
applied
sciences

Article

Docking Control of an Autonomous Underwater
Vehicle Using Reinforcement Learning

Enrico Anderlini 1,* , Gordon G. Parker 2 and Giles Thomas 1

1 Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
2 Department of Mechanical Engineering—Engineering Mechanics, Michigan Technological University,

Houghton, MI 49931, USA
* Correspondence: e.anderlini@ucl.ac.uk

Received: 14 July 2019; Accepted: 8 August 2019; Published: 21 August 2019
����������
�������

Abstract: To achieve persistent systems in the future, autonomous underwater vehicles (AUVs) will
need to autonomously dock onto a charging station. Here, reinforcement learning strategies were
applied for the first time to control the docking of an AUV onto a fixed platform in a simulation
environment. Two reinforcement learning schemes were investigated: one with continuous state
and action spaces, deep deterministic policy gradient (DDPG), and one with continuous state but
discrete action spaces, deep Q network (DQN). For DQN, the discrete actions were selected as step
changes in the control input signals. The performance of the reinforcement learning strategies was
compared with classical and optimal control techniques. The control actions selected by DDPG suffer
from chattering effects due to a hyperbolic tangent layer in the actor. Conversely, DQN presents the
best compromise between short docking time and low control effort, whilst meeting the docking
requirements. Whereas the reinforcement learning algorithms present a very high computational cost
at training time, they are five orders of magnitude faster than optimal control at deployment time,
thus enabling an on-line implementation. Therefore, reinforcement learning achieves a performance
similar to optimal control at a much lower computational cost at deployment, whilst also presenting
a more general framework.

Keywords: autonomous underwater vehicle; reinforcement learning; optimal control

1. Introduction

Autonomous Underwater Vehicles (AUVs) are increasingly being used by the oceanography,
energy and defence industries [1,2]. In particular, persistent systems, which are able to stay in a particular
area for the duration of the mission, whether it is for a data sampling deployment, a maintenance job
on platforms or a surveillance operation, are expected to represent a major technological disruption in
the near future [3,4]. However, the range of current AUVs is limited by the on-board energy storage
capacity. Therefore, to achieve persistent systems, AUVs will need to autonomously dock onto charging
stations [5,6].

Most of the research to date has focused on seafloor-mounted platforms with a funnel [6–10].
The docking onto a fixed underwater platform for easier maintenance work was investigated by
Palomeras et al. [11]. A docking station for under-ice operations was considered by Kimball et al. [12],
where the station rests on top of the ice and the AUV has to approach it from a vertical opening in the
ice. Docking operations onto a moving platform have been considered conceptually for the retrieval of
AUVs from submarines [13–15]. Recently, Sarda and Dhanak [16] successfully retrieved an AUV from a
station-keeping autonomous surface vehicle (ASV). This milestone was achieved by having the AUV dock
onto a bespoke connection link on the ASV close to the water surface in calm, sheltered wave conditions.
In this initial study, only the docking of an AUV onto a fixed platform was considered for simplicity.

Appl. Sci. 2019, 9, 3456; doi:10.3390/app9173456 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8860-8330
https://orcid.org/0000-0001-8503-6624
https://orcid.org/0000-0002-6122-4329
http://dx.doi.org/10.3390/app9173456
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/17/3456?type=check_update&version=2

Appl. Sci. 2019, 9, 3456 2 of 24

The docking manoeuvre can be subdivided into two stages: homing and final docking. The homing
phase consists in the AUV approaching the docking station, whereas final docking describes the
actual connection process once the AUV enters the funnel. Many studies have been conducted on
AUV docking. On the one hand, some investigations are simulation-based and focus on the path
planning and control problem, e.g., Jantapremjit and Wilson [17] applied potential and vector fields
methods and sliding-mode control for the homing phase. The docking of an AUV onto a moving
platform is investigated in [18]. On the other hand, many experimental studies have been conducted,
which focus on the localisation of the AUV, the estimation of its relative position and orientation
with respect to the docking station and the analysis of the acoustic and visual sensors that best
enable these solutions [8–12,19–22]. In most of these studies, advanced simultaneous localisation
and mapping (SLAM) computer-vision strategies are coupled with line-of-sight guidance and classical
control algorithms, such as proportional-integral-derivative (PID) and sliding-mode (SM) control.
Alternatively, the application of deep learning for the the overall control of the AUV for the docking
manoeuvre was investigated by Sans-Muntadas et al. [23].

This study focused on optimal control strategies for the docking of the AUV onto a fixed platform.
Simulations are employed to assess the developed procedures in the absence of access to experimental
facilities. In particular, the parameters obtained by Hall and Anstee [24] for a REMUS-100 AUV were
used as a case study. This widely adopted device is underactuated, which makes the control task more
challenging. The main aim of this study was to compare the performance of established optimal control
strategies, which have been successfully used in the space sector [25], with innovative reinforcement
learning (RL) techniques. RL was first investigated by El-Fakdi et al. [26] for target following tasks
for AUVs and subsequently by Fjerdingen et al. [27] for pipeline following. However, only the recent
advances in deep RL have enabled realistic applications to position [28] and trajectory tracking [29],
low-level control [30] and depth control [31] for AUVs. Although the topic is being investigated for the
landing of spacecraft [32], to the best of the authors’ knowledge, no publications to date have looked
into the application of RL to the docking control of an AUV. Here, two separate RL algorithms were
applied to the docking control of an AUV onto a fixed platform for the first time. The deep Q network
uses a continuous state space and a discrete action space, while the deep deterministic policy gradient
presents continuous state and action spaces. The performance of the two schemes was assessed against
PID and parametric optimal control.

In the following section, the dynamic model of an AUV limited to motions in surge, heave and
pitch is developed. This greatly decreases the computational effort, whilst not reducing the generality
of the developed method. Afterwards, the strategies are described for the docking of the AUV onto
a fixed platform using optimal control theory and deep RL. Results are then presented for the case study
of the REMUS-100 AUV. These are followed by a discussion and comparison of the two procedures.

2. Dynamic Model

2.1. Equations of Motion of an AUV in Three Degrees of Freedom

Figure 1 shows an AUV attempting to dock onto a platform. For simplicity, the problem is
constrained to the vertical plane, with motions limited to surge, heave and pitch. Furthermore, the
effects from currents are neglected. Let us define the vector of generalised coordinates in the inertial
reference frame as

η =
[

x z θ
]T

, (1)

where x is the displacement in surge, z in heave and θ the pitch angle, and the vector of generalised
coordinate rates in the body-fixed frame as

ν =
[
u w q

]T
, (2)

Appl. Sci. 2019, 9, 3456 3 of 24

where u and w are the components of the absolute velocity of the centre of buoyancy in the body-fixed
frame in surge and heave, respectively, and q is the pitch rate (identical in the inertial and body-fixed
frames, since the analysis is planar). Note that, as shown in Figure 1, a right-hand reference system
is employed, with the z-axis being positive downwards, as is standard practice [33]. It is possible to
show that the velocity of the AUV in the inertial reference frame is given by the following relation [33]:

η̇ = J(η)ν, (3)

where the transformation matrix is

J(η) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (4)

Here, the AUV is assumed to be torpedo-shaped, so that is actuated by a propeller and a sternplane.
Additionally, the centres of gravity and buoyancy are assumed to be vertically in line to avoid trim
angles, but the centre of gravity is lower to provide hydrostatic stability. Therefore, it is possible to
show that the velocity vector of the AUV in the body-fixed frame can be expressed with the following
system of nonlinear equations [24,33]:

ν̇ = M−1 f (η, u), (5)

where the input vector is

u =
[

Qm δs

]T
, (6)

with Qm being the motor torque and δs the sternplane angle. The mass matrix is expressed as

M =

(m− Xu̇) 0 mzg

0 (m− Zẇ) −Zq̇

mzg −Mẇ (Iyy −Mq̇)

 (7)

and the nonlinear vector

f (η, u) =

 −(W − B) sin θ + Xu|u|u|u|+ (Xwq −m)wq + Xqqq2 + (1− τp)Tn|n|n|n|
(W − B) cos θ + Zuwuw + (Zuq + m)uq + Zw|w|w|w|+ Zq|q|q|q|+ mzgq2 + Zuuδs u2δs

−Wzg sin θ + Muwuw + Muquq + Mw|w|w|w| −mzgwq + Mq|q|q|q|+ Muuδs u2δs

 . (8)

The physical meaning of the hydrodynamic and hydrostatic coefficients in these equations is
explained in [24,33], to which the reader is referred. Additionally, the work of Hall and Anstee [24]
contains the numerical values for the coefficients for the REMUS-100 AUV, which are reported in
Appendix A for completeness.

