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Role of MR Texture Analysis in Histological Subtyping and Grading of Renal Cell 1 

Carcinoma: A Preliminary Study 2 

Abstract 3 

Purpose: The study evaluated the usefulness of magnetic resonance imaging (MRI) texture 4 

parameters in differentiating clear cell renal carcinoma (CC-RCC) from non-clear cell 5 

carcinoma (NC-RCC) and in the histological grading of CC-RCC. 6 

Material and Methods: After institutional ethical approval, this retrospective study 7 

analyzed 33 patients with 34 RCC masses (29 CC-RCC and five NC-RCC; 19 low grade 8 

and 10 high grade CC-RCC), who underwent MRI between January 2011 and December 9 

2012 on a 1.5-T scanner (Avanto, Siemens, Erlangen, Germany). The MRI protocol 10 

included T2-weighted imaging (T2WI), diffusion-weighted imaging [DWI; at b 0, 500 and 11 

1000 s/mm2 with apparent diffusion coefficient (ADC) maps] and T1-weighted pre and 12 

postcontrast [corticomedullary (CM) and nephrographic (NG) phase] acquisition. MR 13 

texture analysis (MRTA) was performed using the TexRAD research software (Feedback 14 

Medical Ltd., Cambridge, UK) by a single reader who placed free-hand polygonal region 15 

of interest (ROI) on the slice showing the maximum viable tumor. Filtration histogram-16 

based texture analysis was used to generate six first-order statistical parameters [mean 17 

intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness and 18 

kurtosis] at five spatial scaling factors (SSF) as well as on the unfiltered image. Mann-19 

Whitney test was used to compare the texture parameters of CC-RCC vs. NC-RCC, and 20 
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high grade vs. low grade CC-RCC. P-value < 0.05 was considered significant. A 3-step 21 

feature selection was used to obtain the best texture metrics for each MRI sequence and 22 

included the receiver operating characteristic (ROC) curve analysis and Pearson’s 23 

correlation test. 24 

Results: The best performing texture parameters in differentiating CC-RCC from NC-RCC 25 

for each sequence included (area under the curve in parentheses): entropy at SSF 4 (0.807) 26 

on T2WI, SD at SSF 4 (0.814) on DWI b500, SD at SSF 6 (0.879) on DWI b1000, mean 27 

at SSF 0 (0.848) on ADC, skewness at SSF 2 (0.854) on T1WI and skewness at SSF 3 28 

(0.908) on CM phase. In differentiating high from low grade CC-RCC, the best parameters 29 

were: entropy at SSF 6 (0.823) on DWI b1000, mean at SSF 3 (0.889) on CM phase and 30 

MPP at SSF 5 (0.870) on NG phase.   31 

Conclusion:  Several MR texture parameters showed excellent diagnostic performance 32 

(AUC> 0.8) in differentiating CC-RCC from NC-RCC, and high grade from low grade 33 

CC-RCC. MRTA could serve as a useful non-invasive tool for this purpose.    34 
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Introduction 40 

Renal cell carcinoma (RCC) is the 16th most common cancer worldwide, accounting for 41 

2.2% of all newly diagnosed cancers (1). About 17% of the cases are found to be metastatic 42 

at presentation (2). The most important prognostic factors are the TNM stage and 43 

Fuhrman’s nuclear grade, the latter consisting of four grades (low grade: 1 and 2; high 44 

grade: 3 and 4) based on nuclear morphology and pleomorphism (3). Higher grades are 45 

associated with poor prognosis (4). Clear cell RCC (CC-RCC) accounts for the majority 46 

(75%) of cases, followed by papillary, chromophobe, collecting duct, medullary and 47 

unclassified types which are collectively labeled as non-clear cell RCC (NC-RCC) (5). CC-48 

RCC has higher mortality than NC-RCC. CC-RCC primarily expresses mutations of the 49 

Von Hippel-Lindau (VHL) gene or the mammalian target of rapamycin (mTOR) pathway 50 

and thus, several targeted-therapy agents (tyrosine kinase inhibitors like sunitinib and 51 

mTOR inhibitors like everolimus) have been used successfully in the management of these 52 

tumors (6). Hence, RCC subtyping and grading provides significant prognostic information 53 

and helps to guide therapy.  54 

Currently, this information is obtained from histopathological evaluation of the resected 55 

specimen since most of the suspected RCCs undergo surgery. In case of metastatic disease, 56 

biopsy is performed to obtain the same information. Biopsy carries a small risk (3.5%) of 57 

hemorrhage and remote risk (1:10000) of tract seeding (7,8).  In addition, there has been 58 

an increasing interest in exploring the potential of neoadjuvant chemotherapy since it could 59 
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treat micrometastasis and reduce tumor size, thereby enabling a more conservative surgery 60 

(9). Hence there is a need for preoperative prediction of tumor subtype and grade using 61 

non-invasive tools like imaging. Diffusion-weighted imaging (DWI) and perfusion MRI 62 

were the first modalities to be used for this purpose (10,11).  63 

Of late, a lot of interest has emerged in radiomics and texture analysis (TA). Radiomics is 64 

the science of extraction, analysis and interpretation of quantitative imaging parameters 65 

beyond what can be subjectively assessed by the human eye. These findings could reflect 66 

microscopic features of tumors and provide information useful in tumor subtyping and 67 

grading, genetic mapping and prediction of early treatment response. Texture analysis 68 

assesses tumor heterogeneity at the pixel level by evaluating the distribution and spatial 69 

relationship of grayscale values (12).  70 

Several studies have used TA to subtype and grade RCC on contrast-enhanced CT images 71 

(13-20). Many authors have also used machine learning algorithms in interpreting and 72 

validating the data in order to generate classifiers which could enhance the findings of 73 

individual metrics and save time in the process. In the present study, we explored MR 74 

texture analysis (MRTA) as a tool for subtyping and grading RCC. MRI provides multiple 75 

paradigms for assessment of the morphology and functional microenvironment of renal 76 

tumors. Hence it is likely that MRTA could provide more robust metrics in comparison to 77 

