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Abstract

Purpose

Verbal credibility assessments examine language differences to tell truthful from deceptive

statements (e.g., of allegations of child sexual abuse). The dominant approach in psychole-

gal deception research to date (used in 81% of recent studies that report on accuracy) to

estimate the accuracy of a method is to find the optimal statistical separation between lies

and truths in a single dataset. However, this method lacks safeguards against accuracy

overestimation.

Method & Results

A simulation study and empirical data show that this procedure produces overoptimistic

accuracy rates that, especially for small sample size studies typical of this field, yield mis-

leading conclusions up to the point that a non-diagnostic tool can be shown to be a valid

one. Cross-validation is an easy remedy to this problem.

Conclusions

We caution psycholegal researchers to be more accurate about accuracy and propose

guidelines for calculating and reporting accuracy rates.

Introduction

Verbal credibility assessment, or verbal deception detection, plays an important role in legal

proceedings when physical evidence is absent or inconclusive. Courts often have to rely heavily

on statement credibility analysis to ascertain whether a suspect’s testimony is to be believed,

whether witness statements are credible, or whether children’s accounts of alleged sexual abuse

are truthful or fabricated [1]. The recent case of allegations of sexual misconduct against US

supreme court nominee Brett Kavanaugh illustrates the challenge. Kavanaugh was accused of

a sexual assault more than 30 years before his nomination [2,3]. A Judiciary Committee hear-

ing revolved around statements made by Kavanaugh and his accuser, requiring the committee

to make an assessment largely on the basis of the statements made.
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Several US federal agencies including the FBI, Army Military Intelligence, and the US

Immigration and Naturalization Service have been trained in Scientific Content Analysis

(SCAN, see http://www.lsiscan.com/id29.htm). Forensic psychologists and expert witnesses in

legal proceedings in Germany, the UK and the Netherlands use Criteria-based Content Analy-

sis (CBCA) as a means to determine the veracity of allegations of child sexual abuse [4][5]. A

promising new tool for airport security screening is predominantly based on verbal indicators

of deception [6] and there is ample evidence that verbal deception detection methods such as

CBCA help distinguish between truthful and deceptive accounts better than chance [7,8].

While different in the exact scoring methods applied, all these statement credibility assessment

methods share a standard procedure: suspects or witnesses are asked to provide a statement

about an event, which is then transcribed and analysed by experts on a range of dimensions

such as the level of detail of the statement. But how accurate are such verbal credibility assess-

ment tools?

The typical way in which psycholegal deception researchers answer that question is by

building a dataset consisting of truthful and deceptive statements coded on a set of verbal indi-

cators such as the richness in detail and logical consistency. While there are diverse methods

to assess the ability of the verbal criteria to differentiate truth-tellers from liars, researchers

then tend to rely on linear discriminant analysis–a statistical technique that will provide the

optimal function of verbal indicators to discern lie from truth [9]. Importantly, the predomi-

nant approach in verbal deception research is to build a discriminant function that separates

truthful from deceptive statements on the same dataset that it is tested on. That procedure was

used in 77% of studies (S1 Appendix) where researchers reported an accuracy of their

approach (i.e. the percentage of truthful and deceptive statements identified as such). This fig-

ure has not changed: papers published between 2010–2017 show that 81% make use of that sta-

tistical procedure that we call the “training set optimisation technique”. By capitalising on

idiosyncrasies of the dataset, this procedure diminishes its vital goal: assessing the ‘true’ accu-

racy of the classification if it were to make a credibility prediction for a novel, out-of-sample

set of statements (see also [10]). The current paper examines that problem and discusses how

methods that are standard practice in machine learning research can function as a safeguard

against inflated accuracy rates, namely cross-validation and independent sample validation.

Method and results

The code for the simulation studies and the resulting reproducible data are available at https://

osf.io/2dcs5/files/.

The current practice

Simulation procedure: We simulated data for a sample of n = 1,000 with 8 (as with a popular

verbal approach used in research, Reality Monitoring, [8]), 12 (as for a popular verbal

approach used in practice, SCAN, [11]), or 19 (as with CBCA, [8]) predictors. The correlation

between the predictors and the binary outcome was held constant at either r = 0.0 (no relation-

ship between predictors and binary outcome) or r = 0.1 (weak relationship between predictors

and binary outcome). The latter was chosen to reflect the small effect sizes that are common in

verbal deception research [12–14].