The equations of motion for a torpedo-shaped AUV are completed by the dynamic equations for
the propulsion units, which include an equation for the propeller revolutions, n, and an equation for
the surge velocity in the propeller plane due to wake effects, up [24]:

ṅ =
Qm − Knn−Qn|n|n|n|

Jm
, (9a)

u̇p =
Tn|n|n|n| − dlup − dq|up|

[
up − (1− wp)u

]
mf

. (9b)

Similar to the hydrodynamic coefficients, the model parameters can be found in Appendix A.

Appl. Sci. 2019, 9, 3456 4 of 24

By merging Equations (3), (5), (9a) and (9b), it is possible to express the dynamic model of the
AUV through a system of nonlinear, ordinary differential equations:

ẋ = g(x, u), (10)

where
x =

[
x z θ u w q n up

]T
. (11)

A standard integration scheme can then be employed to solve the equations in time, with a
fixed-step, fourth-order-accurate Runge–Kutta scheme being used in this study [34].

x

z

xp

zp

θ

θp

Figure 1. Diagram of the docking of an AUV onto a moving platform in surge, heave and pitch.

2.2. Relative Motion of the AUV with Respect to the Platform

The vectors of the relative displacement and velocity of the AUV with respect to the platform can
be simply expressed as

ηr = ηp − η, (12a)

η̇r = η̇p − η̇ = −η̇ (12b)

for a fixed platform with state vector ηp. In reality, the velocity vector in the body-fixed frame and the
pitch angle in the inertial frame are computed from the accelerometer and gyrocompass on the AUV,
whereas the relative position and velocity vectors in the inertial frame are determined from either
visual or sonic sensors (with lights or beacons sited on the platform, as, for instance, described by the
authors of [10,12]).

3. Classical Control of the AUV for the Docking Manoeuvre

3.1. PID Control of the Docking of the AUV

A combination of classical PID controllers and line-of-sight guidance can provide a realistic
benchmark for the docking problem, as opposed to trajectory control, as described in [35]. On AUVs,
it is common to have separate decoupled controllers for the surge velocity, depth and heading (yaw
angle) [33], with the latter being ignored in this study because of the analysis of only motions in the
vertical plane. Surge can be controlled by modifying the motor torque. Conversely, since the AUV
considered here does not have side thrusters, depth can only be controlled through the sternplane angle.
As a result, line-of-sight guidance can be used to determine the desired pitch angle to move the AUV to
the target depth. A further controller can then change the sternplane angle to match the desired angle.

Appl. Sci. 2019, 9, 3456 5 of 24

As shown in Figure 2, two controllers are employed: one to control the surge speed in the body-fixed
frame and one to control the pitch angle. The desired speed is calculated with the simple formula

ud = 0.5u0 [1 + tanh (ex − xd)] , (13)

where u0 indicates the speed at the start of the docking manoeuvre (as defined by a fixed distance from
the docking platform), ex = xr is the relative horizontal distance of the AUV from the platform and
xd is an arbitrary parameter that needs tuning and that is used to help the AUV slow down before
reaching the platform. Similarly, line of sight-guidance is used to obtain the desired pitch angle:

θd = arctan
(

ez

zd

)
, (14)

where ez = zr is the relative vertical distance of the AUV from the platform and zd is an arbitrary
parameter that needs tuning and that is used to help the AUV turn by looking ahead. Lower values
result in more aggressive manoeuvres.

The PID controllers then apply a control signal that is given by

u = kpe + ki

∫ t

0
e(τ)dτ + kd ė, (15)

where e indicates the error signal of interest [33]. The proportional term adjusts the control signal
based on the current value of the error, while the derivative term takes into account expected future
variations of the error and the integral term corrects for steady-state errors by looking at past values of
the error.

Furthermore, the values of the torque and sternplane angles are limited within saturation blocks
to prevent them from exceeding realistic physical constraints:

Qm,min ≤ Q ≤ Qm,max, (16a)

δs,min ≤ δs ≤ δs,max. (16b)

Finally, the PID controller is turned off and the simulation stopped when the vehicle is close
enough to the docking point, i.e., when

x2
r + z2

r + θ2
r < lη , (17)

where lη is a measure of the prescribed docking accuracy.

AUV Plant

PID

PIDatan(ez /zd)

0.5u0[1+tanh(ex -xd)]

zp

xp +- +

+ +-

-

-

u

θz

x

eu

eθ

ud

θd

Qm

 s

Line-of-Sight
Guidance

Speed Calculator Speed Control

Pitch Control

ez

ex

Figure 2. Diagram of the PID control algorithm for the docking control of an AUV.

3.2. Optimal Control of the Docking of the AUV

A parametric optimal control approach is used to find the time-dependent control input vector u
that minimises a cost function over a predefined time interval [36]. Examples for the application of

Appl. Sci. 2019, 9, 3456 6 of 24

parametric optimal control to nonlinear systems can be found in [37–39], from which this article takes
inspiration. The aim is to have the AUV reach the desired docking position, orientation and velocity,

xf =
[

xf zf θf uf wf qf free free
]T

, (18)

at the end time, tf. Note that no end condition is imposed on n and up. Similarly, initial conditions on
the states have to be specified for time t0 = 0 s:

x0 =
[

x0 z0 θ0 u0 w0 q0 n0 up,0

]T
. (19)

The end condition represents the state of the AUV before starting the docking manoeuvre, i.e.,
when it is near the docking platform. Additionally, the control action is constrained within physical
limits umin and umax, which are due to the maximum magnitude of the torque that can be delivered by
the motor and the maximum magnitude of the sternplane angle to prevent stall.

Although it is possible to form the necessary conditions whose two-point boundary value problem
solution should yield the optimal trajectory, the necessary conditions for optimality result in a two-point
boundary value problem whose solution is the optimal trajectory in surge, heave and pitch [36].
However, no solution was found for the docking problem due to the nonlinear and cross-coupling
terms in the dynamic equations and the constraints imposed on the optimisation.

Therefore, a direct, parametric sub-optimal solution has been sought instead [36]. With this
approach, the constraints were removed and included as quadratic penalty terms in the cost function
instead. Fixing the end time tf and the time step used in the computation of the cost function greatly
reduces the complexity of the problem and improves the robustness of the solution. Additionally, the
control input signals, i.e., the motor torque Qm and sternplane angle δs, are represented parametrically
through predefined curves. This enables the solver to find a solution, since it reduces the number
of unknowns from the number of time steps to the much smaller number of parameters. Although
constraints or saturation limits cannot be imposed on the control signals, a cost should be imposed on
their magnitude to prevent the controller from selecting unrealistically high values.

The solution from the PID control was used to provide a more appropriate starting point to guide
selection of the shape functions to parameterise the control signals for the motor torque and sternplane
angle of Equation (6), respectively:

Qm = p1(1− tanh(t− p2)) + p3 exp

[
−
(

t− p4

p5

)2
]

, (20a)

δs =
4

∑
i=1

p5+i sin
(

iπt
tf

)
, (20b)

where p ∈ R9 is the vector of parameters. In Equation (20b), the sternplane signal is modelled as the
sum of four sinusoidal basis functions. Conversely, Equation (20a) is more heavily engineered, as it
presents the sum of a hyperbolic tangent and a Gaussian function. The hyperbolic tangent creates a
smoothly decaying signal, while the Gaussian function creates the dip (for p3 < 0) shown by the PID
control response in Section 5 when the motor torque inverts its direction to break the vehicle’s forward
motion. A more general approach can be found in [40]. Adopting the proposed basis functions and
replacing the time independent variable with a trajectory signal can result in a neater expression with
fewer parameters. However, this will be the scope of future work.

The optimal control problem is thus defined as follows:

minu J = 0.5
{

∑6
i=1 ωx,i [xi(tf)− xf]

2 +
∫ tf

0 ∑2
j=1 ωu,j

[
uj(t, p)

]2 dt + ωQ,0 [Qm(t0, p)−Qm,0]
2 + ωQ,fQm(tf, p)2

}
, (21)

Appl. Sci. 2019, 9, 3456 7 of 24

where ωx, ωu, ωQ,0 and ωQ,f are weight terms. The last two terms of Equation (21) ensure that
the motor torque signal has an initial value close to Qm,0, i.e., the value of the motor torque in
steady-state before initiating the docking manoeuvre, and a final value close to 0 Nm at the docking
point. The dynamic equations are solved in time using Equation (10) for each computation of the cost
function (21).

