than versions of MinMax and

B4 that we extend to target delay minimization explicitly. We further explore how stable delays

experienced by flows are under these schemes as an ISP increases capacity. Our results reveal

that, somewhat surprisingly, adding capacity to an ISP’s backbone often causes B4 and MinMax

to lengthen many flows’ delays, whereas LDR maintains minimal total delay and causes delay in-

creases for far fewer flows. LDR achieves these feats despite the ever-changing traffic demands in

the ISP scenario.

In Chapter 7 we additionally demonstrate that LDR’s approach to routing can perform well on

all topologies, but performs especially well where the topology offers a good diversity of low-delay

paths. We speculate that such topologies may be rare today because they have been hard to use

effectively with existing routing schemes. The adoption of techniques similar to those presented

may eliminate this obstacle to building more “mesh-like” network topologies well suited to low-

1.4. Contributions 23

latency, congestion-free traffic delivery.

1.4 Contributions
As we outline above, at the beginning of this thesis we explore the interplay between the diversity

of low-latency paths in a topology and the ability of a routing scheme to exploit that diversity to

achieve congestion-free, low-delay traffic delivery. Our main contributions there are:

• revealing the nuanced interaction between a topology’s path diversity and routing schemes

that aim to deliver low latency without congestion;

• revealing exactly why existing routing schemes cannot unlock the low-latency potential of

path-diverse topologies;

• identifying the central role of headroom in effecting a necessary trade-off between avoiding

congestion and reducing path latency when traffic demands vary; and

• characterizing an approach to routing that avoids the pathologies that existing approaches

fall prey to on path-diverse topologies, that parsimoniously yet safely applies headroom to

cope with demand variability, and that is computationally tractable at ISP scale.

We then design and implement LDR—a routing system that actively balances propagation and

queuing delay in order to minimize latency. Key contributions in LDR’s design include:

• a novel iterative formulation of linear optimization for traffic placement whose efficiency

renders minimal-delay routing tractable at scale. LDR’s optimizer can place thousands of

aggregates optimally in a backbone of hundreds of links in less than a second;

• a novel method for predicting how traffic demands will statistically multiplex on a path at

a granularity of tens of milliseconds, based on convolving aggregates’ past demand distribu-

tions.

Chapter 2

Literature Review

There is a rich literature on protocol and system designs for picking paths and placing traffic on

paths so as to meet varied objectives in varied settings. They can be broadly separated into two

categories—systems that only route each aggregate’s traffic over a single path through the network

and systems that can use multiple paths simultaneously for each aggregate. In this chapter we will

provide an overview of both categories. Keep in mind that in related work the word aggregate

is often used to refer to any combination of 5-tuple flows, while in this thesis we use a narrower

definition—the collection of flows between a given source-destination pair.

2.1 Single-path Routing
The simplest routing schemes always employ a single path between each ingress and egress point

in the network. This path is computed so that it minimizes some constant per-link cost, also called

a weight. Legacy protocols, such as ARPANET’s original routing protocol RIP [57], are based on

Bellman-Ford [11] distributed shortest-path computations, and aim to minimize the number of

hops traversed by packets. These routing protocols use hop count as the metric, essentially treating

all links in the network as having the same positive weight. During operation, network devices

periodically exchange all or part of their routing state with their immediate neighbors. For a given

destination each device will then send packets to the neighbor that has a lower hop count to the

destination than the device’s own hop count. Such protocols are called distance-vector protocols

because each device needs to maintain a list, or a vector, of hop counts, or distances. Basic distance-

vector protocols have the advantage of being simple and easy to implement on routers’ often weak

control-plane CPU, but also have a number of disadvantages:

• They do not scale well—a Bellman-Ford algorithm implementation needs to pick a maximum

hop count value which to consider infinity. This hop count value imposes a limit on the

diameter of the network, and it cannot be set to an arbitrarily high value because count-to-

infinity problems [65] negatively affect convergence time.

• They can exhibit undesirable transient behavior during convergence—due to the distributed

2.1. Single-path Routing 25

A C

B D

E F G

Figure 2.1: All links have the same bandwidth; may need to route packets from aggregates A→D and E→D
over both the top path (A→ B→C→ D) and the bottom path (E → B→ F → G→ D) to avoid
congestion.

nature of the routing system when a change occurs different routers will learn about it at

different times. Routing loops or blackholes may temporarily form until all network devices

learn the same state.

Both of those problems are well known and have been extensively studied by previous litera-

ture.

A desirable property of distance-vector routing is that if a metric change is received that re-

duces the distance to the destination, a switch to the new shortest path will not cause a routing

loop. If the neighbor sending the change is the new next hop, it must have already applied the

update, and so must be closer to the destination. No loop can occur. Provably loop-free distance-

vector algorithms such as DUAL [34], which is the basis for Cisco’s EIGRP [3], make use of this

property to safely apply updates that reduce the distance to a destination, and trigger a diffusing

computation [26] for other updates.

More modern incarnations of shortest-path routing that are in wide deployment today (e.g.,

OSPF [60], IS-IS [16]) address distance vector’s scalability issues bymaintaining the state of all links

in the network in any of the network’s devices (and are thus called link-state protocols). When this

internal network map changes, each device independently runs Dijsktra’s algorithm [25] to obtain

the next hop it needs to send packets to each destination. Dijkstra’s algorithm can handle networks

of arbitrary size and is computationally less complex than Bellman-Ford. Moreover, maintaining

the network map needed by the algorithm only requires the exchange of small link-status updates

as opposed to distributing potentially large parts of the routing table to all neighbors.

All routing protocols described so far have focused primarily on achieving end-to-end reach-

ability over the single best path, according to some per-link metric. There are lots of real-world

scenarios where this is not enough. Consider the small example from Figure 2.11. There are two

transit aggregates that need to exit the network via D, having entered the network via A and E

respectively. Regardless of the paths assigned by the routing system the two aggregates’ traffic

will combine at B. Shortest paths exhibit optimal substructure—a shortest path is composed of

other shortest paths. Because of this property if traffic always follows the single shortest path all

traffic that reaches B will only follow one single exit path to D regardless of how link weights are
1This is a common example in routing and traffic engineering known as the “fish problem”.

2.1. Single-path Routing 26

assigned.

Keeping in mind that each link in Figure 2.1 has the same capacity, there are three possibilities

for each one of the two aggregates:

1. The aggregate’s flows are capped somewhere outside the network (e.g., by low-speed access

links) andwhen combinedwith the other aggregate’s traffic the two aggregates will not cause

significant queuing at either B or any device downstream of B. In other words, the total sum

of both aggregates’ demands will not exceed the capacity of a link within the network.

2. The aggregate is similarly externally capped, and it does not congest the ingress port of

its ingress node (either A or E), but when combined with the other aggregate would cause

a downstream queue to build up at B. In other words, the total sum of both aggregates’

demands will exceed the capacity of a link within the network.

3. The aggregate is not externally capped and there is a persistent ingress queue at its ingress

node. In this case the notion of an aggregate’s “demand” is not well defined.

In case 1 single shortest-path routing will work well, as all traffic will follow the shortest path

tree rooted at D (which is a branch of the SP trees rooted at A and E) without causing congestion.

The administrator is free to choose whatever assignment of link weights they desire, to “steer”

traffic to take either the top path via C or the bottom one via G.

The other two cases, however, are more challenging. In case 2 it is possible to avoid queuing

altogether—assuming that the (A,E)→ B→C→D paths are more desirable, it should be possible

to offload some fraction of their traffic onto the less desirable (A,E)→ B→ F → G→ D, thus

relieving the excessive load at B. In case 3 queuing cannot be avoided, but it is possible to maximize

the amount of traffic the network can handle by spreading the aggregates evenly among the top

and bottom paths. In the last two cases there is a fundamental tradeoff that the routing system

must make—if all packets are routed on the lowest cost paths there will be congestion, but at the

same time any alternative path the routing system routes traffic on in order to reduce congestion

will have higher cost. Does the system choose to reduce congestion (or maximize network capacity

in the case of 3), or does it choose risk congestion and reduce path cost?

Notice that which of the three cases from Figure 2.1 an aggregate is in depends on the traffic

of not only that aggregate, but also on other aggregates in the network. The entity that is in charge

of routing in the system, be it an automated system or a human operator, needs to be aware of the

traffic matrix—the load of each one of all possible N(N−1) aggregates in the network, where N is

the number of devices in the network. Without this knowledge it is difficult for a system to pick a

non-extreme point in the design space between reducing congestion and minimizing path cost.

Single shortest path routing takes one extreme in this design space by routing everything on

the path with the lowest possible cost. An alternative way to handle cases 2 and 3 would be to still

2.1. Single-path Routing 27

A C

B D

E F G

1 1,5 1

1 5,1
1

1

Figure 2.2: Figure 2.1 with one VRF per aggregate at B; each outgoing link is associated with two different
costs, depending on the VRF. Two different shortest-path trees will be used; the paths taken by
each aggregate are highlighted.

use shortest-path routing, but run a different routing table for each aggregate at B. By assigning

different link weights on each outgoing link for each aggregate, the network administrator can

then make sure the top path is preferred by one of the aggregates, and the bottom one by the other.

Device B will run two instances of the same routing protocol, and will behave as if it were two

different devices as far as the routing protocol instances running in the rest of the network are

concerned. Figure 2.2 shows how VLAN routing and forwarding (VRF) [69] can handle the simple

example from Figure 2.1 in this way. In addition to running two instances of shortest-path routing,

either a tagging mechanism (e.g., MPLS [24]) or matching based on input port at B will be needed

to route the packets as shown. Note that each aggregate’s traffic still takes only one path through

the network, and the path is still the notionally shortest from the viewpoint of the algorithm, even

though it is not the actual shortest path.

In addition to offering network administrators greater routing flexibility, VRFs also provide

a natural extension of VLANs to level 3, allowing different customers’ routes to be isolated. The

obvious drawback is that they can be hard to configure and require intimate knowledge of the

network’s operation and traffic patterns. For example if one of the two paths on Figure 2.2 were

to have lower capacity the network operator would have to know ahead of time which of the two

aggregates is more likely to fit on that path, then closely monitor the network for signs of overload

and change weights to adapt the routing as the traffic patterns of the two aggregates change.

What if we could sense the actual demand and have routing automatically reconfigure itself

to avoid congestion? MPLS-TE [23] does just that. MPLS-TE combines MPLS tunnels, resource

reservation via RSVP [83] and constrained shortest path computations (CSPF).2

MPLS-TE, as well as most traffic engineering solutions, routes traffic over tunnels. A tunnel

is a unidirectional logical link from ingress to egress; packets are tagged, or labeled, by the ingress

upon entering the network and a path is configured that drives the tagged packets to the egress on

an arbitrary, not necessarily shortest, path. The label-switched tunnel does not necessarily need

to have a globally (network-wide) unique label which will be put on every packet that traverses

the path defined by the tunnel—in common labeling technologies, such as MPLS, labels only have

2In this thesis we assume automatic bandwidth allocation for MPLS-TE, as it is often used in practice [78, 76].

2.2. Routing Over Multiple Paths 28

A C

B D

E F G

10 15 15

10 10

10

10

.5

.5 .5

.5

Figure 2.3: Figure 2.1 with link weights for ECMP; the “.5” labels indicate that traffic is split evenly among
outgoing links; with ECMP packets from A→D and E→D will share A→ B→C→ D and E →
B→ F → G→ D which have the same weight.

a local meaning.

InMPLS-TE the ingress3 at predetermined intervals polls interface counters to determinewhat

the demand of an aggregate is. That information is then sharedwith other participating nodes using

a slightly modified version of either OSPF or IS-IS. When a path computation needs to happen

(e.g., when a new tunnel is set up or when a link goes down) constraints are added to regular

shortest-path Dijkstra that exclude links with unreserved capacity that is less than the demand of

the aggregate. Once a path is found capacity along each hop is reserved for it using RSVP.

The mechanism described above lets MPLS-TE handle automatically the example from Fig-

ure 2.2. The network administrator does not have to manually tweak link weights, instead a non-

shortest path computation is used to generate a single path for each aggregate. An obvious draw-

back is that each ingress only updates its estimate of aggregate levels at the end of every period,

which in practice defaults to one day [19]. If an aggregate’s level suddenly changes it may take

a while for the network to adapt to the new level. To address this shortcoming some vendors

support features called overflow and underflow, which can trigger a path recomputation at the

ingress as soon as it detects that an aggregate’s level significantly overshoots or undershoots the

previous level. Due to the distributed nature of MPLS-TE, those features can be hard to properly

configure [78].

2.2 Routing Over Multiple Paths
An alternative way to handle the simple scenario in Figure 2.1, would be to spread each aggregate’s

traffic across both the top and the bottom path. Equal cost multipath (ECMP) does just that, as

shown on Figure 2.3. The network administrator has adjusted the weights of the top path, so that it

appears to the routing system as desirable as the bottom one. Unlike previously discussed single-

path schemes, ECMP can distribute an aggregate’s traffic among a number of paths that have equal

cost, using a total of four paths on Figure 2.3. Traffic from both aggregates will be split evenly

among the top and bottom paths either at B, as shown, or at the ingress points A and E .

How does B split aggregates among paths? To achieve the best possible split B should send

3Here we use “ingress” in the same sense that “head-end” is used in some MPLS literature; “egress” corresponds to
“tail-end”.

2.2. Routing Over Multiple Paths 29

down each path half of the upstream packets it receives. In practice, however, different network

paths will have different propagation and queuing delays; each aggregate consists of a number of

flows and sending packets from the same flow down different paths can cause reordering when the

flow’s packets join at the egress of the network. Reordering behaves badly with TCP’s congestion

control [84], causing the TCP flow to unnecessarily reduce its congestion window. To avoid such

undesirable behavior, most network devices will hash each packet’s five tuple—a combination of

header fields that uniquely identifies the flow the packet is part of—and then probabilistically send

flows down paths depending on the hash value and the weight of the path. In the case of ECMP

the weights are always 1/N where N is the number of paths.

Notice that in the ECMP case the 50/50 splits from Figure 2.3 are always optimal with respect

to avoiding queuing regardless of the traffic matrix. In all cases for this topology and those two

aggregates the equal splits will minimize peak utilization—the less loaded any link in the network

is the more headroom there is, and the less likely it is for a fluctuation in the volume of an aggregate

to cause queues to build up.

Surprisingly, it is possible to generalize the ECMP observation and, given an arbitrary topol-

ogy, come up with routing which will provide low peak utilization in a way that is oblivious of

the traffic matrix [67, 8]. Unlike ECMP, oblivious routing achieves low utilization by splitting traf-

fic unevenly among multiple paths available from an ingress. The utilization provided by such an

oblivious system is not as low as the one that can be achieved by utilization-minimizing approaches

that are load-dependent, but an oblivious routing solution is more deployable since it does not need

to actively measure the traffic matrix.

If the routing system has access to the traffic matrix, it can further decrease peak utilization in

arbitrary topologies. The routing system can direct traffic in a way that minimizes some arbitrary

per-link cost function of the link’s utilization (f (u)). Such a utilization-based cost function assumes

that the cost of a link grows as the link becomes more and more used. This assumption holds

when congestion is within the network (case 3 on Figure 2.1), and much less so when congestion is

outside the network (other two cases)—aswewill later show, when traffic is externally bottlenecked

it is possible to drive a links’ utilization close to 90% without incurring queuing at that link. For a

specific f (u) the actual routing solution can be found by treating routing as amulti-commodity flow

problem [13] or, for continuous and convex functions, using a distributed algorithm [12] inspired

by Newton’s method.

A large volume of traffic engineering literature [47, 29, 79] picks the per-link cost function

f (u) to be the top utilization of any link in the network. This results in what is called a MinMax

problem—minimizing the maximum link utilization. An optimal solution to the problem can be

obtained by solving the mathematical optimization in Figure 2.4. Constraints 2.2, 2.3 and 2.4 are

standard multi-commodity flow preservation constraints that make sure that for each aggregate

the flow that enters a node is equal to the flow that exits a node, except for the source and the sink

2.2. Routing Over Multiple Paths 30

minimize: Umax

subject to: ∑
a∈A

fa(i, j)<UlCl ∀(i, j) ∈ L (2.1)

∑
v∈V

fa(i, j)− ∑
v∈V

fa(j, i) = 0 ∀a ∈ A,∀(i, j) ∈ L, i 6= sa, ta (2.2)

∑
v∈V

fa(sa, j)− ∑
v∈V

fa(j,sa) = Ba ∀a ∈ A,∀(i, j) ∈ L (2.3)

∑
v∈V

fa(j, ta)− ∑
v∈V

fa(ta, j) = Ba ∀a ∈ A,∀(i, j) ∈ L (2.4)

Ul <Umax ∀l ∈ L (2.5)
0≤Umax ≤ 1

Figure 2.4: Link-based MinMax formulation: A and L are the sets of all aggregates and links respectively, the
demand of an aggregate a is Ba and the capacity of a link l is Cl . We want to find the each aggre-
gate’s flow fa(i, j) that needs to be sent over each link (i, j) which will minimize the maximum
link utilization Umax. One variable per link, per aggregate.

A

B

C

D E

F G

H

.5 (9 Gbps)

.5 (9 Gbps)

0.0 – 1.0 (0 – 9 Gbps)complement of F →
G

18 Gbps

9 Gbps

Figure 2.5: All links are 10 Gbps; MinMax can fail to minimize utilization in links with utilization below the
utilization of the link with minimum maximal utilization; the MinMax utilization is 0.9, the split
of bottom aggregate is undefined.

for that aggregate. Constraint 2.1 makes sure that no links exceed their capacity, and the constraint

2.5 makes all link utilization variables less than the maximum link utilization. Upon solving, each

aggregate a’s paths can be obtained by performing DFS on the DAGs formed by links for which

the aggregate’s flow is non-zero—i.e., links with positive fa.

Notice that the utilization of links that are below Umax is undefined, which may lead to both

higher utilization and higher propagation delay than necessary. Figure 2.5 illustrates this point. In

the simple topology all links have the same 10 Gbps capacity, and there are only two aggregates,

with demands of 18 and 9 Gbps respectively. A MinMax solution will spread out the first aggregate

across as many paths as possible, which in this case is the two top paths. The minimum link

utilization is therefore 90%. None of the bottom aggregates’ flows will be routed on the top links,

because that would cause the utilization of those links to go up. The bottom aggregate will have to

be then split among the two paths at the bottom. There exist multiple equally good solutions—as

2.2. Routing Over Multiple Paths 31

A B

C D E

F G

high delay

low delay

1.0 (9 Gbps)
?

?

9 Gbps

Figure 2.6: All links are 10 Gbps; the MinMax utilization is 0.9 regardless of path choice and splits; with Min-
Max among the many solutions of the same minimal utilization, it is undefined whether packets
take the high or the low delay path.

minimize: Umax

subject to: ∑
a∈A

Ba ∑
p∈Pal

xap <UlCl ∀l ∈ L (2.6)

Ul <Umax ∀l ∈ L

0≤Umax ≤ 1

0≤ xap ≤ 1 ∀a ∈ A,∀p ∈ P

Figure 2.7: Path-based MinMax formulation; Pal is the set of aggregate a’s paths that cross link l and the
variable xap is the fraction of a that goes on path p. One variable per path.

long as no more than 9 Gbps are routed on the F → G link, the maximum link utilization will

not be affected. In reality, the network operator may prefer to also split the bottom aggregate,

as that would result in lower maximal utilization of the bottom two links, but the basic MinMax

formulation does not allow them to do that.

Similarly, there are common cases where the propagation delay of the MinMax solution can

be unnecessarily large. Consider the single-aggregate example from Figure 2.6. Any solution will

have the same maximum utilization, and from the viewpoint of avoiding congestion they will all

load equally theC→D link, and are therefore all equally good. But in this topology the twomiddle

links have significantly different propagation delays—clearly the network operator would like to

send as much of the traffic on the lower-delay path.

Another obvious drawback of the traditional MinMax linear programming formulation is that

it can be hard to compute a solution—complexity is proportional to the number of variables, and

there is one variable per aggregate, per link, resulting in hundreds of thousands of variables even for

moderately-sized networks. One approach to reduce complexity taken by related work [47, 29] is to

use a path-based formulation instead of a link-based one, where each aggregate is pre-populated

with all possible paths and there is a single variable per path. This new, simpler, formulation is

shown in Figure 2.7. In this formulation the volume of traffic that crosses a link is expressed as

the sum of the traffic of all paths that cross the link, and there is no need for flow preservation

constants because paths are explicitly added as part of the problem definition.

The path-based formulation has O(kN) variables where N is the number of aggregates and k

the number of paths added to each aggregate. Usually the first k shortest paths are added to each

2.3. Solution Space 32

aggregate, for a relatively small value of k—e.g., 10 [47]. This renders the problem significantly

easier to compute, but also sacrifices optimality—the two formulations are only guaranteed to al-

ways produce the same output when all paths are added for each aggregate, which is only feasible

for very small topologies. As a result, in more complex topologies the path-based formulation can

produce a solution which results in significantly higher utilization, or even a solution that fails to

fit some aggregates’ demands and causes persistent congestion.

All solutions that split traffic over multiple paths presented so far have been concerned with

reducing utilization in order to avoid congestion. A radically different approach is taken by recent

enterprise-oriented traffic engineering work such as B4 [45] and SWAN [42]. In the enterprise

scenario all endpoints of all connections are controlled by the same organization, which makes it

possible to enforce the network bandwidth taken by each connection using systems like BwE [52].

This high degree of control gives the routing system an important advantage—it can make sure

that no aggregates in the network are congested within the core of the network, avoiding case 3

from Figure 2.1. The routing system can then maximize the utilization of the network while at the

same time requiring very small queues.

One straightforward heuristic, used by B4 [45], to do so is to start by allocating as much de-

mand as possible on each aggregate’s lowest propagation delay path. If there are one or more

aggregates whose demand is not satisfied after saturating their respective shortest paths, the algo-

rithm allocates demand to those aggregates’ second shortest paths and so on until all aggregates

are satisfied or there are no more paths. In B4 not all aggregates are treated equally—the alloca-

tion process described above can be influenced by operator-supplied per-aggregate weights so that

aggregates that are more sensitive to delay are allocated faster to shorter paths.

Interestingly, B4’s behavior is reminiscent of that of MPLS-TE—it senses each aggregate’s de-

mands and attempts to route aggregates on their respective shortest possible paths; aggregates

that do not fit are routed on non-shortest paths. The main differences are that B4 is centralized and

can automatically use uneven splitting among each aggregate’s paths, whereas MPLS-TE either

sends each aggregate’s traffic down a single path or, if used in conjunction with ECMP, splits the

aggregate’s traffic evenly among a number of paths.

2.3 Solution Space
The previous sections described the most relevant related work in the field of routing and traffic

engineering. In this section we will provide a rough mapping of the solution space, which will

hopefully help readers see where our work fits in the research area.

There are two main sources of delay a packet can experience in a WAN environment—it can

be delayed while traversing a long-haul fiber link, or it can be delayed because of other packets

at the queue of a device’s interface. Those two sources of delay are at odds—because of limited

network capacity it is often the case that lowering queuing delay comes at the expense of increasing

2.3. Solution Space 33

Goal: avoid
congestion

Goal: low delay

sp (low delay)

sp (generic) mpls-te

min/max

min/max (ksp)

oblivious

b4/swan

Figure 2.8: A map of the solution space of routing based on the routing system’s objective; systems that
directly control traffic sources in enterprise environments are colored red. The positions of the
points are notional and do not correspond to specific quantitative values.

propagation delay. Therefore, one way to map the solution space is to examine how each solution

deals with delay. Does it minimize propagation delay, or does it aim to achieve low queuing delay?

Figure 2.8 places some of the previously discussed solutions on a two-dimensional plot where

on the y axis we display how important achieving low propagation delay is for a system, and on

the x axis how concerned a system is with low queuing delay.

Shortest path routing with link weights set proportional to propagation delay, labeled sp (low

delay), sits at one extreme of the design space. sp (low delay) always routes packets on the path

with the lowest possible propagation delay, with no concern about congestion, and therefore queu-

ing. By tweaking link weights shortest path routing can be influenced to take longer paths, in the

interest of avoiding congestion or complying with policy. We label all such solutions sp (generic).

This category covers manual ad-hoc operator changes to link weights as well as automated solu-

tions (e.g., [31]). More recent traffic engineering solutions are capable of routing over non-shortest

paths—mpls-te can handle cases where shortest path routing fails, regardless of weight assignment

(e.g., Figure 2.1), while still achieving comparatively low propagation delay.

Theoretically-optimal MinMax sits at the other extreme of the design space. MinMax, always

spreads traffic as much as possible—an optimal solution has paths with high propagation delay, but

the solution is as congestion-averse as possible. Path-based MinMax where each aggregate gets

the k shortest paths (labeled min/max ksp) achieves lower propagation delay than theoretically

optimal MinMax as each aggregate is limited to a relatively small number of short paths, but due

to the restricted set of paths min/max ksp can fail to fit the traffic matrix’s demand in some cases

in which min/max does. Oblivious routing (labeled oblivious) has the same objective as MinMax,

but is traffic matrix agnostic, and thus unable to reduce congestion to the level of min/max.

Recent, deployed routing systems such as SWAN or B4 (labeled b4) are based on centralized

path optimization. These designs are tailored to enterprise WANs, where they can directly control

2.3. Solution Space 34

traffic sources. By knowing per-flow bandwidth a priori those systems can “pack” traffic safely on

low-delay paths without worrying that variability may cause congestion.

Chapter 3

The Challenges of Routing for Low

Latency

As we stated in Chapter 1, topologies with high potential for low-latency routing are more con-

nected and mesh-like. In this chapter we expound upon the nature of the delay-minimizing routing

problem for mesh-like backbones.

Just how mesh-like are today’s backbones—i.e., to what extent do they incorporate direct,

latency-minimizing links? To shed some light on this question, we examine a set of date-stamped

real-world POP-level backbone topologies from the Topology Zoo [50], spanning 1998 to 2012. We

limit our study to backbones with more than 10 POPs, as it is at medium-to-large scale where

cost pressures constrain a backbone’s density of connectivity. For each backbone we compute

f = (L−N+1)/L—the fraction of its links whose removal would render the backbone a spanning

tree—where N is the number of nodes and L the number of links. As a spanning tree contains the

minimum number of links that render a set of nodes connected, this value intuitively represents

the extent to which a topology incorporates links inessential for “bare” connectivity. The value

of f is 0 for a tree topology; a rectilinear 2D grid topology’s value will be close to 0.5. Figure 3.1

shows a CDF of f across backbones. Most of the backbones in this dataset are not mesh-like:

half of them are rendered trees by removing fewer than 20% of their links. Moreover, it is likely

that a significant fraction of the topologies in the dataset include virtual links, which exaggerate

a topology’s “meshiness.” Few topologies approach a grid-like density of connectivity, and closer

inspection reveals that there is no noticeable increasing trend in “meshiness” over the 14-year

period spanned by this dataset.

3.1 The Bandwidth-Propagation Delay Tradeoff
Why aren’t backbones becoming more mesh-like? One reason may be that routing over mesh-like

backbones is hard. Any routing system that tries to minimize latency over a mesh-like topology

must place as much traffic as possible on low-delay paths, and route the rest on higher-delay paths.

Doing so requires maintaining a precarious balance between propagation and queuing delay—if the

3.1. The Bandwidth-Propagation Delay Tradeoff 36

0.0 0.1 0.2 0.3 0.4 0.5 0.6

fraction of links

0.0

0.5

1.0

C
D
F

Figure 3.1: CDF of the fraction of links that, when removed from each topology, converts it into a spanning
tree; 237 real-world topologies from the Topology Zoo [50] dataset.

system places more traffic on a path than any of that path’s links can handle, congestion will occur,

leading to queuing delays. Alternatively, if the system leaves a lot of spare capacity on low-delay

paths, it will again increase latency, by causing traffic that could have been routed on a shorter-

delay path to incur longer propagation delay.

This fundamental bandwidth-propagation delay trade-off manifests in surprising ways, even

in simple scenarios. Consider SP/ECMP routing, MPLS-TE as described in Chapter 2, and state-

of-the-art routing systems like B4. SP/ECMP routing ignores traffic demands, and places all traffic

bound for a destination on the shortest path or paths. MPLS-TE takes account of demand: it places

entire aggregates—each between one ingress and egress in the backbone—one by one. Once some

links become full, further aggregates will be placed on the shortest path where there is still enough

capacity. B4 will split aggregates where necessary, and greedily places traffic from aggregates on

progressively longer paths. What these schemes share is that they greedily place each aggregate’s

traffic on its shortest path first. It is this common feature that leads to undesirable behavior for all

these schemes in some scenarios. We refer to these systems as greedy SP routing.

Greedy SP routing systems differ in mechanism, but largely share the same objective. B4 is

centralized; its central controller periodically assigns as much of each aggregate’s traffic as possible

to its respective shortest path, and then sends the rest on the next shortest path that still has free

capacity, and so on. MPLS-TE is distributed, and each ingress router is responsible for aggregates

that enter the network via that ingress. Periodically each aggregate is assigned by its ingress to

the shortest path with enough free capacity to meet the aggregate’s demand. The demand is then

subtracted from the available capacity of the hops along the path, and new free capacities are

propagated to other participating devices via the IGP.

Consider the ISP in Figure 3.2a. All links have unit capacity; arrows denote aggregates. Let

us assume that the operator has set link weights either to all be equal to the same value or to

be proportional to propagation delay in an effort to minimize latency. Regardless of which of SP

3.1. The Bandwidth-Propagation Delay Tradeoff 37

A

B

D

C

?

