
June 18, 2019 Geophysical and Astrophysical Fluid Dynamics GGAF-2019-0009-Liu

Geophysical and Astrophysical Fluid Dynamics
Vol. 00, No. 00, 00 Month 2019, 1–18

The interaction of a mode-1 internal solitary wave with a step and the

generation of mode-2 waves

Zihua Liu∗, Roger Grimshaw and Edward Johnson

Department of Mathematics, University College London, London, WC1E 6BT, UK.

(Received 00 Month 20xx; final version received 00 Month 20xx)

In this study we examine the transformation of a mode-1 internal solitary wave incident on a bottom step,
and the consequent generation of mode-2 internal solitary waves. A linear long wave theory of mode coupling
in the vicinity of the step is used to estimate the mode-1 and mode-2 wave reflection and transmission
coefficients, and hence the energy fluxes. Away from the step, the wave evolution of the transmitted and
reflected waves is simulated by the Korteweg-de Vries equation. Specific calculations are made using a
three-layer fluid model. Three different regimes based on the layer thicknesses are examined and discussed
in detail, for either depression or elevation mode-1 incident waves. The common features found are that the
transmitted waves (mainly mode-1) are the dominant part; most of the incident energy is transmitted and
only a small part is reflected. The amplitudes of the generated mode-2 waves and the reflected mode-1 waves
increase, when either the upper or middle layer thickness increases. When the lower layer is thin enough, the
amplitude of the transmitted mode-2 wave can be larger than the mode-1 waves and the reflected energy
can increase considerably which we infer may be due to a blocking effect of the step on the lower layer. The
evolution away from the step is either fission into several solitary waves, or the development of a rarefaction
wave followed by an undular bore, depending on the relative signs of the wave amplitudes and the nonlinear
coefficient in the Korteweg-de Vries equation.

Keywords: Internal solitary waves; three-layer fluid; linear long wave theory; Korteweg-de Vries equation;
mode-2 wave generation

1. Introduction

Oceanic internal solitary waves are commonly observed in coastal seas and over the continental
slope. In analytical modelling they can be decomposed into an infinite set of vertical modes,
where the term “mode” refers to a function describing the vertical structure. Mode-1 internal
waves have the fastest phase speed and the simplest internal vertical structure, typically
a single maximum located near the pycnocline. Mode-2 waves are the next fastest,with a
phase speed usually around one third that of mode-1, and have an internal structure with
two extrema. There are two different forms of mode-1 internal solitary waves, depression and
elevation waves, with the isopycnals displaced downwards and upwards respectively. For mode-
2 waves, the corresponding wave shapes are called convex when the upper (lower) isopycnals
is displaced upward (downward), and are called concave when the upper (lower) isopycnals
are displaced downward (upward). Observed mode-1 waves are depression waves when the
near-surface isopycnals are displaced downwards.

Mode-1 internal solitary waves are the most commonly observed and studied, but our con-
cern here is with the possible generation of mode-2 waves by the interaction of a mode 1 wave
with variable topography. Recently we (?) adapted the linear long-wave theory of ? which de-
scribes mode coupling by topography to determine the mode-2 waves generated by an internal
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Figure 1. Sketch of the three-layer fluid system.

mode-1 solitary wave propagating over smooth slowly varying topography. However, the to-
pography may not always be slowly varying, and so here we examine the alternative scenario
when the topography is rapidly varying, modelled here by a bottom step. There have been
several related studies on mode-1 and mode-2 solitary wave transformation by rapidly vary-
ing bottom topography. ? described an experimental and theoretical study of the interaction
of a mode-1 internal solitary wave with a localised bottom topography (sill). ?? conducted
laboratory experiments to investigate the evolution of mode-1 incident internal solitary waves
interaction with a steep slope varying from 30◦ to 130◦ in a stratified two-layer fluid system.
? studied the interaction of a mode-1 internal wave with a bottom step in a two-layer flow
in the framework of the Korteweg-de Vries and the Gardner equation (an extended version
of the Korteweg-de Vries equation which includes both quadratic and cubic nonlinearity). ?
developed Boussinesq-type equations for a two-layer flow with rapidly varying bottom topog-
raphy. ??? considered the transformation of an internal solitary wave at a bottom step in the
framework of a two-layer flow, based on numerical simulations of the fully nonlinear equations
combined with a theoretical and numerical study of the Gardner equation. There are also s-
tudies on a mode-2 solitary wave transformation over the rapidly varying bottom topography
(see ? and ? for the interaction of a mode-2 solitary wave with a step and a narrow ridge
respectively).

In this paper, we are concerned with the interaction of a mode-1 internal solitary wave with
a step and the generation of both transmitted and reflected mode-1 and mode-2 waves. In
general an incident internal solitary wave will evolve into reflected and transmitted waves with
many modes when it interacts with a step in the bottom topography. In the vicinity of the
step, where the mode coupling occurs, we use linear long wave theory at a step with matching
of the mass flux and pressure to determine the wave reflection and transmission coefficients,
see sections 2 and 3. Here we truncate this to two modes, mode-1 and mode-2 which is formally
exact when the fluid stratification is an ideal three-layer fluid system (see figure 1), since then
there are only mode-1 and mode-2 waves. This is implemented for various settings of thickness
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of each layer in the three-layer system (see table 1), and in each case we determine the wave
amplitudes and the incident, reflected and transmitted energy fluxes. Then in section 4, we
determine the wave evolution away from the step for both the reflected and transmitted mode-
1 and mode-2 waves using the Korteweg-de Vries equation (1), similar to the strategy used by
? for a two-layer stratification. Our results are summarised in the discussion section 5, where
we note in particular that a key parameter is the ratio of the mode-2 to mode-1 linear wave
phase speed. A near-resonance configuration as this ratio increases towards unity, and this is
the subject of an ongoing study.