4. Reinforcement Learning Control of the AUV for the Docking Manoeuvre

4.1. Reinforcement Learning Statement

RL is a decision-making framework in which an agent learns a desired behaviour, or policy π,
from direct interactions with the environment [41]. At each time step, the agent is in a state s and takes
and action a. As a result, it lands in a new state s′ while receiving a reward r. A Markov decision
process is used to model the action selection depending on the value function Q(s, a), which represents
an estimate of the future reward. By interacting the environment for a long time, the agent learns
an optimal policy, which maximises the total expected reward. This is shown graphically in Figure 3.

Action

State

Reward

New state

Agent

Environemnt

Figure 3. Reinforcement learning diagram.

The on-policy action-value function Qπ(s, a) yields the expected reward if the agent starts in state
s, takes an action a and afterwards acts according to policy π [41]:

Qπ(s, a) = Eτ∼π

[
∞

∑
t=0

γtrt|s0 = s

]
, (22)

where τ = (s0, a0, s1, a1, . . .) indicates a sequence of actions and states, γ ∈ [0, 1] is a discount factor and
E expressed the expected, discounted value. Conversely, the optimal action-value function Q∗(s, a) yields
the expected reward if the optimal policy is followed after starting from state s and taking action a

Q∗(s, a) = max
π

Eτ∼π

[
∞

∑
t=0

γtrt|s0 = s

]
. (23)

Since the optimal policy will result in the selection of the action that maximises the expected
reward starting from s, it is possible to obtain the optimal action a∗(s) from Q∗ as follows:

a∗(s) = arg max
a

Q∗(s, a). (24)

As a result, it is possible to express the Bellman equation for the optimal action-value function
as follows [41]:

Q∗(s, a) = Es′∼P

[
r(s, a) + γ max

a′
Q∗(s′, a′)

]
, (25)

where P indicates state transitions according to a stochastic policy π.
RL algorithms can be subdivided into model-based and model-free schemes [42]. Whereas model-based

strategies enable the agent to plan by exploiting the model of the environment, thus greatly improving
their behaviour, exact models of the environment are generally unavailable in practice. Any existing bias
in the model is likely to cause significant problems with generalising the agent’s behaviour to the actual
environment. As a result, RL research has focused on model-free approaches to date.

Appl. Sci. 2019, 9, 3456 8 of 24

Within model-free schemes, RL algorithms can be further categorised based on what they learn.
On the one hand, the strategies in the policy optimisation group directly represent the policy and
optimise its parameters. Since the policy update only relies on data collected while following the
policy, these approaches are known as on-policy. Note that policies can be stochastic, defined as π,
or deterministic, defined as µ. On the other hand, Q-learning strategies learn an approximation for
the optimal action-value function based on the Bellman equation. As the update of the optimal
Q-value may employ data collected at any point during training, these schemes are known as off-policy.
Whereas policy optimisation schemes are more robust, since they directly optimise what is being
sought, Q-learning methods can be significantly more sample-efficient when they work.

Additionally, RL algorithms can be subdivided into on-line and off-line types. With on-line schemes,
learning occurs in real time from the data stream. In off-line strategies, the policy is updated only at
regular intervals and stored in memory. Both types of algorithms have much lower computational cost
at deployment time than during training.

The first RL algorithms dealt with discretised state and action spaces [41]. Subsequently,
linear features were introduced to approximate the state space to enable the treatment of complex control
problems [43]. More recently, deep neural networks have been shown to provide better generalisation
and improved learning, allowing scientists to develop systems capable of outperforming humans in
complex games [44]. However, only recently have deep neural network been used to approximate the
action selection process, thus enabling the inclusion of continuous action signals in the RL framework,
which are typical of realistic control problems [45].

4.2. Problem Formulation

RL has been successfully applied to control applications (e.g., see, [43,46,47]). In these tasks,
the controller represents the agent, while the system plant corresponds to the environment. The control
output is the action, whereas the observable and estimated states may represent the state. The reward
is typically expressed through a cost function. Most applications of RL to control tasks to date refer
to episodic problems, i.e., the task can be defined as an episode with a specific desired outcome
signalling its completion. Expressing the control problem as an episodic task greatly reduces the
problem formulation complexity, as it enables the designer to exploit the classical RL framework.

For the specific application to the docking of the AUV onto a fixed platform in surge, heave and
pitch, it is possible to define the RL state space as follows:

s =
[

xr zr θr ẋ ż θ̇ n
]T

. (26)

It is necessary to add the propeller revolutions, n, to the state-space to provide an indication of the
propeller thrust. Changes in motor torque will affect the thrust, but with a delay. Hence, ideally, the
controller should learn to reduce the propeller revolutions as it approaches the goal position and
orientation. Similarly, the action space is identical to the control output u:

a = u =
[

Qm δs

]T
. (27)

However, to prevent stall and because of torque limitations, the selected continuous action should
be constrained to minimum and maximum values (amin and amax, respectively).

Specifying an appropriate reward function is fundamental to have the agent learn the desired
behaviour. Although it is possible to inverse-engineer reward functions from examples or expert
pilots [48], here a reward function is designed similarly to cost functions for control problems.
In particular, the reward function for the docking problem should comprise of different elements:
a continuous cost on the action to limit excessive power expenditures, a continuous cost on position so
that the AUV is guided towards the docking point, a continuous cost on velocity so that small terminal
speed is achieved, a high penalty for exceeding realistic environmental boundaries and high rewards

Appl. Sci. 2019, 9, 3456 9 of 24

once the AUV is close enough to docking point and at low speeds. The penalty and rewards make the
reward function discontinuous and reliant on an if-loop. Inspiration for the reward function is taken
from [32], where the authors employed RL for the landing of a spacecraft. Similarly, the cost on the
velocity is expressed as a function of the distance to the desired docking point. This is because at low
speeds the sternplane becomes ineffective due to the drop in lift force. Hence, a higher speed away from
the docking point is necessary to achieve the desired level of control. Therefore, the reward function
that has been designed for the docking of an AUV to a fixed or moving platform is

c = −ωxx2
r −ωzz2

r −ωθθ2
r −ωQQ2

m −ωδs δ2
s −ωu

u2

max(x2
r , lu)

, (28)

r =


c if f = 0 and h = 0, (29a)

−p if h = 1, (29b)

c + rf +
ωẋ

max(ẋ2
r , lẋ)

+
ωż

max(ż2
r , lż)

+
ωθ̇

max(θ̇2
r , lθ̇)

if f = 1. (29c)

The constants ω indicate weights and l limiting values. The parameter rf is an additional reward
achieved at the end of the episode for successful docking. Note that f is a boolean that expresses
whether docking is achieved to the desired level of accuracy:

f =

{
1 if x2

r + z2
r + θ2

r < lη , (30a)

0 if x2
r + z2

r + θ2
r ≥ lη . (30b)

Additionally, the boolean h describes whether the episode should be terminated because the AUV
exceeds sensible environmental boundaries:

h =

{ 1 if xr > lx,max or xr < lx,min or zr > lz,max or zr < lz,min or θr > lθ,max or θr < lθ,min, (31a)

0 otherwise. (31b)

The limiting values as well as the weights and other parameters in the reward function need to be
tweaked until the desired performance is achieved. In particular, a compromise needs to be found
between docking time, accuracy and the end speed. The boolean variables f and h are combined into
an additional variable d that determines whether the episode ends:

d =

{ 1 if f = 1 or h = 1, (32a)

0 otherwise. (32b)

d is used in the following section to determine the RL algorithm behaviour.

4.3. Deep Q-Network

The first RL algorithm investigated is deep Q-network (DQN), a popular model-free, on-line,
off-policy strategy [44,49]. DQN trains a critic to approximate the action-value (or Q-) function Q(s, a|θQ),
i.e., to estimate the return of future rewards. Hence, the algorithm relies on a discrete action-space and
a continuous state-space. As a result, the action is selected with an ε-greedy policy [41]:

a =

{
arg max

a′∈A
Q(s, a′|θQ) if b ≤ ε, (33a)

random(a′ ∈ A) if b > ε, (33b)

where A indicates the action space, i.e., a vector of all possible actions, b ∈ [0, 1] is a random number
and ε ∈ [0, 1] is defined as the exploration rate. The exploration rate is typically set to a high value
close to 1 at the start of the training process and as learning progresses a decay function is employed to

Appl. Sci. 2019, 9, 3456 10 of 24

lower its value. This ensures that the agent focuses on exploring the environment at the beginning and
then shifts to exploiting the optimal actions as learning progresses.