2 units
1

1

(a) Initial scenario.

A

B

D

C

1 unit

2 units

(b) Minimal propagation delay;
congestion at A.

A

B

D

C
2 units

1 unit

1

1

(c) Longer propagation delay; no
congestion.

Figure 3.2: Simple scenario drawn to scale; all links have capacity of one unit. SP routing with ECMP, MPLS-
TE, and B4 exhibit congestion when a new link is added whether cost is hop count or propagation
delay; these routing schemes fail to fit offered demand because they greedily place each aggre-
gate’s flows onto their shortest paths first.

routing, MPLS-TE, or B4 one runs on the topology in Figure 3.2, one obtains exactly the same result.

Initially, as shown in Figure 3.2a, suppose there are flows from A→ C totaling 2 units of

demand, which the routing spreads among the two equal-cost paths A→ B→C and A→ D→C.

Now suppose further that the ISP adds a new customer at B and, as a result, must carry 1 unit of

traffic between B and D. The operator must upgrade capacity in the backbone to carry this new

demand, as the single aggregate from A already fills links A→D and B→C. Virtuously aiming to

provide the lowest possible latency, the operator installs a direct link between B and D to carry the

new traffic. To their surprise, as shown in Figure 3.2b, the new link causes congestion in seemingly

unrelated part of the network—at A.

Why should adding capacity cause congestion? Because the new link’s delay is low, its pro-

visioning reduces the delay of the shortest path for the A→ C aggregate. Any greedy SP-based

routing scheme will thus dutifully place all of the A→C flows on the A→ D→ B→C path. Do-

ing so saturates both links A→ D and B→C. The reverse path—D→ B—which carries the new

customer’s traffic is also saturated. In sum, under greedy SP routing, adding the new link reduces

the capacity available to A→C, which no longer fits and incurs drops at A. A different solution,

though not within reach of greedy SP routing with delay-based link metrics, appears in Figure 3.2c.

This placement of traffic avoids congestion by keeping only traffic for B→ D on the direct link,

and spreads A→ C traffic evenly over the upper and lower paths, essentially ignoring the direct

link.

Given the choice between routing flows over links with insufficient capacity, and hence in-

creasing queuing delay (as in Figure 3.2b) and choosing longer-delay paths, and hence increasing

propagation delay (as in Figure 3.2c), we posit that the routing system should avoid queuing if the

topology as a whole allows doing so. While in prior work we outlined an attempt at trading off

propagation delay and queuing delay [37], queuing delay is much less predictable than propagation

delay: its magnitude depends on how deep the queues are at network devices. More importantly,

it may worsen end-to-end delay for multiple aggregates that share a congested link.

3.1. The Bandwidth-Propagation Delay Tradeoff 38

A B

D C

1 unit2 units

0.5

0.5

0.5capacity: 2

1

(a) Greedy routing.

A B

D C

1 unit2 units

capacity: 2

1
1

(b) Congestion-free solution.

Figure 3.3: Greedy routing gets stuck in local minimum, fails to avoid congestion; all links have the same
delay and the same unit capacity, except for A→ D, whose capacity is 2 units.

Obviously, if the routing system is to prioritize the avoidance of congestion when it places

traffic, it must measure aggregates’ demands—otherwise the routing system cannot proactively

determine how much of an aggregate can safely be placed on a low-delay path before incurring

queuing delays. In some enterprise WAN scenarios all end hosts are controlled by the same prin-

cipal; in such cases that principal may simply cap aggregates’ demands and report the caps to the

routing system [45, 42]. In the more general ISP-like scenario, however, the routing system must

carry traffic from end hosts whose traffic demands the ISP does not control. These demands further

may exhibit high short-term variability. In Section 3.3.2 we discuss what levels of long and short

term variability we expect to see in WAN traffic.

3.1.1 Greedy Routing and Varied Link Capacities
Another shortcoming of greedy SP routing schemes is that they can fail to avoid congestion even

in very simple scenarios in the presence of varied link capacities. In the topology in Figure 3.3, all

links have the same delay and the same unit capacity, except for A→D, whose capacity is 2 units.

In this case greedy SP routing starts by filling each aggregate’s shortest paths evenly: B→C→ D

and B→ A→D for the B→D aggregate and A→ B→C and A→D→C for the A→C aggregate.

It will assign 0.5 units of capacity to each one of these paths, at which point the B→C link will

saturate. At this point the B→ D aggregate’s demand has fully been met, but there is no way for

greedy routing to meet A→C’s one more remaining unit of demand, as there are only 0.5 units of

capacity left on the D→C link. This solution will result in persistent congestion at A. Figure 3.3b

shows a solution that avoids congestion, though centralized greedy solutions such as B4 cannot

find it. Distributed greedy solutions like MPLS-TE may or may not find it depending on when

different devices perform path recomputation and reserve bandwidth.

3.1.2 Greedy Routing and Local Aggregates
An astute observer will notice that the main reason greedy routing fails to achieve the preferred,

congestion-free outcomes in Figures 3.2 and 3.3 is that there is not enough path diversity for it to

find alternative paths. Will making the network more mesh-like cure that problem?

3.1. The Bandwidth-Propagation Delay Tradeoff 39

1 unit

1 unit

0.5

0.5

0.5

0.5

(a) Greedy routing.

1 unit

1 unit

(b) Lower-delay solution.

Figure 3.4: Greedy routing yields high delay on mesh-like networks; all links have a capacity of one unit and
the two aggregates have a demand of one unit. The long-haul aggregate (shown in blue) has a
second best path that is of slightly longer latency than its shortest path, while the second best
path of the local aggregate (show in red) is significantly worse.

A B

D C

1 unit2 units

capacity: 2

ca
pa

ci
ty

: 2

capacity: 2

Figure 3.5: Congestion-free solution that is unattainable by SP routing regardless of assignment of weights;
thick lines have a capacity of 2 units.

Alas, even in networks with great path diversity, greedy SP routing exhibits undesirable be-

havior. In Figure 3.4 we show a highly connected topology—a complete rectilinear grid. There

are two aggregates—an aggregate that carries long-haul traffic from one end of the network to the

other and an aggregate that is purely local whose shortest path is a single hop. As the local aggre-

gate’s shortest path falls along the shortest path of the long aggregate, a greedy SP routing solution

(shown in Figure 3.4a) would saturate the link on the local aggregate’s shortest path with traffic

from both aggregates and then allocate the rest of both aggregates on their respective second-best

paths.

Notice that while the second-best path of the long aggregate is only fractionally longer than

its best path, half of the local aggregate’s traffic will suffer a needlessly circuitous path. It is much

better to route all of the long aggregate over its second-best path and route all of the local aggre-

gate on its shortest path (as in Figure 3.4b). In essence, greedy SP routing tends to “punish” local

aggregates in propagation delay.

3.1.3 The Need for Non-Greedy Routing
In Figure 3.2 it is possible for an experienced network operator to artificially increase the cost of

one or more links, in the spirit of [31], in order to nudge even basic single-path SP routing into

3.1. The Bandwidth-Propagation Delay Tradeoff 40

finding the congestion-free solution from Figure 3.2c. By adopting weights that do not correspond

to link delays, the operator effectively repurposes routing to achieve a different objective—to avoid

congestion rather than minimize delay. This process requires intimate knowledge of the network’s

demands at any point in time, as even in simple scenarios it can be difficult to pick a weight assign-

ment. For example there exists no assignment of link weights that will cause single-path SP routing

to produce the desired outcome in Figure 3.5. To see why, note that this example is similar to the

one from Figure 2.1 from Chapter 2. In this case it is impossible to force the single-unit aggregate

over the B→ A→ D path without also routing the two-unit aggregate over the B→ A link and

congesting it. B4 will be able to handle Figure 3.5; depending on the ordering of events MPLS-TE

may also be able to handle it. However, those more advanced schemes fail to alleviate congestion

and deliver low propagation delay in Figures 3.3 and 3.4 respectively.

3.2. Assessing Topologies’ Potential for Low Latency 41

3.2 Assessing Topologies’ Potential for Low Latency
The examples presented in the previous section seem to indicate that today’s routing and TE sys-

tems cannot place traffic onto amesh-like backbone’s multiple alternative paths so as to both satisfy

user demands and minimize delay.

However, even though such examples are very helpful in understanding the behavior of cur-

rent routing systems, one can argue that they are too small-scale and synthetic to bear relationship

to what occurs in real-life networks today. Before we set off to design a new routing system that ad-

dresses the problems brought to light in the last chapter, it is worthwhile to further explore current

routing systems using realistic traffic matrices on real-worlds topologies.

Since the performance of any routing system is intimately tied to the network topology, we

will begin by understanding if, fundamentally, today’s topologies are well suited for low-latency

routing. Is it really the case that today’s routing systems are not well suited to provide low latency,

or is it the case that today’s topologies are not diverse enough for the routing system to provide

low latency?

If an operator wishes to build a network well-suited to providing robust low-delay commu-

nication, how would they measure the extent to which they had succeeded? One could say a

topology offers low latency if the shortest paths between points of presence (POP) lie close to the

corresponding great circle routes, but this falls short as a metric for two reasons:

• Geographic, geopolitical, and economic constraints limit where links can reasonably be pro-

visioned.

• Shortest paths may end up congested if demand diverges from that envisaged during pro-

visioning, leading to queuing delays and loss. Avoiding congestion without massive over-

provisioning requires using alternate, longer paths.

We do not claim any deep insight into geopolitical or economic constraints that limit link

deployment. For now, let us consider only network links that exist in real ISPs.

The “meshiness” metric used at the beginning of the previous chapter is very crude—it only

measures how connected a network is and while it is clear that more connected networks are more

prone to interesting routing behavior, the fact that a network is connected offers little insight into

how useful this connectivity is in providing low-latency service. What we would really like is a

network topology metric, agnostic to both routing and traffic, that characterizes how well suited

the topology is to providing robust low-latency communications.

3.2.1 Low-Latency Path Diversity
Although the shortest paths in a network may not be ideal, they are the best paths we are sure are

viable to provision. How well suited is a network topology to providing low-latency service under

traffic loads that are not trivial to route—i.e., ones that do not fit on the shortest paths alone?

3.2. Assessing Topologies’ Potential for Low Latency 42

0.0 0.2 0.4 0.6 0.8 1.0

APA of a PoP-PoP path

0.0

0.5

1.0

C
u
m
u
la
ti
ve

fr
a
ct
io
n
o
f
p
a
th
s

Figure 3.6: CDF curves of APA for all networks, given path stretch limit of 40%. Five random curves are
highlighted. The vertical line at 0.7 indicates PoPs 70% of whose shortest-path links can be routed
around without excessive delay.

To derive such a metric we start from a network map that includes all PoPs and link latencies.

For each PoP pair, we compute the lowest latency path. Then for each link on the path, we consider

the latency cost to route around that link if it were congested. If the map contains link capacities,

we must also take these into account. For example, it is unreasonable to consider a 1 Gbps link as

providing a viable alternate to a congested 100 Gbps path. We consider an alternate path as a viable

alternate if its bottleneck has at least the capacity of the bottleneck on the shortest path. If there

are multiple alternate paths, we progressively add the n lowest latency alternate paths until their

min-cut is sufficient to form a viable alternate. When this is necessary, we consider the propagation

delay of the alternate to be that of the nth lowest latency alternate.

We define path stretch to be the fraction da
ds
, where the viable alternate path’s propagation

delay is da and the delay of the shortest path between the two PoPs is ds. We set a threshold for

path stretch—for example, we may consider a path stretch of 1.4 to be acceptable—and measure

alternate path availability (APA), defined as the fraction of links on the shortest path that can be

routed around without exceeding this stretch limit. Each PoP pair gives an APA data point in the

range from zero (no links can be routed around without excessive delay) to one (all links can be

routed around). A CDF of those data points characterizes the network. The resulting curve gives

insight into the availability of low-latency alternate paths, and is scale-invariant, so can be used

to compare networks of different size and geographic scale. This curve captures the feasibility of

routing around hotspots caused by congestion without dramatically inflating delay.

Figure 3.6 shows CDF curves of APA values with path stretch threshold of 1.4 for each of the

116 networks with diameter greater than 10 ms in the Topology Zoo (augmented with computed

link latencies [35]). 1 The Topology Zoo is not without limitations; some topologies are rather

old, and PoP locations are often unverified. Nevertheless, it gives a useful view of diverse WAN

1Since we are interested in low-latency routing it makes no sense to look at very local network where the latency is
likely to always be low regardless of routing.

3.2. Assessing Topologies’ Potential for Low Latency 43

topologies over time; even older topologies elucidate then-current backbones’ delay characteristics.

In the dataset networks vary considerably in how well they provide low-latency alternate paths.

Consider the x-axis value of 0.7; this indicates paths where 70% of links can be routed around

without excessive delay. A corresponding y-axis value of 0.25 indicates that 75% of paths have

low-latency alternates that route around at least 70% of the hops. Thus topologies whose curves

are to the lower right on this graph provide usable path diversity.

A few curves are horizontal lines; these are clique topologies. We understand these to be

overlay networks; for example, one is an older network provisioned using ATM virtual circuits.

Overlays are not really interesting from our point of view: the ISP likely uses the overlay technol-

ogy to provision on demand, rather than rely on intra-domain routing.

To reduce each curve to a single metric for each network, we compute low latency path diver-

sity (LLPD) as follows.

LLPD =
number of POP pairs with APA≥ 0.7

total number of POP pairs

The choice of 0.7 here is not crucial; as Figure 3.6 shows, the rank ordering does not change

greatly for this set of topologies if we choose a different threshold in the upper half of the distri-

bution.

An LLPD of close to one indicates that for most POP pairs, we can route around most of the

links on their shortest path without incurring excessive delay. Conversely an LLPD of close to zero

usually indicates a more tree-like network. Networks with LLPD in the middle of the range often

consist of wide rings: while they have path diversity, for two nodes close together on a ring, the

latency cost of going the “other way” around the ring is considerable.

Networks with high LLPD typically fall in two categories. Some are well interconnected, re-

sembling a two-dimensional grid. An example of this class is GTS’s network in central Europe,

shown in Figure 3.7. Others, such as Cogent, span more than one continent, with good path diver-

sity between continents. The long latency baseline between continents makes it easier for them to

score well on latency stretch, but they also need to have good connectivity within continents.

3.2.2 Path Diversity is Hard to Use
In Section 3.1 we note using small synthetic examples that two-dimensional grid networks can be

hard to route, as they inadvertently concentrate traffic. We use LLPD to understand if and to what

extent this is a problem in real networks.

We analyze the topologies from the Topology Zoo. For each topology we synthesize 100 traffic

matrices, each representing a moderate load for network’s available capacity. To do so, we use

a variant of the gravity model [68]. This model generates traffic aggregates between POP pairs

according to a Zipf distribution, as real-world traffic has been characterized. The original model,

however, is agnostic to traffic locality. To see how traffic locality affects routing, we add a locality

3.2. Assessing Topologies’ Potential for Low Latency 44

Figure 3.7: GTS’s Central Europe topology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LLPD

0.0

0.2

0.4

0.6

0.8

fr
a
ct
io
n
o
f
p
a
ir
s
co
n
g
es
te
d

Cogent

GTS

90th percentile

Median

Figure 3.8: Networks with high LLPD tend to concentrate trafficwhen using SP routing. The x-axis shows the
topologies sorted according to their LLPD, and the y-axis reports the fraction of source-destination
pairs that experience congestion.

parameter to traffic matrix generation. For locality values greater than zero we redistribute some

traffic from longer-distance flows to more local flows, increasing locality while maintaining the

total traffic sourced and sunk by each POP. Specifically, a locality parameter of l allows short-

distance flows to increase by l times their original demand. We find that a locality of 1 is enough

to add significant locality, while larger values tend to under-load long-distance links too much

to justify their presence in the topology. Unless stated otherwise, we use a locality value of 1 in

our analyses. Section 7.2 contains a detailed explanation of how the traffic matrices used in this

experiment are generated.

To ensure the network is moderately loaded but not close to being overloaded, we scale each

traffic matrix so that the min-cut of the network has 24% headroom, if we minimize maximum

3.2. Assessing Topologies’ Potential for Low Latency 45

link utilization. In other words, all aggregates in the traffic matrix could be increased by 30%2 and

still be routed without saturating any link. In most topologies this corresponds to a median link

utilization of 20-30%.

Shortest path routing
We first wish to see how each network performs using delay-proportional shortest-path routing, in

which the operators tunes link costs in a simple intra-domain routing protocol [59, 62] to minimize

delay. Figure 3.8 shows the median and 90th percentile of congested source-destination pairs across

all topologies and traffic matrices, when networks are sorted by their LLPD value. The x-axis

shows the topologies sorted according to their LLPD, and the y-axis reports the fraction of source-

destination pairs that experience congestion. The figure shows that under moderate load shortest-

path routing tends to concentrate traffic in networks with multiple low-latency paths (high LLPD).

One conclusion is that networks with good LLPD are not designed to be used with shortest-

path routing. Such networks have many low-latency alternative paths, and it seems likely that they

have evolved to be run with a traffic engineering scheme capable to use these alternative paths.

To understand the interplay between topology and routing, we need to examine them using active

load-dependent routing systems.

Latency optimality
In Figure 3.9 we show the performance of active routing schemes. The top half of each graph is the

same as in Figure 3.8: it shows the fraction of paths that are congested after the analyzed routing

scheme has done its best to avoid congestion. The bottom half of each graph is inverted, and shows

shows latency stretch, calculated as ∑ f d f /∑ f d f ,sp, where d f is the delay seen by flow f when

routed by the scheme, and d f ,sp is the shortest path latency between that source and destination.

A value of 1 indicates that all flows are on their shortest path.

Figure 3.9a reports the results of an optimal routing scheme, where optimality is expressed as

minimizing the sum of the propagation delays seen by all flows. Specifically, the optimal scheme

minimizes

∑
a

na ∑
p∈Pa

xapdp (3.1)

subject to the constraints that no link is overloaded and that all flows are routed. Here, na is the

number of flows in traffic aggregate a, Pa are the paths a might take, dp is the propagation delay

of path p, and xap is the fraction of traffic from a placed on path p.

Figure 3.9a shows that it is possible to route all traffic, and to do so without causing excessive

delay stretch. An exception, Globalcenter, is labeled; it is a full-mesh topology, so likely is an

overlay network where it makes little sense performing dynamic routing at the IP level. Grid-like

networks such as GTS and diverse intercontinental networks like Cogent that were prominent in

2Min cut load is 76%, so the traffic can increase by a factor of 1
0.76
≈ 1.3.

3.2. Assessing Topologies’ Potential for Low Latency 46

0.0

0.2

0.4

0.6

0.8

fr
a
ct
io
n
o
f
p
a
ir
s
co
n
g
es
te
d

0.0 0.2 0.4 0.6 0.8

LLPD

1.0

1.1

1.2

1.3

1.4

1.5

ch
a
n
g
e
in

to
ta
l
d
el
a
y

Globalcenter

90th percentile

Median

(a) Optimal latency

0.0

0.2

0.4

0.6

0.8 Cogent

GTS

0.0 0.2 0.4 0.6 0.8

LLPD

1.0

1.1

1.2

1.3

1.4

1.5

Globalcenter

90th percentile

Median

(b) B4

0.0

0.2

0.4

0.6

0.8

fr
a
ct
io
n
o
f
p
a
ir
s
co
n
g
es
te
d

0.0 0.2 0.4 0.6 0.8

LLPD

1.0

1.1

1.2

1.3

1.4

1.5

ch
a
n
g
e
in

to
ta
l
d
el
a
y

90th percentile

Median

(c) MinMax

0.0

0.2

0.4

0.6

0.8

GTS

0.0 0.2 0.4 0.6 0.8

LLPD

1.0

1.1

1.2

1.3

1.4

1.5

90th percentile

Median

(d) MinMax K=10

Figure 3.9: Effects of active routing on congestion and delay. The top part of each graph shows the fraction
of all non-zero demands in the traffic matrix that end up crossing at least one congested path, the
bottom part shows latency stretch. For each x value (different topology) we plot the median and
90th percentile from runs across a range of traffic matrices. The gray line indicates the span of
the distribution.

3.2. Assessing Topologies’ Potential for Low Latency 47

V	

G	
Link	1	on	

green’s	

shortest	

path	fills	

eastbound	

Link	2	on	green’s	

only	alternative	

path	is	already	

filled	westbound	

by	red	aggregates	

Figure 3.10: Inadvertent congestion on GTS using B4. The greedy nature of B4’s path allocation causes both
directions of the first link on the V →G path to quickly become saturated, at which point there
are no alternative paths for the V → G traffic.

Figure 3.8 give low delay with this sort of optimal routing, which can make very effective use of

their low-delay path diversity.

Greedy low latency routing
Howdo deployed traffic engineering schemes perform? Automatic bandwidth allocation forMPLS-

TE [78, 76] considers one aggregate at the time, and places each aggregate on its shortest non-

congested path. As explained in Chapter 2, B4 uses a central controller to assign traffic from ag-

gregates with a similar, slightly improved algorithm. 3 It starts by incrementally placing traffic

from each aggregate onto its shortest path. This is done in parallel for all aggregates. When an

aggregate’s shortest path fills up, B4 starts allocating that aggregate onto the next shortest path,

and so forth. Hence, while it considers low-latency paths first, B4 still uses a greedy algorithm.

B4 [45] includes prioritization for subsets of traffic. In an ISP setting, it is less clear how to assign

priorities than it is in Google’s network. We give all traffic equal priority by default.

Figure 3.9b shows the performance of B4 on the topologies from the Topology Zoo, with the

same parameters as in Figure 3.9a. B4 matches the optimal performance on many of the simpler

networks. However, for most of the networks with mid-range LLPD, B4 gives slightly sub-optimal

latency. Even more interestingly, it induces congestion on some of the networks with greatest path

diversity: for GTS and Cogent, in particular, more than half of B4’s paths cross a saturated link in

the median case. Clearly, B4’s greedy strategy frequently becomes locked into local minima in

these topologies.

In Section 3.1 we showed similar effects on a synthetic topology susceptible to Braess’s para-

dox [14]. We initially suspected that this was what was happening here, but in fact there are other

more likely local minima that can trap B4. Consider the part of GTS’s network shown in Fig-

3We focus on B4 but the same observations also hold for MPLS-TE.

3.2. Assessing Topologies’ Potential for Low Latency 48

Link	fully		

allocated	

Shortest	paths	

Next	shortest	paths	

Figure 3.11: Excessive latency in the GTS topology using B4. As much as possible of each aggregate is routed
on the shortest paths (the two solid lines) causing fully allocated links (like the one labeled) to
be shared between the two aggregates; traffic from both aggregates is then sent on second-best
paths. Note that even though the second best path of the red aggregate has comparable delay
to its best path, the second best path of the blue aggregate is significantly longer—it would have
been better to route more of the red aggregate on its second-best path. This real-world example
is reminiscent of the synthetic one presented in Figure 3.4.

ure 3.10. This is a central part of this network, and a large number of aggregates flow through this

region. Consider the aggregate from Veszprem (V) to Gyor (G). As B4 allocates traffic, link 1 fills up

in the eastbound direction, occupied by the green and many blue aggregates. B4 would normally

then start to allocate capacity on the second-best paths. For the blue aggregate of traffic flows, this

is possible. However, if there are more red aggregates than blue ones, B4’s algorithm will have

already filled link 2 in the westbound direction with red traffic. There is no spare capacity for the

green traffic as both link 1 eastbound and link 2 westbound are full, and these are the only links out

of V. Of course, this example is a simplification of the real traffic allocation. In reality, the red and

blue aggregates are hundreds of different aggregates, and other flows, not shown, are also present.

However, the figure captures the basic cause and effect of B4’s greedy choices.

The example shows that B4 cannot avoid congestion in this well-connected part of the net-

work. In contrast, a closer-to-optimal placement would move red traffic aggregates onto the frac-

tionally longer path through G, allowing room for the green traffic on link 2, and so avoiding

congestion.

Even when B4 can fit the traffic, latency can be excessive. Consider Figure 3.11, where two

aggregates share a link on their shortest paths. B4 will allocate the bottleneck link equally between

the two aggregates until it is full, and then start filling the next-shortest paths for both aggregates.

However, the next-shortest paths for the two shortest paths have different latency costs, with the

blue aggregate needing to take a long detour. It would have been better to allow the blue aggregate

to remain on its shortest path, and move more of the red aggregate to its second-best path, as there

is minimal latency cost to the red aggregate from doing so.

3.2. Assessing Topologies’ Potential for Low Latency 49

MinMax based routing
Other traffic engineering schemes such as TeXCP [47] and MATE [29] take the MinMax approach.

A true MinMax approach would optimize traffic placement so as to minimize the maximum link

utilization. As shown in Chapter 2, only minimizing maximum utilization is insufficient for a real

system, as it would not generate unique solutions—many possible placements may have the same

maximum link utilization, including ones with very suboptimal high-latency paths. One way to

obtain a practical routing system is to minimize the sum of path latencies as tie-break between

traffic placements with equal maximum link utilization.

Figure 3.9c shows the effectiveness of such a scheme. By definition, MinMax will fit the traffic

if it is possible to do so: as expected, the figure shows that no aggregate experiences congestion.

However, by focusing on utilization first and only using latency as a tie-break, many aggregates

suffer significantly higher latency than they would with optimal routing (see Figure 3.9a). The

reason is not complicated: to reduce maximum link utilization, some aggregates are forced over

circuitous paths.

To prevent long paths from being selected unnecessarily, routing schemes such as TeXCP limit

path choice to the k shortest paths. The intuition is that if long paths are never given to theMinMax

algorithm, a good balance will be struck between reducing latency andminimizing peak utilization.

In Figure 3.9dwe show the results of running theMinMax algorithm using latency to tie-break,

but supplying only the ten shortest paths, as suggested by TeXCP. For most networks with lower

LLPD, there is little difference between full MinMax and MinMax with k = 10. These networks

have little low-latency path diversity, hence some of the ten shortest paths are long. For networks

with high LLPD, things are more interesting. Limiting path choice clearly does improve latency,

though it is still worse than under B4. However, now the MinMax algorithm can no longer always

avoid congestion. The main issue here is that networks with high LLPD have a very large number

of possible, often non-disjoint, paths, so simply limiting choice to the k best for a constant k is

insufficient to avoid congestion.

3.3. The Headroom Dial 50

0.0 0.2 0.4 0.6 0.8 1.0

link utilization

0.0

0.5

1.0

C
D
F

Latency-optimal (mean 0.32)

MinMax (mean 0.30)

Figure 3.12: Link utilization in GTS.

3.3 The Headroom Dial
So farwe have considered traffic as a fixed quantity that can be packed into a network. Real network

traffic is neither constant rate not entirely predictable. A plausible option for a practical routing

system is to reserve some minimum fraction of each link’s capacity to accommodate foreseen but

rare demand increases. We refer to this fraction as headroom.

Let us first examine how minimizing delay uses links’ capacity. We consider again the GTS

network, which has high LLPD.

Figure 3.12 shows CDFs of link utilization using the latency-optimal placement and our Min-

Max formulation, for one of GTS’s traffic matrices from Figure 3.9. The median latency stretch on

this topology in Figure 3.9 is 15% for MinMax and 4% for latency-optimal routing, but Figure 3.12

shows that most links are lightly loaded, and the difference in utilization of most links between the

two schemes is not great. What matters is how loaded the most desirable links are.

Figure 3.12 also highlights that the few busiest links are loaded very close to 100% in the

optimal routing scheme. No real network, however, would be deliberately operated with such

extreme link utilizations, since traffic variability would cause (short-term) queuing which in turn

would add delay. In practice some degree of headroom must be left on links.

We can regard this headroom as a dial that can be controlled by the routing system. We can

calculate the latency-optimal path for a given value of headroom by simply scaling down link ca-

pacities according to the chosen headroom and running the optimal routing scheme on themodified

topology. With headroom set to zero, we get the latency-optimal curve, but short-term queuing

will adversely affect traffic. If we turn the headroom dial to the value calculated by MinMax as

the maximal headroom possible on the busiest links (about 24% in Figure 3.12), then the latency-

optimal algorithm converges with the MinMax algorithm, giving identical traffic placements. In

between the two lies the viable range of traffic placements that all fit the traffic, but which trade

off latency against headroom to accommodate traffic variability.4

4Figure 3.9 shows that B4 and MinMaxK10 sometimes lie outside this range.

3.3. The Headroom Dial 51

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LLPD

1.00

1.05

1.10

1.15

1.20

1.25

m
ed
ia
n
ch
a
n
g
e
in

to
ta
l
d
el
a
y

0% headroom

11% headroom

23% headroom

40% headroom (MinMax)

Figure 3.13: Latency stretch as headroom is increased.

Two key questions emerge from this view of headroom:

• How much headroom can be left before it starts to greatly impact latency?

• How much headroom is actually needed to allow statistical multiplexing on busy links with-

out causing excessive short-term queuing?

3.3.1 Headroom vs. Latency
To see the effect of increased headroom on latency, consider Figure 3.13. This plot shows themedian

latency stretch as headroom is increased, when performing latency-optimal routing. To see the

trend more clearly, we start with a slightly less loaded network - one in which the traffic matrix

could be scaled by a factor of 1.65 before it is no longer possible to fit the traffic (i.e., the min-cut

of the network is loaded at 60%). We then progressively increase the reserved headroom in steps

from 0% reserved headroom to 40%. For this traffic level, with 40% headroom the latency-optimal

placement converges with the MinMax placement.