We iteratively simulated data for sample sizes of n = 40 up until n = 1,000 in steps of 10. For

each step, we ran 100 simulations and averaged the classification accuracies. For each sample

size, we calculated the accuracy obtained with the training set optimization method. The class

membership of the binary outcome (i.e., proxies for truthful vs deceptive) was 50/50, and the

priors in the latent discriminant analysis were set accordingly. The simulations were
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conducted using the caret [15] and MASS [16] packages in R [17]. The plots were created

using ggplot2 [18].

Findings

Fig 1 shows the volatility in the accuracy as estimated by latent discriminant analysis when

using 8, 12, or 19 predictors. For the sample sizes typical for the field, Mn = 61, rangen = 10 to

240 in the most recent meta-analyses [4,7], the accuracy estimates are unreliable and display a

highly volatile pattern. The weaker the diagnostic value of the verbal indicators and the more

indicators used, the more problematic the erroneous accuracy estimates. In a sample of 40 par-

ticipants, a completely undiagnostic verbal tool (r = 0.0) with 19 indicators can be estimated to

have up to 84% accuracy. In sum, the dominant practice of using linear discriminant analysis

on a single dataset provides highly inaccurate and overly optimistic accuracy estimates.

Fixing the problem

A primer on cross-validation: The desirable evaluation of the predictive accuracy of a classifi-

cation algorithm occurs when the algorithm is built on one dataset and tested on an entirely

new dataset. The purpose of any classification is to make an inference about how accurately

future cases could be assigned their correct outcome class (e.g. truthful or deceptive). However,

is it always necessary to test a classifier on completely new, independent data and collect new

data? Especially when high-quality data are hard to obtain (e.g., allegations of child sexual

Fig 1. Accuracies for latent discriminant analysis without cross-validation on simulated data for 8, 12 and 19 predictors with increasing n. The averaged accuracy

is displayed on the y-axis and the increased sample size for the simulation on the x-axis.

https://doi.org/10.1371/journal.pone.0220228.g001
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abuse—the primary usage of the CBCA) or labor-intensive (e.g., several trained human coders

rate a large number of statements on a number of verbal criteria) it would be desirable to have

a precise accuracy estimate derived from a single dataset. A compromise solution, then, is to

treat the individual dataset as if it were multiple datasets [19].

Consider a study where the researchers collected 50 truthful and 50 deceptive statements. If

the aim is to assess the performance of a deception detection method, the soundest manner

would be to build a classification algorithm (e.g. a linear discriminant analysis, a logistic

regression model, a support vector machine classifier) on these 100 statements and then collect

new data to assess how well that classification algorithm performs on unseen data. This would

mirror the actual potential application, namely assessing the veracity of a statements that were

not used to inform the original classifier. When independent sample validation is not feasible,

the researchers may want to resort to cross-validation.

In cross-validation, the data are split and recycled. For the purpose of this paper, we briefly

introduce two kinds of cross-validation. In k-fold cross-validation, the data (here: 100 statements)

are split into k folds, of which k-1 folds are used as training set and 1 fold is used as test set. For

example, a 10-fold cross-validation would split the data into stratified folds of 10 statements (5

deceptive, 5 truthful). Then 9 folds (= 90 statements) are used as the training set to build a classifi-

cation algorithm, and 1 fold (= 10 statements) is used to assess the accuracy of that classifier. This

procedure is repeated until each fold has been used as test set at least once. Typically, the perfor-

mance metrics (e.g. accuracy) are then averaged across the ten test set iterations [20].

Another kind of cross-validation is the leave-one-out method. Here, rather than splitting

the data into folds, the classification algorithm is built on n– 1 data points (here: 99 statements)

and is tested on the remaining, left-out data point. That procedure is repeated until each data

point has been left-out once. In doing so the leave-one-out procedure recycles data even more

than the k-fold procedure but is computationally costlier for vast sample sizes and models with

large numbers of predictors. Since the current sample sizes in deception research are relatively

small, we focus on leave-one-out cross-validation for the remainder of this paper.