2. Korteweg-de Vries equation and linear long wave theory

The solution structure is in two stages. Near the step, the time scales and space scales are
short, so linear long wave theory can be used. Then the evolution towards and away from the
step requires longer space and time scales, where nonlinearity will arise, and so we use the
usual Korteweg-de Vries (KdV). In standard notation, for propagation over a constant depth
h, this is

At + cAx +
cQx
2Q

A+ µAAx + δAxxx = 0 . (1)

Here ζ = A(x, t)φ(z;h) is the leading order expression for the vertical particle displacement.
The modal function φ(z;h) is determined by, in the absence of a background shear flow, by
the problem

c2(ρ0φz)z + ρ0N
2φ = 0 on −h <z < 0 , (2a)

φ = 0, at z = −h(x) , (2b)

c2φz = gφ at z = 0 . (2c)

Here N2 = −gρ0z/ρ0, where ρ0(z) is the background density field. The modal equation (2a)
solved subject (2b,c) determines the modal function φ(z;h) and the linear long wave speed
c(h), where the h-dependence is parametric. The coefficients in (1) are given

µ = 3c2

∫ 0

−h
ρ0φ

3
z dz

/
I , δ = c2

∫ 0

−h
ρ0φ

2 dz

/
I , Q = c2I , (3a–c)

where

I = 2c

∫ 0

−h
ρ0φ

2
z dz . (3d)

In general, the modal problem (2) determines an infinite set of modes, with real-valued phase
speeds, that is c2 > 0. Usually only the lowest mode-1, φ1 with the fastest linear phase speed
c1 is considered. Then the KdV equation (1) describes the evolution of the amplitude of this
mode.

On the other hand, the linear long wave equations on a background density field ρ0(z) are

ρ0ut + px = 0 , (4a)

pz + ρ0N
2ζ = 0 , (4b)

ux + ζzt = 0 , (4c)

which hold in the body of the fluid −h < z < 0. The boundary conditions are

ζ = 0 on z = −h , (5a)

p = gρ0ζ on z = 0 . (5b)
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Here ζ, u, p are the vertical particle displacement, the horizontal velocity and the dynamic
pressure respectively. The vertical velocity is w = ζt and the density perturbation is ρ =
ρ0N

2ζ/g. It is useful to define a flux variable

q =

∫ z

−h
udz , (6)

and then (4c) implies that

ζt + qx = 0 . (7)

We are concerned here with a step topography, that is the depth h is piecewise constant,
h(b), x < 0 and h(a), x > 0, and we assume that h(a) < h(b). The matching conditions across
a step are continuity of pressure and mass flux, found by integrating (4a) and 7) across the
step [

p
]x↓0
x↑0 = 0 ,

[
q
]x↓0
x↑0 = 0 . (8)

Both conditions hold in the domain −h(a) < z < 0 and the flux condition is supplemented by
the requirement that q(x→ 0−) = 0,−h(b) < z < −h(a). Conservation of energy in this linear
long wave limit is expressed by

Et + Jx = 0 , (9a)

in which

E =
1

2

[∫ 0

−h
(ρ0u

2 + ρ0N
2ζ2) dz + gρ0ζ

2
∣∣
z=0

]
, J =

∫ 0

−h
pu dz . (9b,c)

Integrating across the step this yields [
J
]x↓0
x↑0 = 0 , (10)

expressing conservation of energy at the step.

3. Mode generation at a step topography

The theory of ? uses this linear long wave theory to decompose the wave field into a sum of
vertical modes, noting that the full set of modal functions defined by (2) are complete. For
our present purpose, we use a reduction of that theory restricted to just N modes, so that
the wave field is given by

ζ =

n=N∑
n=0

An(x, t)φn(z;h) , u =

n=N∑
n=0

An(x, t)cn(h)φnz(z;h) , (11a,b)

q =

n=N∑
n=0

An(x, t)cn(h)φn(z;h) , p = ρ0

n=N∑
n=0

An(x, t)c2
n(h)φnz(z;h) . (11c,d)

Formally for completeness N → ∞, but in the sequel we will truncate at either N = 1 or
N = 2. Note that the modal functions and the phase speed are now indexed by the mode
number, and have a parametric dependence on the depth h. Here mode-0 is the surface wave
mode, which in the Boussinesq and rigid lid approximation, is given by φ0 = (z + h)/h and
1/c0 = 0. Although our main interest is in the generation of mode-2 internal waves by a
mode-1 internal wave, this surface mode needs to be included in layered fluid models. The
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modal functions satisfy the orthogonality conditions∫ 0

−h
ρ0φmzφnz dz =

{
0, when m 6= n ,

In, when m = n
(12)

From ? when the depth is a constant, each mode satisfies a linear wave equation

Antt − c2
nAnxx = 0 , n = 1, 2 . (13)

Then for x 6= 0 the wave equations (13) have the solution

An =

{
f(t− T bn)δkn +Rnf(t+ T bn) for x < 0 ,

Snf(t− T an ) for x > 0 ,
(14a)

in which

T (a),(b)
n = x

/
c(a),(b)
n . (14b)

These describes an incident mode-k wave (0 ≤ k ≤ N , and reflected wave with a reflection
coefficient Rn and a transmitted wave with transmission coefficient Sn for a set of mode-n
waves The total vertical displacements, velocity and pressure fields for x 6= 0 are given by
(11). Our main concern is when k = 1, an incident mode-1 wave.

Next we apply the matching conditions (8) across the step. Using the modal expressions
(11) we get that

n=N∑
n=0

(δkn +Rn)c(b)
n

2
φ(b)
nz =

n=N∑
n=0

Snc
(a)
n

2
φ(a)
nz , −h(a) <z < 0 , (15a)

n=N∑
n=0

(δkn −Rn)c(b)
n φ(b)

n = H(z + h(a))

n=N∑
n=0

Snc
(a)
n φ(a)

n , −h(b) <z < 0 . (15b)

Here H(•) is the Heaviside function, and we are assuming that h(a) < h(b). Also, here c
(a),(b)
n > 0

and so in the flux condition the sign of the reflected wave has been reversed. The pressure
condition (15a) holds over the total depth just after the step, and the flux condition (15b)
holds over the total depth just before the step. Clearly these conditions cannot be satisfied
for all values of z, so instead they are applied in an averaged sense. That is in (15a) both

sides are multiplied by ρ0φ
(a)
mz and integrated over −h(a) < z < 0, for each m = 0, · · · , N . In

(15b), we multiply both sides by ρ0N
2φ

(b)
m = −c(b)2

m (ρ0φ
(b)
mz)z and then integrate over −h(b) <

z < 0, again for each m = 0, · · · , N . Using the orthogonality conditions (12), (15a,b) yield
respectively,

n=N∑
n=0

(δkn +Rn)c(b)2
n I(b)

mn = Smc
(a)2
m I(a)

m , m = 0, · · · , N , (16a)

(δkm −Rm)c(b)
m I(b)

m =

n=N∑
n=0

Snc
(a)
n I(a)

mn , m = 0, · · · , N . (16b)

Here the integrals are given by

I(a)
m =

∫ 0

−h(a)

ρ0φ
(a)
mz

2
dz , I(a)

n =

∫ 0

−h(a)

ρ0φ
(a)
nz

2
dz , I(a)

mn =

∫ 0

−h(a)

ρ0φ
(b)
mzφ

(a)
nz dz , (17a,b)

I(b)
m =

∫ 0

−h(b)

ρ0φ
(b)
mz

2
dz , I(b)

n =

∫ 0

−h(b)

ρ0φ
(b)
nz

2
dz , I(b)

mn =

∫ 0

−h(b)

ρ0φ
(a)
mzφ

(b)
nz dz . (17c,d)
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It is useful to note the following equality

I(a)
mn = I(b)

nm .