The most prominent spikes with high LLPD are again from the clique networks; as noted

before, these are less interesting because they are overlay networks, so have alternative ways to

mitigate congestion. With the exception of these cliques, the other networks show relatively little

delay stretch as headroom increases. This is the case even for networks with high LLPD. Only as

headroom finally reaches the extreme of MinMax does delay stretch really increase greatly.

The implication is that it is probably unnecessary to live right on the ragged edge of triggering

congestion to get paths with reasonably low latency. At the same time, minimizing headroom will

normally decrease latency, so it is likely to be worthwhile actively estimating howmuch headroom

is really needed to avoid significant transient queues building.

3.3.2 How Much Headroom is Needed?
Any load-dependent routing system must use estimates of traffic volumes to make its routing de-

cisions. These estimates are inevitably imperfect. Suppose, for example, that the routing system

3.3. The Headroom Dial 52

−0.2 −0.1 0.0 0.1 0.2

measured bitrate / predicted bitrate

0.0

0.5

1.0

C
D
F

minimal variance

median variance

maximal variance

Figure 3.14: Minute to minute change of mean traffic level in the CAIDA dataset

recalculates routes every minute. Two factors need to be taken into account. First, how predictable

is the mean traffic rate from minute to minute? Second, how well does short-term variability of

traffic aggregates sharing each link statistically multiplex? If we can answer these questions, we

can decide how much headroom needs to be allocated when calculating paths, so as to minimize

latency due to propagation delay while also avoiding latency due to queuing.

Predictable Mean Demand

As we noted in Chapter 1, commonplace overprovisioning by an ISP may leave aggregates’ traffic

demands bandwidth-constrained outside the ISP’s backbone. The originating end-host application

itself may in some cases limit a flow’s bandwidth. Fixed-rate VoIP flows, for example, do not exceed

a codec rate on the order of kilobits per second. Even for applications not so constrained, access

links will often constitute a bottleneck, given that access links often are of far lower capacity than

backbone links. Where applications burst, such an access-link bottleneck will smooth traffic peaks.

Such smoothing by external bottlenecks should constrain the variability in demand over time, and

thus render demand more predictable, e.g., at a minute-to-minute granularity.

While measurements of traffic on a Tier-1 ISP’s backbone links do not directly identify bot-

tlenecks outside the ISP’s backbone, they do allow an exploration of the variability (and thus pre-

dictability) of traffic demands on wide-area links, where predictability is consistent with the pres-

ence of such external bottlenecks.

We analyzed CAIDA packet traces spanning 2013-2016 from four 10 Gbps links within a

U.S. Tier-1 ISP’s backbone [15]. For each link we have 40 1-hour traces. Within each trace, we

compared the mean traffic level each minute (Mi) with that from the previous minute (Mi−1). In

line with our comments thus far on overprovisioning within ISPs’ backbones, we note in passing

that no backbone link traced by CAIDA was congested.

In Figure 3.14 we plot CDFs for the relative differences in mean traffic level during two consec-

utive minutes (i.e., Mi−Mi−1

Mi
) for three of these links. The line labeled minimal variance corresponds

3.3. The Headroom Dial 53

0.5 1.0

σ in Gbps at time t

0.5

1.0

σ
in

G
b
p
s
a
t
ti
m
e
t
+
1

Figure 3.15: Minute to minute change of standard deviation.

to the one hour (out of all 40) where the set of relative differences exhibits the least variance—this

trace is the most “predictable.” Accordingly, the maximal variance line is the least predictable trace

from minute to minute, and the median variance one represents what we expect traffic’s minute-

to-minute variation to be like most of the time.

Can a demand-sensitive routing system use measurements of past demand to determine the

placement of future traffic, yet avoid placing future traffic in a way that causes congestion? This

question ultimately is one of predictability of demand at the time granularity at which the routing

system operates. These Tier-1 backbone link measurements suggest that on a minute-by-minute

basis, traffic demands are usually fairly predictable. That is, they suggest that in most cases if one

uses demand measurements from one minute to determine traffic placement for the next, it would

not be unreasonable to reserve, say, 110% of observed demand from the prior minute, in the hope

that 10% headroom will suffice to cope with any increase in demand in the next minute. One prior

study reaches a similar conclusion: that demand is predictable over a minute-long bin size in the

WAN, and is more predictable than demand on a LAN [66]. Furthermore, a more recent study of

Google’s WAN [41] measures a typical backbone link’s utilization, which varies less than 10% from

minute to minute.

While Figure 3.14 indicates 10% headroom is reasonable in the median case, the maximal

variance curve suggests that for some periods a more sophisticated prediction algorithm may be

needed, with up to 20% headroom required on some links. When several such aggregates are placed

on the same 10 Gbps or 100 Gbps core link, it is very unlikely they will all exceed their predicted

values simultaneously, so in many cases less headroom may be needed. There is a limit to what

we can conclude from such traces though: although they do measure Tier-1 backbone traffic, we

simply do not know if they are typical of other ISPs.

Predictable Variability
On sub-second timescales we see greater variability. Is the variability of the traffic on short

timescales sufficiently predictable? We measure the bitrate from the CAIDA traces each millisec-

3.3. The Headroom Dial 54

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

time (s) +3.09e3

0

2

4

6

8

G
b
p
s

Figure 3.16: A short-term spike in traffic level; from 2016 CAIDA packet trace of uncongested U.S. Tier-1 ISP
link.

ond, and calculate the standard deviation of these values for each minute. Figure 3.15 is a scatter

plot of the standard deviation in minute t plotted against the standard deviation in minute t + 1.

Different colors come from different traces, though some colors are reused. Although there is

significant variability in the absolute value of standard deviation, the points are tightly clustered

around the x = y line, indicating that the variability of the traffic does not greatly change from one

minute to the next.

Sudden Changes
We note however, that we do see some exceptions to this predictability. As an example, Figure 3.16

shows traffic from a 2016 CAIDA trace averaged in 10-millisecond bins (instead of per minute). In

this instance, background traffic, consisting of thousands of flows, consumes about 3 Gbps, but a

single TCP flow that lasts for only 150 ms peaks at 5 Gbps. We conjecture these are datacenter-to-

datacenter traffic, given the throughput. Second, we occasionally see a step change in both load

and number of flows. Such cases almost certainly correspond to routing changes, though whether

these are intra-domain changes or inter-domain changes we cannot tell. A dynamic routing system

that meets the objectives above will not create unpredictable intra-domain changes, but it does still

need to cope with unexpected changes in traffic level caused by BGP route changes.

Long-Range Dependence
Previous studies (e.g., [54]) have discovered that LANEthernet traffic exhibits a degree of long range

dependence (LRD). A formal introduction to LRD processes can be found at [20]. In brief, given

a (weakly) stationary time series LRD refers to the property of the series to spend long stretches

of time above or below the mean. This implies that the series has a long-term “memory” where

a high (or low) level exhibits a strong effect on later levels. Later work [36] concludes that TCP’s

congestion control mechanism generates sustained correlations on its own and Internet traffic is

inevitably LRD since it is mostly TCP.

LRD implies that simple Poissonmodels cannot be accurately used tomodel aggregated traffic.

While we are not interested in modelling traffic, it may be that this unpredictability of LRD traffic

negatively impacts the ability of the routing system to predict traffic levels. If this is the case, we

3.3. The Headroom Dial 55

want to be able to measure the performance degradation.

Most of the experiments that we presented so far in this section (and some experiments later

in this work) are conducted using a large set of packet traces from CAIDA. The traces are taken

from a number of real-life WAN links in a production network, but we have no way of knowing

how representative they are of what traffic looks like on other links or networks. It may be that

the traces do not exhibit enough LRD to make the evaluation of our system representative of other

Internet traffic.

Moreover, the bulk of the flows in the CAIDA traces are not bottlenecked close to themeasured

links—the speed of the flows’ bottleneck links is a lot slower than the speed of the link where

measurements are performed. This WAN scenario is at odds with the traditional measurement

setup from [54] where traffic measurements are taken on the same LAN. Perhaps WAN traffic

exhibits a different range of LRD behavior. Before we continue, we therefore need to answer the

following questions:

• Are the traces that we use representative of Internet traffic’s LRD?

• Does the WAN traffic in the traces exhibit the same LRD effects as LAN traffic?

To measure LRD we use the Hurst parameter [44], which is between 0.5 and 1 for a process

that exhibits LRD. To measure the Hurst parameter we use rescaled range (R/S) analysis, which is

one of the methods employed by [54]. In that work they recorded the number of bytes crossing

their monitor every 10ms.

To keep as close as possible to their setup we bin each of the hour-long traces into 10ms bins,

and combine multiple bins into chunks of given size. We treat the traffic level (number of bytes

transmitted) of bins within each chunk as an independent time series and we evaluate its Hurst

parameter. We repeat this experiment at various chunk sizes.

The results are shown in Figure 3.17a. We plot CDFs of the per-chunk Hurst parameters

across all of the traces. The results suggest that the CAIDA traces exhibit LRD consistent with that

of previously measured LAN traffic. Virtually all chunks across all traces exhibit some degree of

long-range dependence (the Hurst parameter is larger than 0.5). The sigmoidal shape of each curve

is due to the fact that the overall distribution of Hurst coefficients is normal, which is consistent

with previous observations of LRD phenomena (not only network traffic).

Interestingly, as the chunk size gets larger we observe more long range dependence, as noticed

by [36]. As the authors warn, this dependence should be taken with a grain of salt. At large

timescales the process is no longer stationary and LRD is not distinguishable from long-range

trends that change the mean of the data. How large a timescale needs to be for this to occur

depends on the nature of the traffic in the trace itself. As previously discussed in this section, for

the CAIDA traces we see mean traffic level remaining more or less (within 10%) stationary minute-

to-minute, and we conjecture that the “true” level of LRD for traffic in the CAIDA traces is close to

3.3. The Headroom Dial 56

0.5 0.6 0.7 0.8 0.9 1.0

Hurst coefficient per chunk

0.0

0.5

1.0

C
D
F

chunk 10s

chunk 60s

single chunk per trace

(a) 10ms bin size

0.5 0.6 0.7 0.8 0.9 1.0

Hurst coefficient per chunk

0.0

0.5

1.0

C
D
F

chunk 10s

chunk 60s

single chunk per trace

(b) 10ms bin size; multiple traces combined

Figure 3.17: Hurst parameters at different chunk sizes

the curve labelled “chunk 60s” on Figure 3.17a.

Each of the traces is taken from a 10 Gbps link, and has a mean rate of 3-4 Gbps. Nowadays

a lot of busy core WAN links are 40 Gbps or even 100 Gbps [80]. How does aggregation affect the

LRD that we observe? To answer this question we repeated the experiment from Figure 3.17a, but

this time we did not perform our analysis on single traces, but we aggregated ten traces at a time.

This results in 6 “super” one-hour traces out of our original smaller 60 one-hour traces. Each of our

super traces has a mean rate of about 30 Gbps, representative of what traffic would be on a busy

core link. The results are in Figure 3.17b.

The results are similar to the ones from Figure 3.17a which suggests that aggregating traces

retains their LRD. The fact that LRD is present at different levels of aggregation implies that traffic

in the traces exhibits self-similarity. If this is indeed the case we would be able to see roughly the

same level of LRD when we change the bin size. To verify this we repeated the experiment from

Figure 3.17, but with a bin size of 100ms. The results are in Figure 3.18. When each bin is 100ms we

would only get 100 points over a 10 second interval, which is not enough to reliably estimate the

Hurst coefficient using R/S analysis. This is why we omit the “10s chunk” curve from that figure.

3.3. The Headroom Dial 57

0.5 0.6 0.7 0.8 0.9 1.0

Hurst coefficient per chunk

0.0

0.5

1.0

C
D
F

chunk 60s

single chunk per trace

Figure 3.18: Hurst parameters at 100ms bin size

0 100 200 300 400 500 600

time (seconds)

0

5

10

15

20

G
b
it
s

Figure 3.19: A minute from a combined hour-long trace with H = 0.8

Even though we scale the bin size by an order of magnitude the experiment shows that large levels

of LRD are still present—traffic from the traces is indeed self-similar.

Note that self-similarity does not necessarily mean that traffic levels are unpredictable—the

Hurst parameter is independent of the mean. If we added a very high value to all bins it would not

affect the Hurst parameter values, but it would definitely render the traffic a lot more predictable,

as we would be able to say with certainty that each bin’s level is close to the very high value that

we scaled the mean with.

To illustrate this point we examine on Figure 3.19 a minute from one of the combined traces.

On the y axis we plot the number of gigabits transmitted each second, on the x axis we display

seconds. The trace plotted has a Hurst coefficient of 0.8. This implies that it exhibits strong LRD.

Despite that the range (difference between maximum and minimum level of bins) is very small

compared to the high mean. Because of self-similarity and LRD the actual small scale variations

at the top of the plot are probably hard to model, but we can certainly say that overall it is very

unlikely that the traffic level of a bin exceeds 22 Gbps.

3.4. Summary of Findings 58

3.4 Summary of Findings
The findings presented in this chapter lead us to conclude that today’s routing and TE systems

indeed often cannot place traffic onto a mesh-like backbone’s multiple alternative paths so as to

both satisfy user demands and minimize delay. There is no dearth of low-level mechanisms for

flexible forwarding: e.g., SP routing can be combined with virtual routing tables (VRFs) [69] to

correctly handle the scenario in Figure 3.5; and SDN-based forwarding [55] can unevenly split

traffic belonging to the same aggregate over any arbitrary path through the backbone. What is

lacking is a dynamic routing system that chooses paths and how aggregates should be split among

them. One challenge in building such a system is that it needs to both be able to react at a sub-

second timescale, and produce an optimal or close-to-optimal traffic placement for thousands of

aggregates. If a heuristic is used, it needs to be non-greedy and more sophisticated than the ones

used by current state-of-the-art routing schemes.

Perhaps even more importantly, such a system would have to be able to measure and deal

with each aggregate’s inherent variability. In spite of the likely presence of LRD and the sudden

changes shown in Figure 3.16, both long-term (Figure 3.14) and short-term (Figure 3.15) variability

are readily predictable in the CAIDA traces, which we believe are representative of the type of

traffic commonly seen on WAN links. Given these network conditions, it should be possible to

construct a system that both achieves low latency by minimizing propagation delay, while at the

same time avoiding queuing delay. Such a system would need between 10-15% headroom on most

links, to cope with long-term variability in aggregate level; such headroom should be enough to

mostly allow short-term variability of traffic aggregates sharing each link to statistically multiplex,

but there may need to be an additional mechanism to detect and react to unexpected spikes in load

as in Figure 3.16.

Chapter 4

Routing Goals and Design Overview

Given the inability of existing routing schemes to leverage topologies’ potential for low latency

traffic delivery, the obvious question is whether it is possible to design a practical routing system

that both computes low-delay paths and automatically fine-tunes the headroom dial.

As we note in Chapter 1, ISPs eschew congestion in their backbones, typically by overpro-

visioning. This state of affairs often leaves aggregates’ bandwidth demands constrained outside

an ISP’s backbone. Moreover, aggregates’ traffic demands within an ISP’s backbone are predom-

inantly predictable from minute to minute. We offered evidence for this claim in Section 3.3.2,

where we explored the variability (and thus predictability) of traffic demands on wide-area links in

a real-world Tier-1 ISP’s backbone.

Where demands are predictable and an ISP’s backbone offers sufficient capacity to carry them,

it should be possible for the ISP’s routing system to minimize both queuing and propagation delays

experienced by flows traversing that backbone. An ideal delay-minimizing routing system would

therefore achieve the following high-level goals:

1. Route flows over paths that minimize the sum of propagation delays.

2. Minimize queuing delay: do not congest any link within the network when aggregates are

stat-muxed.

3. When 1 and 2 cannot both be satisfied, prioritize avoiding queuing delay. Do so by rerouting

as few flows as possible on paths of longer propagation delays.

4. When multiple solutions exist that minimize the sum of propagation delays, prefer the one

that keeps local traffic local; keep the added delay experienced by an aggregate commensu-

rate with its shortest-path delay.

5. Avoid congestion when traffic demands change.

6. Adapt at a coarse enough timescale so as not to interfere with congestion control.

4.1. Requirements 60

The routing system should also work in the (less common) case where an aggregate’s bottle-

neck lies within the ISP’s backbone. In this regime, the computed paths cannot minimize delay, as

queues will inevitably build up in routers. They should, however, spread the traffic across diverse

paths to the extent possible in order to maximize aggregate throughput. In other words in the

case where congestion cannot be avoided the routing system should behave like the ideal MinMax

scheme from Chapter 2.

In this work, we focus on how to compute and install paths for aggregates between each pair

of ingress and egress routers (i.e., intra-domain routing). This is orthogonal and complementary to

fine tuning the selection of ingress and egress routers through which aggregates should enter and

leave (e.g., by tweaking the BGP configuration or overriding BGP decisions [81, 70]). We further

discuss what it would take to deliver end-to-end latency across multiple domains in Chapter 8.

4.1 Requirements

4 5

2 3

0 1
1ms

6 7

8 9

12 13

10 11

5ms

5ms

5ms

5ms

5ms 5ms

5ms 5ms

5ms 5ms

5ms5ms

10ms

20ms

50ms

(a) Ladder topology

4 5

2 3

0 1

6 7

8 9

12 13

10 11

0
700

200

500

200

500

200

500

(b) MinMax

4 5

2 3

0 1

6 7

8 9

12 13

10 11

0
600

300

600

500100

300

75 175

175 475

25 25

25 25

(c) B4

4 5

2 3

0 1

6 7

8 9

12 13

10 11

0
900

400

500

500

400

100

(d) Ideal

Figure 4.1: MinMax and B4 do not explicitly target low delay, and so do not achieve minimal-delay paths.
All links are of 1 Gbps capacity.

The ladder topology and aggregates shown in Figure 4.1a will serve as a simple example which

will help us derive the requirements for an ideal delay-minimizing routing system by contrasting

its desired behavior with the behavior of existing schemes.

As described in Chapter 2, TeXCP [47] and MATE [29] follow a MinMax approach: in an

effort to avoid congestion, they minimize the maximum link utilization of any link in the network.

B4 [45], by contrast, aims to maximize utilization by greedily placing load on shortest paths first,

adding load to progressively longer paths as needed to fit all traffic.1

In Figure 4.1a, the arrows represent four aggregates, each with the ingresses and egresses

shown. All aggregates’ bottlenecks are outside the ISP’s network. The uppermost aggregate’s

demand is 1.3 Gbps; the three lowermost aggregates each demand 500 Mbps. All links are of 1 Gbps
1In this work, we consider only B4’s traffic placement algorithm, and not other aspects such as traffic prioritization, etc..

4.1. Requirements 61

capacity. The propagation delays on the vertical links at the left and right edges of the topology are

all 5 ms, whereas the propagation delays on the horizontal links crossing the center of the topology

increase progressively from top to bottom. Thus, intuitively, the path that offers each aggregate the

lowest propagation delay is that which includes the horizontal link immediately above its ingress.

4.1.1 Requirement: Explicitly Target Low Delay

Since it focuses on congestion avoidance, MinMax is quite willing to assign traffic to paths that

suffer from long delays. The delay-minimal traffic assignment that MinMax can compute on the

ladder topology is shown in Figure 4.1b: a significant fraction of 0→ 1’s flows are routed over the

bottom link, even though there is free capacity on the top link, which offers far lower delay. Note

that by default MinMax treats any traffic-to-path assignment that minimizes the maximum link

utilization as equally desirable. Thus single aggregates may be diverted over even longer-delay

paths than just described: MinMax could for example route none of 0→ 1’s flow on the 0→ 1 link,

as long as 700 Mbps are forwarded on every horizontal link. As explained in Section 3.2.2, when

two traffic placements have equal maximum link utilization, we break ties in favor of the placement

with lower sum of path latencies—the version of MinMax we compare against will always yield the

solution shown in Figure 4.1b given the setup in Figure 4.1a.

B4’s greedy lowest-latency-first strategy offers users lower-latency paths thanMinMax. How-

ever, B4 does not always arrive at a latency-minimizing traffic placement. Consider B4’s result for

the ladder topology, shown in Figure 4.1c. After filling each of the aggregates’ best paths to, say,

90% utilization, B4 is forced to route along circuitous paths (e.g., some of the top aggregate is routed

over the lowermost path). Flows in circuitously routed aggregates unnecessarily suffer the latency

of the 5 ms side links—this is the same effect as observed on GTS’s topology in Figure 3.11. Perhaps

worse, the latency a flow in the 0→ 1 aggregate experiences is very unpredictable, depending on

which paths flows’ 5-tuples hash to.

4.1.2 Requirement: Adapt to Variable Demand

As we showed in Section 3.3, a delay-optimizing routing system will often run links on low-delay

paths at very high utilization. In Figure 4.1c, for example, B4 fills 90% of the 0→ 1 link (as opposed

to 70% in the case of MinMax). To avoid congestion on links so close to capacity, an ISP cannot

re-optimize paths every 5-10 minutes, as systems that limit source traffic rates (like B4 and SWAN)

can. Note that MinMax-based systems like TeXCP do not tend to drive links to high utilization,

and so are inherently robust to small fluctuations in traffic volumes. When targeting low delay,

however, even tiny traffic fluctuations risk congesting highly-utilized links. At the same time, a

delay-minimizing routing system must leave enough headroom on links to avoid frequent routing

changes upon the slightest changes in demand, which would violate goal 6.

4.1. Requirements 62

4.1.3 Target Behavior
So how would a routing system that complies with our goals behave? Clearly we desire a behavior

close to the ideal one presented in Section 3.2.2. How would that look on the ladder topology?

Figure 4.1d shows the ideal assignment of traffic to paths that minimizes the sum of per-flow prop-

agation delays without creating congestion (satisfying goals 1 and 2). While easy to express, this

objective does not always yield a unique solution.

4 5

2 3

0 1

6 7

8 9

12 13

10 11

0
900

400

500

500

400

100

(a) Ideal

4 5

2 3

0 1

6 7

8 9

12 13

10 11

0
900

320

500

420

480

80

80

20

(b) Excessive stretch

Figure 4.2: The solution to the left is the same as the ideal one in Figure 4.1d. The solution to the right has the
same total propagation delay as the one on the left, but is less desirable due to excessive stretch.

To complywith goal 4, whenmultiple solutions exist thatminimize total delay, an ideal routing

system should prefer the one that furtherminimizes the sum of per-flow delay stretch—i.e., the ratio

between the delays of the paths on which a flow is placed and the delay of the shortest path for that

flow. Consider the two solutions in Figure 4.2. Both offer the same total sum delay, but Figure 4.2b’s

is not as desirable. Some of the top aggregate’s flows have been rerouted over the very long bottom

path—those flows have been “sacrificed” tomake room to allow aggregate 6→ 7’s flows to take their

shortest path. This choice does not affect total delay, but placing flows from the same aggregate

on paths with very different delays is not desirable, as it worsens packet reordering upon routing

changes.

Finally, to comply with goals 5 and 6, we envision that an ideal routing system periodically

would re-optimize paths on a one-minute timescale. A minute is long enough to propagate a new

routing solution to all devices in the network [45]. It is also long enough for measurements of

throughput to be stable, but short enough that the underlying traffic demand has not had time to

change greatly, as we showed in Figure 3.14. Every minute, such a system would collect data about

demands over the past minute, predict traffic levels during the next minute, compute a new routing

solution optimal with respect to this prediction, and install new paths (if any). To minimize the

delay before optimal paths are used, all these steps must complete quickly, ideally within several

seconds.

4.1. Requirements 63

4.1.4 Greedy Heuristic or Closer-to-Optimal Solution
Given the stringent sub-second time requirement of a delay-minimizing routing system, it is natural

to ask whether we truly need an optimal routing solution or we simply require a good one. While

B4 falls short of achieving the best latency-minimizing traffic placement, its heuristic runs quickly.

Moreover, looking back at the schemes in Figure 4.1 it is clear that B4’s solution negatively impacts

only a handful of flows. Indeed, in Section 7.1 we will use packet-level simulation to demonstrate

that in the scenario from Figure 4.1 B4 performs significantly better than MinMax, and is close to

an optimal solution.

While we will clearly need to address variability, as B4 is meant to be used in a controlled

environment, do we also need a different traffic placement algorithm? Instead of a designing a

slower, more complicated algorithm can we not simply use a greedy B4-like heuristic to quickly

compute path placement, and extend it to cope with variability?

In Section 3.2.2 we demonstrated that this is not the case. Not only do greedy heuristics tend

to produce traffic assignments which are at odds with low propagation delay, but such schemes

are likely to get trapped in local minima in mesh-like topologies, inherently limiting the operator’s

ability to upgrade the network. Even when generating the optimal solution is infeasible, we should

aim to use a non-greedy heuristic that avoids getting caught in local minima.

4.2. LDR’s Design 64

Figure 4.3: High-level operation: controller and ingress points.

4.2 LDR’s Design
In this section we will overview the design of a system, called Low Delay Routing (LDR) that

accomplishes the goals set forth at the beginning of this chapter.

LDR’s architecture (Figure 4.3) incorporates functionality at each ingress router and in a cen-

tral controller. The controller participates in a link-state routing protocol (as in [73]), throughwhich

it knows the network topology. The primary role of an ingress router is to feed measurements of

traffic volumes (i.e., demands) to the controller. Armed with global knowledge of aggregates’ de-

mands and of the network topology, the controller centrally solves an optimization problem whose

solution specifies one or more paths for each aggregate. After optimization, ingress routers direct

traffic along label-switched paths (e.g., MPLS [23] ones) dictated by the controller.

The LDR controller casts the problem of choosing non-congesting, low-latency paths as a

multi-commodity flow problem in which each aggregate is a distinct commodity of quantity equal

to that aggregate’s notionally fixed demand. While others have previously explored casting var-

ious routing objectives as optimization problems [13], doing so naively for our particular delay-

minimization objective in a network of hundreds of links carrying thousands of aggregates yields

too big an optimization problem to solve on the several-seconds timescale that meets our over-

all responsiveness objective. In Chapter 5, we contribute an efficient iterated formulation of this

optimization problem that meets our delay-minimization objective on a several-seconds timescale.

In reality, however, an aggregate’s demand will not be fixed: its mean minute-to-minute vol-

umemay be predictable, but on shorter timescales its volumemay vary randomly. Routing systems

that either directly control or closely profile sources’ traffic, such as B4 and SWAN, don’t face this

problem: they are omniscient with respect to the exact traffic volume they expect from each traffic

aggregate. In contrast we wish to target the uncontrolled environment of an ISP’s or enterprise’s

backbone, where sources’ precise demands are unknown. To cope with this uncertainty in demand,

we describe in Chapter 6 a method for taking time series of aggregates’ variability and combining

them to predict how aggregates will share a link. When LDR considers placing aggregates on a link

it uses this method to determine if they will multiplex without overloading the link. As shown in

4.3. Installing Network State 65

Figure 4.3, LDR’s controller alternates between placing aggregates and considering how they will

statistically multiplex, revisiting placement with increased per-aggregate headroom to accommo-

date short-term variability as necessary.

The controller is also responsible for detecting when the traffic has changed rapidly in a way

that may cause congestion. In that situation the controller reacts by immediately allocating more

capacity to the offending aggregate(s). Whenever the link-state routing protocol reports a link or

router failure, the controller runs a similar re-optimization, re-routing aggregates impacted by the

failure. We further explore failures in Section 8.3.

We begin our exploration of LDR’s detailed design by describing how the controller distributes

network state.

4.3 Installing Network State
Asmentioned above, all network state is centrally-controlled and the controller needs to instantiate

a new label-switched tunnel for each new path. There are two main approaches to doing so—given

a path of N hops the controller can either install this path’s state synchronously or asynchronously.

In the first case the complete path is sent to the egress and then state for the path is installed

hop by hop on the reverse of the data path. This path instantiation process is very similar to the

way reservation messages are sent in the second phase of the operation of RSVP. When the ingress

receives the path instantiation message it can immediately start forwarding packets down the new

path, as all nodes downstream will have already installed the appropriate routing state. The delay

in installing the new path is proportional to the propagation delay of the path being installed plus

the time for the initial message to reach the egress from the controller. There are N messages

involved—one generated by the controller and one for each N−1 hops downstream of the ingress.

The alternative is for the controller to directly communicate the routing state with each node

along the path. It can asynchronously send updates to all N−1 nodes downstream of the ingress,

and later when all those have been acknowledged, send a final update to the ingress, which will

“enable” the newly installed path. The delay in installing the network state is equal to the maxi-

mum among the round trip times between the N− 1 downstream devices and the controller plus

the propagation delay from the controller to the ingress. Similarly to the synchronous approach,

the asynchronous one involves N messages, but they all need to be sent from (and acknowledged

to) the controller. This concentration of controller traffic may render the asynchronous approach

to installing network state unfeasible in large deployments where lots of paths may need to be

installed at the same time. On the positive side, the asynchronous approach is more deployable, as

it does not require a new RSVP-like protocol to instantiate network state.

In our simulation-based implementation of LDR we take the asynchronous approach—in all

packet-level simulation results presented in this workwhen paths need to be installed the controller

issues N− 1 messages in parallel, followed by a single message to the ingress once the controller

4.3. Installing Network State 66

has seen acknowledgments for all N−1 initial messages. We believe that for the POP-level network

sizes that this work is focusing on (up to a couple of hundreds of nodes) the message overhead on

the controller is not a concern.