In DQN, the critic approximator is represented by a deep neural network. Two features ensure that
training occurs smoothly. Firstly, the algorithm relies on the concepts of experience replay buffer [44,45].
With this strategy, at each step, the state state, action, reward, new state and flag for episode end
from the previous step (s, a, r, s′, d) are saved as a transition inside the experience memory buffer R.
During training, a mini-batch of experiencesM ∈ R is then sampled from the memory to update the
deep neural networks. If only the latest experience is used, the neural network is likely to suffer from
overfitting. To ensure stability, the replay buffer should be large and contain data from a wide range
for each variable. However, only a limited number of data points (usually in the order of 106–107) can
be stored in memory. Hence, new experience should be stored only if it describes a data point different
enough from the existing data. Furthermore, using batches sampled randomly from the experience buffer
ensures the best compromise between computational performance and overfitting avoidance. Since
learning occurs without relying on the current experience, DQN is described as off-policy scheme.

Furthermore, the DQN algorithm exploits the concept of a target network for the critic to improve
learning and enhance the stability of the optimisation. This network, Q′(s, a|θ′Q) has the same structure
and parameterisation as Q(s, a|θQ). The value function target is thus set as

y = r + γ(1− d)max
a′∈A

Q′(s′, a′|θQ′), (34)

which indicates the sum of the immediate and discounted future reward. The main problem is that the
value function target depends on the same parameters that are being learned in training, thus making
the minimisation of the mean-squared Bellman error unstable. For this reason, the target network is
used, as it has the same set of parameters are the critic network, but lags it in time. Hence, the target
network is updated once per main network update by Polyak averaging [45]:

θQ′ = τθQ + (1− τ)θQ′ , (35)

where τ ∈ [0, 1] is the smoothing factor.
The DQN algorithm is summarised in Algorithm 1, which is taken from [44,49] with the addition

of Polyak averaging as in the MATLAB implementation used here.

DQN Docking Control of an AUV in 3 DOF

Since DQN relies on discrete actions, only a limited set of actionsA can be selected by the controller.
One common approach with RL schemes with discrete actions is to select three actions per action signal:
the maximum, minimum and zero values of the signal [43]. This results in a bang-bang control type,
which can be proven to be optimal with Pontryagin’s principle [36]. However, here, a different approach
is selected similarly to [50,51].

The action space is selected as the combination of positive, negative and zero step changes in the
motor torque and sternplane angle, as described in Section 5.1. Therefore, at each time step, the motor
torque and sternplane angle are changed by a fixed amount, which should be selected as a realistic value
based on the physical constraints of the system. To ensure learning occurs, the values of Qm and δs must
be tracked. Otherwise, the action information, i.e., a relative change in the control input, is not sufficient
for the agent to successfully learn a policy, since information on the absolute (positive or negative) value
of the motor torque and sternplane angle is required. Hence, the state space in Equation (26) is modified
as follows for the DQN algorithm for the docking control of the AUV in 3 DOF:

sDQN =
[
s Qm δs

]T
. (36)

Appl. Sci. 2019, 9, 3456 11 of 24

Note that upper and lower limits are imposed on the values of the motor torque and sternplane angles
to reflect realistic physical boundaries. Hence, even if the action corresponding to a positive change in motor
torque is selected for Qm = Qm,max, no changes will be applied, since the value of Qm is saturated.

Algorithm 1: DQN algorithm adapted from [49].
Output: state–action value function Q(s, a|θQ)

randomly initialise the critic Q(s, a|θQ) network with weights θQ;
initialise the target critic Q′ network with weights θ′Q ← θQ;

initialise the replay bufferR;
initialise exploration rate ε;
for each episode do

update exploration rate ε with decay;
start from an initialise state s;
for each time step up to maximum number of time steps do

select action a with ε-greedy policy (Equation (33));
apply action a, get the reward r and observe the new state s′;
store the transition (s, a, r, s′, d) inR if different enough from existing data;
if s′ is terminal then

reset the environment state;
end
sample a random data minibatchM ∈ R;
for all transitions i = 1, I inM do

set the transition value to ui = ri + γ(1− di)Q′(s′i, a′|θQ′) with Equation (34);

update the critic by minimising the loss L = 1
I ∑i

[
yi −Q(si, ai|θQ)

]2;
update the target network with Polyak averaging with Equation (35);

end
update the state s← s′;

end
end

The DQN aglorithm for the docking control of the AUV onto a fixed platform in surge, heave and
pitch is shown graphically in Figure 4.

Critic
ε-Greedy

Exploration Policy

Reward Function

New state s

State sAction a

State transitation

Value
iteration

Policy Evaluation:
Q-function update

Estimated
Discounted Reward

AUV Plant

Figure 4. Diagram of the DQN algorithm for the docking control of an AUV.

4.4. Deep Deterministic Policy Gradient

A popular model-free, on-line, off-policy RL algorithm known as deep deterministic policy gradient
(DDPG) is adopted here [45]. Although DDPG has been found to be sensitive to hyperparameter tuning

Appl. Sci. 2019, 9, 3456 12 of 24

and to suffer from overestimating the Q-values [46,47], it has been successfully applied to the depth
and low-level control of AUVs [30,31].

DDPG is a type of actor-critic strategy developed by Lillicrap et al. [45]. As shown in Figure 5,
the critic evaluates the action-value (or Q-)function, while the actor improves the policy in the direction
suggested by the critic. In DDPG, a deep neural network is used by the critic to approximate the
expectation of the long-term reward based on the state observation s and action a. Hence, the
state–action value function can be expressed through the neural network features θQ as Q(s, a, θQ).
An additional deep neural network is employed by the actor for the approximation of the optimal
policy: based on state s, the network returns the continuous action a that is expected to maximise the
long-term reward or state–action value. Thus, by including the neural network features θµ, the policy
can be expressed as µ(s, θµ). Hence, in the DDPG algorithm, the agent learns a deterministic policy
and the Q-function concurrently.

CriticActor

Reward Function

New state s

State sAction a

State transitation

Value
iteration

Policy Evaluation:
Q-function update

Estimated
Discounted Reward

Policy Improvement:
Policy Gradient Update

AUV Plant

Figure 5. Diagram of the DDPG algorithm for the docking control of an AUV.

Furthermore, similar to DQN, the DDPG algorithm exploits target networks for the critic and
actor to improve learning and enhance the stability of the optimisation. These networks, Q′(s, a, θ′Q)

and µ′(s, θ′µ), respectively, have the same structure and parameterisation as Q(s, a, θQ) and µ(s, θµ),
respectively. The value function target is thus set as

y = r + γ(1− d)Q′(s′, µ′(s′|θ′µ)|θQ′), (37)

which indicates the sum of the immediate and discounted future reward. In Equation (37), the agent
first obtains the new observation from the policy through the actor. Then, the cumulative reward
is found through the critic. As for DQN, the target networks are updated once per main network
updated by Polyak averaging [45] with the following equation in addition to Equation (35):

θµ′ = τθµ + (1− τ)θµ′ . (38)

Similar to DQN, DDPG is an off-policy strategy as it relies on an experience replay buffer.
Using the samples in the data batchM, the parameters of the deep neural network for the critic are
updated by minimising the loss over all I samples [45]:

L =
1
I ∑

i

[
yi −Q(si, ai|θQ)

]2 . (39)

Conversely, the parameter of the deep neural network for the actor are updated by maximising the
expected discounted reward:

∇θµ J ≈ 1
I ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si . (40)

Appl. Sci. 2019, 9, 3456 13 of 24

The off-policy nature of the DDPG algorithm is further exploited to deal with the RL long-standing
compromise of exploration and exploitation. Especially during the initial stages of learning, it is
fundamental for the agent to explore the state–action space to optimise performance and avoid getting
stuck in a local optimum. As learning progresses, the agent can focus on exploiting the action that
yields maximum overall reward. Since the policy provided by the actor is deterministic, noise needs to
be added to the action during training to ensure sufficient levels of exploration. Ornstein–Uhlenbeck
noise is selected as in [45].

The DDPG algorithm is summarised in Algorithm 2.