The 2N + 2 equations (16a,b) form 2N + 2 determine the 2N + 2 unknowns Rn, Sn. From
(10) the energy fluxes are the transmitted flux J (a) as x ↓ 0, the incident flux J (in) and the
reflected flux J (b) as x ↑ 0, each modulo a factor f(t)2,

J (a) =

n=N∑
n=0

c(a)3
n I(a)

n S2
n , J (in) = c

(b)3
k I

(b)
k , J (b) = −

n=N∑
n=0

c(b)3
n I(b)

n R2
n . (18a–c)

Note that each term in these sums has the form cnEn where En = c2
nInA

2
n is the modal energy.

A direct calculation from the system (16) shows that

J (in) + J (b) = J (a) , (19)

as expected from (10).
If h(a) = h(b) then Imn = δmnIn and the solution is just Sn = δkn, Rn = 0 as required. Before

proceeding further, it is useful to note the reduction of the system (16) to just a single mode,
the mode-k wave. This is achieved by omitting all terms in the sums in (11) and, (16a,b)
except for n = k. The reduced system is easily solved to yield

Rk =
αk − βk
αk + βk

, Sk =
2

αk + βk
, R2

k + σkS
2
k = 1 , (20a–c)

αk =
c

(a)2
k I

(a)
k

c
(b)2
k I

(b)
kk

, βk =
c

(a)
k I

(a)
kk

c
(b)
k I

(b)
k

, σk = αkβk =
c

(a)3
k I

(a)
k

c
(b)3
k I

(b)
k

. (20d–f)

Since σk > 0, it follows that R2
k < 1 and σkS

2
k < 1. Further, we have

J (a)
/
J (in) = σkS

2
k , J (b)

/
J (in) = −R2

k , (21a,b)

and so

J (in) − J (a) = J (b) , (21c)

as (19) requires. In particular, this limit can be used for a free surface wave, that is a mode-0
wave, with k = 0, when the modal function φ0(z) ≈ (z + h)/h and speed c0 = (gh)1/2. Then
(20) becomes

α0 = 1 , β0 = σ0 = c
(a)
0

/
c

(b)
0 , R0 =

1− β0

1 + β0
, S0 =

2

1 + β0
, (22a–d)

which agree with the well-known expressions for this case. However, this one mode truncation
is not suitable for internal waves, even for a two-layer fluid as we shall now demonstrate.

For internal waves it is useful to invoke the commonly used Boussinesq approximation
in which the density ρ0 is constant except in the buoyancy term, that is N2 retains a z-
dependence. At the same time we also invoke the rigid lid approximation, so that (5b) is
replaced by ζ = 0 at z = 0 and in (2) the upper boundary condition becomes φz=0 = 0. This
filters out the surface wave mode, as in this limit, the modal function φ0 ≈ (z + h)/h and
the speed c0 ≈ (gh)1/2 → ∞. Nevertheless, a degenerate surface wave mode remains in the
pressure field, with ζ0 = 0, u0 = 0, but p0 = P (t). Thus in the decomposition (11) the sum
is over n = 1, · · ·N , but in the pressure expression a term P (t) replaces the n = 0 term. The
matching conditions (15a,b) hold as before, but now for the sum n = 1, · · · , N and in (14a) a

constant term P
(a),(b)
0 is retained on the right and left hand sides respectively. The conditions
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(16a,b) hold as before, now truncated to the sum n = 1, · · · , N ,

n=N∑
n=1

(δkn +Rn)c(b)
n

2
I(b)
mn = Smc

(a)
m

2
I(a)
m , m = 1, · · · , N , (23a)

(δkm −Rm)c(b)
m I(b)

m =

n=N∑
n=1

Snc
(a)
n I(a)

mn , m = 1, · · · , N . (23b)

From (15a) integration of both sides over −h(a) < z < 0 yields

n=N∑
n=1

(δkn +Rn)c(b)
n

2
φ(b)
n

∣∣∣
z=−h(a)

= h(a)
(
P

(b)
0 − P (a)

0

)
. (24)

The restriction to a single mode-k wave again yields (20) for some k = 1, · · · , N . For instance
for a two layer fluid with upper layer depth h1 and lower layer depth h2, h = h1 +h2, a mode-1
wave has the modal function φ(z) = −z/h1 in the top layer and φ(z) = (z + h)/h2 in the
bottom layer. The speed is given by c2 = g′h1h2/h. Then we find that, with k = 1,

α1 = 1 , β1 = σ1 = c
(a)
1

/
c

(b)
1 , R1 =

1− β1

1 + β1
, §1 =

2

1 + β1
. (25a–d)

These agree with the analogous expressions in ?, and are identical with the corresponding
expressions (22a–d) for a surface wave. From (23a) we obtain

S1c
(b)
1

2
(
h

(b)
2 − h

(a)
2

)
h

(a)
2 h

(b)
2

= P
(b)
0 − P (a)

0 . (26)

This expression agrees with (A.9) in Appendix A, found by a direct calculation for a two-layer
fluid.

The system (23) is solved for a three-layer fluid in the Boussinesq approximation and a
rigid upper boundary. The upper-layer depth is h1, the middle-layer depth is h2 and the lower
layer depth is h3, h = h1 + h2 + h3. The same three-layer set-up exists in both x < 0 and
x > 0 so that h1 + h2 < h(a) < h(b).The modal structure is set out in Appendix B, and then
the expressions (17) are readily evaluated. There are just two modes and a degenerate surface
mode, which we do need to consider here. For the internal wave modes we find that, with
ρ0 = 1, for N = 2, m = 1, 2; n = 1, 2,

I(a)
mn =

C
(b)
1mC

(a)
1n

h1
+
D

(b)
m D

(a)
n

h2
+
C

(b)
2mC

(a)
2n

h
(b)
3

, D(a,b)
m,n =C

(a,b)
1m,1n − C

(a,b)
2m,2n , (27a)