Chapter 5

Optimization

Given that we gather data from ingress routers about the rates of traffic aggregates and their egress

routers, and that a controller knows the current status of links, and link propagation delays, the

job of the controller is then to calculate the path that each aggregate takes though the network,

including splitting an aggregate between multiple paths if necessary. This can, in principle, be

viewed as a simple optimization problem.

Many flows, including DNS and TCP short flows that terminate in slow-start, are latency-

bounded. Their completion time is proportional to RTT. For longer TCP flows, if they compete

with other TCP flows at a bottleneck, their throughput is inversely proportional to RTT [63]. If

however, large flows are constrained by a narrow customer tail circuit, or are application-limited,

as is often the case with video streaming, then throughput is largely independent of RTT.

Backbone congestion impacts both long flows and, due to queuing delay, latency-bounded

short flows. Thus, a key constraint is to avoid all backbone congestion if feasible. Usually this is

possible, as ISP backbones are generally provisioned so that they have enough capacity to cope

with aggregate demand, with individual bandwidth-limited flows being constrained on customer

tail circuits.

However, it is usually uneconomical to provision so that every link in the backbone is over-

provisioned at all times if shortest path (as measured by propagation delay) routing is used. Instead

it makes sense to statistically multiplex traffic peaks, running some links near peak capacity while

offloading excess traffic to longer paths.

Finally, not all traffic is created equal. Short flows tend to be more latency-sensitive than long

ones, so it makes sense to prioritize the routing of traffic with a lower mean flow throughput. This

can be calculated from the measurement of aggregate traffic bandwidth and from an estimate of

the number of flows in the aggregate. We will return to this issue later.

5.1 Objective
Given these demands, the controller’s role is to optimize placement of aggregates so that the sum

of the propagation delays of all flows is minimized, subject to the constraint that all traffic aggre-

5.1. Objective 68

gates are placed on uncongested paths, or split between multiple uncongested paths if necessary.

Summing the propagation delays of all flows ensures aggregates containing many small flows are

preferentially routed on low delay paths.

This formulation is readily expressed as a linear optimization, solvable by well-known general

purpose LP solvers [21]. There are several ways to do this. Oneway is to cast the problem as amulti-

commodity flow problem, with one commodity per aggregate of flows, in the spirit of Bertsekas

et al. [13]. Such an optimization scales with the product of number of aggregates and number

of links, and quickly becomes intractable for larger networks. We use an alternative formulation

that explicitly considers paths; it is not only more efficient, but is also amenable to adding policy

constraints (not discussed in this work).

We will discuss variability of aggregates in detail shortly but, for now, let us assume that each

aggregate can be characterized by a single bandwidth value. If A is the set of all aggregates and L

the set of all links, then the controller can optimize for delay by minimizing:

∑
a

na ∑
p∈Pa

xapdp

subject to the constraints that no link is overloaded:

∑
a

∑
p∈Pa

xapBa <Cl ∀l ∈ L

and that all flows are routed:

∑
p∈Pa

xap = 1 ∀a ∈ A

Here, na is the number of flows in aggregate a, Pa are the paths a might take, dp is the propagation

delay of path p, xap is the fraction of traffic from a placed on path p, Ba is the total bandwidth of

a, and Cl is link l’s capacity. Notice that this is the exact same objective as the one used by the

optimal routing scheme from Section 3.2.2.

There are several problems with this formulation. First, it only cares about total delay. This

becomes a problem when deciding which of two otherwise equal aggregates to evict from a full

link. If we have two aggregates competing for a link, and we are going to need to move one to a

long path, it makes sense to move the one whose RTT is already larger (example from Figure 4.2 in

the previous chapter). This gives more predictable latency based on geography, for example, fitting

better with how CDNs work. Thus a better function to minimize is:

∑
a

na ∑
p∈Pa

xap(dp +
dpM1

Sa

)

where Sa is the delay on a’s shortest possible path, and M1 is a very small constant.

This formulation is also flawed if congestion could not be avoided. If the link-overload con-

5.1. Objective 69

A B

C D

E F

G H I J

K L

20Gbps; OC→A,OA→B,OB→D = 2

20Gbps; OC→E ,OE→F ,OF→D = 2

undefined, between 0 and 15Gbps

complement of H→ I

40Gbps

15Gbps

Figure 5.1: All links are 10 Gbps; Omax = 2, attained at the top links. If the optimizer uses the objective in 5.1
the bottom aggregate’s traffic may end up congesting one of the bottom paths even though there
is capacity for it to fit.

straint cannot be satisfied the solution is undefined. In such cases we wish to spread traffic so as

to equalize links’ overload, minimizing its effect. This leads us to a further refinement:

[

∑
a

na ∑
p∈Pa

xap(dp +
dpM1

Sa

)

]

+M2Omax (5.1)

with the modified constraint:

∑
a

∑
p∈Pa

xapBa <ClOl ∀l ∈ L (5.2)

and the additional constraint:

1≤ Ol < Omax ∀l ∈ L

Here, Ol is the degree that link l is overloaded, and M2 is a very large constant. This formula-

tion minimizes with the highest priority, the maximum level of overload, Omax, seen by any link.

Minimizing Omax in this way spreads congestion to the maximum extent, minimizing its effect.

The objective function in 5.1 will force the optimizer to set Omax to its minimal value of 1

when there is enough capacity in the network to accommodate all aggregates’ demands. Notice,

however, that when traffic does not fit the objective function does not always perform as expected.

Consider Figure 5.1. In this simple network there are two aggregates—one with demand of

40Gbps and one with demand of 15Gbps. Suppose that the optimizer uses the objective in 5.1 to

pick a path assignment. The top aggregate will be split among the two top paths as shown, as

any other split will cause a link in the network to be loaded above Omax = 2. Because there exists

no assignment in which Omax is below 2, the optimizer will happily accept any solution in which

links are loaded up to 2 times their original capacity as equally good—note that the M2 penalty in

Equation 5.1 only applies to Omax. This means that in Figure 5.1 the optimizer might decide to put

all of the G→ J aggregate on the G→H→ I→ J path, as that would load links along that path to

Ol = 1.5 < Omax = 2. This is clearly the wrong path assignment, as there is enough capacity to fit

5.1. Objective 70

the bottom aggregate among the two bottom paths without causing congestion (e.g., by splitting it

evenly among them).

To address this shortcoming we append the sum of oversubscription (∑l Ol) to the objective

function:

∑
a

na ∑
p∈Pa

xap(dp +
dpM1

Sa

)+M2Omax +∑
l

Ol (5.3)

In cases where there is a single part of the network in which congestion is unavoidable (like in

Figure 5.1) minimizing both total and maximum oversubscription guarantees that congestion will

be avoided in the rest of the network, if at all possible. If traffic fits and Omax = 1, all Ol will also

be 1, which essentially renders M2Omax +∑l Ol constant.

In summary, the objective function derived above causes the solver to minimize three different

objectives at different priority (ranked from high to low):

1. The solver will avoid causing congestion. Because the M2 multiplier of Omax is defined as a

very large number, any value of Omax above 1 will drive the value of the objective function

significantly up, giving the solver an incentive to avoid solutions that cause even a single

link’s load to exceed its capacity.

2. Given all solutions that either avoid congestion, or minimize congestion if avoiding it is not

possible, the solver will pick the one that minimizes propagation delay.

3. Given solutions that minimize delay equally, the solver will prefer ones that put more flows

on paths that are close to each aggregate’s respective shortest path. This property is due to

the small M1 constant multiplier of dp/Sa—the ratio of the delay of the path divided by the

delay of the shortest path in the aggregate. This fraction will always be equal to 1 or more,

as all paths in an aggregate are at least as long as the shortest one. By trying to minimize

the total value of the objective, and therefore the sum which those fractions are part of, the

optimizer will avoid excessively long paths.

It is imperative that the solver observe this ranking of objectives regardless of the rest of

the constants in the problem (i.e., flow counts, aggregate volumes and link capacities) otherwise

it may, for example, pick a solution that exhibits congestion even if a congestion-free one exists.

Preserving the pecking order among objectives depends on correctly picking M1 and M2, which

act to numerically separate the three objectives.

If our solver of choice uses arbitrary precision arithmetic, we can choose M2 to be an arbitrarily

big number, and M1 an arbitrarily small number. Regrettably, even for tiny problem sizes, arbitrary

precision arithmetic is prohibitively expensive, so we have to choose limited-precision numbers

for M1 and M2. Even worse, the minimum and maximum values that we can pick for M1 and M2

depend on the rest of the constants in the problem and solver-specific numerical problems may

5.2. Minimizing Omax Across all Links 71

arise if the range of the objective or one of the constraints is too large [77]. We now examine

exactly how to pick M1 and M2.

Sizing Constants in the LP

Let us start with M2. M2 should be set to be the smallest number so that a small increase in its factor

(the maximum oversubscription Omax) is guaranteed to drive up the value in the objective function

in a way that trumps any increase due to the two lower-level objectives from the list above. In

other words:

Omax =
propagation delay cost of worst possible move

p

where p is a small problem-independent constant, representing how much we are willing to

relax the oversubscription constraint. We have discovered that a value of p = 0.01 is a reasonable

default that is small enough to avoid oversubscription yet large enough to avoid causing numerical

issues with the linear solver that we use. This is also the value that we use in all experiments that

we run in this work.

Since the objective function minimizes delay, the worst possible move the optimizer can make

is the one that will increase delay the most—moving all aggregates’ flows from their aggregate’s

shortest path to its longest one. Even though such a move is unrealistic in most cases, as all flows

are unlikely to fit on the shortest or longest paths, this approach gives a very liberal upper bound

to use in the formula above:

Omax =
∑a na maxp∈Pa(Sa−dp)

p

where na, Pa, Sa and dp are the same as in Equation 5.3.

Similar logic can be applied to sizing M1, however instead of the worst possible increase in

the objective function, we should consider the smallest (best) possible increase due to propagation

delay alone.

5.2 Minimizing Omax Across all Links
A further complication is added because even after minimizing the worst overload, other disjoint

parts of the network may also be overloaded, but to a lesser degree. We can only optimize Omax

for the worst congested region, so may not optimize congestion elsewhere. For example, consider

Figure 5.2 which is very similar to Figure 5.1, but in this case the network does not have enough

capacity to fit the bottom aggregate as well as the top one. When Equation 5.3 is used the top

aggregate will be, just like before, split evenly among the two top paths. This time, however,

the extra ∑l Ol term will not help: any split that causes the Ol values of the paths of the bottom

aggregate to sum up to 2.5 is equally good as far as the optimizer is concerned. Ideally we would

5.2. Minimizing Omax Across all Links 72

A B

C D

E F

G H I J

K L

20Gbps; OC→A,OA→B,OB→D = 2

20Gbps; OC→E ,OE→F ,OF→D = 2

undefined, between 10 and 15Gbps

complement of H→ I

40Gbps

30Gbps

Figure 5.2: Same scenario as in Figure 5.1, but the bottom aggregate’s demand is 30Gbps and not satisfiable
by the two bottom paths. This creates two regions of different oversubscription in the network. A
single application of Equation 5.3 will minimize oversubscription in the top part of the network,
but not in the bottom one.

Figure 5.3: Obtaining paths and per-path aggregate fractions, assuming each aggregate’s demand is known.
This is a two-stage process: the inner loop uses Equation 5.3 to minimize both delay and oversub-
scription for a given set of paths (Section 5.2) and the outer loop adds new paths (Section 5.3).

like to spread congestion in the bottom part of the network, sending 15Gbps to each of the two

bottom paths, but a single application of Equation 5.3 cannot do so.

The inner loop from the iterative solution shown in Figure 5.3 addresses this problem. Given

all aggregates’ paths, we optimize for the worst Omax, then freeze aggregates all of whose paths

traverse links overloaded to degree Omax, removing them and the capacity they consume from

further consideration. We then repeat this process for the remaining aggregates whose placements

have not yet been frozen, find the new, lower value of Omax, and freeze those congested aggregates’

placements, too. This process repeats further, successively freezing aggregates with lower and

lower levels of oversubscription. It terminates with final path allocations when there are no more

5.3. Adding Paths Iteratively 73

“unfrozen” aggregates, or when constraint 5.2 can be satisfied with Omax = 1, at which point the

remaining flows have found optimal lowest latency uncongested paths.

In Figure 5.2 the iterative process will first freeze the top aggregate as both of its paths traverse

links with Ol = Omax = 2. After the first iteration the top aggregate and top links are frozen, and

another run of the optimization will only consider the bottom aggregate, evening out the load on

the two bottom paths as well.

Informal Proof of Inner Loop

We now sketch an informal proof that this iterative process of linear optimization conducted under

overload yields the lowest possible level of congestion on all links in the whole network.

By definition a single application of Equation 5.3 will minimize themaximumoversubscription

of any link in the network. Let’s assume the value of the maximum oversubscription is Ol , and the

set of links that have this oversubscription is Lo.

We will prove by contradiction that if one of the paths of an aggregate crosses a link in Lo,

then all of its paths must also cross at least one link in Lo. Let us assume the opposite—that there

is at least one aggregate with one or more paths Pl that cross a link in Lo, and one or more paths

Pi that do not cross a link in Lo. This implies that by moving some positive amount traffic from all

of the Pl paths to any of the Pi paths we can lower the oversubscription of the links in Lo. But by

definition, because of the LP, their oversubscription cannot be further minimized. Therefore if one

of the paths of an aggregate crosses a link in Lo, then all of its paths must also cross at least one

link in Lo.

Notice that this implies that links in Lo cannot be occupied by aggregates that have no paths

that cross links in Lo. If we “freeze” all aggregates that cross at least one link in Lo—i.e., remove them

from the network and remove their traffic from the capacity of all links along their paths, we will be

removing all capacity on all links in Lo. We can repeat the application of Equation 5.3 to produce

a new solution on the network with the modified link capacities, which will then minimize the

oversubscription of a different set of links. The repeated application of this procedure is guaranteed

to minimize the oversubscription of all links in the entire network.

This procedure is guaranteed to terminate because at each iteration we are freezing at least

one aggregate. As we will later demonstrate, in practice this iterative approach terminates quickly

since multiple aggregates will be frozen at each step.

5.3 Adding Paths Iteratively
Finally, we must face the issue that performing this optimization for the set of all possible paths is

computationally infeasible for large networks. Fortunately, we observe that this is not necessary,

given the objective function in Equation 5.3. Consider a single aggregate that does not fit on its

shortest path. An optimal solution will place as much traffic as possible on the shortest path, then

5.4. Path Addition Heuristic for Large Networks 74

A B

C D

E

densely connected
20G

bps

long propagat
ion delay

30Gbps

Figure 5.4: A simple pathological example. All links have the same 20Gbps capacity and there is a single
aggregate whose shortest path passes throughC; the top path via E has longer propagation delay
than any other path from A to B. LDR’s iterative path addition process will have to add all paths
that go through the densely connected region before the only viable path via E is discovered.

allocate the rest to the next-best path. If the next-best path is not itself congested, then adding

further paths for this aggregate serves no purpose, as they will never be used. Essentially, there

is a “delay threshold” then for each aggregate, beyond which paths of longer delay will never be

used. We do not know this delay threshold a-priori, but we can learn it from successive runs of the

LP optimizer.

As shown in Figure 5.3, we associate each aggregate with a list of its k shortest paths, where

initially k = 1. All paths from the aggregates’ lists are added to the set of paths given to the LP.

We then use the iterative optimization from Section 5.2 (inner loop in Figure 5.3) to minimize both

propagation delay and oversubscription. The inner loop will do its best to find a solution with

Omax = 1. If it fails, we look for links with Omax > 1. For all aggregates that cross those links we

extend the list of paths by generating shortest paths for an increasing k until we find a path with

no Omax > 1 links. We then run the inner loop again.

While in essence greedy this approach of iteratively adding the k shortest paths is guaranteed

to provide the same solution as providing all paths to the optimizer—at the final iteration of the

algorithm all paths below each aggregate’s “delay threshold” are present in the set of paths available

to the optimizer, and the optimizer would never use any paths above the threshold.

Even though this approach involves multiple runs of the LP optimization, it actually runs

very quickly because the number of variables (paths) in each run is small. The bottleneck is not the

linear optimizer, but the k shortest paths algorithm [82], the results of which can be readily cached

yielding sub-second runtime even with tens of thousands of aggregates—97.3% of all algorithm

runs in Chapter 7 completed under a second.

5.4 Path Addition Heuristic for Large Networks
A drawback of the iterative path addition process described above is that if the network is large,

densely connected and very loaded the optimizer may need to add shortest paths for a very large

value of k before it reaches a path with no oversubscribed links.

A simplified example of this behavior is shown on Figure 5.4, where the only aggregate in

5.4. Path Addition Heuristic for Large Networks 75

Aggregate's longest
path crosses a link with

O=Omax?

Generate up to (L - K) shortest
paths starting at K. Stop

generation at first path that does
not cross a link with O=Omax. Done

Y
Total number of

paths in all
aggregates > Lhard?

Generated a path that
crosses no link with

O=Omax?

Total number of paths in
all aggregates > Lsoft?

Add all generated paths
to the aggregate's set of

paths

Add the generated path
(if any) that avoids links

with O=Omax to the
aggregate's set of paths

Generate single shortest path that
avoids links with O=Omax

Y

Y

N
Y

N

N

N

Start

Figure 5.5: Adding paths to a single aggregate, assuming the aggregate’s set of paths is pre-populated to
contain its shortest path. When the longest path in the set is oversubscribed, k shortest paths
are added until either a non-oversubscribed path is found, the aggregate’s path set has grown to
the per-aggregate limit (L) or the global soft path limit is hit (Lso f t). After either of those limits
is reached paths are skipped to avoid exploring densely connected regions as in Figure 5.4. No
paths are added if the hard limit (Lhard) is reached.

the network goes between A and B. The iterative optimization and path addition process described

abovewill start by placing asmuch of the aggregate as possible on its shortest path A→C→D→B.

As the aggregate does not fit entirely on its shortest path the first optimization pass will conclude

with links A→C, C→ D and D→ B being oversubscribed at Omax = 1.5. The optimizer will now

attempt to run the k shortest paths algorithm for progressively larger values of k until it finds a

path between A and B that avoids any oversubscribed links. The problem is that in this case the

only path that satisfies this condition has a comparatively high delay and will not be explored until

all paths between A and B that go through the densely connected part of the network are explored

and added to the problem. If that part of the network is sufficiently connected there will likely

be an exponential number of such paths. Clearly, adding this many paths to the problem is not

feasible.

An obvious way to deal with scenarios like the one in Figure 5.4 is “skip over” to the top path

without adding all paths after k = 1. This way the problem that the LP solver needs to solve will

only have two paths and in this case the solution will still be optimal, even though we did not

feed a large number of paths to the optimizer. In general, however, it is not possible to guarantee

optimality if not all paths up to each aggregate’s “delay threshold” are added to the problem.

LDR follows the above approach—in the example from Figure 5.4 LDRwill give up after adding

a certain number of paths. After this happens, the iterative addition process will artificially increase

the cost of all oversubscribed links which will cause the k shortest paths algorithm to skip over

oversubscribed parts of the network.

In Figure 5.5 we describe the behavior of this heuristic by focusing on how paths are added

5.5. Prioritizing Traffic in LDR 76

Table 5.1: Limits used when adding paths

limit (designation on Figure 5.5) value
hard (Lhard) 200000
soft (Lso f t) 100000
per-aggregate (L) 1000

to a single aggregate. The figure assumes that the aggregate’s shortest path is already in its set of

paths—this will always be true for all aggregates, as regardless of the outcome of the optimization

each aggregate needs at least one path. The first check that happens is whether the aggregate’s

longest path crosses any oversubscribed links (links with O = Omax). As previously discussed, if

this is not the case we have reached the aggregate’s “delay threshold” and we know that there is

no need to add any additional paths to this aggregate.

The size of the optimization problem, and therefore the time to solve it, is directly proportional

to the number of paths. As LDR is meant to run online, it is paramount that we provide some hard

limit on the runtime of its solver. To this end, LDR imposes a global limit for the total number of

paths added to the problem across all aggregates. If we have reached this limit, we will not add any

more paths to any aggregate.

If the hard limit has not been reached, we will attempt to generate the next L−K short-

est paths, starting at the number of paths already added to this aggregate—K. In LDR there is a

per-aggregate path count limit L which ensures that in case there are multiple aggregates in the

situation from Figure 5.4 no single aggregate starves other aggregates from paths.

If either we cannot generate any additional paths or none of the paths that we generate avoid

links with O = Omax, we will bump up the cost of all links with O = Omax and generate the single

shortest path between the aggregate’s source and destination—this will solve the problem from

Figure 5.4.

Finally, LDR employs a soft limit above which only paths that avoid oversubscribed links are

added, even if the number of paths in the aggregate has not reached L. The soft limit allows more

paths that avoid oversubscribed links to be added before hitting the hard limit—it is useful in cases

where there is a very large number of aggregates compared to the size of the hard limit (e.g., there

are 10000 aggregates and the hard limit is set to 20000 paths).

Table 5.1 shows the values of the three limits that we use throughout the evaluation of LDR.

We note that those values are high enough so that in moderately loaded networks, like the ones in

Figure 3.9, the limits are almost never used. We explore in Section 7.3.7 conditions under the limits

will be used.

5.5 Prioritizing Traffic in LDR
The description of the optimization process so far has assumed that all flows in the network are

equally delay sensitive. The objective function from Equation 5.3 prioritizes each aggregate based

5.5. Prioritizing Traffic in LDR 77

Traffic enters at
ingress node

An egress is
chosen based
on BGP policy

Ingress hardware picks aggregate by further
classifying traffic destined for the same
egress based on operator-configured filter

Per-aggregate path cost modifiers enforce priority when performing optimization

Figure 5.6: Optimization process with extended aggregates; each aggregate is defined as a combination of
〈ingress,egress, f ilter〉.

on the number of flowswithin the aggregate. Assuming that flow counts are accurate, in an optimal

solution all flows in the network will benefit from low delay paths to the same extent. This is a

fair outcome if the ingress points cannot differentiate between different types of traffic, and the

operator does not possess any insight into the type of traffic carried by each aggregate.

In reality, however, all types of flows benefit from lower delay, but some types much more

so than others. For example, within the confines of the same aggregate, long-lived NetFlix TCP

sessions, which carry non-interactive video traffic, should not be treated the same as short-lived

web TCP transfers. If the ingress of the network can differentiate between the Netflix traffic and the

web traffic (e.g., by examining IP addresses in packet headers), it should be possible for the routing

system to give lower-delay paths to the web traffic. How can LDR support such finer-grained

prioritization of traffic?

To handle the example above, we need to extend our definition of aggregate so that the routing

system supports multiple aggregates between the same pair of ingress and egress nodes. We then

need to extend LDR’s optimization process to handle the new aggregates and apply prioritization

to them as needed by the network administrator. Figure 5.6 outlines howwe extend LDR to support

prioritization.

Multiple Aggregates Between the Same Pair of Nodes
As usual, when traffic enters the network, an egress is chosen for it based on BGP policy. An aggre-

gate is then picked by the ingress by further applying an operator-defined filter to all traffic destined

for the same egress. This way an aggregate is identified by a 3-tuple of 〈ingress,egress, f ilter〉 in-

stead of the usual 2-tuple of 〈ingress,egress〉. Obviously, if the hardware does not support classifi-

cation, or the network operator has not configured a filter, effectively the definition of an aggregate

is reverted back to the original one.

The optimization process, as previously described, does not depend on the actual definition of

an aggregate, so it can run unmodified with our extended aggregate definition.

Prioritizing Aggregates
Armed with our finer-grained aggregates, we now arrive at the heart of the problem—how can we

enable the operator to prioritize different aggregates?

The most straightforward approach is to artificially inflate the number of flows in the aggre-

5.5. Prioritizing Traffic in LDR 78

0 200 400 600 800

k shortest paths

0

10

20

30

40

50

d
el
a
y
(m

il
li
se
co
n
d
s)

original

constant modifier

non-linear modifier

Figure 5.7: Different priority modifiers.

gate that we want to prioritize—the larger the flow count, the more costly it is for the optimizer to

put this aggregate on higher-delay paths and the more unlikely it would be to do so. This simple

scheme can be accomplished by adding a per-aggregate priority multiplier to the aggregate’s flow

count na from Equation 5.3.

On one hand, the new priority multiplier gives the operator the ability to apply lower-delay

treatment to traffic that they know to be delay sensitive, and that they can identify as it enters the

network (e.g., short web transfers). It also provides themwith the ability to de-prioritize traffic that

they know is not as delay sensitive (e.g, Netflix TCP flows), with the desirable property that in the

absence of higher-priority traffic, the optimizer will put even lower-priority traffic onto desirable

low-delay paths.

On the other hand, a simple multiplier may be too coarse-grained for a large class of policies

that the operator may want to apply, such as “ensure that the delay of the aggregate does not

go above 20ms if possible”—a policy the operator may want to support as part of an SLA with

a customer. Figure 5.7 shows an example of the cost (propagation delay in milliseconds) of the

k = 860 shortest paths paths of an aggregate in Cogent’s network (curve labeled original); the

total cost of the aggregate in the final solution will be based on how many flows the optimizer will

assign to each of these paths. Notice that the curve forms a non-decreasing additive cost function

of the path delay f (p). In the case of the original curve f (p) = delay of path p.

Applying a constantmultiplier is akin tomultiplying the cost of each path by the same number.

For example the curve constant modifier is obtained by multiplying all paths’ cost by .5.

The cost curve that will let us support the example policy from above is the one labeled non-

linear modifier. It preserves the cost of the paths up to the 20ms threshold, above which the cost

of the path shoots, while still remaining non-decreasing.

While traditionally such a non-linear f (p)would be costly to incorporate into the optimization

process, our path-based formulationmakes it trivial—as seen from Equation 5.3, from the viewpoint

of the optimizer per-path costs are constants. As the k shortest paths are progressively added to the

5.5. Prioritizing Traffic in LDR 79

optimizer (see Section 5.4), any arbitrary non-decreasing f (p) can be applied to them to generate

per-path costs. This approach gives the operator a great degree of flexibility, as long as they are

intimately familiar with their network’s demands and it is possible to distinguish between different

types of traffic. As we will demonstrate in Chapter 7, even if either of those is false, the default of

treating all traffic as equally sensitive to delay results in a solution that yields very low delays.

5.6. Reordering, Jitter and Control Plane Overhead 80

5.6 Reordering, Jitter and Control Plane Overhead
In a network managed by a load-dependent routing system it is expected that changes to the traffic

matrix will translate to changes to the routing state of network devices. However, we want to avoid

cases where a small change in flows’ demands results in significantly different routing state. Such

large changes are undesirable because they:

• lead to a large volume of management traffic and processing overhead at network devices.

Even in modern state-of-the-art OpenFlow switches processing an update can take many

milliseconds and put strain on the device’s control plane.

• cause packet reordering. Reordering can negatively affect the throughput of TCP sessions

by causing them to unnecessarily reduce their transmission window.

• increase jitter. Real-time flows moving to paths with significantly different propagation de-

lays will be negatively affected.

• render the network harder to manage. It is much harder for the network operator to debug

a problem with the network when the routing state at switches constantly changes.

• can cause transient congestion. Imagine that the change results in swapping a large volume

of traffic between two links where at least one is loaded close to saturation. If traffic is added

to the already-loaded link before traffic is removed from it, the link’s queue will overflow.

Previous efforts alleviate those transient effects [46], but there are cases (for example if both

the source and the destination links are very loaded) where no ordering exists which will

avoid transient congestion when the change is large.

As discussed in Chapter 2, traditionalMinMax-based load-dependent routing systems focus on

minimizing link utilization. This creates a feedback loop: placement of flows on links influences the

level of traffic on the link, which directly affects link utilization. In a distributed scenario different

devices may adapt to link utilization measurements at different times, reacting to the output of a

different device, leading to oscillations.

LDR’s centralized optimization process does not suffer from such oscillations, but it provides

no guarantees that small changes in the optimization’s input will not cause a large fraction of the

flows to take a different path. Even though the optimization function has a single unique solution

for a trafficmatrix it can be ill-conditioned—there are no guarantees that a tiny change in the traffic

load of an aggregate will not lead to an entirely different routing solution. Wewill, therefore, define

well-conditioned in the context of LDR (and other centralized load-dependent routing systems) to

mean responding to small changes in traffic demand by proportionally small changes to routing

state.

5.6. Reordering, Jitter and Control Plane Overhead 81

Free capacity

Less traffic in large aggregate

Link on low delay path

Link on high delay path

Large aggregate

Small aggregates

Figure 5.8: Effect of a single large aggregate’s demand decrease

There are two main inputs to LDR’s optimization process—per-aggregate demands and per-

aggregate flow counts. We will now examine how a change to either of those can influence LDR’s

output.

5.6.1 Changes in Per-aggregate Demands

On the left side of Figure 5.8 we show a typical LDR output with respect to two links in the network

and a handful of aggregates with varying sizes (demands). The top link is part of the shortest paths

of the aggregates shown, while the second link is part of their higher-delay paths. In this example

let’s assume that each aggregate’s flow count is proportional to its volume.

LDR drives the link that is on the lower-delay paths to a high utilization, as assigning more

flows to it will result in lower total per-flow propagation delay. Not all aggregates fit on their

shortest path, and to avoid congestion some aggregates are routed over the second link. Note that

LDR’s optimization does not “stripe” aggregates, but instead packs them onto links, only splitting

a single aggregate in this example. Let’s examine what happens when the measured level of the

large aggregate decreases. The new solution will depend on what the actual per-path delays are,

but one possible outcome is shown to the right. The shrinking aggregate frees up room for some

of the smaller aggregates, and LDR places them onto a shorter path (and hence onto the top link).