Algorithm 2: DDPG algorithm adapted from [45].
Output: state–action value function Q(s, a|θQ) and policy µ(s|θµ)

randomly initialise the critic Q(s, a|θQ) and actor µ(s|θµ) networks with weights θQ and θµ;
initialise the target critic Q′ and actor µ′ networks with weights θ′Q ← θQ and θ′µ ← θµ;

initialise the replay bufferR;
for each episode do

initialise a random process N for action exploration;
start from an initialise state s;
for each time step up to maximum number of time steps do

select action a = clip(µ(s|θµ) + ε, amin, amax) with ε ∈ N ;
apply action a, get the reward r and observe the new state s′;
store the transition (s, a, r, s′, d) inR if different enough from existing data;
if s′ is terminal then

reset the environment state;
end
sample a random data minibatchM ∈ R;
for all transitions i = 1, I inM do

set the transition value to ui = ri + γ(1− di)Q′(s′i, µ′(s′i |θ′µ)|θQ′) with Equation
(37);

update the critic by minimising the loss L = 1
I ∑i

[
yi −Q(si, ai|θQ)

]2 with Equation
(39);

update the actor policy with one step of gradient ascent with Equation (40);
update the target networks with Polyak averaging with Equations (35) and (38);

end
update the state s← s′;

end
end

5. Results

5.1. Simulation Framework

The equations of motion in Section 2 were used to simulate the dynamics of a REMUS 100
AUV in surge, heave and pitch. The model parameters for this device were taken from [24] and are
included in Appendix A for completeness. Note that for simplicity zero net buoyancy was assumed
here. The simulation was implemented in the MATLAB/Simulink interface using specially designed
C-coded S-functions. The MATLAB fminunc optimisation function was used by the optimal controller
with the Quasi-Newton optimisation algorithm [52]. A fourth-order-accurate Runge–Kutta method
with fixed time step was used for the integration [53]. Although the simulation time step was set at
0.01 s to prevent numerical instabilities, the parametric optimal and the RL controllers operate with a
more realistic sample period of 0.2 s. This value is a compromise between hardware limitations, power

Appl. Sci. 2019, 9, 3456 14 of 24

consumption and control performance. Although the sample rate was much higher than typical AUV
operations, a shorter time step was required for the docking manoeuvre due to the required level of
accuracy. The total simulation time was capped at 50 s (i.e., a time-out), with shorter times possible if
docking occurs sooner.

The AUV starting state vector was set as

x0 =
[
0 m 1 m 0 rad 1.10513 m/s 0 m/s 0 rad/s 80.1440 rad/s 0.792386 m/s

]T
, (41)

which corresponds to steady-state conditions for δs = 0 rad and Qm = 40 Nm. The docking platform
was sited at xp = 20 m, zp = 0 m and θp = 0 rad. The measure of docking accuracy was set at
lη = 0.1. Additionally, ideally, the desired velocity vector of the AUV at the docking pointwas set to
ẋf = 0.1 m/s, żf = 0 m/s and θ̇f = 0 rad/s, as these values ensure a gentle manoeuvre. To prevent
stall and include realistic constraints on the motor torque, Qm,max = 100 Nm, Qm,min = −100 Nm,
δs,max = 15◦ and δs,min = −15◦.

The discrete action space for the DQN algorithm was selected as

A =

[
δQm 0 −δQm δQm 0 −δQm δQm 0 −δQm

δδs δδs δδs 0 0 0 −δδs −δδs −δδs

]T

, (42)

where δQm = 10 Nm represents the selected step change in motor torque and δδs = 3◦ in sternplane angle.
Tables 1–4 contain the parameters used by the PID, parametric optimal and RL controllers,

respectively. For the RL algorithms, the parameters were initialised from common-sense values based
on the literature (e.g., from [32]) and then tuned to achieve successful docking for the analysed cases.
Furthermore, the following limits were used to normalise the state vector to help the training of the
deep neural networks:

smin =
[
lx,min lz,min lθ,min −2 m/s −1 m/s −2 rad/s −200 rad/s

]T
, (43a)

smax =
[
lx,max lz,max lθ,max 2 m/s 1 m/s 2 rad/s 200 rad/s

]T
. (43b)

Table 1. Parameters used by the PID controller.

u0 (m/s) xd (m) zd (m) kp,u ki,u kd,u kp,θ ki,θ kd,θ

1.10513 10 2 100 2 4 100 2 4

Table 2. Parameters used by the parametric optimal controller.

ωx,1 ωx,2 ωx,3 ωx,4 ωx,5 ωx,6 ωu,1 ωu,2 ωQ,0 tQ,f Qm,0 tf

1000 1000 100 10000 100 100 0.001 0.1 500 500 40 Nm 30 s

Table 3. Weights used by the RL reward function.

ωx ωz ωθ ωQm ωδs ωu ωẋ ωż ωθ̇ p rf

0.4 1.2 0.2 0.05 0.1 0.5 10,000 1000 500 20,000 10,000

Table 4. Parameters used by the RL reward function.

lu lẋ lż lθ̇ lx,min lx,max lz,min lz,max lθ,min lθ,max

0.05 0.01 0.01 0.01 −2 m 22 m −4 m 4 m −45◦ 45◦

Appl. Sci. 2019, 9, 3456 15 of 24

The deep neural networks used to approximate the critic for the DQN algorithm and the critic
and the actor for the DDPG algorithm can be seen in Figures 6 and 7, respectively. While the number
of neurons was selected for optimal docking performance (out of 25, 50, 100 and 200 neurons for
a single seed value), the network layout and number of layers were adopted from recommendations by
Mathworks. A fully connected layer employs a linear function to multiply the input by a weight matrix
and then add a bias vector. A ReLu layer employs the rectified linear unit activation function, which is
the most popular type of activation function in deep neural networks nowadays. A tanh layer, which
employs the hyperbolic tangent activation function, was used to constrain the action output to the
range (−1, 1), which was then scaled back up to the desired magnitude by a linear layer. The adaptive
learning rate optimisation algorithm Adam was used for training the neural networks [54]. The
learning rate was set at 0.001 with a gradient threshold of 1 for both critic networks, while the actor
network had a learning rate of 0.0001. The reader is referred to [55] for greater information.

Batches of 128 data samples were used for experience replay during learning. An experience buffer
length of 106 points was set to reduce the memory cost. The discount factor was set to γ = 0.99 to favour
learning of long-term reward. For the DQN algorithm, the initial exploration rate was set to ε0 = 1 with a
decay of 0.0001 and a minimum value of εmin = 0.01. For the DDPG algorithm, the initial variance was
set to 0.3 with a decay of 0.0001. The smoothing factor was set to τ = 0.001. The reinforcement learning
and deep learning toolboxes of MATLAB were used to model the RL agents and deep neural networks.

Fully-Connected Layer
50 neurons

Fully-Connected Layer
50 neurons

ReLu Layer
50 neurons

ReLu Layer
50 neurons

Fully-Connected Layer
50 neurons

ReLu Layer
50 neurons

Fully-Connected Layer
50 neurons

State

Action

Q(s,a)

Figure 6. Diagram of the neural network used to approximate the action-value function by the critic of
the DQN algorithm.

Appl. Sci. 2019, 9, 3456 16 of 24

Fully-Connected Layer
100 neurons

Fully-Connected Layer
100 neurons

ReLu Layer
100 neurons

ReLu Layer
100 neurons

Fully-Connected Layer
100 neurons

ReLu Layer
100 neurons

Fully-Connected Layer
100 neurons

State

Action

Q(s,a)

(a)

Fully-Connected Layer
100 neurons

Fully-Connected Layer
100 neurons

ReLu Layer
100 neurons

ReLu Layer
100 neurons

Fully-Connected Layer
100 neurons

ReLu Layer
100 neurons

Fully-Connected Layer
100 neurons

State

Action

Tanh Layer
2 neurons

Scaling Layer
2 neurons

(b)
Figure 7. Diagram of the neural networks used: to approximate the action-value function by the critic (a);
and to select the action that maximises the discounted reward by the actor (b) of the DDPG algorithm.

5.2. Docking of an AUV onto a Fixed Platform

The learning behaviour of the DQN and DDPG algorithms is shown in Figure 8, which shows
the convergence with episode number of the reward per episode averaged over a moving window
of 10 episodes. The research was averaged over five training sessions per algorithm, initialised with
different seed numbers. The shaded region indicates the values within the minimum and maximum
observed average reward values.

Figure 8. Convergence of the average reward per episode with episode number for the DQN and
DDPG algorithms.

The performance of the AUV during the docking manoeuvre under the different control strategies
is shown in Figures 9–11. Figure 9 shows the time evolution of the translations in surge and heave
and the rotation in pitch. The docking point was placed at x = 20 m and z = 0 m and zero pitch angle
was desired. The time evolution of the translational and rotational velocities can be seen in Figure 10.
The control input to the motor and sternplane is shown in Figure 11 for the different control schemes
in addition to the motor rotational speed.