I(b)
mn =

C
(a)
1mC

(b)
1n

h1
+
D

(a)
m D

(b)
n

h2
+
C

(a)
2mC

(b)
2n

h
(b)
3

, D(a,b)
m,n =C

(a,b)
1m,1n − C

(a,b)
2m,2n , (27b)

I(a,b)
m,n =

C
(a,b)
1m,1n

2

h1
+
C

(a,b)
2m,2n

2

h
(a,b)
3

+
D

(a,b)
m,n

2

h2
. (27c)

The reflection and transmission coefficients for the internal wave modes in (14) are evaluated
for a similar set up as in the companion paper (?). Figure 1 shows a diagram of this three-layer
fluid system. We tested three cases with different layer thicknesses in the setup. In the first
case, we set the total depth h(b) = 500 m (x < 0), the step height to 150 m and so h(a) = 350 m
(x > 0). With the upper layer depth h1 = 120 m, we first allow the middle layer depth h2 to
vary from 40 m to 80 m, see case 1 in table 1. The outcome is shown in table 2. With these

values h
(a),(b)
3 > h1 in all cases, H(a),(b) < 0 (B.4), and so C

(a),(b)
21 = 1, 0 < C

(a),(b)
11 < 1 for
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Table 1. Setup of the three-layer fluid system for all three cases. (Total depth h(m), each layer’s thickness h1, h2, h
(b)
3 and

h
(a)
3 (m) and step thickness (m).)

Case h h1 h2 h
(b)
3 h

(a)
3 step

500 120 40 340 190 150
1 500 120 60 320 170 150

500 120 80 300 150 150

500 160 80 260 110 150
2 500 180 80 240 90 150

500 200 80 220 70 150

500 220 80 200 50 150
3 500 240 80 180 30 150

500 260 80 160 10 150

Table 2. Case 1: reflection and transmission coefficients for (14) for an incident mode-1 wave, and the energy fluxes (18) in

units of m s−3.

Case 1 S1 R1 S2 R2 J (in) J (a) J (b)

h2 = 40 m 1.0290 0.0519 −0.0462 −0.0229 0.0244 0.0243 −0.0001
h2 = 60 m 1.0221 0.0620 −0.0706 −0.0299 0.0233 0.0232 −0.0001
h2 = 80 m 1.0100 0.0743 −0.1017 −0.0375 0.0224 0.0222 −0.0002

Table 3. Case 2: reflection and transmission coefficients for (14) for an incident mode-1 wave, and the energy fluxes (18) in

units of m s−3.

Case 2 S1 R1 S2 R2 J (in) J (a) J (b)

h1 = 160 m 1.1049 0.1087 0.1770 −0.0603 0.0258 0.0255 −0.0003
h1 = 180 m 1.1936 0.1328 0.2483 −0.0772 0.0272 0.0267 −0.0005
h1 = 200 m 1.2952 0.1646 0.3629 −0.1007 0.0284 0.0276 −0.0008

mode-1, C
(a),(b)
12 = 1, −1 < C

(a),(b)
22 < 0 for mode-2. The transmitted waves are the dominant

part, and the reflected waves are quite small. In particular the reflected energy flux J (b) is less
than 1% of the incident energy flux. The mode-2 transmitted wave amplitude is quite small
as expected, up to about 10% of the incident mode-1 wave amplitude, and increases as the
middle layer depth h2 increases. The mode-2 transmitted wave has the opposite polarity to the
incident mode-1 wave. Thus, if as is usual, the incident mode-1 wave is a depression wave, the
reflected and transmitted mode-2 waves are waves of elevation, and hence are convex waves in
the present set-up. The corresponding amplitudes determined from the mode-1 approximation
(25) when the mode-2 wave is ignored are R1 = 0.0468, 0.0539, 0.0627, S1 = 1+R1 as h2 varies
from 40 m to 80 m respectively. The agreement is quite good, and increases as h2 decreases, as
expected. But note that here S1 decreases as h2 decreases, whereas in the full result in table
2 we see that S1 increases slightly as h2 decreases. This can be attributed to the increases in
the mode-2 amplitudes as h2 increases.

For the second case we fix the middle layer depth to be h2 = 80 m and then vary the upper
layer depth in the range h1 = 160 m to 200 m, see case 2 in table 1. The outcome is shown in

table 3. With these values h
(b)
3 > h1 but h

(a)
3 < h1 in all cases, and so H(b) < 0 but H(a) > 0

(B.4). Thus C
(b)
21 = 1, 0 < C

(b)
11 < 1 as in the first case, but C

(a)
11 = 1, 0 < C

(a)
21 < 1 for mode-1.

Similarly C
(b)
12 = 1, −1 < C

(b)
22 < 0 as in the first case, but C

(a)
22 = 1, −1 < C

(a)
12 < 0 for
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Table 4. Case 3: reflection and transmission coefficients for (14) for an incident mode-1 wave, and the energy fluxes (18) in

units of m s−3.

Case 3 S1 R1 S2 R2 J (in) J (a) J (b)

h1 = 220 m 1.3831 0.2089 0.5521 0.1360 0.0284 0.0269 −0.0015
h1 = 240 m 1.4170 0.2770 0.8800 0.1961 0.0272 0.0247 −0.0025
h1 = 260 m 1.2924 0.4105 1.4503 0.3341 0.0258 0.0203 −0.0055

mode-2. As in the previous case, the transmitted waves are still the dominant part, while the
reflected waves are small. The absolute values of all the coefficients increase for fixed h2 as
h1 increases. The reflected mode-2 wave coefficient R2 is still negative, but the transmitted
mode-2 wave coefficient S2 is now positive, which means both the reflected and transmitted
mode-2 waves are convex, if the incident mode-1 wave is a depression wave.

In the third case we again fix the middle layer depth to be h2 = 80 m but increase the
the upper layer depth to vary in the range h1 = 220 m to 260 m, see case 3 in table 1. The

outcome is shown in table 4. With these values h
(a),(b)
3 < h1 in all cases, H(a),(b) > 0 (B.4) and

so C
(a),(b)
11 = 1, 0 < C

(a),(b)
21 < 1 for mode-1, C

(a),(b)
22 = 1, −1 < C

(a),(b)
12 < 0 for mode-2. The

transmitted waves are still the dominant part, but all the coefficients for both transmitted and
reflected waves have increased. Note that the transmitted mode-1 wave coefficient S1 shows
a slight decrease when h1 increases to 260 m. All the coefficients here are positive, so if the
mode-1 incident wave is elevation (depression), both the reflected and transmitted mode-2
waves are concave (convex).