The flows of the aggregates thatmovewill experience reordering, as they have just beenmoved

to a path that has lower propagation delay. A move in the opposite direction—from a low delay

path to a higher delay one is less disruptive as it causes no reordering, but will, by definition, result

in some flows experiencing longer delay.

In general every time an aggregate that is currently being routed over a high-utilization link

changes capacity there will be a knock-on effect on other aggregates, perhaps even aggregates

it shares no links with—imagine that the second link in Figure 5.8 is also full and the shrinking

aggregate causes LDR to move flows from the second link onto a third one. Whether or not this

is the desirable outcome depends on a lot of factors. It may be that a disruptive change like the

one from Figure 5.8 yields a negligible overall decrease in total delay experienced by all flows. The

optimization process will always produce the optimal solution, but we may be paying a hefty price,

5.6. Reordering, Jitter and Control Plane Overhead 82

Link on low delay path

Link on high delay path

Aggregate A, 100 flows

Aggregate B, 90 flows

Aggregate B, 101 flows

Aggregate A, 100 flows

Figure 5.9: Effect of a single aggregate’s flow count change

in terms of changing paths in the network, to only gain a little bit of optimality.

5.6.2 Changes in Per-aggregate Flow Counts

LDR’s optimization function minimizes the total delay of all flows in the network. This implies that

each aggregate’s contribution to the overall value of the objective function is dependent on its flow

count. How does the system react when there is a change in the relative ordering of aggregates’

flow counts?

In Figure 5.9 we show two links with two aggregates. To the left we have one aggregate (A)

with 100 flows and another one (B) with 90 flows. To the right is LDR’s solution when B grows

to have 101 flows, but its total volume remains unchanged. Because the new flow count for B is

higher than that of A the optimizer decides that the optimal solution is to put B, instead of A, on the

shortest path. While this solution does indeed place more flows on the shortest path and results

in a slightly better total flow delay, the overall gain is tiny compared to the cost of completely

swapping the two aggregates.

5.6.3 Limited Optimization

How canwe limit the negative effectswhen either an aggregate’s demand or its flow count changes?

From the examples above it should be obvious that instead of always going for the optimal solution

we should aim for one that is good, but avoids excessive change. A natural way to produce such a

solution is to restrict the optimizer’s freedomwhen placing flows so that it remains close to the one

from the previous, currently installed in the network, solution. At the same time we do not want

to be too restrictive—when an aggregate’s volume increases, changing how it splits traffic among

its paths may be inevitable; in such cases we want to avoid moving aggregates to shorter paths (as

that would cause both jitter and reordering) in favor of moving aggregates to longer paths (as that

would only cause jitter).

Consider an aggregate and one of its paths in two LDR solutions obtained at time t and t +1.

If in the t + 1 solution the path carries less traffic than it did in the t solution, then clearly the

optimizer has chosen to move some of the path’s traffic (and hence its flows) onto a different path.

As previously discussed, we would prefer it if those flows moved to a higher-delay path, as that

would avoid reordering. How can we make the optimizer only consider such moves? If the path

5.6. Reordering, Jitter and Control Plane Overhead 83

in question is the aggregate’s shortest path and it carried X% of the aggregate in the old solution,

we can simply limit it to carry no more than X% in the new solution as well. The limit will ensure

that no new flows are moved to the shortest paths, and any flows moved away from the shortest

path will necessarily go on longer paths.

What if the path is not the shortest path? We do not want to always limit all paths in a

similar way, because when an aggregate grows the optimizer needs to be able to find room for it.

Remember that LDR’s objective function will always ”pack” traffic into the first k shortest paths of

the aggregate. This means that when an aggregate’s demand increases the optimizer will insert the

excess capacity on on either the longest path in the previous solution, or a new path that is longer.

We, therefore, need to never apply the limit to the longest path in the aggregate, or any paths that

are longer. This observation leads to a simple limiting rule. Consider an aggregate a and let Da be

the delay of its longest path in the solution at time t . When generating a new solution at time t+1,

for each of the paths of a:

• if the path’s delay is less than Da, limit the fraction of the aggregate that can go on the path

to never exceed the path’s fraction from the previous solution, or 0 if the path was not part

of the previous solution.

• if the path’s delay is more or equal to Da apply no limit.

Applying those limits to LDR’s LP definition has the effect of producing a solution which is

sub-optimal with respect to an unconstrained solution when aggregates’ demands decrease. This

is easy to see—a decrease in an aggregate’s demand means that there is now free capacity on its

paths. But the limits described above will prevent the optimizer from placing a larger fraction of

the aggregate on any of its previous paths (except the longest one), which results in sub-optimal

total per-flow delay. In essence the per-path limits avoid reordering by ignoring opportunities to

pack flows more tightly onto low-delay paths.

If the limits are applied on every update cycle the solution will drift further and further from

the optimal one as the traffic matrix changes. To discover the magnitude of this drift LDR runs

in parallel two versions of the optimization—one with the limits applied, an another one without

them. The total per-flow delay values from the two solutions are compared and if the delta is above

a small threshold (1% by default) the unlimited solution is applied. To avoid causing reordering to

a large number of flows simultaneously, it is possible to relax the limits to a handful of aggregates

at a time instead of to all at once.

When the network is very loaded, applying the limits may cause the optimization to fail to

fit all aggregates’ demands, even when they would fit without the limits. In this case LDR will

always use the solution that fits the demand, preferring to cause reordering rather than potential

congestion within the network that it manages.

Chapter 6

Characterizing Demand

To run the optimization from Equation 5.3, the controller needs to know the number of flows in

each aggregate, na, and the aggregate’s demand, Ba. How should it obtain these values?

6.1 Counting Flows

Any system designer aiming to achieve the goals of Chapter 4 is faced with a dilemma—while the

aim is to minimize the completion times of flows that cross the backbone, performance constraints

preclude identifying and routing single flows or directly measuring their bandwidths within the

backbone’s core. It is, however, feasible for ingress routers to estimate the number of flows compris-

ing each aggregate destined for each egress router, and to send this information to the controller.

Counting flows has received ample attention in the literature. Rather than rehash known

techniques, we merely note that a router may include hardware support of the sort described by

Estan and Varghese [30] or, absent hardware support, (i.e., on today’s legacy routers), an external

box may estimate aggregates’ flow counts from sparsely sampled mirrored packet streams, such as

those provided by sflow [72]. In our LDR implementation we use an adaptation of Duffield et al.’s

technique [27] on a sampled stream of 1 in 100 packets.

At that sparsity, the number of flows observed will be an underestimate—many short flows

will be missed. Nevertheless, our experience assessing the accuracy of this sampled method on

packet traces drawn from a collection of U.S. Tier-1 backbone links is that the resulting estimate

of flow count is within a factor of two of ground truth—good enough for our purposes.

Counting flows is not essential to LDR’s operation. If a device does not support sampling or

the cost of enabling it is too high, na will be ignored by the optimizer. As a result LDR will not

be able to weight aggregates proportionally to their flow counts, and may thus sometimes violate

goal 3 from Chapter 4. Ultimately, the choice between these flow-count-aware and flow-count-

agnostic versions of LDR is a matter of cost-benefit analysis for the operator. We will describe the

full flow-count-aware design of LDR and evaluate both versions.

6.2. Aggregate Demand 85

6.2 Aggregate Demand
In addition to the number of flows, the objective of our linear optimization requires a value for

each traffic aggregate’s expected demand, Ba. In real networks these demands are not constant;

the mean demand changes over time in a largely predictable way, but on short timescales demand

varies around the mean in an unpredictable manner. All aggregates will vary on short timescales

to some degree, but some are more inherently variable than others, depending on the type of traffic

and number of flows that comprise the aggregate. Our goals require us to statistically multiplex

multiple aggregates onto links, and to run core network links at high utilization, but to do so in

such a way that significant queues do not build.

6.2.1 Adding Headroom

A simple strategy to dealing with variability is to allocate a small fixed amount of headroom to

all links in the network, expecting that it will be enough to buffer any short-term variability and

prevent queues from forming. We can compute a prediction of the mean rate for each aggregate,

based on its measured behavior from the last minute. Using this mean value as an estimate of Ba,

we can run the optimization from Chapter 5, with the capacity of each link in the network reduced

by the amount of headroom we want to allocate. How much headroom can we add?

Obviously, we need enough headroom to cope with variability, but there is another concern.

We need to consider the bandwidth-delay tradeoff that we discussed in Section 3.3—adding head-

room to all links makes it easier for the system to predict traffic levels and deal with transient

congestion, but at the same time it will unnecessarily lengthen some flows’ paths. The total de-

lay experienced by flows in the network will always be an increasing function of the amount of

headroom added, but how strong is that dependency?

In some cases, the combination of topology and traffic matrix may be such that we can com-

fortably add a very significant amount of headroom (e.g., 10%) to all links, and only increase overall

delay experienced by flows by a fraction of a percent—e.g, because for a lot of aggregates there ex-

ists an alternative path with propagation delay very close to the shortest path one.

In other cases, the alternative path may be significantly longer—e.g., perhaps it crosses a

backup link with very long propagation delay. In those cases we should drive the shortest path

to as high a utilization as we can, while avoiding queuing.

Realistically loaded traffic matrices on real-world topologies will likely fall under both of the

categories above. Even for the same topology, different traffic matrices can exhibit widely varying

levels of sensitivity to headroom. In a large fraction of the topology/traffic matrix combinations

that we examine in Chapter 7 the simple approach of adding headroom to all links is an overkill and

results in low-delay capacity being wasted. Moreover, even if we were to choose a single amount

of headroom to add to all links, how would we go about picking the right amount? Any number

derived from our measurement data is likely to not be globally representative. Perhaps there is a

6.2. Aggregate Demand 86

Loop from Figure 5.3
(optimize for a set of

rates)

Simulate
queues to check for
time-dependence

Any
queue too large?

Scale up rates of
aggregates that

encounter congestion

All aggregates at
max rate?

Sum per-aggregate
distributions,

assuming time-
independence

Probable to
exceed link
capacity?

Y Y

Initialize each
aggregate's rate to its

predicted mean
Done

Y

A

B
C

Figure 6.1: Picking rates to cope with short-term variability. Initially each aggregate’s level is set to that of
its predicted mean (see Section 6.2.3), the optimizer is then run (A) and the solution is checked
for temporally correlated events (B) and whether multiplexed traffic is likely to overflow any
queue in the network (C). If either of those is true the levels of aggregates that are likely to
experience congestion are moved closer to their maximum and the process repeats.

more general approach that we can take.

6.2.2 Statistical Multiplexing

Even if we knew the future variability of all aggregates perfectly, we would still be faced with a

circular dependency. To run the optimization and place traffic onto links we first need to know

Ba for each aggregate. Unfortunately, whether or not traffic statistically multiplexes onto a link

without causing excessive short-term queuing depends on which aggregates share the link, and

therefore on the outcome of the optimization. In effect, we cannot choose a representative value

of Ba for each aggregate without knowing which other aggregates it will multiplex with, but we

cannot decide paths without knowing Ba. How can we break this cycle?

A usable value of Ba must lie somewhere between the aggregate’s mean rate and its maximum

rate. Using the mean would implicitly assume no short-term variability, whereas using the maxi-

mum rate would assume the worst possible statistical multiplexing, where the traffic peaks of all

aggregates are perfectly synchronized.

Our strategy is shown in Figure 6.1. First we compute a prediction of the mean rate for each

aggregate, based on its measured behavior from the last minute. Using this as an initial estimate

of Ba, we perform a preliminary optimization of aggregate placement.

We then assess how well these aggregates will statistically multiplex. To do so, we make

the observation that although the precise short-term demand of an aggregate is unpredictable,

its degree of variability is predictable, as the type of traffic and mean number of flows in large

aggregates does not usually change rapidly (see Section 3.3.2). Thus we measure each aggregate’s

variability during the previous minute, and use this to predict how variable it will be in the next

minute (see below).

Knowing the variability allows us to evaluate whether the preliminary assignment of aggre-

6.2. Aggregate Demand 87

gates to paths results in acceptable statistical multiplexing on each link. If this test passes for all

links, then the traffic placement is good. If it fails for any link, we scale up Ba for those aggregates

traversing that link, and re-optimize (A in Figure 6.1). This procedure is guaranteed to terminate

because Ba is bounded above by the maximum rate of that aggregate; if Ba were to be scaled up to

the aggregate’s maximum rate, then the statistical multiplexing test is guaranteed to succeed. In

practice it will usually succeed nearer the mean than the maximum.

6.2.3 Predicting Mean Traffic Level

In Figure 3.15 we presented data that suggests short-term variability inWAN traffic remains largely

constant from one minute to the next. These findings lead us to believe that we can reliably pre-

dict how well aggregates multiplex, but of course the data does not imply that aggregates are

stationary—as we demonstrated in Figure 3.14 aggregates’ long-term variability exhibits more vari-

ation, with mean traffic levels likely to evolve in time. Below we outline the approach that LDR

uses to deal with long-term variability.

At the beginning of each minute-long epoch, the controller examines all updates it has re-

ceived during the previous minute from all ingress routers. Those updates contain the traffic levels

of each aggregate. LDR’s controller could simply estimate the mean traffic demand an aggregate is

expected to offer a minute in the future by adding 10% to the mean per-second traffic levels from

the previous minute. While this simple prediction algorithm handles most common cases, it is

possible for an aggregate to exhibit greater minute-to-minute variability [41]. To be able to also

handle those cases, LDR errs on the side of caution and slowly decays its prediction of the mean

traffic level when the actual measured level decreases, but quickly increases its prediction when

the measured level increases. In Algorithm 1 we show the conservative strategy that LDR uses to

estimate mean throughput and hence the initial value of Ba for each aggregate.

Note that this algorithm will always attempt to reserve 10% headroom on all links in the net-

work. In Section 7.4 we further use packet-level simulation to demonstrate that this target head-

room amount is appropriate for our evaluation scenarios. We acknowledge that other network

conditions may require different headroom targets, and in Section 6.3.3 we outline a simple mech-

anism that would allow the network operator to sense the headroom target value appropriate for

their network.

6.2.4 Assessing Link Multiplexing

Predicting the mean traffic level for each aggregate gives us an initial estimate for Ba—the traffic

level that we need in order to minimize Equation 5.3. However, as we previously explained, the

mean level is just a starting point. What we are after are per-aggregate values for Ba, somewhere

between each aggregate’s mean and its maximum, that will result in a solution with just enough

headroom to minimize propagation delay while at the same time avoiding congestion. Obviously

in order to pick those values we need to take into account each aggregate’s short-term variability.

6.2. Aggregate Demand 88

Algorithm 1: Predicting next minute’s mean level from the previous minute’s measured
mean level. By default 10% headroom is reserved to allow aggregates’ mean levels to evolve.

prev_value // Value measured last minute
prev_prediction // Value predicted last minute
decay_multiplier← 0.98 // 2% decay when level drops
f ixed_headroom← 1.1 // Always scale level by 10%
scaled_est← prev_value∗ f ixed_headroom;
if scaled_est > prev_prediction then

next_prediction← scaled_est;
else

decay_prediction← prev_prediction∗decay_multiplier;
next_prediction← max(decay_prediction,scaled_est);

For example, if an aggregate’s demand is highly variable, but it is placed on the basis of its

mean demand so that it occupies 95% of a link, it is highly likely that this aggregate will cause

temporary queues to build. As the controller should not choose solutions that build queues, it

should instead place the offending aggregate according to a rate closer to its maximal demand,

rather than its mean.

To capture both the long-term variability of aggregates (addressed in Section 6.2.3) as well as

their short-term variability (addressed in this section), LDR’s ingress routers read hardware coun-

ters multiple times each second and send the controller a stream of raw counter values. These

periodic readings form a discrete fine-grained distribution of the aggregate’s traffic level. De-

voFlow [22] demonstrated that commodity network devices can comfortably poll hardware coun-

ters in a switch with two thousand rules (i.e., with one rule per aggregate) ten times per second.

More recent proposals [58] promise to make reading counters even cheaper. LDR broadly follows

the DevoFlow approach: over the course of every minute, each ingress switch sends to the con-

troller 600 counter values (one for every 100 ms interval) for each of its aggregates.

While mean-rate prediction is possible on a minute-to-minute basis, accurately predicting the

actual traffic level of the aggregate on sub-second (or even second) granularity is likely not possible

in WAN environments. Luckily, we do not require such fine-grained prediction. Instead, given a

provisional placement of aggregates to paths, we only need to decidewhether short-term variability

is likely to lead to excessive queuing. Aggregates may fail to statistically multiplex, either because

traffic bursts in different aggregates are temporally correlated, or because these aggregates are just

too variable so when multiplexed they are statistically likely to exceed link capacity.

Correlated bursts may, for example, occur if there are multiple aggregates going to a set of

CDN nodes. If a periodic process updates those nodes, bursts in those aggregates may be syn-

chronized. To test for this, the controller effectively simulates the previous minute’s traffic (B in

Figure 6.1). For each aggregate, it has measurements of data transmitted in each 100 ms period. It

simply sums the values from each aggregate for each 100 ms period to test if the link bandwidth

would be exceeded. If it is, the excess traffic would be queued, so is carried over to the next 100 ms

6.2. Aggregate Demand 89

period. The controller rejects any solution in which transient queuing delays exceed 10 ms, as this

might impact real-time traffic.

To evaluate uncorrelated statistical multiplexing (C in Figure 6.1), the controller treats aggre-

gates as random processes, each with a different discrete distribution given by its 100ms bandwidth

measurements. When these aggregates multiplex on a link, we care about the resultingmultiplexed

bandwidth distribution.

We treat each aggregate’s measurements as a probability mass function (PMF). For each link,

we take the convolution of the PMFs of aggregates that cross that link, and examine the convolved

PMF. If the probability that this PMF exceeds the link’s capacity is below a threshold, LDR concludes

that the aggregates will multiplexwell enough to fit. The threshold comes from themaximum 10ms

queue the controller is willing to allow—the measurements span an interval of 60 seconds, during

which we may allow the rate of the link to be exceeded for up to 10 ms; this yields a threshold of
10

60000
= 0.00016.

If a solution is rejected due to correlated or uncorrelated multiplexing failure, the values of Ba

for some aggregates were too low. The controller then examines the aggregates that failed to mul-

tiplex and linearly steps their value of Ba closer to their maximum rates (outer loop in Figure 6.1).

The optimization is repeated, and statistical multiplexing reassessed. This process continues until

it finds a solution that yields sub-10 ms queuing.

It might seem that convolving discrete per-aggregate distributions is prohibitively expensive—

we have tens of thousands of aggregates, each with a different distribution. The controller would

have to perform as many convolutions as there are links which pass the simulation step from Fig-

ure 6.1. At the same time, these convolutions must only take a fewmilliseconds to perform, or they

will slow down the optimization process. A couple of tricks let LDR perform these convolutions

quickly.

First, we only need to convolve links close to saturation. We can guarantee that both multi-

plexing tests will pass if the sum of the maximum traffic levels of all aggregates that cross a link

does not exceed that link’s capacity. These links can shortcut the entire loop in Figure 6.1. In nor-

mal network operation only a small subset of the network’s links will be in this high-utilization

mode [41].

Second, convolution in the time domain is equivalent to multiplication in the frequency do-

main. LDR does not perform convolution directly. Rather, it transfers data to the frequency domain

using a fast Fourier transform (FFT), multiplies the frequencies, then inverts the FFT to get the con-

volved distribution. This algorithm is of complexity N logN, where N depends on the quantization

applied to the discrete time-domain data. We found that quantization into 1024 levels per dis-

tribution yields acceptable performance. If the convolution becomes a bottleneck, all FFT/IFFT

computations can be readily offloaded to a GPU.

Is measuring bandwidth every 100 ms frequent enough? Our intuition was that for flows with

6.2. Aggregate Demand 90

RTTs in the tens of milliseconds, measuring an aggregate’s demand every 100 ms should capture

enough short-term demand variability for us to reserve sufficient capacity to ensure short queues.

Results supporting this are given in Section 7.4. In shorter-RTT settings such as data centers,

senders’ rates would change more quickly, and we would need to poll counters far more often.

LDR is not intended for data-center use where other approaches [2] are more appropriate.

6.3. Dealing With Unexpected Variability 91

6.3 Dealing With Unexpected Variability
Once an ingress router receives a new mapping of aggregates to paths, it will immediately install

the relevant routes in its routing table, together with any multipath split ratios.

The same polled counter data that an ingress router passes to the controller also allows the

controller to continuously monitor whether aggregates are behaving as the controller expects. It is

impractical to install new paths and radically change the traffic placement for every small change

in load. Under normal circumstances we re-optimize the network once a minute, and we do not

wish to re-optimize too frequently, as shifts in traffic placement may cause packet reordering. Yet

a minute is a long time to endure overload after traffic conditions change significantly.

In LDR the controller uses the counter data not only to perform periodic re-optimizations of

the network, but also to detect and react to unexpected changes in traffic load. We now describe

two mechanisms that are used in tandem by LDR to limit the effect of unexpected events like the

one in Figure 3.16.

6.3.1 Triggered Optimization

Ideally, we would like to only trigger a new optimization pass when we know that a queue is

starting to build somewhere within the network, otherwise we would be needlessly wasting net-

work resources and causing churn. However, LDR does not directly measure queues of network

devices—LDR only sees traffic counter values from ingress devices.

Moreover, even if LDR were to directly measure queues at ingress points, a single ingress does

not have sufficient knowledge about other aggregates’ demands to be able to single-handedly make

the decision to trigger an optimization. Often a sudden increase in the aggregate’s level will cause

a queue within the core of the network, where the aggregate combines with other aggregates, to

overflow, instead of one closer to the edge, where the aggregate enters the network.

As described in Section 6.2.2 the controller receives a continuous stream of per-aggregate

byte counters from each ingress at a rate of 10 values per second per aggregate. At a small time

interval (5 seconds by default) the controller checks to see if the current routing solution is likely

to overflow queues in the network using the convolution-based mechanism from Section 6.2.4

and each aggregate’s 600 most recent counter values—a minute’s worth of history. In Section 7.4

we demonstrate that an aggregate’s short-term variability from the current minute is a sufficient

predictor for the following minute’s short-term variability.

When the controller detects that an aggregate exhibits variability high enough to overflow

a queue under the current routing solution, it reacts by triggering an optimization pass like the

one described in Chapter 5. When the optimization completes a new routing solution is sent to

devices in the network. To avoid this process becoming pathological, if any requests to trigger a

new optimization pass are received while another one is in progress, they are ignored and a single

optimization pass is scheduled after the current one completes.

6.3. Dealing With Unexpected Variability 92

6.3.2 Low-priority Marking

The controller may require significant time to re-balance routing after an unexpected event. Even

ignoring round-trip times between the controller and network devices of the order of tens of mil-

liseconds, it can take up to 5 seconds for the controller to detect the event and trigger an optimiza-

tion. After the optimization pass is complete, new tag-switched paths may need to be installed

throughout the network before the new routing solution is enabled. As we demonstrate in Sec-

tion 7.3, the optimization itself can be expected to complete in under a second. More troubling

is the time to install new routing state which depends on a wide variety of factors and can vary

greatly depending on the network device [22].

During this process the offending aggregate may cause drops in the network. To prevent these

drops from negatively affecting other aggregates, LDR’s controller installs rules that mark specific

allocation-exceeding aggregates’ packets as low priority using diffserv codepoints. As soon as the

controller detects that it needs to trigger an optimization, before it starts running the optimization,

the controller sends the diffserv rules to the ingress routers of aggregates whose traffic caused the

triggered optimization.

If the unpredictable aggregates share high-utilization links with other traffic it is very likely

that queues form while the controller is running the triggered optimization. In this case the low-

priority diffserv rules will cause unpredictable aggregates’ traffic to be preferentially dropped, pro-

tecting other better-behaved aggregates. This mechanism helps reduce disruption in cases where a

single aggregate “spikes” like in Figure 3.16. The ingress routers remove the diffserv rules as soon

as they receive a new set of paths from the controller, after the triggered optimization is complete.

6.3.3 Triggered Optimization and Headroom

The mean-level estimation algorithm from Section 6.2.3 by default aims to allocate 10% headroom

across all links in the network to allow the mean levels of aggregates to evolve minute to minute.

The performance of the triggered optimization mechanism that we just discussed is closely related

to the amount of headroom allocated—the more headroom there is, the less likely is that an unex-

pected event triggers an optimization. On the other hand, increasing the headroom target for the

mean level estimation algorithm will cause some flows to be routed on longer paths, thus hurting

propagation delay.

While we use a set of real-world traces in Section 7.4 to experimentally verify that a 10% head-

room target provides a reasonable tradeoff between propagation delay and queuing delay caused

by unexpected events, we acknowledge that under different traffic conditions either more or less

headroom may be appropriate.

Luckily, the triggered optimization algorithm itself can be used by the network administrator

to adjust the overall amount of headroom needed by the network. If LDR reports the number of

optimizations triggered over a long period of time (e.g, one hour), the network administrator can

6.3. Dealing With Unexpected Variability 93

decide if the number is too high and increase the headroom target for the mean-level estimator.

Inversely, if the operator wishes to reduce the delay experienced by flows in the network they can

reduce headroom until the number of triggered optimizations becomes unacceptable.

Chapter 7

Evaluation

In this chapter we provide a detailed evaluation of LDR’s behavior. We first examine the sce-

nario from Figure 4.1a, as this illustrates how the delay of one aggregate trades off against an-

other. Such toy examples aid understanding, but are rather unrealistic, so we then evaluate LDR’s

“static” parts—its optimizer and its mean-level prediction algorithm—on a large number of real-

world topologies and traffic matrices. We finally use large-scale simulation to evaluate the system

as a whole, including its “dynamic” components—the convolution-based short term variability es-

timation algorithm and the triggered optimizations.

Alongside LDR we also evaluate a variant of our system that does not measure flow counts,

thus weighing all aggregates equally, labeled LDR NFC.

One problem we face is in choosing a control experiment. It would be simple to compare

against shortest-path routing, but for all scenarios where an active load-dependent routing system

provides any benefit, shortest-path routing cannot fit the traffic. ISPs tune link-state metrics to

avoid congestion, and when this fails, often manually tweak label-switched paths. As we do not

know how they do this, we cannot effectively compare with current practice. Instead we will

compare with state-of-the-art active systems from the research literature.

As explained in Chapter 2, TeXCP [47] and MATE [29] perform MinMax optimization over a

restricted set of pre-selected paths. While the published work on TeXCP suggests pre-selecting the

ten shortest paths, we find that doing so often results in a solution that cannot fit the offered load

in many of our experiments (e.g., as in Figure 3.9d). MinMax solutions are also not unique in many

cases.

To provide the best possible comparison, as in Section 3.2.2, we evaluate against two variants

of MinMax. The first, labelled MinMaxK10, uses the ten shortest paths, as with TeXCP.The second

variant, labelled simply MinMax, can use all paths so it is optimal in relieving congestion. We do

this by replacing LDR’s optimization function with the MinMax function in our linear optimizer.

In both cases, to solve the non-unique problem, we tie-break in favor of minimizing total delay. We

also evaluate against B4 [45], which as we previously discussed, performs greedy routing.

7.1. The Impact of Latency on Path Selection 95

4 5

2 3

0 1
1ms

6 7

8 9

12 13

10 11

5ms

5ms

5ms

5ms

5ms 5ms

5ms 5ms

5ms 5ms

5ms5ms

10ms

20ms

50ms

Figure 7.1: Ladder topology

0.0

0.5

Gb
ps 0 1

2 3

0.0

0.5

Gb
ps 2 3

0 1
6 7

0.0

0.5

Gb
ps 0 1

6 7
10 11

60 360 660 960 1260 1560 1860
seconds

0.0

0.5

Gb
ps 10 11

0 1

Figure 7.2: Ladder topology MinMax / MinMaxK10

0.0

0.5

Gb
ps

0 1
2 3

0.0

0.5

Gb
ps

2 3
0 1
6 7

0.0

0.5

Gb
ps

6 7
10 11
0 1
2 3

60 360 660 960 1260 1560 1860
seconds

0.0

0.5

Gb
ps

6 7
10 11
0 1
2 3

Figure 7.3: Ladder topology B4

0.0

0.5

Gb
ps 0 1

2 3

0.0

0.5
Gb

ps 2 3
0 1
6 7

0.0

0.5

Gb
ps 6 7

10 11

60 360 660 960 1260 1560 1860
seconds

0.0

0.5

Gb
ps 10 11

Figure 7.4: Ladder topology LDR

7.1 The Impact of Latency on Path Selection
We begin with a small example meant to give the reader an intuition for the high-level behav-

ior of the routing algorithms under evaluation. We explore the behavior of the schemes on the

topology in Figure 4.1a, which we reproduce in Figure 7.1 for ease of explanation. We place the

four aggregates shown by the colored arrows. The four middle links have capacities of 1 Gbps;

all others are 10 Gbps. Each aggregate carries ten sessions that make back-to-back 50 KByte TCP

transfers emulating web transfers and 500 long-lived TCP flows as background traffic. Initially, all

four aggregates are each limited by external access links (not shown in Figure 7.1) to 500 Mbps.

We simulate the topology using the htsim packet-level simulator [40].

B4 uses a greedy strategy that places traffic on shortest paths first, so it should give low delay.