CT. Being a radiation free modality, MRI is likely to be used more extensively in the future, 78 

particularly in children and those on follow-up. Till date, only one study has evaluated MR 79 
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texture analysis in RCC (21). Hence the purpose of this study was to evaluate the role of 80 

MRTA in the differentiation of CC-RCC from NC-RCC and high grade CC-RCC from low 81 

grade CC-RCC.  82 

Methodology 83 

Patient Selection 84 

A retrospective review of the MRI records between January 2011 and December 2012 was 85 

done to look for adult patients with suspected RCC. These patients were part of an ethically 86 

approved study to evaluate renal lesions using CT and MRI and informed consent had been 87 

taken from all the patients. This dataset yielded a consecutive sample of 39 patients who 88 

underwent MRI and were subsequently proven to have renal cell carcinoma on 89 

histopathological evaluation of the biopsy or nephrectomy specimen. Among these, two 90 

were excluded since their complete imaging data could not be retrieved from the local 91 

picture archiving and communications system (PACS). Four patients were excluded since 92 

their tumors were predominantly cystic and had insufficient solid component (< 1 cm2) 93 

where a region of interest (ROI) could be drawn. Finally, a total of 33 patients were 94 

included. Among these, one patient had two tumors. Thus, a total of 34 tumors underwent 95 

texture analysis.  96 

 97 

 98 
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MRI Acquisition Parameters 99 

All the MR examinations were performed on a 1.5-T scanner (Avanto, Siemens, Erlangen, 100 

Germany) using a 16-channel phased array torso coil. Non-contrast sequences included 101 

axial and coronal fat-suppressed T2-weighted turbo spine-echo (T2W TSE) acquired in 102 

multiple breath-holds, axial T1-weighted dual gradient-echo in-phase (TE: 4.76 ms) and 103 

out-of-phase (TE: 2.34 ms) images acquired in multiple breath-holds, axial and coronal 104 

true fast imaging with steady-state precession (TrueFISP) in a single breath-hold and 105 

diffusion-weighted images (DWI). For DWI, fat-suppressed echo-planar imaging (EPI) 106 

was used to acquire the images in the axial plane using diffusion-sensing gradients in all 107 

the three orthogonal planes at b values of 0, 500 and 1000 s/mm2. Navigator-triggered 108 

respiratory gating was used to acquire the images. Following acquisition, a pixel-wise 109 

apparent diffusion coefficient (ADC) map was generated by the inbuilt software using b-110 

values of 0 and 500 s/mm2.  111 

All patients with eGFR above 60 mL/min/1.73 m2 underwent multiphase contrast-112 

enhanced study. Nine patients (10 tumors) did not undergo postcontrast imaging due to 113 

deranged renal parameters. For the remaining 24 patients, contrast imaging was performed 114 

using fat-suppressed 3D T1-weighted volume interpolated breath-hold examination 115 

(VIBE) sequence in the axial plane after injection of gadobenate dimeglumine (Multihance, 116 

Bracco, Milan, Italy), at the rate of 2 mL/s followed by 20 mL saline chase using a dual-117 

head pressure injector. The bolus-tracking method was used to time the multiphase 118 
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acquisition at 40-50 seconds [corticomedullary (CM) phase], 80-100 seconds 119 

[nephrographic (NG) phase] and 180 seconds (delayed phase). Precontrast images were 120 

also acquired for the purpose of subtraction and post contrast coronal acquisition was also 121 

done. The imaging protocol is described in table 1. 122 

Feature Extraction: MRTA 123 

Both the non-contrast and post-contrast images were available for TA in 24 patients, 124 

whereas in the remaining 9 patients (10 tumors), only the non-contrast images were 125 

available. The texture analysis was performed by a single radiologist (A.R., with 5 years 126 

of experience in diagnostic imaging) who was blinded to the final histopathologic 127 

diagnosis. For the analysis, the axial dataset of the fat-suppressed pre-contrast T1-VIBE, 128 

T2W TSE images, DWI images at b500 and 1000 s/mm2, ADC map as well as the 129 

postcontrast (CM and NG phase) T1-VIBE images were used. The image data was 130 

uploaded onto the TexRAD software (Feedback Medical Ltd., Cambridge, UK- 131 

www.fbkmed.com). The NG phase T1-VIBE images were screened initially to map the 132 

distribution of the enhancing, viable tumor component. Subsequently, single representative 133 

slice which showed the maximum amount of viable tumor component was chosen and a 134 

free-hand polygonal ROI of minimum size 1cm2 was drawn within the tumor (Fig. 1A). 135 

Care was taken to avoid extending the margins of the ROI into the peripheral 2-3 mm of 136 

the tumor to avoid potential errors arising from volume averaging and inclusion of perirenal 137 

fat. Predominantly cystic tumors not having contiguous solid component of at least 1 cm2 138 
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were excluded. ROIs were similarly placed on the other sequences at the same anatomical 139 

section using the NG phase image as the reference to avoid mapping the necrotic portions 140 

of the tumor. Necrotic areas were avoided in an effort to remove the confounding effect of 141 

macroscopic necrosis, so that the texture parameters would truly reflect microscopic 142 

heterogeneity. Multiple ROIs or volumetric ROI were not used since they were 143 

cumbersome, time-consuming and more prone to compounding of errors resulting from 144 

incorrect drawing of the ROI and inclusion of the necrotic component.  145 

MRTA using TexRAD comprises of a filtration-histogram technique, where an initial 146 

Laplacian of Gaussian spatial band-pass filter is applied to extract and enhance features of 147 

different sizes corresponding to the spatial scaling factors (SSF) applied. The filtration step 148 

further reduces the effects of photon noise on texture quantification. Five spatial scale 149 

filters (SSF) were used- 2 mm (fine texture), 3, 4 and 5 mm (medium texture) as well as 6 150 

mm (coarse texture) (Fig. 1B-D). In addition, the unfiltered images (SSF: 0 mm) were also 151 

analyzed. Subsequently, a pixel intensity distribution histogram was generated and texture 152 

feature extraction was performed to derive six quantitative first-order statistical metrics for 153 

each SSF: mean intensity (average of the grey-level intensity), standard deviation (SD; 154 

dispersion of pixel intensities from the mean), entropy (irregularity or disorder in the 155 

distribution of the pixel intensities), mean of positive pixels (MPP), skewness (asymmetry 156 

of the histogram) and kurtosis (peakedness of the histogram). Thus, 36 texture variables 157 

were obtained for each tumor.  158 
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Statistical Analysis 159 