In sum, cross-validation handles a part of the dataset as the model building dataset (or

training set), and another part to assess its performance (test set; [20]). Analogous to the train-

ing-vs-test set terminology, the training set optimisation technique reports accuracies of the

training set only, thereby lacking the critical evaluation of the predictions.

Procedure

To examine how the current practice–the training set optimization technique–compares to

cross-validation and independent sample validation, we simulated data for 19 predictors (as in

CBCA) with a weak individual predictor-outcome relationship (r = 0.124, converted from

Cohen’s d = 0.27, the average effect size for CBCA criteria in a recent meta-analysis [12]).

CBCA was chosen because it is the tool most frequently used in forensic practice [1,21]. We

calculated the prediction accuracies–for increasing sample sizes–obtained from linear discrim-

inant analysis using both the training set optimisation technique and leave-one-out cross-vali-

dation. Both procedures resulted in a predictive model (i.e. empirically determined linear

combinations of the predictors that separate the data into two classes–deceptive and truthful)

that was then additionally validated on a novel, also simulated, test set of the same size (i.e., of

the training set was n = 40, the test set also was n = 40).

Findings

Fig 2 shows the differences between the accuracies yielded on the training set with the current

practice of training set optimisation and leave-one-out cross-validation, and the independent
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test set. Values larger than zero indicate that the accuracy estimation method (here: either

leave-one-out cross-validation or the training set optimization) produces values that are over-

estimations of the accuracy that you would obtain with a new, independent sample drawn

from the same distribution. We adopted the points-of-stability procedure [22] to evaluate at

which sample size, the fluctuation is deemed practically irrelevant. We defined a stability corri-

dor of an accuracy difference of [+0.05; -0.05], that allowed us to find the point-of-stability in

sample size n after which the accuracy difference compared to the test set evaluation does not

leave the exceed the upper or lower boundary of the above-mentioned stability corridor. Fig 2

allows for the following conclusions:

• When relying on the dominant training set optimisation, the sample size needs to be sub-

stantially larger (n> 320) than is typical in the psycholegal literature (40 < = n< = 240) to

eliminate accuracy overestimations.

• The overestimation of the accuracy achieved with the training set optimisation technique is

substantial. This is especially the case for sample sizes commonly used in verbal credibility

assessment research (40 < = n< = 240). For these sample sizes, the overestimation is on

average 12 percentage points in accuracy (range: 6 to 29). For published papers which lack

cross-validation, this graph can be used as an approximate estimate of the magnitude of

inflation in the reported accuracy. For example, for a study with 80 participants without

Fig 2. Accuracy differences (y-axis) between traditional training set optimisation and leave-one-out cross-validation compared to independent test set validation

for increasing sample sizes (x-axis). The dashed horizontal grey lines indicate the upper and lower boundary of the [-0.05; +0.05] stability corridor. The vertical

coloured line indicates the sample size points-of-stability for the training set optimisation technique. Inset plot: accuracy difference scores zoomed in for sample size

between 40 and 240.

https://doi.org/10.1371/journal.pone.0220228.g002
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cross-validation, the accuracy might need to be corrected downwards with at least 12 per-

centage points (e.g., reported accuracy = 75%; corrected estimate = 63%). Note that such

accuracy corrections imply that one simplifies the verbal deception detection tool by aggre-

gating the effect sizes of multiple indicators and by not considering potential moderators.

Our findings should be interpreted as the needed correction on average rather than as a gen-

eralization to individual studies. Nevertheless, the point remains that a lack of any kind of

validation results in overoptimistic accuracies unrepresentative of the true underlying accu-

racy of the tool in question.

• Leave-one-out cross-validation safeguards against accuracy overestimation. Cross-validated

predictive models fare consistently well when validated on a test set; the accuracy difference

never exceeded 5% even for small sample sizes.