However, it cannot be used in ISPs as it assumes a priori knowledge of flows’ demands. For this ex-

periment we extend B4 with LDR’s mechanism for predicting aggregates’ demands and variability

(Section 6.2), and treat an aggregate’s priority as proportional to its estimated size.

At time 300s we start to increase the rate of the top (black) aggregate by increasing the access

link speed of its long-lived bulk transfers. We keep increasing until time 600s, when the overall rate

of the aggregate reaches 1.2 Gbps. At 1200s we start to decrease its rate until it reaches 500 Mbps

7.1. The Impact of Latency on Path Selection 96

200 400 600 800

milliseconds

0.0

0.5

1.0

C
D
F

SP Unloaded

MinMax

B4

LDR

Figure 7.5: Ladder topology completion times

at 1500s. We examine how the each algorithm places the demand, and its impact on short-flow

completion times.

Figures 7.2, 7.3, and 7.4 show how the different schemes split the aggregates’ load. The four

rows in each figure show the bandwidth on each of the four horizontal links in the network—the top

row is link 0→ 1, the remaining rows show links 4→ 5, 8→ 9, and 12→ 13, respectively. Within

each row, the colors show as a stacked graph how much traffic from each aggregate traverses that

link.

MinMaxK10 and MinMax perform identically in this small test, as there is a very small num-

ber of paths and both schemes end up using the same set of paths; both spread traffic equally across

the links, regardless of path latency, as this results in lower maximal link utilization. When the in-

crease in 0→ 1’s demand occurs, the excess traffic spreads out with no attempt to keep traffic away

from the long bottom path.

B4 initially puts as much traffic as it can on each aggregate’s shortest path until utilization

reaches 90%, then spreads out to longer paths. When the black aggregate reaches 1.2 Gbps, the top

three core links are all filled by the greedy algorithm before any aggregate is fully allocated. This

results in the longest link being used by traffic from all aggregates; some of the black aggregate

sees 110 ms latency due to this circuitous routing.

LDR prefers to always utilize shorter paths, initially loading the top two links to 90%. As the

rate of the black aggregate increases, LDR slowly shifts each aggregate one link down as needed

to make space.

Figure 7.5 shows the completion times of the short web flows from this experiment. The SP

Unloaded curve is a control experiment; it shows the short flow completion times when routed

on their shortest path in the absence of other traffic. By both minimizing delay and avoiding con-

gestion, LDR provides short completion times, close to those of the control experiment. MinMax

does not primarily optimize for delay, so it gives the worst completion times. As expected, B4 does

achieve short completion times, but some flows are given unnecessarily long paths (see tail of the

7.1. The Impact of Latency on Path Selection 97

B4 curve in Figure 7.5). Note that a few flows do worse with LDR than with B4; there is no such

thing as a free lunch—some flows have to do a little worse to avoid others getting very bad routing.

All schemes achieve similar aggregate throughput, as can be seen from Figures 7.2–7.4.

7.2. Generating Traffic Matrices 98

7.2 Generating Traffic Matrices
Before we move on to more involved evaluation of the properties of LDR, we need to describe

how the synthetic matrices used throughout this thesis were generated—much of the validity of

the results presented in Section 3.2 and the ones in this chapter rests on their quality. As a starting

point we used the gravity-based model from [68], which we briefly rehash here. In that model the

volume of traffic (T (ni,n j)) for each of the N(N−1) pairs in the network is obtained by:

T (ni,n j) = T
T in(ni)

∑k T in(nk)

T out(n j)

∑k T out(nk)
(7.1)

where T is the total traffic in the network. The values T in(ni) and T out(ni) are drawn from

an exponential distribution. This model has been shown to produce realistic traffic matrices, even

though it uses only a single parameter—the mean value of the exponential distribution. While it

represents a good starting point, we note that this simple approach exhibits a couple of significant

drawbacks.

The first one is that there are no guarantees that the network will be able to fit the resulting

traffic matrix. The level of saturation of the network depends on both the mean value of the expo-

nential and the actual network topology. On one hand it may be that we pick a mean value that

results in a traffic matrix that exceeds the maximum flow of the network—i.e., one for which no

routing scheme will ever be able to fit the demand. On the other hand, if we pick a mean value

which is too low we will generate a traffic matrix that is trivial—i.e., one for which every aggregate

can be completely routed on its shortest path without causing congestion.

Ideally we would like to have better control over the network’s load level. We take the ap-

proach of previous work [38], which suggests scaling the traffic matrix after generation in order

to set the network’s load to an arbitrary point between the two extremes described above. To

do so we first generate a traffic matrix using a random exponential distribution with an arbitrary

mean value. We then obtain the minimum maximal link utilization possible under any routing

scheme by solving the theoretically optimal MinMax multi-commodity flow problem (described in

Chapter 2). If this link utilization value is u, then we know that network is 1/u away from being

saturated—e.g., if u = 0.3 then we know that if we scale all demands by 1/0.3 = 3.3 we will achieve

a maximally loaded network. If instead we want a network which is e.g., 70% saturated we need

to scale aggregates by 1
0.7u

.

The second issue with the approach in Equation 7.1 is that it does not take into account geo-

graphic distance between ingress and egress pairs. In a lot of scenarios trafficmatrices will exhibit a

degree of geographic locality [71]—e.g., because big resource providers attempt to locate resources

as close as possible to end users. As we would like to explore how LDR functions in those scenarios

as well as the non-local ones, we optionally add a degree of locality to the matrix generated using

Equation 7.1 while preserving its properties.

7.2. Generating Traffic Matrices 99

Crucially, when we add locality to an already generated traffic matrix we want to preserve the

values of both incoming and outgoing traffic at each node from the original traffic matrix. We use

the following LP:

minimize: ∑
i

∑
j

Di, jB
new
i, j

subject to: Bold
i, j max({0,1− l})≤ Bnew

i, j ≤ Bold
i, j (1+ l) ∀i ∈ N,∀ j ∈ N

∑
i

Bold
i, j = ∑

i

Bnew
i, j ∀ j ∈ N (7.2)

∑
j

Bold
i, j = ∑

j

Bnew
i, j ∀i ∈ N (7.3)

where Bnew
i,i is the traffic volume between nodes i and j in the new, localized, traffic matrix. The

constant Bold
i, j is the traffic volumes in the original matrix between nodes i and j, the constant Di, j

is the distance of the shortest path between nodes i and j. The constant l is a positive parameter

which determines locality. The larger l is the more freedom the optimizer has to change different

aggregates’ demands to minimize the total traffic volume per unit of geographic distance—i.e., to

make the traffic more local. If l is 0 the optimizer will be forced to set all Bnew equal to Bold . If

the parameter is 0.5 the optimizer will be free to move up to 50% of each aggregate’s volume to

another aggregate. It would seem that as soon as l reaches 1 the resulting traffic matrix will only

have a handful of large aggregates, as the optimizer will seemingly have the ability to move all of

the volume of any aggregate to a more local alternative, but notice that the constraints 7.2 and 7.3

will force it to preserve the sums of incoming and outgoing traffic at each node, so the resulting

matrix will never be too far off the original one.

In summary, the algorithm that we use in this thesis when generating a traffic matrix with a

given load and locality is as follows:

1. Using some random seed, generate a traffic matrix using the gravity-based model from [68].

2. Add locality to the generated trafficmatrix by solving the LP formulated above. If the locality

value is 0, then this step is a no-op.

3. Compute the MinMax link utilization u in the localized traffic matrix.

4. Scale the traffic matrix so that its load matches the desired one—e.g., if the load we aim for

is 70% of the maximal one, we will scale all aggregates’ volumes by 1
0.7U

.

Notice that adding locality happens before scaling, as that ensures that the resulting traffic

matrix has exactly the desired load factor. Except for the second step, the process is identical with

the one recommended in [38].

To see how the addition of locality in the second step behaves in practice we examine three

different traffic matrices generated with the same seed and the same load value, but with three

7.2. Generating Traffic Matrices 100

0 10 20 30 40 50 60

shortest path distance (ms)

0.0

0.5

1.0

cu
m
u
la
ti
ve

fr
a
ct
io
n
o
f
to
ta
l
vo
lu
m
e

locality 0.0

locality 1.0

locality 5.0

Figure 7.6: Cumulative fraction of total volume in Cogent’s topology that travels a given shortest-path dis-
tance.

different values of locality—0, 1 and 5. The topology is that of Cogent—the largest one in the

TopologyZoo dataset, and one with high LLPD (see Section 3.2). In Figure 7.6 we show the locality

of traffic volume in each of the three traffic matrices. To generate the plot we sort all aggregates

based on the length of their shortest path. Each point on the plot is a separate traffic aggregate;

the x value is the length of the aggregate’s shortest path and the y value is the cumulative fraction

of the total traffic volume in the entire traffic matrix.

Cogent’s topology contains large European andNorth American parts, connected by a handful

of long-haul trans-oceanic links which account for the flattening of the locality 0 curve. Looking

at the that curve, we can see that 50% of the traffic volume travels 20 ms or less—i.e., about half of all

traffic is between Europe and North America. Recent studies of Deutsche Telekom’s network [71]

suggest that in large ISPs this is not the case, but instead traffic is significantly more localized. As

we increase locality we notice that less and less traffic is being moved between the two continents,

loading the long-haul links less and less. At the extreme of locality 5 only about 10% of all

traffic crosses between Europe and North America, with long-haul links being underutilized. We

conjecture that this is also not a very realistic scenario. locality 1, which exhibits an 80/20 split

between local and remote traffic, is probably closer to reality.

In Section 3.2 we focused on networks with locality of 1, but as we believe that networks are

likely to exhibit a wide variety of locality values, in our evaluation of LDR in this chapter we do

not limit ourselves to a single value but instead we explore a range of locality and load parameters.

7.3. Static Components of LDR 101

0 20 40 60 80 100

times greater than shortest path

0.0

0.5

1.0

C
D
F B4

LDR

LDR NFC

MinMaxK10

MinMax

Figure 7.7: Maximum flow stretch; LLPD < 0.5; no headroom

7.3 Static Components of LDR
In this section we revisit the landscape that we outlined in Section 3.2. We evaluate LDR’s opti-

mization mechanism and better understand the interactions between topology, traffic locality, load

and latency. We seek to answer the following questions:

• Are networks with high LLPD truly harder to route? How does the path stretch achieved by

LDR compare on those difficult networks with other schemes’ path stretch?

• Does LDR consistently reduce latency compared with other routing schemes under traffic

matrices across a range of load and locality parameters?

• How many paths on average does LDR need for each aggregate? How does this number

compare to other schemes?

• Is the runtime of LDR’s optimizer sufficiently low for real-time operation?

• How sub-optimal is LDR’s optimization process? Does it matter in practice?

• Does vanilla LDR exhibit enough jitter and reordering to warrant the additional complexity

of limiting the optimization by using the mechanism in Section 5.6? Does the mechanism

work?

• Is LDR’s prediction algorithm sufficient to predict minute-to-minute mean traffic levels in

real-life backbone links?

7.3.1 Low vs. High LLPD
Generally speaking, the higher the LLPD, the harder it is to route a network using shortest path

routing, but the more options a dynamic load-dependent routing system has to move load around.

As we have seen in Section 3.2.2, with more options, heuristic algorithms such as B4 and Min-

MaxK10 are more likely to get stuck in a local minimum and fail to fit the traffic.

7.3. Static Components of LDR 102

0 10 20 30 40 50

times greater than shortest path

0.0

0.5

1.0

C
D
F B4

LDR

LDR NFC

MinMaxK10

MinMax

(a) no headroom

0 10 20 30 40 50 60 70

times greater than shortest path

0.0

0.5

1.0

C
D
F B4

LDR

LDR NFC

MinMaxK10

MinMax

(b) 10% headroom

Figure 7.8: Maximum flow stretch; LLPD > 0.5; where the CDF fails to reach 1.0, this indicates that in the
remaining scenarios the routing system could not find a placement that would fit all the traffic

Let us observe some measurements that illustrate the general observation above. First, let us

examine the effects of LLPD and of headroom on latency stretch. Figures 7.7 and 7.8 show CDFs of

the maximum path stretch for each traffic matrix under the same min-cut 77% load and locality 1

as Figure 3.9. The different curves illustrate the effects of LLPD and headroom. In Figure 7.7 we see

the networks with LLPD less than 0.5. These networks have few low-latency alternate paths; for

some topologies and traffic matrices the maximum stretch is very high—over 100x in the limit with

B4. There is not much to choose between the different algorithms here, as the topologies do not

provide many routing options. No headroom is reserved in Figure 7.7, but adding 10% headroom

makes almost no difference to the CDF.

Figures 7.8a and 7.8b show the networks with high LLPD without headroom and with 10%

headroom respectively. Where the CDF fails to reach 1.0, this indicates that in the remaining

scenarios the routing system could not find a placement that would fit all the traffic. This happens

with both B4 and MinMaxK10. LDR with headroom and MinMax give very similar maximum

stretch; this is mostly due to our formulation of MinMax additionally optimizing for latency once

7.3. Static Components of LDR 103

its utilization goal has been satisfied. Without this enhancement, MinMax can choose very long

paths. As we saw in Figure 3.13, LDR with headroom and MinMax exhibit very different median

latency stretch. B4 is the outlier—in most cases it routes some flows on paths 10x longer than their

shortest path.

We must discuss headroom in the context of B4. B4 was designed for use on Google’s network

with controlled traffic sources. If we wish to use it for ISP networks, we will also need to add

headroom. Our formulation for assessing traffic predictability and statistical multiplexing is quite

general, so we can also apply it to B4 to calculate desired headroom. When we do so, we find

that headroom interacts with B4 in an interesting manner. Consider again the GTS topology in

Figure 3.10, where B4 became congested. If we allow, say, 10% headroom, B4 will stop short of

saturating all the links on the first pass, and move on to placing some of the long distance traffic

on the slightly longer path via G. If the traffic from G→V that B4 failed to place can fit within

the reserved headroom, then it can still be routed after all other traffic has been placed. This is

the reason when headroom is added in Figure 7.8b, B4 can fit traffic in a wider range of scenarios,

though these graphs do not capture the degree to which B4 eats into the supposedly reserved

headroom to do so. B4 also pays a latency price when it does so.

7.3.2 Performance Under Varied Load and Locality

We observe that both traffic locality and the extent to which the traffic matrix is loaded play a

large role. As we adjust those two parameters of our synthetic traffic matrices, latency stretch and

the ability to fit traffic both change, though different routing schemes are affected differently. To

capture these effects, on Figure 7.9 we explore maximum path stretch under three different locality

values for a lightly loaded scenario where the network is loaded up to 61% of its maximum flow

and a more heavily loaded one where it is loaded up to 77% of its maximum flow. The plot for load

77% and locality 1 is the same as the one in Figure 7.8a, but on a log scale. In all traffic matrices

flow counts are distributed proportional to traffic volume.

Let us first examine how the systems behave when it is possible to fit the entire traffic matrix

by routing each aggregate on its single shortest path. We will call such traffic matrices trivial as

in those cases there is no need for traffic engineering, and legacy shortest path routing is enough

to yield an optimal solution. Notice that more of the matrices in the datasets are trivial, yielding

points with max stretch of 1.0 on Figure 7.9, as the traffic distribution becomes more local and less

loaded. This is expected since in those cases a larger fraction of the bytes in the network have to

only travel only a couple of hops between the source and the destination.

When the trafficmatrix is trivial all non-MinMax routing solutionswill perform theway single

shortest path would. MinMax-based solutions will spread traffic as much as possible over the entire

network (in the case of MinMax) or over the first K shortest paths (in the case of MinMaxK10).

When TMs are more local and less loaded, the difference betweenMinMax-based and non-MinMax

7.3. Static Components of LDR 104

0.1

0.3

0.5

0.7

0.9
C
D
F

Load 77%

L
o
ca
li
ty

0

Load 61%

0.1

0.3

0.5

0.7

0.9

C
D
F

L
o
ca
li
ty

1

1 5 10 50 100

max path stretch per aggregate (log scale)

0.1

0.3

0.5

0.7

0.9

C
D
F

1 5 10 50 100

max path stretch per aggregate (log scale)

L
o
ca
li
ty

5

B4

LDR

LDR NFC

MinMaxK10

MinMax

Figure 7.9: Maximum flow stretch under different load and locality values; LLPD> 0.5; no headroom; where
the CDF fails to reach 1.0, this indicates that in the remaining scenarios the routing system could
not find a placement that would fit all the traffic

based is more pronounced as a larger fraction of the traffic matrices are trivial.

While the optimizer-based solutions (LDR andMinMax) are guaranteed to fit traffic if possible,

the other two may cause congestion even when a congestion-free solution exists. The less loaded

and more local the traffic matrix is, the easier it is for a greedy heuristic to fit the traffic, because it

is less likely that it gets stuck in the kind of local optima previously discussed in Section 3.2.2.

Figure 7.9 also lets us reason about the importance to LDR of taking each aggregate’s flow

count into account when running the optimization from Chapter 5. The gap between LDR and the

version of LDR which does not take flow counts into account increases as locality grows, and is

more pronounced if the network is more loaded. This effect occurs because in all traffic matrices

flow counts are distributed proportional to traffic volume. As traffic gets more local a larger fraction

of the TM’s total volume is between geographically adjacent aggregates. In those cases the optimal

solution would have to be skewed towards short-haul aggregates (as they carry a larger fraction of

7.3. Static Components of LDR 105

bytes and have more flows). The version of LDR which weighs all aggregates the same cannot do

that.

The more local and less loaded the traffic matrix, the more likely it is for the k = 10 version of

MinMax to be a close approximation of the optimal MinMax solution. This is because when traffic

is more local there are less long-distance aggregates and therefore less chance that a long-distance

aggregate’s shortest path shares links with multiple short-distance aggregates’ shortest paths.

In general, the more local traffic is the higher the stretch of all solutions. This is especially

true when the network is highly loaded, as then all solutions have to route on paths further from

the shortest path. Less loaded and more local traffic matrices are easier to route for all schemes,

but will tend to give higher path stretch when MinMax-based schemes are used. More loaded and

less local traffic matrices, on the other hand, are harder to route with greedy heuristics and a lot of

traffic matrices fail to fit the offered load under those schemes due to local optima. LDR provides

consistently good performance, even when it does not take into account flow counts.

7.3.3 Fraction of Flows Routed on Shortest Path

Figures 7.8a and 7.9 are useful in understanding the behavior of different routing schemes, but they

only focus on the flow with maximum stretch. What happens to the other flows in the network?

To answer this question we plot on Figure 7.10 CDFs of the fraction of flows that are routed on

the shortest path for each traffic matrix. If this value is 1.0, then for that particular traffic matrix,

the routing scheme chose to route all flows on their shortest path, behaving like single shortest

path routing. Note that those trivial traffic matrices are the same traffic matrices that exhibit max

stretch of 1.0 on Figure 7.9.

MinMax-based solutions perform surprisingly well on this metric, as they minimize propa-

gation delay as a secondary goal. As those schemes spread traffic as much as possible, their per-

formance is largely independent of the load of the network. As traffic gets more local all schemes

route more and more flows on their shortest paths, with B4’s behavior converging to that of LDR.

Regardless of load or locality LDR performs very well, consistently routing a larger fraction of

flows on their shortest path.

Interestingly, all median values are above 0.8, implying that regardless of the routing scheme,

one can expect that 80% of the flows in the network are routed on their shortest path. If we focus on

schemes that aim to minimize delay, this fraction grows to well above 90%. This is to be expected,

as traffic matrices under realistic load are expected to be heavily influenced by the topology and

vice versa—no operator purposefully designs their network so that most of flows will not go over

the shortest path, regardless of the routing scheme they choose to use in their network.

Figures 7.9 and 7.10 lead us to conclude that in our experiments traffic engineering only makes

a difference for 10-20% of the flows in the network. At the same time, as Figure 7.9 suggests,

different traffic engineering schemes can significantly benefit or hurt the propagation delay of

7.3. Static Components of LDR 106

0.1

0.3

0.5

0.7

0.9
C
D
F

Load 77%

L
o
ca
li
ty

0

Load 61%

0.1

0.3

0.5

0.7

0.9

C
D
F

L
o
ca
li
ty

1

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.3

0.5

0.7

0.9

C
D
F

0.2 0.4 0.6 0.8 1.0

L
o
ca
li
ty

5

B4

LDR

LDR NFC

MinMaxK10

MinMax

Figure 7.10: Fraction of flows that are routed on the shortest path under different load and locality values;
LLPD > 0.5; no headroom

the flows for which they make a difference. Even more importantly, poorly performing traffic

engineering schemes can significantly hurt the queuing delay in the entire network by causing

congestion, as is evident from Figure 7.9.

7.3.4 Absolute delay

All evaluation presented so far deals with relative quantities, as they make it easier to compare a

wide range of topologies and traffic matrices. To understand further what is happening, we need

to examine absolute delays rather than relative ones, and to do this we need to look at individ-

ual topologies. We examine all topologies and traffic matrices with locality 1 and load of 77% of

maximum flow—i.e., all the data points from from Figure 3.9. To focus on typical scenarios, from

those data points we chose the two traffic matrices that give the median change in total delay when

running B4 and MinMax.

We plot a CDF in Figure 7.11 of the absolute stretch Dp−Ds across all flows, where Dp is the

7.3. Static Components of LDR 107

0 20 40 60

absolute stretch (ms)

0.80

0.85

0.90

0.95

1.00

C
D
F

B4 median (Cogent)

MinMax

LDR NFC

B4

LDR

MinMaxK10

0 20 40 60

absolute stretch (ms)

MinMax median (Airtel)

Figure 7.11: Absolute stretch in median topologies; only showing the top 20% of each distribution.

delay a flow experiences and Ds is the delay of the shortest possible path the flow can be routed

on. As expected from Figures 7.9 and 7.10 in both cases for about 80% of all flows it makes no

difference what routing scheme is used, so we only plot the top 20% of each distribution.

The two topologies are very different. The topology giving median performance for B4 is

Cogent. This topology is a good one forMinMax, giving similar absolute stretch to LDR. In contrast,

the median topology for MinMax is Airtel. In this case MinMax yields significant absolute path

stretch for almost 20% of flows. B4 performs similarly in both these scenarios: for 98% of flows it

is a good heuristic approximation to LDR, but the remaining 2% of flows suffer the same sort of

circuitous routing we see in the simplistic Ladder topology. In short, B4’s greedy algorithm gets

stuck in a local minimum and runs out of short paths to use; LDR avoids such problems.

7.3. Static Components of LDR 108

7.3.5 Path Count
In this work we focus on routing systems that have the ability to split any given aggregate’s traffic

across multiple paths, if needed. Whereas a decade ago such systems were confined to academic

research, recent advances in routing hardware and software-defied networking have made this

functionality available in off-the-shelf network devices [32]. Nevertheless, there are still disadvan-

tages to using multiple paths for a single aggregate.

Obviously, each additional path consumes network resources. In a tag-switched system like

LDR each new network path will need up to as many rules as it has hops. Luckily, the sizes of

devices’ forwarding tables are continuously expanding and the added state is much less of a concern

today than it was in the past, as large-scale deployments of other routing systems demonstrate [45].

A more fundamental disadvantage arises from the fact that in their quest to avoid reordering,

as explained in Chapter 2, devices do not split traffic on a per-packet basis, but on a per-flow

one. Contrary to this behavior, in our system design and evaluation we have so far assumed that

each device has the ability to split an aggregate’s traffic perfectly given any arbitrary split by the

controller. Is this a reasonable assumption?

As described in Section 6.2.4, LDR’s convolution-based short-term variability estimation

mechanism uses samples from each aggregate’s level as seen by its ingress. All flows that form

an aggregate will, naturally, not have the same level of variability. If the ingress splits an aggregate

across multiple paths and a larger fraction of the more-variable flows end up on one of the paths,

there is no way for the system to detect and react to the potential transient congestion caused by

those more-variable flows. Is this a design fault? Does LDR need a mechanism which looks at

variability per-path instead of per-aggregate?

To answer these questions we examine the number of paths that LDR and each of the other

schemes use when generating forwarding state for the traffic matrices from Figure 7.9. In Fig-

ure 7.12 we present the same data as in Figure 7.9, but instead of on maximum path stretch we

focus on maximum number of paths. On the plot there is one point per traffic matrix. Each point

represents the number of paths used by the aggregate that uses the most paths in the traffic matrix.

Clearly the optimizer-based schemes are very sparing in their use of network resources. Even

MinMax, which spreads traffic in order to minimize utilization, uses up to 2 paths per aggregate

in about 80% of all cases. This is because our implementation of MinMax, as well as others [47],

minimizes latency as a secondary objective to link utilization. In practice this means that after

achieving minimal link utilization in scenarios like the one in Figure 2.6 MinMax will prefer to

concentrate traffic on low-latency paths, yielding lower path count. Unlike MinMax, LDR does

not minimize link utilization, but always minimizes latency, which results in even less network

state with about half of traffic matrices using only one path per aggregate (but not necessarily the

shortest path) in lower-load and higher-locality scenarios.

B4, on the other hand, will greedily fill up each aggregate’s shortest path and then spill traffic

7.3. Static Components of LDR 109

0.1

0.3

0.5

0.7

0.9
C
D
F

Load 77%

L
o
ca
li
ty

0

Load 61%

0.1

0.3

0.5

0.7

0.9

C
D
F

L
o
ca
li
ty

1

2 4 6 8 10

max number of paths per aggregate

0.1

0.3

0.5

0.7

0.9

C
D
F

2 4 6 8 10

max number of paths per aggregate

L
o
ca
li
ty

5

B4

LDR

LDR NFC

MinMaxK10

MinMax

Figure 7.12: Maximum path count under different load and locality values; LLPD > 0.5; no headroom

onto multiple longer paths as needed. This results in a significant amount of network state. As

topologies get more local and less loaded, they become easier to route for B4 and its behavior

converges to that of LDR.

Figure 7.12 only shows the extreme case—the aggregate that uses the most paths. To examine

how many paths other aggregates have, we plot on Figure 7.13 the fraction of aggregates that have

only one path for each of the cases in Figure 7.12. Remarkably, in all cases both MinMax and LDR

route a very large fraction of aggregates on a single path. These results, in combination with the

ones from Figure 7.12, lead us to conclude that both schemes are very sparing in how they split

traffic. In most cases, regardless of load or locality, more than 95% of aggregates experience no

splitting at all, as they are routed on a single path. The remainder of the aggregates are likely to

use only up to 2 paths, in the case of LDR, or up to 3 paths, in case of MinMax. As LDR routes

its aggregates predominantly on a single path, we do not expect it to be affected by the negative

effects of splitting. We further verify this claim using large-scale simulation results in Section 7.4.

7.3. Static Components of LDR 110

0.1

0.3

0.5

0.7

0.9

C
D
F

Load 77%

L
o
ca
li
ty

0

Load 61%

0.1

0.3

0.5

0.7

0.9

C
D
F

L
o
ca
li
ty

1

0.2 0.4 0.6 0.8 1.0

fraction of aggregates with one path

0.1

0.3

0.5

0.7

0.9

C
D
F

0.4 0.6 0.8 1.0

fraction of aggregates with one path

L
o
ca
li
ty

5

B4

LDR

LDR NFC

MinMaxK10

MinMax

Figure 7.13: Fraction of aggregates that have only one path under different load and locality values; LLPD>
0.5; no headroom

7.3. Static Components of LDR 111

0 10
0

10
1

10
2

10
3

10
4

10
5

10
6

time (ms)

0.0

0.5

1.0

C
D
F

LDR

LDR (cold cache)

LDR (link based)

Figure 7.14: Runtime of optimization algorithms. Each point is the runtime of running LDRwith andwithout
k shortest paths caching on a traffic matrix from the set of results that are shown in Figures 7.8
to 7.13. We also present the runtime of a traditional link-based multi-commodity flow formula-
tion.

7.3.6 Runtime
To be practical, LDR’s optimization algorithm must be able to calculate paths quickly on large

complex networks. Figure 7.14 shows CDFs of the runtime of the LDR algorithm on the networks

with LLPD greater than 0.5; these are the hardest to route. Each point on Figure 7.14 is the runtime

of running LDR on a traffic matrix from the set of results that are shown in Figures 7.8 to 7.13.

The ldr curve includes caching of the k shortest paths, whereas the cold cache curve shows

the first run, before the cache is populated. The difference between those two curves represents the

overhead of running the k shortest paths algorithm. In normal operation the k shortest paths for

each aggregate are cached, so periodic invocations of the optimizer will not incur this cost. In the

case of a network failure some or all of the path cache would have to be reinitialized, so in those

cases LDR’s performance will lie between the cold cache and ldr curves.

For comparison, we implement a traditional link-based multi-commodity flow formulation of

the same objective as LDR and we use an off-the-shelf industry-standard solver [21] to obtain a

routing solution. The link-based curve shows that the link-based multi-commodity flow formu-

lation is about two orders of magnitude slower. We conclude that the optimization approach in

Chapter 5 is fast enough to use in online centralized routing systems.

7.3. Static Components of LDR 112

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LLPD

1.0

1.1

1.2

1.3

1.4m
ed
ia
n
ch
a
n
g
e
in

to
ta
l
d
el
a
y

MinMax outperforms LDRMinMax outperforms LDR
MinMax outperforms LDRMinMax outperforms LDR

MinMax outperforms LDR

39% headroom (LDR)

40% headroom (MinMax)

Figure 7.15: Sub-optimality with LDR. Plot shows median latency stretch at 39% and 40% headroom. The
two curves are for LDR and MinMax, which is the optimal multi-commodity flow solution that
minimizes link utilization.