Statistical analysis was performed using the IBM SPSS software for Windows, version 160 

24.0 (IBM Corp, Armonk, NY, USA). To compare the differences in texture parameters 161 

between CC-RCC and NC-RCC, the non-parametric Mann-Whitney U test was used. To 162 

assess any significant association between texture parameters and the different Fuhrman 163 

grades (0-4) of CC-RCC, the non-parametric Spearman’s rank correlation test was 164 

performed. A distinction was also sought between the texture parameters of the clinically 165 

relevant groupings of tumor grade i.e. high (grades 3 and 4) vs. low (grades 1 and 2) grade, 166 

using the Mann-Whitney U test. P-value < 0.05 was considered significant.  167 

Since the volume of data was large, data reduction was essential to deduce meaningful 168 

conclusions. Feature selection was performed using a predefined, three-step approach so 169 

as to obtain the best performing metric (parameter) for each MR sequence after removing 170 

irrelevant and redundant metrics (Fig. 2). As the first step in differentiating CC-RCC vs. 171 

NC-RCC and high grade from low grade CC-RCC, all parameters which showed 172 

significant p-value underwent receiver operating characteristic (ROC) curve analysis to 173 

generate the area under the curve (AUC) and optimal cut-off value. Only the parameters 174 

which showed a high class separation capacity i.e. AUC> 0.8, were selected. The second 175 

step was targeted at identifying and removing the redundant data. For this, if the same 176 

metric showed AUC> 0.8 at multiple SSFs in the same sequence, only the SSF with highest 177 

AUC was selected since the texture parameters at different SSF values are known to 178 
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correlate with each other. If parameters at more than one SSF showed the same AUC, only 179 

the one at the higher SSF was retained since higher SSF is known to mitigate photon noise 180 

and provide more accurate texture parameters than lower SSF filters. For the remaining 181 

parameters in each sequence, Pearson’s correlation test was applied to look for mutual 182 

correlation. In case a strong mutual correlation (r> 0.9) was observed, only the parameter 183 

with the highest AUC value was retained. The remaining parameters underwent the third 184 

step, where only the parameter with the highest AUC for each sequence was retained as 185 

the best performing metric.  186 

Similarly, in differentiating the Fuhrman grades of CC-RCC, all the p-values were 187 

tabulated and Spearman’s correlation coefficient was extracted for the significant p-values 188 

(< 0.05) and only the parameters which showed a correlation coefficient ρ> 0.8, were 189 

selected for the second step. The second and third steps of feature selection were similar to 190 

the previous scenario.  191 

Results 192 

Mean age of the study population (33 patients) was 50.2 years and a male predominance 193 

(26 males vs. 7 females) was observed.  The study population had a total of 34 RCCs (29 194 

CC-RCCs, four papillary RCCs and one chromophobe RCC). Among CC-RCC, there were 195 

10 high grade and 19 low grade tumors. The mean diameter of the tumors was 6.63 + 3.2 196 

cms and the mean ROI size was 2.6 + 0.8 cm2. 197 
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Differentiation of CC-RCC from NC- RCC 198 

After Mann-Whitney analysis, the p-values of all the parameters were tabulated separately 199 

for each MR sequence and the metrics with significant p-value were identified (Table 2). 200 

This yielded a total of 25 metrics across all the sequences (three on T2W imaging, five on 201 

DWI b500, nine on DWI b1000, five on the ADC maps, one on the unenhanced T1W 202 

image, and two on the postcontrast CM phase images). On the NG images, no parameter 203 

was observed to be significant in differentiating CC-RCC from NC-RCC.  204 

Subsequently, AUC values of all the parameters which showed a significant p-value were 205 

tabulated (Table 3). After the first step in feature selection (selecting only those metrics 206 

with AUC> 0.8) the number of metrics reduced from 25 to 19.  In the second step, for each 207 

metric on an MRI sequence, only the SSF with highest AUC was selected thereby reducing 208 

the number of metrics to nine (one each on T2W, DWI b500, T1W and CM phase images, 209 

two on ADC and three on DWI b1000). After this, for sequences with more than one 210 

remaining parameter, the Pearson’s correlation test was applied sequence-wise, on which 211 

no strong correlation (r> 0.9) was observed between the parameters on DWI b1000 images 212 

[SD at SSF 6 vs. entropy at SSF 0 (r= 0.199), entropy at SSF 0 vs. MPP at SSF 2 (r= 0.089) 213 

and SD at SSF 6 vs. MPP at SSF 2 (r= 0.756)]. On the ADC images, mean and MPP at 214 

SSF 0 showed strong correlation (r= 1.0), a finding which was expected since ADC maps 215 

possess only positive pixels. Hence only mean was retained.  216 
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After the third step of data reduction, the following features were selected as the sequence-217 

wise best parameters in distinguishing CC-RCC from NC-RCC: (a) entropy at SSF 4 218 

[AUC: 0.807, 95% confidence interval (CI): 0.664-0.950] on the T2W images (b) SD at 219 

SSF 4 (AUC: 0.814, 95% CI: 0.577-1.000) on DWI b500 (c) SD at SSF 6 (AUC: 0.879, 220 

95% CI: 0.748-1.000) on DWI b1000 (d) mean at SSF 0 (AUC: 0.848, 95% CI: 0.609-221 

0.950) on the ADC map (e) skewness at SSF 2 (AUC: 0.854, 95% CI: 0.673-1.000) on 222 

T1W images and (f) skewness at SSF 3 (AUC: 0.908, 95% CI: 0.782-1.000) on the CM 223 

phase images. The optimal cut-off values with their diagnostic performance are shown in 224 