The importance of cross-validation: Illustration with real verbal credibility

assessment data

To illustrate the importance of validation outside of the simulation scenario, we obtained the

raw data from recently published verbal deception detection studies. The two datasets were

about truthful and deceptive statements of someone’s recent negative autobiographical event,

manually annotated with SCAN (original data published in [22,23]). In the original studies,

the authors compared SCAN, a tool popular with practitioners yet in the academic community

heavily criticized for having low reliability and validity [21,24,25], with other verbal credibility

tools and concluded that it is inferior to other tools and lacks validity. For illustrative purposes,

we re-analysed the data provided for SCAN with and without cross-validation. We chose

SCAN as a re-analysis example to illustrate the problem of the current procedure that may

incorrectly yield evidence in support of a widely debunked method [21,24,25]. Table 1 shows

that linear discriminant analysis on the original dataset without cross-validation (= current

practice) would misleadingly suggest SCAN to be able to discern a lie from the truth. As

shown above, cross-validation can protect from accuracy inflation. With leave-one-out cross-

validation, it becomes clear that SCAN did not perform better than chance. It is troubling that

the dominant practice would present the heavily criticised and non-substantiated tool SCAN

[21,24,25] as a valid method (i.e. better than chance accuracy) to classify lies and truths.

Discussion

Reviewing the literature on verbal credibility assessment, we note that the vast majority of

studies that report accuracy rates try to find the optimal statistical separation between decep-

tive and truthful statements through verbal criteria within a single dataset. Through simula-

tions, we show that this technique leads to imprecise accuracy estimates for the sample sizes

that are typical for the verbal deception detection field. Accuracy estimates are systematically

overestimated for n< 320. Our simulations suggest that the accuracies reported in the

Table 1. Illustration how the dominant practice (linear discriminant analysis with training set optimisation) can

lead to an erroneous conclusion.

Training set optimisation (current practice) Leave-one-out cross-validation

(recommended practice)

Accuracy estimate 61.54%

[54.98–67.80]

51.28%

[44.68–57.85]

Conclusion Significantly

better than chance classification.

No better than chance classification.

https://doi.org/10.1371/journal.pone.0220228.t001
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majority of the published verbal deception detection research may need to be corrected down-

wards between 6 and 29 percentage points (average: 12 percentage points), depending on sam-

ple size, due to a suboptimal statistical classification procedure. Such a correction is substantial

considering that the average accuracy rates of verbal deception research as a whole only exceed

the random guessing baseline by about 20 percentage points [7,8].

Suggestions for remedy

Our proposed solution is three-fold (Table 2). First, at the minimum, we recommend using

cross-validation for all prediction algorithms. Cross-validation comes at practically no cost, is

provided by all statistical software packages (e.g., SPSS, R, JASP), and ensures a leap in accu-

racy precision. Note that cross-validation is standard practice in computational disciplines

using machine learning. Therefore, we are not introducing cross-validation as a new concept,

nor are we the first to advocate the use of cross-validation as a safeguard against inflated accu-

racy estimates in deception research (see e.g., [26]) but it remains infrequently used as of to

date. However, given the far-reaching implications of verbal deception research in practice

and the lack of any cross-validation in the majority of studies, we argue that the field as a

whole would benefit from a gentle reminder to use better methods to estimate the accuracy of

the methods used. It is worthwhile pointing out that cross-validation comes in many fashions

and thereby leaves the exact choices to the researcher (e.g. one could use leave-one-out, split-

half, holdout, or re-usable holdout cross-validation, to name but a few [20,27,28]). To avoid

that cross-validation is tried repeatedly until favourable results are obtained—analogous to p-

hacking in behavioural research [29]–one may opt to pre-register the cross-validation proce-

dures; that is determining the procedure beforehand, making a public pre-registration of that

procedure, and reporting the findings of that procedure [30].

Second, even preferable to cross-validation is testing the prediction algorithm on a new

sample. Since cross-validation still relies on just one sample and because the essential test of a

method is how well it performs on unseen data, researchers would want to assess a classifier

algorithm derived from one data collection moment (e.g. one experiment) on freshly collected

data (e.g. a second, identical experiment). Early findings on such independent sample valida-

tion in verbal deception research suggest that classification algorithms are less robust against

sample variations than expected [31]. This independent sample validation would at the same

time provide the much needed direct replications of verbal deception studies [32](for an

exception see [33]). Independent sample validation ideally implies that the classifier used is

pre-registered. However, because it is not always feasible to re-run an experiment, a fast and

easy alternative is to share the classifier algorithm derived from a study with the community.