7.3.7 Suboptimality of LDR
LDR’s optimizer is only guaranteed to provide an optimal solution when the iterative path addition

process described in Section 5.3 is able to progressively add the k shortest paths for each aggregate

until no path crosses any overloaded link. As explained in Section 5.4, when there are large numbers

of high-volume aggregates LDRmay skip over some of the k shortest paths in the interest of limiting

problem size and lowering runtime. How suboptimal is the result in practice?

To observe LDR under such extreme conditions, on Figure 7.15 we show the median latency

stretch for each topology when the network is very close to saturation, when running LDR and

MinMax. To generate the results we repeat the experiment from Figure 3.13, but this time instead of

optimal routing we run LDR when the network is just 1% away from saturation (the curve labeled

39% headroom). We also run MinMax which minimizes the maximum link utilization and gives

the optimal 40% headroom solution. Theoretically when we force 40% headroom both LDR and

MinMax should converge to the same solution, as the network will then be completely saturated.

As the figure shows, however, there are topologies where MinMax actually outperforms LDR

and yields better median path stretch. This is the effect of LDR’s path addition heuristic which

kicks in when the problem size becomes too large. The effect is clearly more pronounced in net-

works with higher LLPD, as they tend to have larger path diversity and it is more likely for LDR

to experience the situation from Figure 5.4. In normal operation this is unlikely to be a problem

as no operator will run their network at 99% of its theoretically maximum flow. In the case of

failures which shift congestion within the network controlled by LDR, however, its heuristic may

yield sub-optimal delay.

7.3. Static Components of LDR 113

0 10
−3

10
−2

10
−1

fraction of total volume

0.0

0.5

1.0

C
D
F MinMax

LDR (limited)

B4

LDR

MinMaxK10

Figure 7.16: CDF of the fraction of total network volume that changed paths. Each point is a separate traffic
matrix, the load of whose aggregates is randomly uniformly distributed +/- 5%.

7.3.8 Reordering and Jitter

To examine the extent to which LDR is likely to cause reordering and jitter we use the topologies

and traffic matrices that were used in the experiments from Figure 7.7 and Figure 7.8. From each

traffic matrix we generate a different traffic matrix where each aggregate’s load and flow counts

are randomly uniformly distributed +/- 5%. For each algorithm that we evaluate we perform a run

on the original matrix and perform a run on the randomly permuted matrix. We are interested in

how the algorithms’ output for each of the randommatrices changes with respect to the output for

the respective original, or base, matrix. In addition to the schemes previously evaluated we also

report a version of CTR that in parallel runs an optimization with the churn-limiting mechanism

described in Section 5.6. We will label this version ldr (limited). We omit the version of LDR

which ignores flow counts, as in the results that we present in this section its performance is very

close to that of LDR.

Keep in mind that in all experiments we set each aggregate’s flow counts to be proportional to

the aggregate’s volume. Fractions of traffic volume are, therefore, also representative of fractions

of flow counts.

The first metric that we examine is fraction of total volume that the output of each of the ran-

domized runs shifts with respect to the output of its base run. This is the fraction of the network’s

traffic that can potentially experience jitter.

The output of each routing algorithm is per-aggregate sets of paths and, for each path, the

fraction of the aggregate’s volume that goes on it. Given each run’s output and its base run’s

output we compute the fraction of each aggregate that remained on the same path (f). We then

compute for each aggregate the fraction of total volume that changed paths

∑a Va(1− fa)

∑a Va

7.3. Static Components of LDR 114

0 10
−3

10
−2

10
−1

fraction of total volume

0.0

0.5

1.0

C
D
F MinMax

LDR (limited)

B4

LDR

MinMaxK10

Figure 7.17: CDF of the fraction of total network volume that moved to shorter paths.

where Va is the volume of aggregate a.

Figure 7.16 shows a CDF of this quantity, where each point is a separate run. It is obvious that

in some cases vanilla LDR causes a lot of jitter—the relatively small 5% changes to the optimization

input cause a large fraction of the total volume (and therefore flows) to change paths. B4, on the

other hand, is very stable because it stripes traffic, instead of packing it like LDR does. The limited

version of LDR does significantly better, even outperforming B4 in some cases. This is because it

moves no traffic when an aggregates’ load decreases; it does not try to improve total per-flow delay

by using the newly available capacity. The tail of ldr (limited) is significantly heavier than that of

b4. This is to be expected, as there are cases where the more-constrained optimization will either

be unable to fit the demand, or will produce a solution which is not good enough (further than 1%

of the optimal one). In those cases ldr (limited) will fall back to using the same optimal solution

that ldr uses, causing more change.

Moving flows to shorter paths is potentially more disruptive than moving them to longer

paths, as it causes reordering. In Figure 7.17 we only show the fraction of volume from Figure 7.16

that moves to shorter paths. As ldr (limited) is designed to avoid moves to shorter paths, in all

cases where the limits are successfully applied (about 99% of all cases) there are no flows moved to

shorter paths, and thus it incurs no reordering in those cases.

While jitter and reordering are twometrics that concern end users, network operators are also

interested in minimizing the amount of processing that happens at network devices. In Figure 7.18

we show CDFs of the number of paths that needed to be updated for each randomized run. Because

B4 stripes traffic, when an aggregate’s volume changes it needs to change by a small fraction the

splits of all aggregates that share busy links with the changed aggregate. LDR, on the other hand,

performs larger changes, but they affect a smaller fraction of the paths. As expected, applying

additional limits further reduces the number of paths that see updates for LDR.

The previous graphs indicate that applying extra limits does indeed have the potential to re-

7.3. Static Components of LDR 115

0 10
1

10
2

10
3

10
4

number of paths updated

0.0

0.5

1.0

C
D
F MinMax

LDR (limited)

B4

LDR

MinMaxK10

Figure 7.18: CDF of the total number of paths updated.

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04

fraction change in total delay

0.0

0.5

1.0

C
D
F

Figure 7.19: CDF of max single-aggregate volume change

duce the reordering exhibited by LDR, but what is the cost to total per-flow delay? On Figure 7.19

we plot a CDF with a point for each randomized run’s percentage change of total per-flow delay

when compared with its base run. In about 90% of the cases the increase in delay is within the 1%

limit set by the algorithm in Section 5.6. In the rest of the cases the randomly perturbed matrix

cannot be satisfied with limited optimization and the solution of the regular, unlimited, one is used.

7.3.9 Prediction Algorithm

Any active routing system that aims to minimize delay while avoiding congestion in an ISP’s back-

bone inherently makes the assumption that traffic must be predictable enough that an allocation of

traffic to paths can be maintained for a reasonable amount of time. The data that we presented in

Section 3.3.2 suggests that variability is predictable on sub-second timescales, and the mean traffic

level usually does not vary by more than 10% minute to minute. There are, however, cases where

assuming that next minute’s traffic level is 10% more than previous minute’s traffic level will fail

as a prediction algorithm. How does LDR’s prediction algorithm perform in those cases?

7.3. Static Components of LDR 116

0.7 0.8 0.9 1.0 1.1

measured bitrate / predicted bitrate

0.0

0.5

1.0

C
D
F

Figure 7.20: Predictions of mean traffic level (Tier-1 ISP)

We analyzed CAIDA packet traces from 2013 to 2016 of four 10 Gbps links within a U.S. Tier-1

ISP’s backbone [15]. For each link we have 40 one-hour traces. We compute the mean traffic level

for each minute, and apply Algorithm 1 to predict the mean rate in the next minute. Figure 7.20

shows a CDF across all the CAIDA traces of measured mean bitrate in the next minute divided by

predicted bitrate. If the traffic were constant, all values would be 0.9. The traffic is very predictable

on minute-to-minute timescales: only 0.5% of the time does the actual traffic exceed the prediction,

and then never by more than 10%. The traffic in these traces is typically in the 1Gbps to 3Gbps

range. When several such aggregates are statistically multiplexed to fill a 10Gbps or 100Gbps link,

it is unlikely they will all exceed their predicted values simultaneously.

Reserving 10% headroom works well in the traces we have examined, but we envisage this

should be configured depending on traffic dynamics and on how averse an ISP is to experiencing

transient congestion. Larger values will further reduce the probability of congestion, but will route

traffic on longer paths, increasing latency.

7.4. Short and Long-Term Variability in Demand 117

7.4 Short and Long-Term Variability in Demand
In this section we will evaluate LDR’s short and long-term variability detection and prediction

techniques described in Chapter 6. We will answer the following questions:

• Is the convolution-based short-term variability detection technique effective in helping LDR

position aggregates in a way that both avoids congestion and loads links on low-delay paths

to a high utilization? Is the computational cost of convolving aggregates prohibitive?

• Is it possible to predict the following minute’s short-term variability based on recorded per-

aggregate counters from the previous minute (as described in Section 6.2.4)?

• Is triggered optimization needed? Is it effective in dealing with unexpected changes in traffic

level? What is its cost in terms of network updates?

• Is the 10% headroom target of the long-term prediction algorithm in Section 6.2.3 enough to

give time to triggered optimization to react when there is a sudden change of traffic level.

To properly answer these question we need to evaluate a full-scale ISP network with a packet-

granularity traffic matrix consisting of real-world flows. No such detailed traffic matrix exists, but

we can synthesize one using data from the CAIDA traces.

We focus on GTS’s central European network, presented in Figure 3.7, whichwe demonstrated

to be challenging to route in Section 3.2.2. We randomly generate a traffic matrix for it with the

same min-cut 77% load and locality 1 as Figure 3.9, which are also the same load and locality

parameters as in Figures 7.7 and 7.8. We wish to generate aggregates whose mean rate matches this

target traffic matrix but which exhibit real-world millisecond-granularity variability. To do so for

each of the 11744 aggregates in the traffic matrix we pick one of the real-world packet-level CAIDA

traces and we scale the trace so that the mean level of the first minute matches the aggregate’s

demand in the traffic matrix. We replay all these traces simultaneously, totaling approximately 134

Gbps of offered load. As there are many more aggregates than traces, to avoid synchronization

effects, we start replaying each aggregate’s trace at a random offset from its start.

For each minute after the first one LDR will update the routes used by our simulated ag-

gregates, either periodically, or as needed by its triggered optimization mechanism. For the first

minute, however, we bootstrap the simulation with an “ideal” initial routing configuration, which

is produced by LDR, given foreknowledge of both each aggregate’s first-minute mean level and

each aggregate’s first-minute traffic counters.

7.4.1 Performance of the Convolution Algorithm
By examining this first minute we can evaluate the effectiveness of convolution in isolation, assum-

ing LDR’s long-term mean level estimator from Section 6.2.3 works perfectly and the convolution

mechanism sees exactly the data it needs in order to determine variability.

7.4. Short and Long-Term Variability in Demand 118

0.85 0.90 0.95 1.00

utilization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

li
n
k
(r
a
n
k
ed
)

0 25 50 75 100

max queue size (ms)

LDR

LDR (NC)

Figure 7.21: Perfect next-minute mean level prediction; convolution algorithm has access to current traffic
counters. Mean link utilization (left) and maximum queue size (right) for the first minute. Links
are ranked based on the utilization of LDR (NC).

Figure 7.21, shows link utilization (left plot) and maximum queue size (right plot) for the 25

most utilized links during the first minute of simulated time. In addition to LDR, we present results

for a version of LDR which does not use the convolution mechanism to scale up aggregates as

needed, but instead always optimizes at the mean traffic level (i.e., it does not go through the loop

in Figure 6.1). We label this version LDR (NC). On the y axis in Figure 7.21 we rank the top 25 links

based on their average utilization under LDR (NC). On the x axes we plot mean link utilization over

the minute and maximum queue size in milliseconds, as observed by packets that enter the link’s

queue.

At the top part of the left plot we can see that the top 5 links are loaded at, or very close to, 1.0

by LDR (NC). This is expected, since the mean level estimator is not used, but instead both schemes

are bootstrapped with the true mean traffic levels from the first minute. LDR (NC) simply runs the

optimization from Chapter 5 which packs a handful of link to saturation. Clearly this is not entirely

desirable as those links experience significant transient queuing, as seen on the right-hand side

plot. In our simulated environment queues can grow up to a second, but in reality only 50-100ms

of queuing can be expected before drops occur. Unlike LDR (NC), LDR uses the convolution-based

technique from Section 6.2.4 to avoid queues, while at the same time maintaining very high link

utilization. The link utilization LDR achieves varies from link to link as different links are on the

paths of aggregates with different levels of short-term variability.

Notice that in the low-delay solutions given by both LDR (NC) and LDR there are only a

handful of heavily loaded links in the entire network, despite there beingwell above 10K aggregates.

This is a realistic distribution of link utilization [41], which positively affects the performance of

7.4. Short and Long-Term Variability in Demand 119

0.85 0.90 0.95 1.00

utilization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

li
n
k
(r
a
n
k
ed
)

LDR

LDR (NC)

0 100 200 300 400

max queue size (ms)

Figure 7.22: Perfect next-minute mean level prediction; convolution algorithm uses previous minute’s traffic
to assess short-term variability. Mean link utilization (left) and max queue size (right) for the
first three minutes. Links are ranked based on the utilization of LDR (NC).

running the convolution-based mechanism—for most links the loop in Figure 6.1 can be avoided

altogether as it is trivial to determine if traffic fits on a link with low utilization. In all results

presented in this section the time to apply the convolution-based algorithm to the entire network

was below one second.

7.4.2 Predictability of Short-term Variability

Figure 7.21 demonstrates that, for the first minute, LDR, with the aid of the convolution technique,

is able to both avoid congestion and saturate desirable low-delay links. In reality, however, LDRwill

not have the luxury of operating on current information, but will always have to use the previous

minute’s measurements to compute routing for the next minute-long period.

Crucially, then, LDR’s ability tomaintain low queuing depends on how predictable sub-second

variability is minute-to-minute. Previously, in Section 3.3.2, we presented results which suggest

that short-term variability is predictable. To verify that this is indeed the case we advance the

simulation past the first minute—for every subsequent minute LDR’s convolution mechanism will

use the previous minute’s measurements when estimating short-term variability. To separate the

effects of short-term variability from those of long-term variability, we keep the mean-level predic-

tion mechanism from Section 6.2.3 disabled, just like during the first minute. Instead, every time

LDR runs its optimization, we provide it with the accurate mean level for the following minute.

For example when LDR’s optimization runs at the end of minute 2 it will use the measurements

from minute 2 to estimate variability, but scale those measurements according to the true mean

aggregate levels from minute 3.

In Figure 7.22 we show average link utilization and maximum queue size from the first three

7.4. Short and Long-Term Variability in Demand 120

0 50000 100000 150000

time

900

950

1000

1050

ra
te

(M
b
p
s)

queue buildup

traffic

link rate

periodic optimization

triggred optimization

Figure 7.23: Traffic that crosses link rank 20 from Figure 7.22; time is in milliseconds; traffic is binned in 100
ms bins and each point is the mean of a bin. In this experiment LDR is given the exact mean
traffic levels for the upcoming minute, but this knowledge of the future is of little use as the
unexpected change happens mid-minute.

155000 156000 157000 158000 159000 160000 161000

time

900

950

1000

1050

ra
te

(M
b
p
s)

traffic

link rate

triggred optimization

Figure 7.24: 155 sec to 161 sec zoomed in from Figure 7.23; time is in milliseconds; bin size is 10ms.

minutes of simulated time. The convolution mechanism definitely has a huge effect, dramatically

lowering queue sizes across the board. In 21 of the top 25 links LDR’s convolution mechanism is

mostly able to maintain low queues, similarly to the results from the first minute above.

In links ranked 7,13,14 and 20, however, the maximum queue size exceeds 50 ms, even when

the convolution mechanism is used. Does this imply that short-term variability is not constant

minute-to-minute, or is there another factor in play?

In Figure 7.23 we investigate LDR’s utilization of the link where the largest queue forms

(ranked 20). On the x axis we show simulation time in milliseconds and on the y axis we dis-

play the rate of traffic before it enters the queue. The service rate of the queue is indicated by a

horizontal line, and periodic and triggered optimization events are marked with vertical lines.

Even though the optimization from Chapter 5 aims to load this link to full capacity, the con-

volution process artificially increases the levels of aggregates that cross the link, providing just

enough headroom so that the traffic does not cause queues to build up. This works for the first

7.4. Short and Long-Term Variability in Demand 121

0 5 10 15 20

headroom across all links (percent)

0

2

4
ch
a
n
g
e
in

to
ta
l
d
el
a
y
(p
er
ce
n
t)

Figure 7.25: Increase in delay due to adding a fixed amount of headroom to all links.

couple of minutes, but during the third minute an unexpected event happens that causes one or

more of the aggregates that cross the link to increase their level. The new traffic level overshoots

the link’s capacity and causes a queue to form. It takes a couple of seconds for LDR to trigger

an optimization, which immediately moves some aggregates away from the congested link, but

in the meantime a queue forms, and potentially drops may occur. In this experiment we always

provide the optimizer with all aggregates’ exact mean traffic levels for the upcoming minute, but

this knowledge of the future is of little use as the unexpected change happens mid-minute.

Events like the one in Figure 7.23 are the result of sudden changes in the mean traffic level

which are often unpredictable and completely out of the control of the routing system. The only

reasonable way to deal with such unexpected changes in the traffic pattern is to add headroom on

top of the one that is needed to deal with short-term variability.

7.4.3 Long-term Variability and Headroom

The question then becomes how much headroom to add. On one hand, adding headroom will

reduce transient queuing in the event of an unexpected change in the traffic’s mean level. On the

other hand, adding headroom will, by design, increase the propagation delay of flows within the

network. On Figure 7.25 we examine the magnitude of this fundamental tradeoff for the particular

topology and the traffic matrix used in this section.

For every point on this plot we add a fixed amount of headroom to all links in the network,

and observe the negative effect on delay by running LDR’s optimization from Chapter 5. On the x

axis we vary the headroom added in increments of 2%; on the y axis we plot the increase in total

delay experienced by all flows in the network.

In this particular case the trend is linear with delay increasing roughly by .5% for every 2% of

additional headroom. In general, however, the shape of the curve is very dependent on the topology

and the traffic matrix. It is up to the network administrator to decide what an acceptable tradeoff

is for their network and workload. As we have previously stated, we believe that 10% headroom

7.4. Short and Long-Term Variability in Demand 122

0.80 0.85 0.90 0.95 1.00

utilization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

li
n
k
(r
a
n
k
ed
)

LDR

LDR (NC)

0 50 100 150 200

max queue size (ms)

Figure 7.26: Mean link utilization (left) and max queue size (right) for the first ten minutes; 10% headroom
target for the mean level estimation algorithm. Links are ranked based on the utilization of LDR
(NC).

provides a reasonable default tradeoff between propagation delay and queuing delay.

We now verify this assumption. The mean-level estimation algorithm from Section 6.2.3 at-

tempts to constantly maintain about 10% of headroom in hope that it will be enough to either

completely absorb unexpected changes or to give LDR enough time to trigger an optimization. In

order to test its effectiveness, along with its interaction with all other components of LDR previ-

ously tested, we enable the long-term prediction algorithm and repeat the previous experiment,

but this time we simulate a longer period of time. In Figure 7.26 we show the results from the

first 10 minutes of simulated time. Clearly LDR is effective in providing low queuing delay, while

still loading links in the network up to the 90% target. Notice that even with 10% headroom the

convolution mechanism is still needed—attempting to optimize the network by using mean traffic

levels alone results in a link being congested.

Looking at Figure 7.26, an obvious question is whether it is possible to safely further reduce

the amount of headroom. We repeat the experiment, but this time we set the mean-level estimation

algorithm’s headroom target to be 5% instead of 10%. The results are shown in Figure 7.27. Clearly,

the network is running closer to the edge, with several links being congested in the absence of the

convolution scheme. Even with the convolution scheme a couple of links run up queues in the

10-15ms range, which suggests that it may be safer to use the 10% variant if the network operator

is willing to tolerate the increase in delay (which is about 2% according to Figure 7.25).

7.4.4 Triggered Optimization and Limited Optimization

Clearly as Figure 7.23 shows, in the event of an unexpected change in traffic level triggered opti-

mization limits the amount of transient queuing. The downside of triggered optimization is that

7.4. Short and Long-Term Variability in Demand 123

0.80 0.85 0.90 0.95 1.00

utilization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

li
n
k
(r
a
n
k
ed
)

LDR

LDR (NC)

0 100 200 300

max queue size (ms)

Figure 7.27: Mean link utilization (left) and max queue size (right) for the first ten minutes; 5% headroom
target for the mean level estimation algorithm. Links are ranked based on the utilization of LDR
(NC).

Table 7.1: Route changes sent by the controller during the simulation from Figure 7.26.

time (sec) routes added routes updated routes removed optimization type
60 0 0 0 scheduled
120 49 13 48 scheduled
155 40 15 39 triggered
160 112 17 110 triggered
180 36 20 36 scheduled
240 49 20 48 scheduled
300 44 20 43 scheduled
360 31 23 32 scheduled
420 80 20 82 scheduled
480 30 17 31 scheduled
540 30 18 28 scheduled
595 171 22 169 triggered
600 16 23 17 scheduled

it may cause the controller to update a large volume of network state. To quantify this cost we

present in Table 7.1 the number of routes added, updated and removed by the controller in the

entire network as the result of each optimization in the 10-minute long 10% headroom experiment

from last section. Route additions are the most expensive, as they will cause an entirely new tag-

switched path to be installed in the network. We believe that the number of route additions is

reasonable for a network of this size, but the administrator may wish to further reduce that num-

ber by enabling LDR’s limited optimization mechanism described in Section 5.6 and evaluated in

isolation in Section 7.3.8. To observe its effects on message count and queue sizes we repeat the

10-minute 10% headroom experiment, but this time we enable the limited optimization mechanism.

On Table 7.2 we present the message counts and on Figure 7.28 we present queue sizes and

7.4. Short and Long-Term Variability in Demand 124

Table 7.2: Route changes sent by the controller during the simulation from Figure 7.26, but with limited
optimization enabled.

time (sec) routes added routes updated routes removed optimization type
60 0 0 0 scheduled
120 44 12 42 scheduled
155 28 15 21 triggered
160 78 22 67 triggered
180 13 13 9 scheduled
240 3 5 0 scheduled
300 25 22 21 scheduled
360 0 1 1 scheduled
420 0 0 0 scheduled
480 0 0 0 scheduled
540 0 0 0 scheduled
600 10 9 4 scheduled

0.80 0.85 0.90 0.95 1.00

utilization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

li
n
k
(r
a
n
k
ed
)

LDR

LDR (NC)

0 50 100 150 200

max queue size (ms)

Figure 7.28: Mean link utilization (left) and max queue size (right) for the first ten minutes; 10% headroom
target for the mean level estimation algorithm; limited optimization enabled. Links are ranked
based on the utilization of LDR (NC).

link utilizations for this experiment. The effect of limited optimization is obvious, with a significant

reduction in message counts compared to Table 7.1. Notice that limited optimization not only re-

sulted in overall reduction in all types of control messages, but also completely elided the triggered

optimization at 595 sec.

Chapter 8

Conclusions

Given today’s applications’ increasing reliance on low latency, in this thesis we set out to explore

the interplay between the diversity of low-latency paths in WAN backbones and the ability of a

routing scheme to exploit that diversity to achieve congestion-free, low-delay traffic delivery. We

demonstrated that on topologies with diverse low-latency paths, both legacy and current routing

schemes arrive at traffic placements that suffer congestion or high latency stretch.

We then designed LDR, a novel routing system that achieves low latency by minimizing prop-

agation delay while avoiding queuing delay. To use ISP resources efficiently, LDR runs links at

high utilization. Because doing so under variable, uncontrolled demand risks congestion, LDR

adapts quickly when demand for a link bumps up against that link’s capacity, and runs low-delay

paths in the network as close to “the edge of congestion” as it safely can. As there is a limit to

how frequently any demand-sensitive routing scheme can change the placement of traffic, to avoid

congestion, LDR predicts whether aggregates’ variable demands will statistically multiplex on a

path in between changes in traffic placement.

We evaluated LDR in simulation and showed that LDR’s optimizer can place thousands of

aggregates in a backbone of hundreds of links in less than a second. We demonstrate that while

under realistic load in today’s networks any routing schemewill route 90% of flows on their shortest

paths, the choice of routing scheme can profoundly affect the path stretch of the other 10%. LDR

consistently yields very low path stretch for all flows in the network, across diverse load levels

and locality degrees of traffic matrix. LDR is also free of the sub-optimal greedy behavior of prior

systems which can cause congestion. Using real-world packet traces we demonstrated that LDR

is able to safely run key links at high utilization, while adapting quickly enough to avoid causing

queuing delays, even under the relatively uncontrolled demands in an ISP backbone.

In the rest of this chapter we first discuss limitations in LDR’s evaluation. We then focus on

open questions in resilience to failures and the general question of interdepedence between routing

and topology—an interesting discussion which we touch upon in this thesis, but do not completely

address. We conclude with further questions for future work.

8.1. Limitations in LDR’s Evaluation 126

0.0 0.2 0.4 0.6 0.8

LLPD

0.0

0.2

0.4

0.6

0.8

fr
a
ct
io
n
o
f
p
a
ir
s
co
n
g
es
te
d

Google

90th percentile

Median

Figure 8.1: Same shortest-path routing data as in Figure 3.8, but with Google’s topology (LLPD = 0.875) added.

8.1 Limitations in LDR’s Evaluation
When evaluating LDR in Chapter 7 we used many real-world topologies, but we cannot claim that

LDR will perform well on every possible topology. In particular, as shown in Section 7.3.7, highly

loaded and densely connected networks may cause the optimizer to either take a long time to

produce a solution or produce a sub-optimal one.

Similarly, we have tested LDR’s convolution-based mechanism using a number of real-life

backbone traces, but we can not claim that these traces are representative of all backbone traffic.

It may be that in some networks aggregates experience significantly more short and long-term

variability than in our traces, which would require more headroom than the 10% default. As we

discussed in Section 6.3.1, we envision that in such cases increased variability will result in a high

number of triggered optimizations, which can be taken as an indication that the headroom target

should be increased, but we have not fully designed or evaluated such a mechanism.

The traffic matrices that we evaluated LDR with are synthetic. We attempted to produce re-

alistic traffic matrices and we evaluated LDR under workloads with a range of different load and

locality parameters, but ultimately we cannot claim that real-world traffic matrices will always be

similar to the ones we tested.

In Section 3.3.2 we demonstrated that mean traffic levels are predictable minute to minute,

which motivated LDR’s minute-long optimization period. We believe that a minute is a reason-

able default for most networks, but we have not evaluated longer or shorter periods. Because of

triggered optimization we do not believe that performing periodic optimization passes more often

would result in lower queuing delay, but it is possible that doing so may yield lower propagation

delay, as it would make LDR react faster when an aggregate’s demand decreases.

8.2 Modern enterprise networks.
The Topology Zoo consists largely of transit networks from recent decades, most of which were

not designed with dynamic, latency-minimizing routing in mind. How do state-of-the-art enter-

8.3. Resilience to Failures 127

prise networks compare? We examined a recent wide-area global enterprise network owned by

Google [43]. In Figure 8.1 we revisit the behavior of delay-proportional shortest-path routing by

augmenting Figure 3.8 with results for Google’s network. The new datapoint clearly exhibits the

greatest LLPD among all topologies and, unsurprisingly, cannot be routed using shortest paths

alone. Google’s own B4 in fact performs nearly optimally on this network without exhibiting the

pathologies in Section 3.2.2. We conjecture that this topology was explicitly designed for dynamic

latency-minimizing routing. We believe it to be an important existence proof that it is possible and

economically viable to build a high-LLPD network that spans the globe. We note though that an

enterprise network can control traffic at endpoints, so demand may be more predictable than at an

ISP.

8.3 Resilience to Failures
There are primarily two types of failures a centralized load-dependent routing system is concerned

with:

• Failures of components in the forwarding plane—e.g., a transoceanic fiber is cut by a ship’s

anchor.

• Failures in the control plane—e.g, the central controller is destroyed or disconnected.

In general, failures of components of the forwarding plane are less problematic. As we explain

in Section 4.2, LDR, like similar systems, runs on top of link-state routing which will guarantee

connectivity to the controller if the network is not partitioned. Once a failure occurs the controller

will have to react quickly to update the forwarding state in devices. As failure can be seen as an

extreme case of an unexpected change in traffic level, amechanism similar to triggered optimization

can help in this case, as shown in Figure 7.23.

More concerning is the potential for network partition. Even though low-delay routing targets

networks that have high path diversity, in wide-area networks long-haul transoceanic links pose a

high risk to connectivity, as cutting only a handful of those is likely to partition the network. In this

case we envision positioning a number of “local” controller replicas that can take over the central

controller’s functions. In normal operation, devices send measurements to their local controller

and the local controllers forward traffic measurements to the global one, so that local controllers

have an up-to-date view of the aggregates in their part of the network. In case a partition does

not contain a local controller, the underlying link-state IGP can still ensure single shortest-path

connectivity after LSPs eventually time out.