Appl. Sci. 2019, 9, 3456 17 of 24

Figure 9. Translation and rotation of the AUV during docking with different control strategies.

Figure 10. Translational and rotational velocity of the AUV during docking with different control strategies.

Appl. Sci. 2019, 9, 3456 18 of 24

Figure 11. Input motor torque, motor rotational speed and input sternplane angle of the AUV during
docking with different control strategies.

The DQN and DDPG curves show results after learning for 10,000 episodes. During learning, the
starting vertical position of the AUV was randomly initialised in the range [0.9,1.1], as recommended
by Gaudet et al. [32]. However, here, the starting position was fixed at z = 1 m.

Note that the signals had a different duration for each control algorithm, since the docking criteria
(as defined by Equation (17)) were met at different times.

Table 5 summarises the computational time required by each control scheme during deployment
and training when running on an Intel Core i7-6700 quadcore processor with 32 GB RAM with the
selected MATLAB/Simulink implementation. In fact, only the order of magnitude is shown to enable
a clearer comparison. Note that training is required only for the RL algorithms.

Table 5. Order of magnitude of the mean computational time (in seconds) required by each algorithm
during training and deployment.

Algorithm PID Optimal Parametric DQN DDPG

Training (total) - - 105 105

Deployment (at every time step) 10−4 102 10−3 10−3

6. Discussion

As can be seen in Figure 9, the DDPG algorithm results in the shortest docking time, while PID
control in the longest time. However, as shown in Figure 10, the DQN scheme is best at slowing
down the AUV in the horizontal direction, whereas the DDPG control presents a high and potentially
dangerous final velocity.

In Figure 11, it is clear that the PID and parametric optimal control present the smoothest control
signals. In particular, the weights in Equation (21) ensure neither the torque nor the sternplane angle
saturation limits are exceeded. While the DQN algorithm presents some oscillations, the control
signals of the trained DDPG scheme are very noisy and present an almost bang-bang type of behaviour.
This chattering behaviour is a particularly interesting feature, which is likely to be caused by the layer
with the hyperbolic tangent activation function in the deep neural network of the actor in Figure 7.
The bang-bang behaviour of the DDPG is unlikely to be achievable in reality due to the physical limits
of the motor and sternplane. This problem could be alleviated by including the change in the value of
the actions as a penalty in the cost function. However, to ensure learning, the previous action signals
should also be tracked in a scheme more similar to SARSA than Q-learning [41].

Appl. Sci. 2019, 9, 3456 19 of 24

In Figure 11, it is also interesting to notice that all algorithms show an initial high positive motor
torque signal, followed by a dip into negative values and then a settling onto zero torque. The dip
corresponds to an inversion in the thrust direction which ensures the AUV breaks before reaching
the docking point, as reflected in Figure 10. An inversion in the propeller revolutions is undesirable,
since in practice it could result in cavitation (depending on the depth of the AUV) and/or increased
loading on the propeller blades, whose associated higher drag and turbulent flow is not described
by the simple model employed here. However, inverting the direction of the thrust is fundamental
to reduce the docking time, whilst ensuring a soft contact to the docking station. Although it would
be possible to prioritise the avoidance of the motor breaking effect in favour of breaking purely
through damping at the expense of a longer docking time, maintaining relatively high forward
speed ensures the AUV has sufficient handling abilities as close to the docking station as possible.
High manoeuvrability is especially desirable in situations where there are strong disturbances, e.g.,
due to ocean currents, or where the AUV is attempting to dock onto a moving platform, e.g., for
retrieval from a floating vessel.

The better performance of DQN over DDPG is also reflected in Figure 8, with DQN exhibiting
a higher mean average reward per episode. However, the standard deviation of the curves is still
very high with no clear plateau as compared with [44,46,47]. Hence, it is likely that both DQN and
DDPG algorithms have not fully converged yet after 10,000 episodes. For instance, Haarnoja et al. [47]
showed results after 10 million steps. Therefore, further improvements over the policies shown here
are possible for the DQN and DDPG schemes. Similarly, investigating different network architectures
with hyper-parameter tuning can further improve the performance of both algorithms.

Overall, the DQN algorithm outperformed the DDPG scheme for the docking of the AUV onto
a fixed platform in 3 DOF by presenting smoother control action signals and a lower final velocity.
These features enable a realistic implementation that abides by the systems physical limits and lower
the risk of damage due to high collision forces, respectively. Furthermore, DQN results in a shorter
docking time as compared with PID control at the expense of an inversion in the spinning direction of
the motor and propeller. The success of DQN is mainly due to the bespoke state and action signals that
have been selected here, with the action space being represented by the step changes in the control input.
Conversely, a bang-bang control type would be hardly achievable with real hardware. The results
from the DDPG algorithm can be improved, but ultimate docking is still achieved. In the future,
penalties should be imposed on changes in the motor torque and sternaplane angle. Additionally,
alternative RL algorithms with continuous state and action spaces can be investigated, e.g., soft-actor
critic, which present much higher performance than DDPG in complex control tasks [47].

In Table 5, it is interesting to compare the performance of RL and classical control strategies.
PID control is most efficient during deployment and requires no training. However, the algorithm
is more likely to suffer in more complex scenarios, e.g., under strong disturbances due to waves or
currents or an AUV attempting to dock onto a moving platform. Parametric optimal control does
not require training either as compared with RL strategies, which typically take up to 24 h per seed
with the selected implementation on a stand-alone desktop. However, during deployment, both RL
schemes are five orders of magnitude faster than parametric optimal control. In fact, optimal control
would be replaced by nonlinear model predictive control with a moving window. Hence, although the
computation of the control signal would be expensive for the first time step, the calculations for the
subsequent time steps would take fewer resources because they can be initialised from the previous time
step. Additionally, a pure C implementation is likely to be faster than the prototype code developed
here. However, the point stands that RL strategies achieve comparable performance to parametric
optimal control (in fact, shorter docking time), whilst presenting a much lower computational cost at
deployment. Fundamentally, the computational time at deployment for both DQN and DDPG enables
a realistic on-line implementation of these control schemes considering the selected time step used by
the controller (0.2 s).

Appl. Sci. 2019, 9, 3456 20 of 24

7. Conclusions

In this initial study, RL schemes were applied for the first time to the docking control of an AUV.
In particular, classical and RL strategies were assessed for the control of an AUV attempting to dock onto a
fixed platform without external disturbances. The analysis was performed in a simulation environment
developed specifically for the task. The motion of the AUV was constrained to surge, heave and pitch.
Benchmarking for the RL schemes was provided by PID and parametric optimal control.

Two RL algorithms were investigated: DQN and DDPG. DDPG employs continuous state and action
spaces by relying on deep neural networks to approximate the state–action value (critic) and to approximate
the action selection process (actor). As a result, the action signals can be selected as the control input signals,
namely the motor torque and sternplane angle, while the states can be set to be the position, orientation
and velocity of the AUV in addition to the propeller revolutions. Conversely, DQN presents a discrete
action space and an ε-greedy policy instead of the actor. As a result, the action vector is selected as the set
of positive, negative and zero step changes in the motor torque and sternplane angle, while the control
input signals are added to the state space so that the absolute values can be tracked.

All algorithms successfully managed to dock the AUV onto a fixed platform. This was achieved
by keeping a high speed until the AUV was close to the docking station and then breaking the vehicle’s
motion by inverting the propeller revolutions so as to maintain high manoeuvrability as far as possible.
While DDPG presents chattering in the control input selection due to the hyperbolic-tangent layer in the
actor, the innovative DQN implementation developed here presents the best compromise between short
docking time and low control effort, whilst meeting the docking objective. Evolutions of the DDPG
algorithm can be used in the future to improve the performance of RL strategies with a continuous
action space. Additionally, whereas parametric optimal control presents a high computational cost
at deployment time, the RL schemes are much more efficient and enable an on-line implementation.
Conversely, the computational burden is placed on training instead. However, this can be done
through simulations and experiments. As the algorithm was implemented on the real system, the data
can slowly be replaced with the data coming from the actual vehicle and the neural networks can be
retrained off-line. In this way, RL can provide the performance of optimal control at a much lower
computational cost at deployment. Furthermore, its model-free nature provides a general framework
that can be easily adapted to the control of different systems, although it is necessary to tune the
parameters for the task at hand for best results.