Each classifier can be stored in a sharable data file using statistical software. By making the

classifier available, other researchers can test how well it performs on their dataset.

Table 2. Suggestions for the improvement of the accuracy estimation in the predictive analysis in verbal credibility assessment research.

Remedy Key Advantage Key challenge Safeguard

Validation on an

independent sample

- Allows for robust claims regarding the generalizability of

findings

Resource intensive (new data

collection)

- Pre-registration of the

classification algorithm

- Sharing classification algorithm

as a data file

Cross-validation - Easy to implement (no new data collection needed, often

default setting in statistical software)

- Might still capitalise on

idiosyncrasies of the sample

- Pre-registration of cross-

validation procedure

Larger sample sizes - Solidifies conclusions on statistical inferences and prediction

metrics

- Resource intensive - Preregistration of sample size

justification

- Open sharing of data

https://doi.org/10.1371/journal.pone.0220228.t002
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Third, increasing sample sizes. Such a call for larger sample sizes has repeatedly been made

[19,34] and we think that our current demonstration may help convince verbal deception

researchers of its importance. The sample sizes of verbal deception research are small, and the

public availability of research data is still scant. This leaves a void of large datasets that are

needed to assess the methods of the field reliably. We strongly encourage the research commu-

nity to conduct studies with larger sample sizes. More specifically, we call for the verbal decep-

tion detection community to embrace practices that directly address the logistical impediments

of collecting data from large samples, such as Study Swap (https://osf.io/view/studyswap/), the

Many Labs initiative (e.g., [35]) and Registered Reports [36], as well as the Psychological Science

Accelerator [37]. With a move towards better research practices, in particular in psychological

research, we agree with Yarkoni and Westfall that “[in] many cases there is a serious debate to

be had about whether it is scientifically useful to conduct small-sample research at all” [19].

Conclusion

Verbal credibility assessment and its scholarly backcloth of verbal deception research remain

of vital importance in legal settings, and it is not foreseeable that this will change in the nearby

future. Therefore, it should be in the interest of the general public, the scholarly community

and practitioners that the reporting of the diagnostic ability of verbal deception detection

methods meets the highest standards. The psycholegal deception research community has just

made the first steps towards critical self-reflection and more research transparency [38,39].

We hope that this paper adds to the debate and encourages verbal credibility research to

become more accurate about its accuracy.

Supporting information

S1 Appendix.

(DOCX)

Acknowledgments

We thank Glynis Bogaard for sharing the data of her studies with us. We also thank all

researchers that use cross-validation for their effort in improving the accuracy of statement

credibility assessment.

Author Contributions

Conceptualization: Bennett Kleinberg, Arnoud Arntz, Bruno Verschuere.

Data curation: Bennett Kleinberg.

Formal analysis: Bennett Kleinberg.

Investigation: Bennett Kleinberg.

Methodology: Bennett Kleinberg.

Project administration: Bennett Kleinberg.

Software: Bennett Kleinberg.

Supervision: Arnoud Arntz, Bruno Verschuere.

Writing – original draft: Bennett Kleinberg, Bruno Verschuere.

Writing – review & editing: Bennett Kleinberg, Arnoud Arntz, Bruno Verschuere.

Being accurate about accuracy in verbal deception detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0220228 August 8, 2019 8 / 10

https://osf.io/view/studyswap/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220228.s001
https://doi.org/10.1371/journal.pone.0220228


References
1. Griesel D, Ternes M, Schraml D, Cooper BS, Yuille JC. The ABC’s of CBCA: Verbal Credibility Assess-

ment in Practice. In: Cooper BS, Griesel D, Ternes M, editors. Applied Issues in Investigative Interview-

ing, Eyewitness Memory, and Credibility Assessment. New York, NY: Springer New York; 2013. pp.