In all these cases, when the total depth and the top layer thickness h1 is fixed, the absolute
values of R1, R2 and S2 increase as the middle layer thickness h2 increases, while S1 decreases.
When h2 is fixed, all amplitudes increase as h1 increases, until the final value (h1 = 260 m),
where S1 shows a slight decrease. The other coefficients increase, and almost doubled when
h1 = 240 m. The mode-2 transmitted wave amplitude is quite small initially, but increases
when either layer (h1 or h2) thickness becomes larger, and can become greater than the mode-1
incident wave amplitude. In the first and second cases, the incident energy flux J (in) is mainly
transmitted (over 95%) with only a small part reflected, while the energy flux for each part
increases when either h2 or h1 increases. But in the third case, the trend is opposite, the total
incident energy flux J (in) and transmitted energy flux J (a) decrease as h1 increases, and the
reflected energy flux J (b) increases. Over 20% total energy is reflected when h1 = 260 m. This
could be attributed to a blocking effect of the step on the lower layer.

4. Evolution away from the step

Once the reflected and transmitted amplitudes R1,2, S1,2 are determined, we can use the KdV
equation (1) to describe the subsequent evolution, similarly to the strategy employed by ?. In
both x > 0 and x < 0 the coefficients are constants and in particular Qx = 0. Then in x > 0,
for each mode n = 1, 2 we set

ξ = T an − t , τ = T (a)
n , (28)

and then the KdV equation (1) transforms to the asymptotically equivalent spatial form

Aτ + νAAξ + λAξξξ = 0 , (29a)

in which

ν = µ(a)
n

/
c(a)
n , λ = δ(a)

n

/
c(a)
n

3
. (29b,c)
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Table 5. KdV coefficients for case 1 for the transmitted (x > 0) and reflected (x < 0) waves.

Case 1 c1 ν1 λ1 c2 ν2 λ2

h2 = 40m, x > 0 1.2171 −0.0036 3619 0.4194 0.0627 2882
x < 0 1.3493 −0.0064 5028 0.4234 0.0625 3972

h2 = 60m, x > 0 1.1899 −0.0024 3646 0.4970 0.0377 2888
x < 0 1.3451 −0.0054 5418 0.5047 0.0375 3915

h2 = 80m, x > 0 1.1568 −0.0013 4265 0.5545 0.0253 2902
x < 0 1.3380 −0.0045 5781 0.5672 0.0250 3885

The initial condition as τ ↓ 0 is found from the linear long wave solution of section 2,

A(τ ↓ 0, ξ) = Snf(−ξ) , n = 1, 2 . (30)

Similarly, in x < 0, we set for each mode n = 1, 2,

ξ = −T bn − t , τ = −T (b)
n , (31)

and then the KdV equation (1) transforms to the asymptotically equivalent spatial form

Aτ + νAAξ + λAξξξ = 0 , (32a)

in which

ν = µ(b)
n

/
c(b)
n , λ = δ(b)

n

/
c(b)3
n . (32b,c)

The initial condition is now

A(τ ↓ 0, ξ) = Rnf(−ξ) , n = 1, 2 . (33)

Note that although (29a) and (32a) appear to be identical, this is not the case as the variables
τ, ξ and the coefficients ν, λ are indexed with (a), (b), n (see (29b,c) and (32b,c)) which have
been omitted for simplicity. The incident wave satisfies the same KdV equation (32) with

n = 1, but with ξ = T bn − t , τ = T
(b)
n . We assume that this incident wave is a solitary wave,

so that

f(−ξ) = a sech2(Kξ) , ν
(b)
1 a = 12λ

(b)
1 K2 . (34)

The simulations using (29) and (32) were carried out for the same parameter settings used
to determine the reflection and transmission coefficients shown in tables 2, 3 and 4. The
corresponding KdV coefficients are shown in tables 5, 6 and 7, respectively. The incident
wave amplitude is a = −10 or 10 m. The respective outcomes are shown in figures 2, 3,
4 and 5 respectively. Here λ > 0 in all cases, and so we expect fission when aR1,2ν1,2 >
0, aS1,2ν1,2 > 0, or evolution into a rarefaction wave with a following undular bore when
aR1,2ν1,2 < 0, aS1,2ν1,2 < 0. This is indeed what occurs. In the case of fission, although
formulas are available to determine the number and amplitudes of the emitted solitary waves
(see ??? and the review by ? for instance) their use here is rather too complicated in view of
the large number of system parameters.In the first case, h1 < h3 throughout, we set the initial mode-1 incident wave to be a

depression wave, with amplitude a = −10 m, so aR1,2ν
(b)
1,2 > 0 and aS1,2ν

(a)
1,2 > 0 (see table 2

and 5). There are no polarity changes, and so fission occurs for both the reflected waves and
the transmitted waves, see figure 2. In the second case, h1 < h3(x < 0) but h1 > h3(x > 0),
while the initial wave amplitude is again a = −10 m, a depression wave. From table 3 and

6, aR1,2ν
(b)
1,2 > 0 and aS2ν

(a)
2 > 0, again indicating wave fission for the reflected mode-1 and

mode-2 waves, and for the transmitted mode-2 wave. But aS1ν
(a)
1 < 0, so the transmitted

mode-1 wave evolves into a rarefaction wave followed by an undular bore, as shown in figure
3. The third case is much more complicated. The initial incident mode-1 wave is now an
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Figure 2. Case 1: Wave evolution for an incident mode-1 wave interaction with a step in an ideal three-layer fluid system,
with a middle layer thickness h2 = 40 m. The panels labelled S1, R1, S2, R2 are for the transmitted mode-1 wave, the
reflected mode-1 wave and the transmitted mode-2 wave, the reflected mode-2 wave respectively.

Table 6. KdV coefficients for case 2 for the transmitted (x > 0) and reflected (x < 0) waves.

Case 2 c1 ν1 λ1 c2 ν2 λ2

h1 = 160m, x > 0 1.1478 0.0022 4293 0.5526 −0.0242 2874
x < 0 1.4156 −0.0024 5577 0.5763 0.0283 4090

h1 = 180m, x > 0 1.1161 0.0039 4397 0.5452 −0.0210 2770
x < 0 1.4371 −0.0014 5527 0.5785 0.0293 4140

h1 = 200m, x > 0 1.0655 0.0055 4586 0.5309 −0.0156 2581
x < 0 1.4478 −0.0005 5503 0.5795 0.0301 4164

Figure 3. Case 2: Wave evolution for an incident mode-1 wave interaction with a step in an ideal three-layer fluid system,
with a top layer thickness h1 = 180 m. The panels labelled S1, R1, S2, R2 are for the transmitted mode-1 wave, the
reflected mode-1 wave and the transmitted mode-2 wave, the reflected mode-2 wave respectively.
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Table 7. KdV coefficients for case 3 for the transmitted (x > 0) and reflected (x < 0) waves.