Table 3. A box and whisker plot of the single best forming parameter (skewness at SSF3 225 

on the CM phase) is given in Fig 3.  226 

Correlation of Texture Parameters with Fuhrman Grades of CC-RCC 227 

 Forty-six texture parameters showed significant correlation with the Fuhrman grades of 228 

RCC. These included four parameters on DWI b500 images, six on DWI b1000, nine on 229 

ADC map, 13 on the CM phase images and 14 on the NG images (Table 4). However, 230 

after the first step of feature selection, none of the metrics showed strong correlation (ρ> 231 

0.8).  232 

Differentiation of High Grade from Low Grade CC-RCC 233 

On combining the nuclear grades into groups of two (i.e. high and low grades), 49 234 

parameters showed significant difference across all the sequences (Table 5). This included 235 
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two each on T1W, T2W and DWI b500, 10 on DWI b1000, 11 on the ADC map, 10 on the 236 

CM phase images and 12 on the NG phase images.   237 

Next, AUC values of all the significant parameters were tabulated sequence-wise (Table 238 

6). The first step of feature selection reduced the number of metrics from 49 to 16. In the 239 

second step, for each metric, only the SSF with the highest AUC was retained, thereby 240 

reducing the number of metrics to seven (one on DWI b1000, three each on the CM and 241 

NG phase images). However, on the CM phase images, the texture parameter of mean 242 

intensity showed the same AUC value at two SSF (0.889 for both SSF 2 and SSF 3). In 243 

this case, only the mean at the higher SSF (i.e. SSF 3) was retained. Subsequently, for 244 

sequences with more than one remaining parameter, the Pearson’s correlation test was 245 

applied sequence-wise, on which no strong correlation (r> 0.9) was observed between 246 

mean at SSF 2 vs. MPP at SSF 5 (r= 0.586) and mean at SSF 3 vs. MPP at SSF 5 on the 247 

CM phase images (r= 0.722); mean at SSF 6 vs. SD at SSF 5 (r= 0.296), mean at SSF 6 vs. 248 

MPP at SSF 5 (r= 0.796) and SD at SSF 5 vs. MPP at SSF 5 (r= 0.642) on the NG phase 249 

images.  250 

After the third step of data reduction, the following features were selected as the sequence-251 

wise best parameters in distinguishing high grade from low grade clear cell RCC: (a) 252 

entropy at SSF 6 (AUC: 0.823, 95% CI: 0.618-1.000) on DWI b1000 (b) mean at SSF 3 253 

(AUC: 0.889, 95% CI: 0.655-1.000) on the CM phase images and (c) MPP at SSF 5 (AUC: 254 

0.870, 95% CI: 0.712-1.000) on the NG phase images. The optimal cut-off values with 255 
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their diagnostic performance are shown in table 6. A box and whisker plot of the best 256 

forming parameter (mean at SSF3 on the CM phase) is given in Fig 4.  257 

Discussion 258 

Although currently histopathology is the gold standard, for tumor subtype and grade there 259 

is an intensive search for non-invasive imaging biomarkers which can provide prognostic 260 

information preoperatively and reduce the need for biopsy. Radiomics has generated 261 

significant interest with multiple studies finding a satisfactory diagnostic performance in 262 

grading and subtyping RCC on contrast-enhanced CT images using texture analysis (13-263 

20).  264 

In this study, we explored the performance of MRTA in differentiating CC-RCC from NC-265 

RCC and high grade from low grade CC-RCC. MRI provides multiple paradigms for 266 

assessment of the morphology (T1, T2-weighted and postcontrast images) and functional 267 

microenvironment (DWI, perfusion-MRI) of tumors. Hence it is likely that MRTA could 268 

provide more robust and reliable metrics in comparison to CT texture analysis. Only one 269 

published study has previously used MRTA in RCC, where they attempted to differentiate 270 

the two subtypes of papillary RCC and observed that addition of TA to qualitative analysis 271 

improved the prediction of type 2 tumors (21). In our study, several texture parameters 272 

demonstrated strong diagnostic performance in differentiating CC-RCC from NC-RCC 273 

and high grade from low grade CC-RCC.  274 
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Texture analysis quantifies heterogeneity by assessing the differences in the brightness of 275 

the highlighted features from the background signal intensity. Miles et al. has demonstrated 276 

how imaging findings are related to texture parameters (22). SD and entropy, which are 277 

measures of dispersion and disorder respectively, tend to be higher with greater degrees of 278 

heterogeneity. On the other hand, kurtosis, which is a measure of the peakedness of the 279 

histogram, decreases with greater heterogeneity (17). Mean and MPP are related to overall 280 

brightness, with mean and MPP showing a positive correlation with greater signal intensity 281 

and enhancement (17,23). An increase in the number of brighter pixels also shifts the tail 282 

of the histogram to the right, resulting in positive skewness.  283 

CC-RCC shows greater degree of heterogeneity than NC-RCC on morphologic imaging, 284 

attributable to the larger extent of necrosis (17). Consistent with this logic, T2W images 285 

showed higher entropy for CC-RCC in our study, although no such observations were 286 

significant on the postcontrast images. CC-RCC also shows higher mean enhancement as 287 

compared to papillary RCC which is a hypoenhancing tumor (24). Consistent with this, 288 

CC-RCC showed more positively skewed values than NC-RCC on the postcontrast CM 289 

phase images at SSF 3. On DWI, papillary RCC tumors are known to show greater 290 

diffusion restriction than CC-RCC (11). In agreement with this principle, CC-RCC had 291 

lower MPP values on DWI b1000 and higher mean values on the ADC map. On DWI, CC-292 

RCC had lower SD and entropy values, suggesting a more homogeneous pattern of 293 

diffusion restriction within the pixels.  294 



16 

 

In the differentiation of tumor grades, high grade tumors are expected to show greater 295 

diffusion restriction and hence, higher mean and MPP with more positive skewness on 296 