Author Contributions: E.A. conceptualised this paper, performed the modelling and analysis and drafted the
original manuscript. G.G.P. helped with the development of the optimal control solution. G.G.P. and G.T. reviewed
and edited the manuscript and provided invaluable insights to the discussion.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AUV autonomous underwater vehicle
DDPG deep deterministic policy gradient
DOF degree of freedom
DQN deep Q network
PID proportional-integral-derivative control
RL reinforcement learning

Appendix A. Parameters of the Dynamic Model

The parameters of the dynamic model of the AUV in Section 2 are taken from [24], but repeated
here for completeness.

Appl. Sci. 2019, 9, 3456 21 of 24

Table A1. General vehicle parameters taken from [24]. Note that zero net buoyancy is assumed in this
article for simplicity.

Parameter Description Value Unit

m mass of the AUV 30.48 kg
W weight of the AUV 299 N

W − B net buoyancy of the vehicle 0 N
zg vertical position of the centre of gravity 0.0196 m
Iyy vehicle moment of inertia around y-axis 3.45 kg m2

Table A2. Propulsion system parameters taken from [24].

Parameter Description Value Unit

mf mass of the propeller control volume 0.51865 kg
Kn thruster motor damping coefficient 0.5 kg m2 s−1

Jm thruster moment of inertia 1 kg m2

wp thruster wake fraction 0.2 -
tp propeller thrust reduction factor 0.1 -
l linear damping coefficient 6.604 -
q quadratic damping coefficient 16.51 -

Table A3. Actuation parameters taken from [24].

Parameter Description Value Unit

Tn|n| thrust coefficient 6.279× 10−4 kg m rad−2

Qn|n| torque coefficient −1.121× 10−5 kg m2 rad−2

Zuuδs lift coefficient for the sternplane displacement −9.64 kg m−1 rad−1

Muuδs pitch moment coefficient for the sternplane displacement −6.15 kg rad−1

Table A4. Parameters of the surge equation of motion taken from [24].

Parameter Description Value Unit

Xu̇ axial added mass −0.93 kg
Xu|u| axial drag coefficient −2.972 kg m−1

Xuq drag coefficient for forward and pitching motion −35.5 kg
Xqq drag coefficient for pitching motion −1.93 kg m rad−2

Table A5. Parameters of the heave equation of motion taken from [24].

Parameter Description Value Unit

Zẇ heave cross-flow added mass −35.5 kg
Zq̇ pitch cross-flow added mass −1.93 kg m rad−1

Zuw drag resisting heave due to forward motion −28.6 kg m−1

Zuq heave coefficient for forward and pitching motion −5.22 kg rad−1

Zww coefficient of drag resisting heave −1310 kg m−1

Zqq cross-flow drag coefficient resisting pitch −0.632 kg m rad−2

Table A6. Parameters of the pitch equation of motion taken from [24].

Parameter Description Value Unit

Mẇ heave cross-flow added mass −1.93 kg m
Mq̇ pitch cross-flow added mass −4.88 kg m2 rad−1

Muw coefficient of moment resisting pitch due to forward motion 24 kg
Muq pitch moment coefficient for forward and pitching motion −2 kg m rad−1

Mww coefficient of moment resisting heave 3.18 kg
Mqq coefficient of moment resisting pitch −188 kg m2 rad−2

Appl. Sci. 2019, 9, 3456 22 of 24

References

1. Allard, Y.; Shahbazian, E.; Isenor, A. Unmanned Underwater Vehicle (UUV) Information Study; Technical Report;
OODA Technologies Inc.: Montreal, QC, Canada, 2014.

2. Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.;
Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future
contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [CrossRef]

3. German, C.R.; Jakuba, M.V.; Kinsey, J.C.; Partan, J.; Suman, S.; Belani, A.; Yoerger, D.R. A long term vision
for long-range ship-free deep ocean operations: Persistent presence through coordination of Autonomous
Surface Vehicles and Autonomous Underwater Vehicles. In Proceedings of the IEEE/OES Autonomous
Underwater Vehicles (AUV 2012), Southampton, UK, 24–27 September 2012.

4. Lane, D.M.; Maurelli, F.; Kormushev, P.; Carreras, M.; Fox, M.; Kyriakopoulos, K. Persistent autonomy:
The challenges of the PANDORA project. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC Secretariat:
Laxenburg, Austria, 2012; Volume 9, pp. 268–273.

5. Griffiths, G. Technology and Applications Vehicles of Autonomous Underwater; Taylor & Francis: London, UK, 2003.
6. LiVecchi, A.; Copping, A.; Jenne, D.; Gorton, A.; Preus, R.; Gill, G.; Robichaud, R.; Green, R.; Geerlofs, S.;

Gore, S.; et al. Underwater Vehicle Charging. In Powering the Blue Economy: Exploring Opportunities for Marine
Renewable Energy in Martime Markets; Chapter 3; U.S. Department of Energy, Office of Energy Efficiency and
Renewable Energy: Washington, DC, USA, 2019; pp. 22–37.

7. Stokey, R.; Purcell, M.; Forrester, N.; Austin, T.; Goldsborough, R.; Allen, B.; Alt, C.V. A docking system for
REMUS, an autonomous underwater vehicle. In Proceedings of the MTS/IEEE Conference Proceedings
Oceans ’97, Halifax, NS, Canada, 6–9 October 1997; pp. 1132–1136.

8. Mcewen, R.S.; Hobson, B.W.; Bellingham, J.G. Docking Control System for a 21 in Diameter Auv. IEEE J.
Ocean. Eng. 2008, 33, 550–562. [CrossRef]

9. Li, D.J.; Chen, Y.H.; Shi, J.G.; Yang, C.J. Autonomous underwater vehicle docking system for cabled ocean
observatory network. Ocean Eng. 2015, 109, 127–134. [CrossRef]

10. Palomeras, N.; Vallicrosa, G.; Mallios, A.; Bosch, J.; Vidal, E.; Hurtos, N.; Carreras, M.; Ridao, P. AUV homing
and docking for remote operations. Ocean Eng. 2018, 154, 106–120. [CrossRef]

11. Palomeras, N.; Peñalver, A.; Massot-Campos, M.; Negre, P.L.; Fernández, J.J.; Ridao, P.; Sanz, P.J.; Oliver-Codina,
G. I-AUV docking and panel intervention at sea. Sensors 2016, 16, 1673. [CrossRef] [PubMed]

12. Kimball, P.W.; Clark, E.B.; Scully, M.; Richmond, K.; Flesher, C.; Lindzey, L.E.; Harman, J.; Huffstutler, K.;
Lawrence, J.; Lelievre, S.; et al. The ARTEMIS under-ice AUV docking system. J. Field Robot. 2018, 35, 299–308.
[CrossRef]

13. Tan, C.S.; Sutton, R.; Ahmad, S.; Chudley, J. Autonomous underwater vehicle retrieval manoeuvre using
artificial intelligent strategy. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC Secretariat: Laxenburg,
Austria, 2003; Volume 36, pp. 139–144.

14. Ahmad, S.M.; Sutton, R.; Burns, R.S. Retrieval of an Autonomous Underwater Vehicle: An Interception
Approach. Underw. Technol. 2003, 25, 185–197. [CrossRef]

15. Hardy, T.; Barlow, G. Paper on UUV Deployment and Retrieval Options for Submarines Presented at INEC; INEC:
Abuja, Nigeria, 2008.

16. Sarda, E.I.; Dhanak, M.R. Launch and Recovery of an Autonomous Underwater Vehicle From a
Station-Keeping Unmanned Surface Vehicle. IEEE J. Ocean. Eng. 2019, 44, 290–299. [CrossRef]

17. Jantapremjit, P.; Wilson, P.A. Control and Guidance Approa ch Using an Autonomous Underwater Vehicle.
Int. J. Marit. Eng. Sci. 2008, 150, 1–12.

18. Yan, Z.; Xu, D.; Chen, T.; Zhou, J.; Wei, S.; Wang, Y. Modeling, Strategy and Control of UUV for Autonomous
Underwater Docking Recovery to Moving Platform. In Proceedings of the 36th Chinese Control Conference,
Dalian, China, 26–28 July 2017.