Case 3 c1 ν1 λ1 c2 ν2 λ2

h1 = 220m, x > 0 0.9962 0.0071 4895 0.5034 −0.0054 2271
x < 0 1.4478 0.0005 5503 0.5795 −0.0301 4164

h1 = 240m, x > 0 0.9113 0.0085 5346 0.4452 0.0186 1821
x < 0 1.4371 0.0014 5527 0.5785 −0.0293 4140

h1 = 260m, x > 0 0.8235 0.0110 5767 0.2960 0.1265 1399
x < 0 1.4156 0.0024 5577 0.5763 −0.0283 4090

Figure 4. Case 3: Wave evolution for an incident mode-1 wave interaction with a step in an ideal three-layer fluid system,
with a top layer thickness h1 = 220 m. The panels labelled S1, R1, S2, R2 are for the transmitted mode-1 wave, the
reflected mode-1 wave and the transmitted mode-2 wave, the reflected mode-2 wave respectively.

Figure 5. Case 3: Wave evolution for an incident mode-1 wave interaction with a step in an ideal three-layer fluid system,
with a top layer thickness h1 = 240 m. The panels labelled S1, R1, S2, R2 are for the transmitted mode-1 wave, the
reflected mode-1 wave and the transmitted mode-2 wave, the reflected mode-2 wave respectively.
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elevation wave with amplitude a = 10 m, because h1 > h3 in the whole region. From tables

4 and 7, when h1 = 220 m, aR1ν
(b)
1 > 0, aS1ν

(a)
1 > 0, but aR2ν

(b)
2 < 0, aS2ν

(a)
2 < 0, so

wave fission only occurs for mode-1 waves, while the mode-2 waves transform from an initial
elevation wave (concave wave with respect to the mode-2 wave shape) to a rarefaction wave
with a following undular bore, see figure 4. However, as h1 increases further (h1 = 240, 260 m),

aR1ν
(b)
1 > 0, aS1,2ν

(a)
1,2 > 0, and only aR2ν

(b)
2 < 0. As shown in figure 5, the reflected mode-2

wave develops into a rarefaction wave, but the other waves form more solitary waves due to
wave fission.

5. Discussion

In this paper, we have examined the impact of a weakly nonlinear mode-1 internal solitary
wave incident on a step in the framework of a three-layer fluid model, with layer depths

h1, h2, h
(a),(b)
3 , where we recall that the indices (a), (b) refer to the regimes after and before

the step. The linear long wave theory of section 2 and 3 with mode coupling in the vicinity of
the step is used to estimate the mode-1 and mode-2 wave reflection (R1,2) and transmission

(S1,2) coefficients, and hence the incident energy flux J (in), reflected energy flux J (b) and

transmitted energy flux J (a). In this linear theory, the matching conditions at the step are
valid for an arbitrary step height but for sufficiently small waves. In practice, larger step heights
will generate larger waves with significant vertical velocities, and the flow may separate at the
step and generate vortical structures (see ??). There are no evanescent modes in this linear
long wave theory. A full analysis even at the linear level, would require evanescent modes in
order to satisfy the boundary conditions at the step. But these would decay exponentially
away from the step, and do not carry any mass or energy. Hence in this long wave analysis
they do not contribute to the matching conditions that we have used. Away from the step,
the wave evolution is simulated by the KdV equation (1) and the results are described in
section 4. In Appendix C we describe briefly the analogous results for an incident mode-2
wave.

Three different regimes of mode-1 incident internal solitary wave interaction with a step
were identified and the results are summarised as follows:

Case 1: the upper layer depth h1 = 120 m is fixed, and h1 < h
(a,b)
3 throughout, while the

middle layer thickness is very thin but increases for each trial.

The transmitted waves are the dominant part and the reflected waves are very small. The
transmitted mode-2 wave amplitude is also quite small as expected compared to the trans-
mitted mode-1 wave, up to about 10%. The reflected energy flux (J (b)) is less than 1% of
the incident energy flux (J (in)). As h2 increases, the mode-2 wave amplitude coefficients (S2,
R2) and the reflected mode-1 wave amplitude coefficients (R1) increase, while the transmitted
mode-1 wave coefficients (S1) decrease. The energy flux trend is consistent with the wave
amplitude trends, where the incident and transmitted wave energy flux decreases, and the
reflected wave energy flux increases. Using the nonlinear coefficients in the KdV equation

for both mode-1 waves (ν
(a),(b)
1 ) and mode-2 waves (ν

(a),(b)
2 ), if the incident mode-1 wave is

depression (the initial wave amplitude a = −10 m), then aR1,2ν
(b)
1,2 > 0 and aS1,2ν

(a)
1,2 > 0, so

wave fission occurs for both the reflected and transmitted waves.

Case 2: the middle layer depth h2 = 80 m is constant, and h1 increases so that h1 < h
(b)
3 but

h1 > h
(a)
3 .

As in case 1, the dominant part is the transmitted waves, but although the transmitted
mode-2 wave is still small, it can be up to 30% of the transmitted mode-1 wave. All the wave
amplitudes in this case are correspondingly larger than those in the first case, and the energy
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flux for each part is stronger than in the first case, but still only a small part (less than 5%) is
reflected. As h1 increases, both the reflected and transmitted wave amplitudes increase, and

the energy flux changes in the same way. In the region of the incident mode-1 wave, h1 < h
(b)
3 ,

so we assume again that the initial wave amplitude is a depression, a = −10 m, and then

aR1,2ν
(b)
1,2 > 0 and aS2ν

(a)
2 > 0, but aS1ν

(a)
1 < 0. Hence, the reflected waves ( both mode-1 and

mode-2) and the transmitted mode-2 waves fission to secondary solitons, but the transmitted
mode-1 wave evolves into a rarefaction wave followed by an undular bore.

Case 3: h2 = 80 m as in case 2, and h1 > h
(a,b)
3 throughout.