DWI (25). However, our study failed to demonstrate any significant difference in this 297 

regard, although high grade tumors showed higher degree of entropy than low grade tumors 298 

on the DWI b1000 images. Due to higher predisposition for necrosis, high grade tumors 299 

show more heterogeneity on morphologic imaging (17). High grade tumors showed lower 300 

mean and MPP on the CM and NG phase images than low grade tumors, suggestive of 301 

lower net enhancement which could be attributed to greater necrosis at the microscopic 302 

level. However, as against expectation, the SD values of high grade tumors were below 303 

those of low grade tumors on the NG phase images. 304 

In summary, our study yielded several individual texture parameters which demonstrated 305 

good performance in differentiating CC-RCC from NC-RCC and high grade from low 306 

grade CC-RCC. Best differentiation for both type and grade was achieved on the CM phase 307 

using SSF 3. An effort was made to remove the confounding effect of macroscopic necrosis 308 

by excluding such areas from ROI analysis, so that the texture parameters truly reflect 309 

heterogeneity at the microscopic level. However, texture analysis is an emerging field and 310 

the exact basis for the translation of texture data to histologic findings is not yet completely 311 

understood. In addition, challenges like the need for uniform acquisition protocols and 312 

reproducibility across vendors and institutions are to be met. However, in the future, if 313 

definite evidence becomes available and the hurdles could be mitigated, automated or semi-314 
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automated TA could serve as an adjunct quantitative tool to morphologic assessment of 315 

renal lesions. At present, histological assessment of the biopsy or surgical specimens 316 

remains the gold standard tool for predicting tumor aggressiveness and guide therapeutic 317 

decisions.  318 

Our study had few limitations. Firstly, our sample size of 34 tumors was small with skewed 319 

distribution of the different subgroups. Secondly, we acknowledge that though MR 320 

provides multiple paradigms compared to CT; reproducibility of MRTA is less owing to 321 

lack of standardized acquisition protocols. Thirdly, we assessed only first-order statistical 322 

texture parameters. Higher-order statistical parameters may provide more dimensions of 323 

data; but on the other hand, the large volume of data generated makes data reduction more 324 

computationally intensive. In addition, the biologic basis for many of these higher-order 325 

statistical parameters is not yet known. Finally, a combination of texture parameters, as 326 

with machine learning, may be more useful in classifying lesions rather than individual 327 

parameters since it summates and enhances subtle findings from the different component 328 

parameters (13,17). We could not incorporate machine learning or deep learning techniques 329 

in our study due to the small, skewed sample. But machine learning or algorithm-based 330 

combinations may not always be productive since they may undermine the biologic basis 331 

of individual parameters.  332 

In conclusion MR texture analysis revealed several parameters with excellent diagnostic 333 

performance (AUC> 0.8) in differentiating CC-RCC from NC-RCC, and high grade from 334 
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low grade CC-RCC. MR texture analysis can potentially serve as a useful non-invasive 335 

tool in subtyping and grading RCC. However, histopathology still remains the gold 336 

standard in the current clinical practice. Larger validation studies are needed before TA 337 

can be adopted in routine radiology practice.  338 

 339 
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 434 

Image Legends 435 

 436 

Figure 1: 56-year-old male with low grade clear cell RCC in the right kidney. (A) 437 

Demonstration of ROI placement on the nephrographic (NG) phase MR image. The free-438 

hand polygonal ROI (blue contour) is placed on the slice containing maximum viable 439 

component of the tumor, taking care to avoid the peripheral 3 mm and any necrotic 440 
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component.  (B, C and D) Colour display of the post-filtration texture analysis images at 441 

fine (B), medium (C) and coarse (D) spatial scaling factors. (E) A pixel intensity 442 

distribution histogram is subsequently generated.   443 

Figure 2: Flowchart depicting the three-step approach to feature selection.  444 

Figure 3: Box and whisker plot of the best forming parameter in differentiating CC-RCC 445 

from NC-RCC (skewness at SSF3 on the corticomedullary phase).  446 

Figure 4: Box and whisker plot of the best forming parameter in differentiating high grade 447 

from low grade CC-RCC (mean at SSF3 on the corticomedullary phase).  448 

 449 

 450 

 451 

 452 

Table 1: MR-imaging sequences and acquisition parameters  453 

Sequence 
TR 

(ms) 

TE 

(ms) 

Slice 

thickness 

(mm) 

Flip angle 

(degrees) 

No. of 

averages 

FOV 

(mm) 
Matrix 

T2W TSE FS 

Axial 
2520 100 5 137 1 278 x 370 288 x 512 
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T2W TSE FS 

Coronal 
2700 100 5 137 1 410 x 430 171 x 256 

T1W GRE 

In-phase 
125 4.76 5 70 1 278 x 370 288 x 512 

T1W GRE 

Out-of-phase 
125 2.34 5 70 1 278 x 370 288 x 512 

True FISP 

Axial 
3.4 1.4 5 39 1 263 x 350 288 x 512 

True FISP 

Coronal 
3.4 1.4 5 36 1 380 x 380 410 x 512 

DWI FS Axial 

(b0, 500, 1000 

s/mm2) 

1600 62 7 90 6 249 x 380 94 x 192 

T1W FS VIBE 

3D (Axial) 
5.1 2.3 3 10 1 253 x 450 158 x 512 

 454 

TR: Time to repeat, TE: Time to echo, FOV: Field of view, T2W: T2-weighted, TSE: 455 

Turbo spin echo, FS: Fat suppressed, T1W: T1-weighted, GRE: Gradient-recalled echo, 456 

FISP: Fast imaging with steady state precession, DWI: Diffusion-weighted imaging, 457 