What about the control plane? The global controller clearly is a single point of failure and

its loss will potentially be devastating to the system. Traditionally in SDN networks this problem

is handled via state-machine replication [51] or a lighter-weight version of state machine replica-

tion [48]. More recent work in the field [64] suggests that an even lighter-weight approach based

8.4. Influence of Routing on Topology 128

1.00 1.05 1.10 1.15 1.20

latency stretch (before)

1.00

1.05

1.10

1.15

1.20

la
te
n
cy

st
re
tc
h
(a
�
er
)

(a) Median

1.0 1.1 1.2 1.3 1.4 1.5

latency stretch (before)

1.0

1.2

1.4

la
te
n
cy

st
re
tc
h
(a
�
er
)

LDR

MinMaxLD

AB4

MinMaxK10

(b) 90th percentile

Figure 8.2: Latency benefits of network growth; graph shows median and 90th percentile of path stretch
before and after growing networks to increase their LLPD; each letter is a different topology:
Packetexchange (P), Deutsche Telekom (D), Hurricane Electric (H) and Tinet (T).

on eventual correctness may also be viable and yield failover times of under 100 ms.

In practice, given our experience with LDR, we believe even the simpler heavier-weight ap-

proaches might be enough to render a centralized load-dependent routing system fault-tolerant, as

the central controller does not require a very low failover time. If the controller dies at any point

between update cycles it is likely that all aggregates in the network still have at least one valid path.

In this case during failover the network may experience sub-optimal propagation delay or tempo-

rary transient congestion. If the controller dies in the middle of installing new network state for

a set of aggregates their ingresses may switch to single shortest path routing for those aggregates

during the failover period. Neither of those events actually results in loss of connectivity.

8.4 Influence of Routing on Topology

The topologies we have studied in this work were designed to be used with existing routing

schemes. Have today’s routing systems’ limitations constrained how networks themselves have

grown? We cannot definitively answer this question without deploying an optimal routing system

and waiting a decade or so to see how ISPs upgrade their networks. Nor can we accurately deter-

minewhich topology upgradesmight be likely; we have nomodel for the economic and geopolitical

constraints that gate new link deployment. We can, however, examine the extent to which topol-

ogy upgrades enable better service from today’s routing systems. When adding links to a topology

in principle ought to improve service but in practice does not, an ISP wouldn’t likely choose to

grow the network in that way. If, however, the ISP had a routing system that could harness those

added links to improve service, the ISP would see benefit in adding them.

8.4. Influence of Routing on Topology 129

8.4.1 Multi-step Upgrade Using LLPD

As there is no point in upgrading a network topology that already works well, we examined four

networks that are difficult to route with low latency, even with optimal traffic placement. The

networks chosen are those from Figure 3.9a with high latency, but we exclude those with clique

topologies, to which we cannot add links. We use the LLPD metric to determine which additional

links might confer the greatest benefit.

We consider every pair of POPs not already directly connected, and evaluate how LLPDwould

change if we added a link between that pair of POPs. Note that some of these links might decrease

LLPD. Of all these links, we add the one that gives the greatest increase in LLPD. We then repeat

this process until the number of links has increased by 5%. As each link added improves LLPD, the

resulting network will, in principle, be more amenable to low-latency routing.

Figure 8.2 shows how much the different routing schemes benefit. As before, load is 77%, and

locality 1. The x-axis and y-axis respectively show the latency stretch on the original and enhanced

networks. The baselines for the x axis are shortest paths before the repeated addition of links, and

the baselines for the y axis are the (possibly different) shortest paths after the new links were added.

We show two plots where each point is either the median (left plot) or the 90th percentile (right

plot) of the latency stretch when running different schemes with the same set of traffic matrices on

the original and enhanced topologies. Different colors are different schemes and different letters

are different topologies. Ideally, all points would be close to the x-axis.

Only LDR trulymanages to completely take advantage of the new links, givingmedian latency

stretch very close to unity. For three of the networks, LDR’s 90th percentile is less than all other

routing systems’ median latency.

B4 is also good at taking advantage of new links, though far from perfect. Both MinMax

algorithms fare much worse. In some cases, adding new links that improve LLPD actually increases

latency, as both algorithms use new links to load-balance more widely. We also note that with pure

shortest-path routing (not shown on the figure), adding links sometimes causes congestion, if the

link has insufficient capacity to cope with any traffic concentration it causes.

We conjecture on the basis of these preliminary experiments that the routing scheme does

determine which links are best for an ISP to add. Although we cannot be sure that limitations in

today’s routing systems prevent ISPs from deploying lower-latency topologies, it seems that may

be the case.

8.4.2 Single-step Upgrade

One can argue that LLPD is not the right metric an operator should use to determine how to grow

their network. In fact, geographic, geopolitical, and economic constraints limit where links can

reasonably be provisioned and one can argue that no single metric is right for all operators. At

bottom, we observe that regardless of the operator’s agenda or resources, adding capacity should

8.4. Influence of Routing on Topology 130

fraction of flows

0.0

0.5

1.0

C
D
F

increased delay

fraction of flows

increased by at least 50%

0.0 0.1 0.2

fraction of flows

0.0

0.5

1.0

C
D
F

decreased delay

0.0 0.1 0.2

fraction of flows

decreased by at least 50%

MinMax

LDR NFC

B4

LDR

MinMaxK10

Figure 8.3: Fraction of flows whose delay increases/decreases when an existing link is upgraded in Hurricane
Electric’s network

not actually be detrimental to latency for many flows.

To capture the extent towhich routing schemes hamper network growth in away that does not

depend on any single metric, we focus on Hurricane Electric’s (HE) network, one of the networks

from Figure 8.2. HE is a global ISP with 24 POPs and median link size of 10 Gbps. Instead of

repeatedly adding a single link over multiple steps, this time we tested all possible single-step

upgrades to this topology: either we added a new 10 Gbps link between one of the 240 possible pairs

of POPs, or we upgraded one of the 36 existing links by 10 Gbps. We evaluated the upgrade using

all the HE traffic matrices used in Figure 8.2, testing all the routing schemes. Figures 8.3 and 8.4

are CDFs across all possible link upgrades and traffic matrices showing the fraction of flows whose

propagation delay increased (top graphs) or decreased (bottom graphs) as a result of the upgrade;

Figure 8.4 shows the effect of adding new links, Figure 8.3 shows the effect of increasing capacity

on existing links.

It is interesting to see that adding capacity to a MinMax network causes many more flows

to increase in latency than to decrease. MinMax will, as designed, spread traffic out onto the new

link, even if doing so hurts latency. The ISP is, in fact, very constrained in how it grows its network

over time if it wants to do no harm.

With B4, many flows change path when links are added, though the number whose latency

increases almost exactly equals those whose decreases. Although the net change is a slight reduc-

8.5. Future Research 131

fraction of flows

0.0

0.5

1.0

C
D
F

increased delay

fraction of flows

increased by at least 50%

0.0 0.1 0.2

fraction of flows

0.0

0.5

1.0

C
D
F

decreased delay

0.0 0.1 0.2

fraction of flows

decreased by at least 50%

MinMax

LDR NFC

B4

LDR

MinMaxK10

Figure 8.4: Fraction of flows whose delay increases/decreases when a new link is added to Hurricane Elec-
tric’s network

tion in total latency, an ISP planning a change will have difficulty predicting which customers will

be adversely affected. This same churn is also seen when B4 reacts to link state changes.

LDR minimizes both total latency and per-aggregate latency stretch. As a result, although

many possible link upgrades or additions are beneficial, very few cause any flows at all to increase

in latency. We speculate that this property will allow network operators extra freedom to grow

their networks in new ways that are not possible today due to the constraints imposed by legacy

routing systems.

8.5 Future Research
In LDR we have taken a step toward routing that better harnesses the diversity in today’s ISP

topologies, but important questions and avenues for further work in this area remain.

Can we guarantee stability?

Given a set of input demands, the routing system should eventually settle on a stable assignment

of traffic to paths. Unfortunately, it is difficult for delay-minimizing routing systems to guarantee

stability in general.

As already discussed, any delay-minimizing routing system must dynamically move traffic

from lower-delay paths to higher-delay ones when demand increases and no longer fits, and vice-

versa when demand shrinks. Moving an aggregate to a higher-delay path can, however, reduce

8.5. Future Research 132

AS 1 AS 2I

I

E
E1

E2 AS 4

AS 5
E

AS 3
I1

I2

Figure 8.5: AS-level topology, ingress and egress devices shown.

its throughput—e.g., when (i) its flows are competing with flows on a bottleneck link outside the

ISP’s network (as the TCP throughput equation tells us [63]), (ii) the traffic is generated by delay-

sensitive applications, or (iii) delay-based congestion control is applied [17]. In turn, reducing

the throughput of the moved aggregate increases the possibility that the routing system will shift

that aggregate to a lower-delay path, increasing its bandwidth again. This pattern of behavior

can result in temporary instability or a permanent oscillation—never settling on a stable routing

state. Oscillations of this type are fundamentally different from the widely studied ones that affect

distributed routing [49, 9].

The magnitude of these instabilities depends on how strong the correlation between through-

put and delay is. Measuring the magnitude of dependencies of this sort in real-world flows, and

characterizing and dealing with oscillations they cause is an interesting open problem. The study

of practical mechanisms that guarantee stability, as well as techniques to mitigate instability when

it cannot be avoided, are fertile ground for the community to explore.

Can we provide low latency end-to-end?
So far, we have considered a single ISP, and a routing system optimizing paths for flow aggregates

defined by a fixed pair of ingress and egress routers within a single administrative domain. How

does such an optimization fit in the larger end-to-end picture? If all autonomous systems (AS) on

the path of a flow in the Internet were each to perform a latency-minimizing optimization locally,

what would the global outcome be? Clearly, if for a given destination each AS has only one ingress

and egress point, minimizing the propagation delay of each segment of the end-to-end path will

also minimize the total end-to-end propagation delay.

In the real world, however, a single destination can be advertised from multiple neighboring

autonomous systems, resulting inmany potential egresses for an ingress. A small AS-level topology

illustrating this is shown in Figure 8.5. Imagine a flow from the ingress device of AS1 to the egress

device of AS5. Such flow would have to cross AS2, where the routing system has to make a choice

between two possible egress points. If it makes a purely local decision and sends the flow to E2,

the end-to-end propagation delay may suffer if the path via AS4 is longer than the one in AS3.

The only way to ensure minimal end-to-end delay here is to make AS2 aware of the optimization

processes in other domains.

8.6. Closing Remarks 133

We believe it will be worthwhile to explore how to achieve end-to-end minimal latency with

and without coordination between ISPs in the hot-potato routing scenario—e.g., through tailored

ISP interfaces for automated interactions, or independent decisions made by single ISPs on the

basis of external latency measurements.

How does routing react to malicious traffic?
We have yet to explore how load-dependent routing schemes react to malicious traffic patterns. For

example, although LDR will blunt a DDoS attack by spreading its bandwidth, flow counts might

also be inflated, causing priority inversion. The flow-agnostic variant of LDR would not be affected

in such cases, but the flow-aware variant of LDR would favor lower-delay paths for an aggregate

containing lots of small flows, essentially prioritizing DDoS or malicious traffic. It seems likely that

flow counting might be useful in detecting such attacks and deprioritizing their traffic, or alerting

the operator to do so.

Can we apply LDR’s techniques to other routing systems?
We believe that LDR’s iterative growth of the set of paths used to route an aggregate and its con-

volution technique for determining headroom should both be of use in other low-delay routing

systems. For example, B4 assumes no variation in traffic demands, as it is designed for an enter-

prise setting in which the routing controller has global knowledge of all sources’ exact rates. The

convolution approach to headroom could be useful in adapting B4 to the ISP setting. And while

MinMax K10’s fixed choice of the ten lowest-delay paths will often be too great or too small for

some aggregates, iteratively growing the path set for MinMax per aggregate, subject to a bound on

delay stretch, should help MinMax avoid needless detours.

8.6 Closing Remarks
Users’ expectations of the Internet have evolved beyond mere capacity. Today’s Internet applica-

tions offer the best quality of experience when end-to-end communication incurs low latency. A

web page finishes loading when TCP transfers of many small objects complete; as these short TCP

flows often finish while still in slow start, round-trip time gates page load time. And the lower the

communication latency between two users, the more responsive they will find interactive applica-

tions, such as VoIP, instant messaging, and gaming.

As the volume of delay-sensitive traffic grows, in the near future this desire for low latency

will shape the way networks are built and operated. In this thesis we focused on the fundamental

tradeoff between propagation delay and queuing delay in the context of wide-area routing. We

close by noting that the two main prerequisites to any demand-adaptive latency-minimizing rout-

ing system are predictability of demand at the timescale of that system’s control loop and low-latency

path diversity.

Our experience suggests that the level of aggregation evident in today’s large ISPs is now

8.6. Closing Remarks 134

sufficient for traffic to be relatively predictable on minute-to-minute timescales. We believe this

regime presents exciting opportunities for building practical demand-adaptive routing systems,

such as the one we presented in this work. Whereas a large fraction of today’s networks do not

exhibit high path diversity, we hope that such routing systems will provide network operators

with greater freedom to upgrade their networks, and help unlock the low-latency potential of

path-diverse topologies.

Bibliography

[1] NTT’s network topology. http://www.us.ntt.net/about/network-map.

cfm. Accessed: 2017-08-04.

[2] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera:

Dynamic flow scheduling for data center networks. In USENIX NSDI 2010.

[3] Albrightson, R., Garcia-Luna-Aceves, J., and Boyle, J. Eigrp–a fast routing protocol based

on distance vectors. Interop 94 (1994).

[4] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B., Sengupta,

S., and Sridharan, M. Data center tcp (dctcp). In ACM SIGCOMM computer communication

review (2010), vol. 40, ACM, pp. 63–74.

[5] Anthony, S. $1.5 billion: the cost of cutting london-tokyo latency by 60ms.

https://news.slashdot.org/story/12/03/21/004219/15-billion-the-cost-of-cutting-london-

tokyo-latency-by-60ms, 2012.

[6] Anthony, S. The secret world of microwave networks. https://arstechnica.com/information-

technology/2016/11/private-microwave-networks-financial-hft, 2016.

[7] Applegate, D., and Cohen, E. Making intra-domain routing robust to changing and uncer-

tain traffic demands: Understanding fundamental tradeoffs. In ACM SIGCOMM 2003.

[8] Azar, Y., Cohen, E., Fiat, A., Kaplan, H., and Racke, H. Optimal oblivious routing in poly-

nomial time. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing

(2003), ACM, pp. 383–388.

[9] Basu, A., and Riecke, J. Stability issues in OSPF routing. ACM SIGCOMM Computer Com-

munication Review 31, 4 (2001), 225–236.

[10] Beck, M., and Kagan, M. Performance evaluation of the rdma over ethernet (roce) standard

in enterprise data centers infrastructure. In Proceedings of the 3rd Workshop on Data Center-

Converged and Virtual Ethernet Switching (2011), International Teletraffic Congress, pp. 9–15.

[11] Bellman, R. On a routing problem. Quarterly of applied mathematics 16, 1 (1958), 87–90.

Bibliography 136

[12] Bertsekas, D., Gafni, E., and Gallager, R. Second derivative algorithms for minimum delay

distributed routing in networks. IEEE Transactions on Communications 32, 8 (1984), 911–919.

[13] Bertsekas, D. P., Gallager, R. G., and Humblet, P. Data networks, vol. 2. Prentice-hall

Englewood Cliffs, NJ, 1987.

[14] Braess, D. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12, 1 (Dec

1968), 258–268.

[15] CAIDA. Internet data – passive data sources.

[16] Callon, R. Rfc 1195, use of osi isis for routing in tcp. IP and Dual Environments (1990), 1–80.

[17] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S., and Jacobson, V. Bbr: Congestion-based

congestion control. Communications of the ACM 60, 2 (2017), 58–66.

[18] Chen, Y., Griffith, R., Liu, J., Katz, R. H., and Joseph, A. D. Understanding tcp incast

throughput collapse in datacenter networks. In Proceedings of the 1st ACM workshop on Re-

search on enterprise networking (2009), ACM, pp. 73–82.

[19] Cisco. Implementing mpls traffic engineering.

[20] Clegg, R. G. The statistics of dynamic networks. PhD thesis, University of York, 2004.

[21] CPLEX, I. I. V12. 1: User’s manual for cplex. International Business Machines Corporation 46,

53 (2009), 157.

[22] Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee,

S. Devoflow: Scaling flow management for high-performance networks. ACM SIGCOMM

Computer Communication Review 41, 4 (2011), 254–265.

[23] D. Awduche and J. Malcolm. Requirements for Traffic Engineering Over MPLS. RFC 2702

(2009).

[24] Davie, B. S., and Rekhter, Y. MPLS: technology and applications. Morgan Kaufmann Pub-

lishers Inc., 2000.

[25] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische mathematik

1, 1 (1959), 269–271.

[26] Dijkstra, E. W., and Scholten, C. S. Termination detection for diffusing computations.

Information Processing Letters 11, 1 (1980), 1–4.

[27] Duffield, N., Lund, C., and Thorup, M. Estimating flow distributions from sampled flow

statistics. In ACM SIGCOMM 2003.

Bibliography 137

[28] Dukkipati, N. Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses. Internet

Draft draft-dukkipati-tcpm-tcp-loss-probe-01.txt (2013).

[29] Elwalid, A., Jin, C., Low, S., and Widjaja, I. Mate: Mpls adaptive traffic engineering. In

Proc. INFOCOM 2001, vol. 3, pp. 1300 – 1309.

[30] Estan, C., and Varghese, G. New directions in traffic measurement and accounting. In ACM

SIGCOMM 2002.

[31] Fortz, B., and Thorup, M. Optimizing OSPF/IS-IS weights in a changing world. IEEE J.Sel.

A. Commun. 20, 4 (Sept. 2006), 756–767.

[32] Foundation, O. N. Openflow switch specification, version 1.5.1.

[33] games, R. Fixing the internet for real time applications: part ii. https://engineering.ri-

otgames.com/news/fixing-internet-real-time-applications-part-ii, 2016.

[34] Garcia-Lunes-Aceves, J. J. Loop-free routing using diffusing computations. IEEE/ACM

Transactions on Networking (TON) 1, 1 (1993), 130–141.

[35] Gay, S., Schaus, P., and Vissicchio, S. REPETITA: Repeatable Experiments for Performance

Evaluation of Traffic-Engineering Algorithms. CoRR abs/1710.08665 (2017).

[36] Gong, W.-B., Liu, Y., Misra, V., and Towsley, D. Self-similarity and long range dependence

on the internet: a second look at the evidence, origins and implications. Computer Networks

48, 3 (2005), 377–399.

[37] Gvozdiev, N., Karp, B., and Handley, M. FUBAR: Flow utility based routing. In Proc. ACM

Hotnets (October 2014).

[38] Haddadi, H., Bonaventure, O., et al. Recent advances in networking.

[39] Handley, M., Raiciu, C., Agache, A., Voinescu, A., Moore, A.W., Antichi, G., andWójcik,

M. Re-architecting datacenter networks and stacks for low latency and high performance. In

Proceedings of the Conference of the ACM Special Interest Group on Data Communication (2017),

ACM, pp. 29–42.

[40] Handley, M., Raiciu, C., and Wishcik, D. htsim. http://nrg.cs.ucl.ac.uk/mptcp/implementa-

tion.html.

[41] Hassidim, A., Raz, D., Segalov, M., and Shaqed, A. Network utilization: The flow view. In

INFOCOM, 2013 Proceedings IEEE (2013), IEEE, pp. 1429–1437.

[42] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., and Watten-

hofer, R. Achieving high utilization with software-driven WAN. In ACM SIGCOMM 2013.

Bibliography 138

[43] Hong, C.-Y., Mandal, S., Al-Fares, M., Zhu, M., Alimi, R., B., K. N., Bhagat, C., Jain, S.,

Kaimal, J., Liang, S., Mendelev, K., Padgett, S., Rabe, F., Ray, S., Tewari, M., Tierney,

M., Zahn, M., Zolla, J., Ong, J., and Vahdat, A. Managing Hierarchy, Partitioning, and

Asymmetry for Availability and Scale in a Software-Defined WAN. In Proc. ACM SIGCOMM

(2018).

[44] Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951),

770–808.

[45] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer,

J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., and Vahdat, A. B4: Experience with

a globally-deployed software defined wan. In ACM SIGCOMM 2013.

[46] Jin, X., Liu, H. H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J., and

Wattenhofer, R. Dynamic scheduling of network updates. In ACM SIGCOMM Computer

Communication Review (2014), vol. 44, ACM, pp. 539–550.

[47] Kandula, S., Katabi, D., Davie, B., and Charny, A. Walking the tightrope: Responsive yet

stable traffic engineering. In Proc. ACM SIGCOMM 2005.

[48] Katta, N., Zhang, H., Freedman, M., and Rexford, J. Ravana: Controller fault-tolerance in

software-defined networking. In Proceedings of the 1st ACM SIGCOMM symposium on software

defined networking research (2015), ACM, p. 4.

[49] Khanna, A., and Zinky, J. The revised ARPANET routing metric. ACM SIGCOMM Computer

Communication Review 19, 4 (1989), 45–56.

[50] Knight, S., Nguyen, H., Falkner, N., Bowden, R., and Roughan, M. The Internet Topology

Zoo. IEEE Journal on Selected Areas in Communications 29, 9 (october 2011), 1765 –1775.

[51] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan,

R., Iwata, Y., Inoue, H., Hama, T., et al. Onix: A distributed control platform for large-scale

production networks. In OSDI (2010), vol. 10, pp. 1–6.

[52] Kumar, A., Jain, S., Naik, U., Raghuraman, A., Kasinadhuni, N., Zermeno, E., Gunn, C. S.,

Ai, J., Carlin, B., Amarandei-Stavila, M., Robin, M., Siganporia, A., Stuart, S., and Vah-

dat, A. Bwe: Flexible, hierarchical bandwidth allocation for wan distributed computing. In

ACM SIGCOMM 2015.

[53] Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F., Koura-

nov, F., Swett, I., Iyengar, J., et al. The quic transport protocol: Design and internet-scale

deployment. In Proceedings of the Conference of the ACM Special Interest Group on Data Com-

munication (2017), ACM, pp. 183–196.

Bibliography 139

[54] Leland, W. E., Taqq, M. S., Willinger, W., and Wilson, D. V. On the self-similar nature of

ethernet traffic (extended version). IEEE/ACM Transactions on networking 2, 1 (1994), 1–15.

[55] McKeown, N. Software-defined networking. INFOCOM keynote talk 17, 2 (2009), 30–32.

[56] McQuillan, J., Falk, G., and Richer, I. A review of the development and performance of the

arpanet routing algorithm. IEEE Transactions on Communications 26, 12 (1978), 1802–1811.

[57] McQuillan, J., Richer, I., and Rosen, E. The new routing algorithm for the arpanet. IEEE

Transactions on Communications 28, 5 (1980), 711–719.

[58] Mogul, J. C., and Congdon, P. Hey, you darned counters!: get off my asic! In Proceedings of

the first workshop on Hot topics in software defined networks (2012), ACM, pp. 25–30.

[59] Moy, J. OSPF Version 2. RFC 2328, Apr. 1998.

[60] Moy, J. Rfc 2328. OSPF version 2 (1998).

[61] Nichols, K., Black, D. L., Blake, S., and Baker, F. Definition of the differentiated services

field (ds field) in the ipv4 and ipv6 headers.

[62] Oran, D. OSI IS-IS Intra-domain Routing Protocol. RFC 1142, 1990.

[63] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. Modeling tcp throughput: A simple

model and its empirical validation. In Proc. ACM SIGCOMM 1998 (New York, NY, USA, 1998),

SIGCOMM ’98, ACM, pp. 303–314.

[64] Panda, A., Zheng, W., Hu, X., Krishnamurthy, A., and Shenker, S. Scl: Simplifying dis-

tributed sdn control planes. In NSDI (2017), pp. 329–345.

[65] Perlman, R. Interconnections: bridges, routers, switches, and internetworking protocols. Pearson

Education India, 1999.

[66] Qiao, Y., Skicewicz, J., and Dinda, P. An empirical study of the multiscale predictability

of network traffic. In High performance Distributed Computing, 2004. Proceedings. 13th IEEE

International Symposium on (2004), IEEE, pp. 66–76.

[67] Racke, H. Minimizing congestion in general networks. In Foundations of Computer Science,

2002. Proceedings. The 43rd Annual IEEE Symposium on (2002), IEEE, pp. 43–52.

[68] Roughan, M. Simplifying the synthesis of internet trafficmatrices. Computer Communication

Review 35, 5 (2005), 93–96.

[69] Santana, G. A. Data Center Virtualization Fundamentals: Understanding Techniques and De-

signs for Highly Efficient Data Centers with Cisco Nexus, UCS, MDS, and Beyond. Cisco Press,

2013.

Bibliography 140

[70] Schlinker, B., et al. Engineering Egress with Edge Fabric: Steering Oceans of Content to

the World. In SIGCOMM (2017).

[71] Schüller, T., Aschenbruck, N., Chimani, M., Horneffer, M., and Schnitter, S. Traffic

engineering using segment routing and considering requirements of a carrier ip network. In

IFIP Networking Conference (IFIP Networking) and Workshops, 2017 (2017), IEEE, pp. 1–9.

[72] sFlow. http://www.sflow.org.

[73] Shaikh, A., and Greenberg, A. G. OSPF monitoring: Architecture, design, and deployment

experience. In NSDI (2004).

[74] Shalom, N. Amazon found every 100ms of latency cost them 1% in sales. https://blog.gigas-

paces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales, 2008.

[75] Singla, A., Chandrasekaran, B., Godfrey, P. B., and Maggs, B. the internet at the speed

of light.

[76] Steenbergen, R. MPLS RSVP-TE auto-bandwidth: Practical lessons learned.

https://www.nanog.org/sites/default/files/tues.general.

steenbergen.autobandwidth.30.pdf. Accessed: 2017-10-31.

[77] Studio, I. I. C. O. Numeric difficulties. https://www.ibm.com/support/

knowledgecenter/en/SSSA5P_12.6.2/ilog.odms.cplex.help/

CPLEX/UsrMan/topics/cont_optim/simplex/20_num_difficulty.

html. Accessed: 2017-12-07.

[78] Templin, P. MPLS traffic engineering. https://www.nanog.org/meetings/

nanog37/presentations/pete-templin.pdf. Accessed: 2017-10-31.

[79] Wang, H., Xie, H., Qiu, L., Yang, Y. R., Zhang, Y., and Greenberg, A. COPE: Traffic engi-

neering in dynamic networks. In ACM SIGCOMM 2006.

[80] Wolf, J. V., and Brenkosh, J. P. The need for speed: 40 gigabit ethernet and beyond. Tech.

rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2016.

[81] Yap, K.-K., et al. Taking the Edge off with Espresso: Scale, Reliability and Programmability

for Global Internet Peering. In SIGCOMM (2017).

[82] Yen, J. Y. An algorithm for finding shortest routes from all source nodes to a given destination

in general networks. Quarterly of Applied Mathematics 27, 4 (1970), 526–530.

[83] Zhang, L., Deering, S., Estrin, D., Shenker, S., and Zappala, D. Rsvp: A new resource

reservation protocol. IEEE network 7, 5 (1993), 8–18.

Bibliography 141

[84] Zhang, M., Karp, B., Floyd, S., and Peterson, L. Rr-tcp: a reordering-robust tcp with dsack.

In Network Protocols, 2003. Proceedings. 11th IEEE International Conference on (2003), IEEE,

pp. 95–106.

	Introduction
	Cutting Latency by Increasing Connectivity
	Problem Statement
	Thesis Roadmap
	Contributions

	Literature Review
	Single-path Routing
	Routing Over Multiple Paths
	Solution Space

	The Challenges of Routing for Low Latency
	The Bandwidth-Propagation Delay Tradeoff
	Greedy Routing and Varied Link Capacities
	Greedy Routing and Local Aggregates
	The Need for Non-Greedy Routing

	Assessing Topologies' Potential for Low Latency
	Low-Latency Path Diversity
	Path Diversity is Hard to Use

	The Headroom Dial
	Headroom vs. Latency
	How Much Headroom is Needed?

	Summary of Findings

	Routing Goals and Design Overview
	Requirements
	Requirement: Explicitly Target Low Delay
	Requirement: Adapt to Variable Demand
	Target Behavior
	Greedy Heuristic or Closer-to-Optimal Solution

	LDR's Design
	Installing Network State

	Optimization
	Objective
	Minimizing Omax Across all Links
	Adding Paths Iteratively
	Path Addition Heuristic for Large Networks
	Prioritizing Traffic in LDR
	Reordering, Jitter and Control Plane Overhead
	Changes in Per-aggregate Demands
	Changes in Per-aggregate Flow Counts
	Limited Optimization

	Characterizing Demand
	Counting Flows
	Aggregate Demand
	Adding Headroom
	Statistical Multiplexing
	Predicting Mean Traffic Level
	Assessing Link Multiplexing

	Dealing With Unexpected Variability
	Triggered Optimization
	Low-priority Marking
	Triggered Optimization and Headroom

	Evaluation
	The Impact of Latency on Path Selection
	Generating Traffic Matrices
	Static Components of LDR
	Low vs. High LLPD
	Performance Under Varied Load and Locality
	Fraction of Flows Routed on Shortest Path
	Absolute delay
	Path Count
	Runtime
	Suboptimality of LDR
	Reordering and Jitter
	Prediction Algorithm

	Short and Long-Term Variability in Demand
	Performance of the Convolution Algorithm
	Predictability of Short-term Variability
	Long-term Variability and Headroom
	Triggered Optimization and Limited Optimization

	Conclusions
	Limitations in LDR's Evaluation
	Modern enterprise networks.
	Resilience to Failures
	Influence of Routing on Topology
	Multi-step Upgrade Using LLPD
	Single-step Upgrade

	Future Research
	Closing Remarks

	Bibliography