As before, the transmitted waves are the main part, but now significantly the transmitted
mode-2 wave is not small but instead comparable or even exceeding the transmitted mode-1
wave amplitude. As in case 1, R1,2 and S2 increase as h1 increases, while S1 increases slightly
but then decreases. The energy flux here is similar to that in the first two cases, but now
the reflected energy flux can be over 20%, which is consistent with the increased reflected
wave amplitudes. The wave evolution dynamics is much more complicated in this case. As

h1 > h
(a),(b)
3 , we set the incident mode-1 wave to be an elevation with the initial wave amplitude

a = 10 m. When h1 = 220 m, aR1ν
(b)
1 > 0, aS1,2ν

(a)
1,2 > 0, but aR2ν

(b)
2 < 0, aS2ν

(a)
2 < 0, so

there is only elevation waves with fission for mode-1, but for mode-2 the waves are concave,
and evolve into a rarefaction with a following undular bore.

From this study, we see that usually the transmitted waves (mainly mode-1) are the domi-
nant part, and so most of the incident energy is transmitted and only a small part is reflected.
When the lower layer is thin enough, the reflected energy can increase a lot which we infer
may be due to a blocking effect of the step on the lower layer. The amplitudes of the generated
mode-2 waves and the reflected mode-1 waves increase, when either the upper or middle layer
thickness increases. The wave dynamics of the mode-1 waves depends on the upper and lower
layer thicknesses, when the middle layer is thin. The wave dynamics of mode-2 waves is more
complicated, and involves in the distribution of each layer thickness. We have chosen here to
use a three-layer fluid model to assess this interplay between mode-1 and mode-2 waves, but
to extrapolate these results to more general stratifications (noting that our formulation can
accommodate any specified stratification), it is useful to summarise the overall pattern using
just the ratio of the mode-1 and mode-2 wave speeds,

Rspeed =
c2

c1
=

√
K + 1− (H2 + 1)1/2√
K + 1 + (H2 + 1)1/2

, (35a)

in which

H =
h2

2

(
1

h3
− 1

h1

)
, K =

h2

2

(
1

h3
+

1

h1

)
, (35b,c)

and where we have used (B.3c) in appendix B to evaluate this for a three-layer fluid.
Figure 6 shows this ratio as a function of the two parameters h2/h1, h2/h3 for the three-layer

fluid model. Note that 0 < Rspeed < 1 always and we expect significant generation of mode-2
waves when Rspeed → 1; that is when there is a near-resonance between a mode-1 wave and
a mode-2 wave. As expected this possible resonance occurs as h2/h1 and h2/h3 increase with
h1 ≈ h3. The enlarged view in figure 6 indicates Rspeed for the three cases we have examined,
which are in the range from 0.3 and 0.5, typical of observed mode-2 and mode-1 wave speeds.
In general, from the specific results presented our three cases in section 3, where h2/h1 and/or
h2/h3 are varied, we see that there is an increase in mode-2 amplitudes as Rspeed increases.
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Figure 6. A: The ratio Rspeed (35a) of mode-2 and mode-1 wave speeds for a three-layer fluid model as a function of
h2/h1 and h2/h3. B: The enlarged view of the selected rectangle region in A. Rectangles 1, 2 and 3 in B correspond to
case 1, case 2 and case 3.

Appendix A: Two-layer fluid system

The linear long wave equations are, in the Boussinesq and rigid lid approximation,

u
(1)
t + Px = 0 , (A.1a)

u
(2)
t + Px + g′ζx = 0 , (A.1b)

−ζt +
(
h1u

(1)
)
x

= 0 , (A.1c)

ζt +
(
h2u

(2)
)
x

= 0 , (A.1d)

and h = h1 + h2. The total pressure is given by ptotal = p0(z) + p:

p0 =

{−gρ1z , −h1 < z < 0 ,

−gρ2(z + h1) + gρ1h1 , −h < z < −h1 ,
(A.2)

p =

{P , −h1 < z < 0 ,

P + g′ζ , −h < z < −h1 .
(A.3)

The mode-1 modal function is

φ1 =

{
−z
/
h1 , −h1 < z < 0 ,

(z + h)
/
h2 , −h < z < −h1 ,

c2
1 =

g′h1h2

h
. (A.4a,b)

The corresponding pressure and velocity fields are

p1 =

{
−
(
c2

1

/
h1

)
ζ1 , −h1 < z < 0(

c2
1

/
h2

)
ζ1 , −h < z < −h1 ,

(A.5)

u
(1)
1 = −

(
c1

/
h1

)
ζ1 , −h1 < z < 0 ,

u
(2)
1 =

(
c1

/
h2

)
ζ1 , −h < z < −h1 .

(A.6)
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This suggests to put

P = P −
(
c2

1

/
h1

)
ζ , (A.7a)

u
(1)
t + Px −

(
c2

1

/
h1

)
ζx = 0 , (A.7b)

u
(2)
t + Px +

(
c2

1

/
h2

)
ζx = 0 . (A.7c)

This 4 × 4 system has an internal mode speed c1 and modal function φ1 and P1 = 0, and a
degenerate “surface” mode with speed c0 →∞ and a modal solution in which ζ0 = 0, u(1,2) =
0, P0 = P0(t) 6= 0. Across the step, the matching conditions are[

ζ
](a)

(b)
= 0 ,

[
P
](a)

(b)
= 0 ,

[
h1u1

](a)

(b)
= 0 ,

[
h2u2

](a)

(b)
= 0 . (A.8a–d)

Implementation of these yields the expression for mode-1 and continuity of P as in ?. But
note that the degenerate surface mode P0 is not continuous and instead is found from[

P
](a)

(b)
= ζ

(
[c2

1]
(a)
(b)

/
h1

)
. (A.9)

Appendix B: Three-layer fluid system

Consider a three-layer fluid model, as described by ? for a different purpose. We assume that
the background density field is given by

ρ0(z) = (ρ2 + ∆ρ)H(−z − h1 − h2)

+ ρ2H(−z − h1)H(z + h1 + h2) + (ρ2 −∆ρ)H(z + h1) , (B.1)

where h1, h2 and h3 are the thickness of the three layers from top to bottom, respectively.
h = h1 + h2 + h3, ρ2 is the density of the middle layer and ∆ρ is the density difference
across each interface. H(•) is the Heaviside function. We will also invoke the Boussinesq
approximation and replace the upper boundary with a rigid lid. Since N2 = 0 in each layer,
from 2 the modal function is given by

p =


−C1z

/
h1 , −h1 ≤ z ≤ 0 ,

C1

(
z + h1 + h2

)/
h2 − C2

(
z + h1

)/
h2 , −h1 − h2 < z < −h1 ,

C2

(
z + h

)/
h3 , −h ≤ z ≤ −h1 − h2 .