VIBE: Volume interpolated breath-hold examination.  458 
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Table 2: Mann-Whitney U test in the differentiation of CC-RCC from NC-RCC: P-value 459 

of all the evaluated texture parameters, listed MR sequence-wise. Parameters showing 460 

statistical significance (p< 0.05) are highlighted in bold. 461 

    SSF Mean SD Entropy MPP Skewness Kurtosis 

T2WI 

0 0.888 0.393 0.110 0.888 0.888 0.213 

2 0.367 0.448 0.033 0.393 0.851 0.777 

3 0.603 0.671 0.029 0.962 0.420 0.925 

4 0.851 0.925 0.025 0.741 0.089 0.741 

5 0.925 0.925 0.056 0.777 0.232 0.273 

6 1.000 0.888 0.089 0.851 0.888 0.135 

DWI b 500 

0 0.196 0.025 0.273 0.196 0.925 0.539 

2 0.925 0.029 0.814 0.089 0.420 0.741 

3 0.508 0.044 0.925 0.135 0.122 0.273 

4 0.273 0.029 0.962 0.135 0.295 0.110 

5 0.122 0.063 1.000 0.149 0.196 0.038 

6 0.099 0.063 0.962 0.149 0.342 0.080 

DWI b 1000 

0 0.213 0.025 0.029 0.213 0.637 0.110 

2 0.637 0.022 0.342 0.033 0.888 0.477 

3 0.342 0.025 0.179 0.038 0.706 0.342 

4 0.448 0.029 0.318 0.056 0.671 0.232 

5 0.530 0.010 0.342 0.071 0.962 0.477 

6 0.393 0.007 0.273 0.071 0.671 0.814 

   ADC 

0 0.012 0.122 0.295 0.012 0.348 0.270 

2 0.539 0.016 0.342 0.050 0.163 0.213 

3 1.000 0.163 0.295 0.213 0.149 0.135 

4 0.962 0.671 0.393 0.539 0.342 0.080 

5 0.706 1.000 0.342 0.508 0.888 0.099 

6 0.539 0.777 0.295 0.342 0.925 0.038 
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T1WI 

0 0.126 0.635 0.505 0.126 0.164 0.144 

2 0.262 0.262 0.390 0.776 0.024 0.547 

3 0.144 0.505 0.465 0.924 0.126 0.825 

4 0.110 0.547 0.776 0.728 0.505 0.390 

5 0.095 0.590 0.635 0.776 0.355 0.505 

6 0.110 0.681 0.681 0.547 0.465 1.000 

   CM phase 

0 0.366 0.505 0.667 0.366 0.667 1.000 

2 0.785 0.138 0.162 0.250 0.611 1.000 

3 0.505 0.188 0.409 0.188 0.009 0.907 

4 0.286 0.286 0.667 0.162 0.009 0.505 

5 0.188 0.324 0.725 0.162 0.097 0.250 

6 0.218 0.324 0.725 0.250 0.557 0.785 

NG phase 

0 0.183 0.347 0.682 1.000 0.852 0.682 

2 0.183 0.794 0.347 1.000 0.388 0.135 

3 0.135 0.627 0.347 0.911 0.627 0.347 

4 0.157 0.794 0.575 0.737 0.627 0.737 

5 0.183 0.431 0.627 0.737 0.682 0.794 

6 0.183 0.347 0.682 1.000 0.852 0.682 

 462 

 463 

 464 

Table 3: AUC values and diagnostic performance of all the parameters which showed 465 

statistical significance (p< 0.05) in the differentiation of CC-RCC from NC-RCC, listed 466 

MR sequence-wise. Parameters remaining after the second step of feature selection are 467 

shown in bold. The sequence-wise single best parameters are highlighted with asterisk.  468 
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Parameter 
SS

F 
AUC Cut-off Sensitivity Specificity PPV NPV Accuracy 

  T2W  

Entropy 2 0.793 >5.220 60.7 100 100 31.3 66.7 

Entropy 3 0.800 >5.180 67.9 100 100 35.7 72.7 

Entropy 4 0.807* >5.130 71.4 100 100 38.5 75.8 

DWI b500  

SD 0 0.814 <11.260 72.4 100 100 38.5 76.5 

SD 2 0.807 <35.680 82.1 80.0 95.8 44.4 81.8 

SD 3 0.793 <45.190 82.1 80.0 95.8 44.4 81.8 

SD 4 0.814* <53.050 85.7 80.0 96.0 50.0 84.8 

Kurtosis 5 0.786 <0.020 71.4 80.0 95.2 33.3 72.7 

DWI b1000  

SD 0 0.807 <7.200 57.1 100 100 29.4 63.6 

SD 2 0.821 <23.700 82.1 80 95.8 44.4 81.8 

SD 3 0.821 <23.120 60.7 100 100 31.3 66.7 

SD 4 0.821 <26.300 67.9 100 100 35.7 72.7 

SD 5 0.871 <28.550 75.0 100 100 41.7 78.8 

SD 6 0.879* <26.300 67.9 100 100 35.7 72.7 

Entropy 0 0.800 <3.140 53.6 100 100 27.8 60.6 

MPP 2 0.800 <20.690 78.6 80.0 95.7 40.0 78.8 

MPP 3 0.800 <18.590 60.7 100 100 31.3 66.7 
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ADC  

Mean 0 0.848* >1042.41 89.7 80 96.3 57.1 88.2 

SD 2 0.724 >141.980 58.6 80 94.4 25 61.8 

MPP 0 0.848 >1042.41 89.7 80 96.3 57.1 88.2 

MPP 2 0.779 >360.850 58.6 100 100 29.4 64.7 

Kurtosis 6 0.793 >-0.420 72.4 100 100 38.5 76.5 

T1W  

Skewness 2 0.854* >-0.100 70.8 100 100 36.4 75.0 

CM phase  

Skewness 3 0.908* >0.170 78.9 100 100 50 82.6 

Skewness 4 0.908 >0.200 73.7 100 100 44.4 78.3 

NG phase 

- - - - - - - - - 

 469 

 470 

Table 4: Spearman’s rank correlation test in the association of MR texture features with 471 

the Fuhrman grades of CC-RCC: P-value of all the evaluated texture parameters, listed MR 472 

sequence-wise. Parameters showing statistical significance (p< 0.05) are highlighted in 473 

bold with the corresponding correlation coefficient (ρ) in parentheses. 474 



28 

 