19. Li, Y.; Jiang, Y.; Cao, J.; Wang, B.; Li, Y. AUV docking experiments based on vision positioning using two
cameras. Ocean Eng. 2015, 110, 163–173. [CrossRef]

20. Sans-Muntadas, A.; Brekke, E.F.; Hegrenæs, Ø.; Pettersen, K.Y. Navigation and probability assessment for
successful AUV docking using USBL. IFAC-PapersOnLine 2015, 28, 204–209. [CrossRef]

21. Vallicrosa, G.; Ridao, P. Sum of gaussian single beacon range-only localization for AUV homing. Ann. Rev. Control
2016, 42, 177–187. [CrossRef]

http://dx.doi.org/10.1016/j.margeo.2014.03.012
http://dx.doi.org/10.1109/JOE.2008.2005348
http://dx.doi.org/10.1016/j.oceaneng.2015.08.029
http://dx.doi.org/10.1016/j.oceaneng.2018.01.114
http://dx.doi.org/10.3390/s16101673
http://www.ncbi.nlm.nih.gov/pubmed/27754348
http://dx.doi.org/10.1002/rob.21740
http://dx.doi.org/10.3723/175605403783101676
http://dx.doi.org/10.1109/JOE.2018.2867988
http://dx.doi.org/10.1016/j.oceaneng.2015.10.015
http://dx.doi.org/10.1016/j.ifacol.2015.10.281
http://dx.doi.org/10.1016/j.arcontrol.2016.09.007

Appl. Sci. 2019, 9, 3456 23 of 24

22. Myint, M.; Yonemori, K.; Lwin, K.N.; Yanou, A.; Minami, M. Dual-eyes Vision-based Docking System for
Autonomous Underwater Vehicle: An Approach and Experiments. J. Intell. Robot. Syst. Theory Appl. 2017,
92, 1–28. [CrossRef]

23. Sans-Muntadas, A.; Pettersen, K.Y.; Brekke, E.; Kelasidi, E. Learning an AUV docking maneuver with
a convolutional neural network. Proc. IEEE Oceans 2017, 8, 100049. [CrossRef]

24. Hall, R.; Anstee, S. Trim Calculation Methods for a Dynamical Model of the REMUS 100 Autonomous Underwater
Vehicle; Technical Report; DSTO: Canberra, Australia, 2011.

25. Jewison, C.M. Guidance and Control for Multi-Stage Rendezvous and Docking Operations in the Presence
of Uncertainty. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017.

26. El-Fakdi, A.; Carreras, M.; Palomeras, N.; Ridao, P. Autonomous Underwater Vehicle Control Using
Reinforcement Learning Policy Search Methods. In Proceedings of the Europe OCEANS 2005, Brest, France,
20–23 June 2005.

27. Fjerdingen, S.A.; Kyrkjebø, E.; Transeth, A.A. AUV Pipeline Following using Reinforcement Learning.
In Proceedings of the 41st International Symposium on Robotics, Munich, Germany, 7–9 June 2010; VDE:
Munich, Germany, 2010.

28. Carlucho, I.; De Paula, M.; Wang, S.; Menna, B.V.; Petillot, Y.R.; Acosta, G.G. AUV Position Tracking Control
Using End-to-End Deep Reinforcement Learning. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston,
Charleston, SC, USA, 22–25 October 2018.

29. Yu, R.; Shi, Z.; Huang, C.; Li, T.; Ma, Q. Deep reinforcement learning based optimal trajectory tracking
control of autonomous underwater vehicle. In Proceedings of the 36th Chinese Control Conference (CCC),
Dalian, China, 26–28 July 2017; pp. 4958–4965.

30. Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive low-level control of autonomous
underwater vehicles using deep reinforcement learning. Robot. Auton. Syst. 2018, 107, 71–86. [CrossRef]

31. Wu, H.; Song, S.; You, K.; Wu, C. Depth Control of Model-Free AUVs via Reinforcement Learning. IEEE Trans.
Syst. Man Cybern. Syst. 2018. [CrossRef]

32. Gaudet, B.; Linares, R.; Furfaro, R. Deep Reinforcement Learning for Six Degree-of-Freedom Planetary
Powered Descent and Landing. arXiv 2018, arxiv:1810.08719v1.

33. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control, 1st ed.; John Wiley & Sons: Hoboken,
NJ, USA, 2011.

34. Süli, E.; Mayers, D. An Introduction to Numerical Analysis, paperback ed.; Cambridge University Press:
Cambridge, MA, USA, 2003.

35. Anderlini, E.; Parker, G.G.; Thomas, G. Control of a ROV carrying an object. Ocean Eng. 2018, 165, 307–318.
[CrossRef]

36. Liberzon, D. Calculus of Variations and Optimal Control Theory: A Concise Introduction; Princeton University
Press: Princeton, NJ, USA, 2012.

37. Agostini, M.J.; Parker, G.G. Command Shaping Nonlinear Inputs Using Basis Functions. J. Intell. Mater.
Syst. Struct. 2002, 13, 181. [CrossRef]

38. Agostini, M.J.; Parker, G.G.; Schaub, H.; Groom, K.; Robinett, R.D. Generating swing-suppressed maneuvers
for crane systems with rate saturation. IEEE Trans. Control Syst. Technol. 2003, 11, 471–481. [CrossRef]

39. Rizzo, D.M.; Parker, G.G. Determining optimal state of charge for a military vehicle microgrid. Int. J. Powertrains
2014, 3, 303. [CrossRef]

40. Yakimenko, O.A. Direct Method for Rapid Prototyping of Near-Optimal Aircraft Trajectories. J. Guid.
Control Dyn. 2000, 23, 865–875. [CrossRef]

41. Sutton, R.S.; Barto, A.G. Reinforcement Learning, hardcover ed.; MIT Press: Cambridge, MA, USA, 1998; p. 344.
42. Francois-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement

Learning. Found. Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]
43. Busoniu, L.; Babuska, R.; Schutter, B.D.; Ernst, D.; Busoniu, L.; Babuska, R.; Schutter, B.D.; Ernst, D. Reinforcement

Learning and Dynamic Programming Using Function Approximators, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010.
44. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.a.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;

Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10846-017-0703-6
http://dx.doi.org/10.1016/j.ifacsc.2019.100049
http://dx.doi.org/10.1016/j.robot.2018.05.016
http://dx.doi.org/10.1109/TSMC.2017.2785794
http://dx.doi.org/10.1016/j.oceaneng.2018.07.022
http://dx.doi.org/10.1177/104538902761402576
http://dx.doi.org/10.1109/TCST.2003.813402
http://dx.doi.org/10.1504/IJPT.2014.064329
http://dx.doi.org/10.2514/2.4616
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Appl. Sci. 2019, 9, 3456 24 of 24

45. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. In Proceedings of the International Conference on Learning Representations,
San Juan, Puerto Rico, 2–4 May 2016.

46. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods.
In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

47. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th International Conference on
Machine Learning, Stockholm, Sweden, 10–15 July 2018.

48. Abbeel, P. Apprenticeship Learning and Reinforcement Learning with Application to Robotic Control.
Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2008.

49. Mnih, V.; Silver, D.; Riedmiller, M. Playing Atari with Deep Reinforcement Learning. In Proceedings of the
NIPS Deep Learning Workshop 2013, Lake Tahoe, CA, USA, 9 December 2013; pp. 1–9.

50. Anderlini, E.; Forehand, D.I.M.; Stansell, P.; Xiao, Q.; Abusara, M. Control of a Point Absorber using
Reinforcement Learning. IEEE Trans. Sustain. Energy 2016, 7, 1681–1690. [CrossRef]

51. Anderlini, E.; Forehand, D.I.; Bannon, E.; Abusara, M. Control of a Realistic Wave Energy Converter Model
Using Least-Squares Policy Iteration. IEEE Trans. Sustain. Energy 2017, 8, 1618–1628. [CrossRef]

52. Arora, J.S. Introduction to Optimum Design, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 377–409.
53. Hutchinson, I.H. A Student’s Guide to Numerical Methods; Cambridge University Press: Cambridge, UK, 2015.
54. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2015, arxiv:1412.6980.
55. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSTE.2016.2568754
http://dx.doi.org/10.1109/TSTE.2017.2696060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dynamic Model
	Equations of Motion of an AUV in Three Degrees of Freedom
	Relative Motion of the AUV with Respect to the Platform

	Classical Control of the AUV for the Docking Manoeuvre
	PID Control of the Docking of the AUV
	Optimal Control of the Docking of the AUV

	Reinforcement Learning Control of the AUV for the Docking Manoeuvre
	Reinforcement Learning Statement
	Problem Formulation
	Deep Q-Network
	Deep Deterministic Policy Gradient

	Results
	Simulation Framework
	Docking of an AUV onto a Fixed Platform

	Discussion
	Conclusions
	Parameters of the Dynamic Model
	References