293–323. https://doi.org/10.1007/978-1-4614-5547-9_12

2. Brown E. California professor, writer of confidential Brett Kavanaugh letter, speaks out about her allega-

tion of sexual assault. In: Washington Post [Internet]. 2018 [cited 10 Feb 2019]. Available: https://www.

washingtonpost.com/investigations/california-professor-writer-of-confidential-brett-kavanaugh-letter-

speaks-out-about-her-allegation-of-sexual-assault/2018/09/16/46982194-b846-11e8-94eb-3bd52dfe

917b_story.html

3. Kelly E, Estepa J. Brett Kavanaugh: Timeline of allegations against SCOTUS nominee. In: usatoday

[Internet]. 2018 [cited 10 Feb 2019]. Available: http://www.usatoday.com/story/news/politics/onpolitics/

2018/09/24/brett-kavanaugh-allegations-timeline-supreme-court/1408073002/

4. Oberlader VA, Naefgen C, Koppehele-Goseel J, Quinten L, Banse R, Schmidt AF. Validity of Content-

Based Techniques to Distinguish True and Fabricated Statements: A Meta-Analysis. Law Hum Behav.

2016; 40: 440–457. https://doi.org/10.1037/lhb0000193 PMID: 27149290

5. Willén RM, Strömwall LA. Offenders’ lies and truths: an evaluation of the Supreme Court of Sweden’s

criteria for credibility assessment. Psychol Crime Law. 2012; 18: 745–758. https://doi.org/10.1080/

1068316X.2010.548815

6. Ormerod TC, Dando CJ. Finding a needle in a haystack: Toward a psychologically informed method for

aviation security screening. J Exp Psychol Gen. 2015; 144: 76–84. https://doi.org/10.1037/xge0000030

PMID: 25365531

7. Vrij A, Fisher RP, Blank H. A cognitive approach to lie detection: A meta-analysis. Leg Criminol Psychol.

2017; 22: 1–21. https://doi.org/10.1111/lcrp.12088

8. Hauch V, Sporer SL, Masip J, Blandón-Gitlin I. Can credibility criteria be assessed reliably? A meta-

analysis of criteria-based content analysis. Psychol Assess. 2017; 29: 819–834. https://doi.org/10.

1037/pas0000426 PMID: 28594222

9. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936; 7: 179–188.

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

10. Levine TR, Blair JP, Carpenter CJ. A critical look at meta-analytic evidence for the cognitive approach

to lie detection: A re-examination of Vrij, Fisher, and Blank (2017). Leg Criminol Psychol. 2017; https://

doi.org/10.1111/lcrp.12115

11. Bogaard G, Meijer EH, Vrij A, Broers NJ, Merckelbach H. SCAN is largely driven by 12 criteria: results

from sexual abuse statements. Psychol Crime Law. 2014; 20: 430–449. https://doi.org/10.1080/

1068316X.2013.793338

12. Amado BG, Arce R, Fariña F, Vilariño M. Criteria-Based Content Analysis (CBCA) reality criteria in

adults: A meta-analytic review. Int J Clin Health Psychol. 2016; 16: 201–210. https://doi.org/10.1016/j.

ijchp.2016.01.002 PMID: 30487863

13. DePaulo BM, Lindsay JJ, Malone BE, Muhlenbruck L, Charlton K, Cooper H. Cues to deception. Psy-

chol Bull. 2003; 129: 74–118. https://doi.org/10.1037/0033-2909.129.1.74 PMID: 12555795

14. Vrij A, Granhag PA, Porter S. Pitfalls and Opportunities in Nonverbal and Verbal Lie Detection. Psychol

Sci Public Interest. 2010; 11: 89–121. https://doi.org/10.1177/1529100610390861 PMID: 26168416

15. Kuhn M. caret: Classification and Regression Training [Internet]. 2017. Available: https://CRAN.R-

project.org/package=caret

16. Venables WN, Ripley BD, Venables WN. Modern applied statistics with S. 4th ed. New York: Springer;

2002.

17. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R

Foundation for Statistical Computing; 2016. Available: https://www.R-project.org/

18. Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

19. Yarkoni T, Westfall J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine

Learning. Perspect Psychol Sci. 2017; 12: 1100–1122. https://doi.org/10.1177/1745691617693393

PMID: 28841086

20. Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010; 4: 40–

79. https://doi.org/10.1214/09-SS054

21. Vrij A. Verbal Lie Detection tools: Statement validity analysis, reality monitoring and scientific content

analysis. Detecting deception: Current challenges and cognitive approaches. 1st ed. John Wiley &

Sons, Ltd; 2015. pp. 3–35. Available: https://books.google.nl/books?hl=en&lr=&id=4brlBQAAQBAJ&

Being accurate about accuracy in verbal deception detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0220228 August 8, 2019 9 / 10

https://doi.org/10.1007/978-1-4614-5547-9_12
https://www.washingtonpost.com/investigations/california-professor-writer-of-confidential-brett-kavanaugh-letter-speaks-out-about-her-allegation-of-sexual-assault/2018/09/16/46982194-b846-11e8-94eb-3bd52dfe917b_story.html
https://www.washingtonpost.com/investigations/california-professor-writer-of-confidential-brett-kavanaugh-letter-speaks-out-about-her-allegation-of-sexual-assault/2018/09/16/46982194-b846-11e8-94eb-3bd52dfe917b_story.html
https://www.washingtonpost.com/investigations/california-professor-writer-of-confidential-brett-kavanaugh-letter-speaks-out-about-her-allegation-of-sexual-assault/2018/09/16/46982194-b846-11e8-94eb-3bd52dfe917b_story.html
https://www.washingtonpost.com/investigations/california-professor-writer-of-confidential-brett-kavanaugh-letter-speaks-out-about-her-allegation-of-sexual-assault/2018/09/16/46982194-b846-11e8-94eb-3bd52dfe917b_story.html
http://www.usatoday.com/story/news/politics/onpolitics/2018/09/24/brett-kavanaugh-allegations-timeline-supreme-court/1408073002/
http://www.usatoday.com/story/news/politics/onpolitics/2018/09/24/brett-kavanaugh-allegations-timeline-supreme-court/1408073002/
https://doi.org/10.1037/lhb0000193
http://www.ncbi.nlm.nih.gov/pubmed/27149290
https://doi.org/10.1080/1068316X.2010.548815
https://doi.org/10.1080/1068316X.2010.548815
https://doi.org/10.1037/xge0000030
http://www.ncbi.nlm.nih.gov/pubmed/25365531
https://doi.org/10.1111/lcrp.12088
https://doi.org/10.1037/pas0000426
https://doi.org/10.1037/pas0000426
http://www.ncbi.nlm.nih.gov/pubmed/28594222
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/lcrp.12115
https://doi.org/10.1111/lcrp.12115
https://doi.org/10.1080/1068316X.2013.793338
https://doi.org/10.1080/1068316X.2013.793338
https://doi.org/10.1016/j.ijchp.2016.01.002
https://doi.org/10.1016/j.ijchp.2016.01.002
http://www.ncbi.nlm.nih.gov/pubmed/30487863
https://doi.org/10.1037/0033-2909.129.1.74
http://www.ncbi.nlm.nih.gov/pubmed/12555795
https://doi.org/10.1177/1529100610390861
http://www.ncbi.nlm.nih.gov/pubmed/26168416
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://www.R-project.org/
https://doi.org/10.1177/1745691617693393
http://www.ncbi.nlm.nih.gov/pubmed/28841086
https://doi.org/10.1214/09-SS054
https://books.google.nl/books?hl=en&lr=&id=4brlBQAAQBAJ&oi=fnd&pg=RA1-PA3&dq=Verbal+Lie+Detection+tools:+Statement+validity+analysis,+reality+monitoring+and+scientific+content+analysis&ots=4sFTBKx24S&sig=5lA5qnbszpbpaGcYokvw8n37ekw
https://doi.org/10.1371/journal.pone.0220228


oi=fnd&pg=RA1-PA3&dq=Verbal+Lie+Detection+tools:+Statement+validity+analysis,+reality+monitoring

+and+scientific+content+analysis&ots=4sFTBKx24S&sig=5lA5qnbszpbpaGcYokvw8n37ekw
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