    SSF Mean SD Entropy MPP Skewness Kurtosis 

T2WI 

0 0.258 0.779 0.579 0.258 0.990 0.093 

2 0.053 0.365 0.668 0.212 0.585 0.249 

3 0.298 0.290 0.648 0.334 0.291 0.787 

4 0.804 0.105 0.933 0.334 0.241 0.971 

5 0.923 0.104 0.819 0.540 0.653 0.241 

6 0.949 0.103 0.910 0.408 0.753 0.175 

DWI b 500 

0 0.021(0.419

) 

0.147 0.074 0.021 

(0.419) 

0.354 0.365 

2 0.569 0.115 0.083 0.598 0.500 0.840 

3 0.496 0.365 0.046 

(0.368) 

0.653 0.885 0.758 

4 0.542 0.501 0.051 0.968 0.631 0.383 

5 0.589 0.580 0.045 

(0.368) 

0.873 0.724 0.139 

6 0.533 0.476 0.069 0.970 0.443 0.074 

DWI b 1000 

0 0.179 0.049 

(0.363) 

0.027 

(0.403) 

0.179 0.352 0.923 

2 0.288 0.180 0.085 0.474 0.972 0.613 

3 0.655 0.140 0.020 

(0.422) 

0.242 0.925 0.870 

4 0.737 0.116 0.012 

(0.455) 

0.194 0.704 0.946 

5 0.770 0.075 0.015 

(0.438) 

0.060 0.576 0.902 

6 0.722 0.080 0.009 

(0.467) 

0.185 0.961 0.802 

  ADC 

0 0.306 0.964 0.017 

(0.432) 

0.306 0.968 0.466 
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2 0.473 0.327 0.011 

(0.457) 

0.142 0.052 0.154 

3 0.551 0.964 0.011 

(0.457) 

0.214 0.122 0.085 

4 0.551 0.529 0.012 

(0.452) 

0.580 0.157 0.036 

(0.385) 

5 0.378 0.445 0.009 

(0.469) 

0.161 0.028  

(-0.401) 

0.695 

6 0.329 0.683 0.013 

(0.448) 

0.064 0.017 

(-0.434) 

0.743 

T1WI 

0 0.707 0.076 0.071 0.707 0.181 0.087 

2 0.840 0.783 0.514 0.853 0.857 0.571 

3 0.188 0.982 0.733 0.818 0.783 0.832 

4 0.117 0.985 0.526 0.826 0.557 0.752 

5 0.146 0.901 0.693 0.645 0.111 0.822 

6 0.094 0.715 0.901 0.423 0.195 0.727 

   CM phase 

0 0.168 0.164 0.291 0.168 0.020 

(0.530) 

0.213 

2 0.004  

(-0.626) 

0.085 0.261 0.034  

(-0.489) 

0.352 0.038 

(0.480) 

3 0.002  

(-0.661) 

0.054 0.310 0.013  

(-0.556) 

0.855 0.181 

4 0.002  

(-0.662) 

0.135 0.393 0.014  

(-0.555) 

0.940 0.368 

5 0.002  

(-0.654) 

0.101 0.372 0.007  

(-0.597) 

0.849 0.118 

6 0.002  

(-0.663) 

0.086 0.371 0.014  

(-0.555) 

0.549 0.023 

(0.518) 

NG phase 

0 0.206 0.385 0.864 0.206 0.067 0.626 

2 0.019  

(-0.519) 

0.100 0.703 0.015  

(-0.537) 

0.997 0.087 

3 0.021  

(-0.512) 

0.040  

(-0.462) 

0.507 0.012  

(-0.552) 

0.580 0.064 
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4 0.008  

(-0.572) 

0.023  

(-0.506) 

0.523 0.004  

(-0.612) 

0.511 0.132 

5 0.006  

(-0.596) 

0.009  

(-0.567) 

0.541 0.001  

(-0.673) 

0.967 0.405 

6 0.003  

(-0.627) 

0.022  

(-0.507) 

0.672 0.001  

(-0.683) 

0.409 0.275 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

Table 5: Mann-Whitney U test in the differentiation of high grade CC-RCC from low 483 

grade CC-RCC: P-value of all the evaluated texture parameters, listed MR sequence-wise. 484 

Parameters showing statistical significance (p< 0.05) are highlighted in bold. 485 

    SSF Mean SD Entropy MPP Skewness Kurtosis 

T2WI 

0 0.448 1.000 0.746 0.448 0.713 0.049 

2 0.039 0.214 0.650 0.109 0.588 0.100 
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3 0.248 0.183 0.619 0.231 0.248 0.350 

4 0.812 0.120 0.812 0.328 0.155 0.530 

5 0.948 0.198 0.983 0.588 0.373 0.231 

6 0.948 0.214 0.914 0.502 0.880 0.350 

DWI b 500 

0 0.035 0.328 0.120 0.035 0.779 0.713 

2 0.812 0.143 0.100 0.713 0.948 0.422 

3 0.746 0.307 0.061 0.559 0.619 0.559 

4 0.812 0.475 0.074 0.846 0.948 0.530 

5 0.880 0.559 0.061 1.000 0.559 0.328 

6 0.812 0.475 0.109 0.948 0.248 0.183 

DWI b 1000 

0 0.067 0.074 0.039 0.067 0.475 0.948 

2 0.448 0.100 0.049 0.307 0.650 0.746 

3 1.000 0.074 0.010 0.120 0.559 0.983 

4 0.914 0.039 0.003 0.082 0.422 0.713 

5 0.880 0.024 0.005 0.019 0.448 0.746 

6 0.880 0.024 0.003 0.061 0.983 0.948 

   ADC 

0 0.131 0.650 0.028 0.131 0.846 0.143 

2 0.373 0.155 0.019 0.049 0.044 0.131 

3 0.373 0.983 0.019 0.100 0.074 0.028 

4 0.373 0.530 0.019 0.422 0.198 0.017 

5 0.267 0.397 0.017 0.248 0.061 0.502 

6 0.267 0.502 0.022 0.074 0.035 0.812 

T1WI 

0 0.677 0.023 0.020 0.677 0.187 0.152 

2 1.000 0.522 0.276 0.559 0.803 0.598 

3 0.276 0.598 0.329 0.487 0.846 0.637 

4 0.276 0.559 0.169 0.677 0.718 0.846 

5 0.388 0.522 0.229 0.846 0.108 1.000 

6 0.329 0.677 0.357 0.890 0.108 0.846 

   CM phase 

0 0.278 0.211 0.278 0.278 0.043 0.497 
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2 0.003 0.182 0.243 0.079 0.549 0.065 