(B.2)

Note that φ = C1 at the upper interface z = −h1, and φ = C2 at the lower interface
z = −h1−h2. The continuity of pressure across each interface is ensured by the jump conditions

c2[φz]
(a)
(b) + g′φ = 0, g′ = g∆ρ/ρ2:

c2

[
C1

(
1

h1
+

1

h2

)
− C2

h2

]
− g′C1 = 0 , (B.3a)

c2

[
C2

(
1

h2
+

1

h3

)
− C1

h2

]
− g′C2 = 0 , (B.3b)

2g′λ =
2g′

c2
=

(
1

h1
+

2

h2
+

1

h3

)
∓
[(

1

h1
− 1

h3

)2

+
4

h2
2

]1/2
. (B.3c)

The signs ∓ correspond to mode-1 and mode-2 respectively, so that, as required c1 > c2. Note
that λ > 0 for both modes as required. It then follows that

C1

C2
= R = H ± (H2 + 1)1/2 ,

C2

C1
=

1

R
= −H ± (H2 + 1)1/2 , (B.4a,b)
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H =
h2

2

(
1

h3
− 1

h1

)
. (B.4c)

The solution is normalised by max [ |φ| ] = 1, so that max [ |C1|, |C2| ] = 1. For mode-1,
C1,2 > 0 and either the maximum of |φ(z)| occurs at the upper interface if H > 0, h1 > h3,
1 = C1 > C2 > 0, or at the lower interface if H < 0, h1 < h3, 1 = C2 > C1. For mode-2,
C1C2 < 0 and the maximum of |φ(z)| occurs at the lower interface if H > 0, 1 = C2 > 0 >
C1 > −1, or at the upper interface if H < 0, 1 = C1 > 0 > C2 > −1. Thus if a mode-2 wave
is a wave of elevation, then this corresponds to convex wave if the maximum of |φ(z)| occurs
at the upper interface, H < 0, h1 < h3, but corresponds to a concave wave if the maximum of
|φ(z)| occurs at the lower interface, H > 0, h1 > h3. This description is reversed if it is a wave
of depression, which then corresponds to a concave wave if the maximum of |φ(z)| occurs at
the upper interface, H < 0, h1 < h3, but corresponds to convex wave if the maximum of |φ(z)|
occurs at the lower interface, H > 0, h1 > h3.

It is useful to take the limit h2 → 0 so that the three-layer system reduces to a two-layer
sytem with layer depths h1, h3. In that limit H → 0 and from (B.4) R = C1/C2 → ±1. For a
mode-1 wave C1 = C2 = 1, and for mode-2 wave C1 = ±1, C2 = ∓1, depending on whether
h1 < h3 or h3 > h1. The speeds are found from (B.3c) as c2 = 2g′h1h3/h, for modes 1 and 2
respectively. In this limit as h2 → 0, we obtain,

I
(a),(b)
11 ≈ 1

h1
+

1

h
(b)
3

, I
(a)
1 ≈ 1

h1
+

1

h
(a)
3

, I
(b)
1 ≈ 1

h1
+

1

h
(a)
3

. (B.5a–c)

Hence, from (20) we recover the expressions (25).
The KdV coefficients µ, δ in (1) are given by (3a,b) and after subsituting for the modal

finction from (B.2) we determine

µ = 3c2

[
−C

3
1

h2
1

+
C3

2

h2
3

+
(C1 − C2)3

h2
2

]/
I , (B.6a)

δ = c2

[
C2

1

h1 + h2

3
+ C2

2

h3 + h2

3
+ C1C2

h2

3

]/
I , (B.6b)

where

I = 2c

[
C2

1

h1
+
C2

2

h3
+

(C1 − C2)2

h2

]
. (B.6c)

It is well known that if µ1 > 0(< 0) then mode-1 solitary waves are waves of elevation
(depression). However, if µ2 > 0(< 0) implying that mode-2 solitary waves are waves of
elevation (depression), then this may corresponds to a convex or a concave wave depending
on the location of the maximum of |φ2| as described above.

Appendix C: Mode generation by a mode-2 incident wave

Although the case of a mode-2 wave incident on a step has less interest due to the rarity of
observed mode-2 waves compared to mode-1 waves, the theory presented in section 3 can be
used to describe this case. All that is required is to set k = 2, N = 2 in (23), and the outcome
for a three-layer fluid is shown in tables C1, C2, C3 for the same parameter settings used for
the case of a mode-1 incident wave. Overall the results are similar to those for the case of
a mode-1 incident wave with the roles of mode-1 and mode-2 interchanged. That is, in the
first two cases, the dominant feature is the transmitted mode-2 wave, while in the third case
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Table C1. Case 1: Reflection and transmission coefficients for (14) for an incident mode-2 wave, and the energy fluxes (18) in

units of m s−3.

Case 1 S1 R1 S2 R2 J (in) J (a) J (b)(∗10−5)

h2 = 40 m 0.0156 −0.0072 0.9832 0.0044 0.0076 0.0076 −0.1408
h2 = 60 m 0.0288 −0.0112 0.9705 0.0068 0.0087 0.0087 −0.3340
h2 = 80 m 0.0473 −0.0159 0.9523 0.0096 0.0095 0.0095 −0.6545

Table C2. Case 2: Reflection and transmission coefficients for (14) for an incident mode-2 wave, and the energy fluxes (18) in

units of m s−3.

Case 2 S1 R1 S2 R2 J (in) J (a) J (b)(∗10−4)

h1 = 160 m 0.0823 −0.0246 −1.0215 0.0166 0.0105 0.0105 −0.1846
h1 = 180 m 0.1169 −0.0311 −1.0917 0.0220 0.0110 0.0109 −0.3160
h1 = 200 m 0.1747 −0.0403 −1.1734 0.0302 0.0114 0.0113 −0.5658

Table C3. Case 3: Reflection and transmission coefficients for (14) for an incident mode-2 wave, and the energy fluxes (18) in

units of m s−3.

Case 3 S1 R1 S2 R2 J (in) J (a) J (b)(∗10−3)

h1 = 220 m −0.2737 0.0544 1.2494 0.0434 0.0114 0.0113 −0.1058
h1 = 240 m −0.4476 0.0790 1.3085 0.0683 0.0110 0.0107 −0.2209
h1 = 260 m −0.7220 0.1360 1.3505 0.1346 0.0105 0.0099 −0.6689

there is significant energy transfer to mode 1. With the reflection and transmission coefficients
determined, we could now describe the evolution away from the step as in section 4, but the
details are omitted here. As in section 4 the qualitative outcomes can be predicted using the
knowledge of the reflected and transmitted wave amplitudes and the KdV coefficients.