3 0.003 0.156 0.278 0.043 0.968 0.278 

4 0.004 0.278 0.315 0.035 0.780 0.447 

5 0.006 0.182 0.356 0.022 0.661 0.182 

6 0.006 0.156 0.356 0.035 0.842 0.053 

NG phase 

0 0.353 0.631 0.971 0.353 0.143 1.000 

2 0.029 0.190 0.684 0.035 1.000 0.143 

3 0.035 0.089 0.436 0.029 0.436 0.089 

4 0.015 0.043 0.529 0.011 0.315 0.165 

5 0.011 0.023 0.579 0.004 0.796 0.393 

6 0.009 0.052 0.739 0.005 0.579 0.218 
 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

Table 6: AUC values and diagnostic performance of all the parameters which showed 494 

statistical significance (p< 0.05) in the differentiation of high grade from low grade CC-495 

RCC, listed MR sequence-wise. Parameters remaining after the second step of feature 496 

selection are shown in bold. The sequence-wise single best parameters are highlighted with 497 

asterisk. 498 

Parameter SSF AUC Cut-off Sensitivity Specificity PPV NPV Accuracy 
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  T2W  

Mean 2 0.735 <2.170 60.0 90.0 75.0 81.8 80.0 

Kurtosis 0 0.723 >0.620 60.0 95.0 85.7 82.6 83.3 

DWI b500  

Mean 0 0.570 <78.220 30.0 90.0 60.0 72.0 70.0 

MPP 0 0.740 <133.14 60.0 90.0 75.0 81.8 80.0 

DWI b1000  

SD 4 0.735 >26.300 70.0 75.0 58.3 83.3 73.3 

SD 5 0.755 >25.920 80.0 75.0 61.5 88.2 76.7 

SD 6 0.755 >22.220 90.0 60.0 52.9 92.3 70.0 

Entropy 0 0.735 >3.410 60.0 95.0 85.7 82.6 83.3 

Entropy 2 0.723 >3.780 80.0 70.0 57.1 87.5 73.3 

Entropy 3 0.790 >4.140 50.0 100 100 80.0 83.3 

Entropy 4 0.823 >3.980 80.0 80.0 66.7 88.9 80.0 

Entropy 5 0.810 >4.140 70.0 90.0 77.8 85.7 83.3 

Entropy 6 0.823* >4.140 70.0 90.0 77.8 85.7 83.3 

MPP 5 0.765 >24.910 70.0 75.0 58.3 83.3 73.3 

ADC 

Entropy 0 0.748 >4.920 60.0 85.0 66.7 81.0 76.7 

Entropy 2 0.765 >5.510 50.0 100 100 80.0 83.3 

Entropy 3 0.765 >5.510 50.0 100 100 80.0 83.3 

Entropy 4 0.765 >5.510 50.0 100 100 80.0 83.3 
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Entropy 5 0.770 >5.520 50.0 100 100 80.0 83.3 

Entropy 6 0.760 >5.520 50.0 95.0 83.3 79.2 80.0 

MPP 2 0.725 <372.71 90.0 65.0 56.3 92.9 73.3 

Skewness 2 0.730 <-0.030 80.0 65.0 53.3 86.7 70.0 

Skewness 6 0.738 <-0.110 70.0 75.0 58.3 83.3 73.3 

Kurtosis 3 0.748 >-0.100 90.0 60.0 52.9 92.3 70.0 

Kurtosis 4 0.770 >-0.360 100 50.0 50.0 100 66.7 

T1W  

SD 0 0.778 >14.760 66.7 87.5 75.0 82.4 80.0 

Entropy 0 0.781 >3.970 66.7 87.5 75.0 82.4 80.0 

CM phase  

Mean 2 0.889 <0.200 88.9 100 100 90.9 94.7 

Mean 3 0.889* <7.550 88.9 100 100 90.9 94.7 

Mean 4 0.878 <39.920 88.9 90.0 88.9 90.0 89.5 

Mean 5 0.867 <31.280 77.8 100 100 83.3 89.5 

Mean 6 0.867 <75.030 77.8 100 100 83.3 89.5 

MPP 3 0.778 <67.320 66.7 100 100 76.9 84.2 

MPP 4 0.789 <80.380 66.7 100 100 76.9 84.2 

MPP 5 0.811 <113.49 66.7 100 100 76.9 84.2 

MPP 6 0.789 <130.99 66.7 90.0 85.7 75.0 78.9 

Skewness 0 0.778 >-0.110 100 70.0 75.0 100 84.2 
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NG phase  

Mean 2 0.790 <7.400 80.0 90.0 88.9 81.8 85.0 

Mean 3 0.780 <25.690 80.0 80.0 80.0 80.0 80.0 

Mean 4 0.820 <9.720 70.0 90.0 87.5 75.0 80.0 

Mean 5 0.830 19.260 70.0 90.0 87.5 75.0 80.0 

Mean 6 0.840 <31.140 70.0 100 100 76.9 85.0 

SD 4 0.770 <135.91 80.0 80.0 80.0 80.0 80.0 

SD 5 0.800 <165.52 90.0 70.0 75.0 87.5 80.0 

MPP 2 0.780 <71.790 70.0 80.0 77.8 72.7 75.0 

MPP 3 0.790 <93.250 70.0 90.0 87.5 75.0 80.0 

MPP 4 0.830 <125.88 70.0 90.0 87.5 75.0 80.0 

MPP 5 0.870* <193.67 90.0 80.0 81.8 88.9 85.0 

MPP 6 0.860 <217.36 90.0 80.0 81.8 88.9 85.0 

 499 


