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Tumour-infiltrating CD8+ lymphocytes and colorectal cancer
recurrence by tumour and nodal stage
Mark A. Glaire1, Enric Domingo1,2, Anita Sveen3, Jarle Bruun3, Arild Nesbakken4,5, George Nicholson6, Marco Novelli7, Kay Lawson7,
Dahmane Oukrif7, Wanja Kildal8, Havard E. Danielsen8,9,10, Rachel Kerr11, David Kerr10, Ian Tomlinson12, Ragnhild A. Lothe3,5 and
David N. Church1,11,13

BACKGROUND: Intratumoural T-cell infiltrate intensity cortes wrelaith clinical outcome in stage II/III colorectal cancer (CRC). We
aimed to determine whether this association varies across this heterogeneous group.
METHODS: We performed a pooled analysis of 1804 CRCs from the QUASAR2 and VICTOR trials. Intratumoural CD8+ and CD3+

densities were quantified by immunohistochemistry in tissue microarray (TMA) cores, and their association with clinical outcome
analysed by Cox regression. We validated our results using publicly available gene expression data in a pooled analysis of 1375
CRCs from seven independent series.
RESULTS: In QUASAR2, intratumoural CD8+ was a stronger predictor of CRC recurrence than CD3+ and showed similar
discriminative ability to both markers in combination. Pooled multivariable analysis of both trials showed increasing CD8+ density
was associated with reduced recurrence risk independent of confounders including DNA mismatch repair deficiency, POLE
mutation and chromosomal instability (multivariable hazard ratio [HR] for each two-fold increase= 0.92, 95%CI= 0.87–0.97, P=
3.6 × 10−3). This association was not uniform across risk strata defined by tumour and nodal stage: absent in low-risk (pT3,N0) cases
(HR= 1.03, 95%CI= 0.87–1.21, P= 0.75), modest in intermediate-risk (pT4,N0 or pT1-3,N1-2) cases (HR= 0.92, 95%CI= 0.86–1.0,
P= 0.046) and strong in high-risk (pT4,N1-2) cases (HR= 0.87, 95%CI= 0.79–0.97, P= 9.4 × 10−3); PINTERACTION= 0.090. Analysis of
tumour CD8A expression in the independent validation cohort revealed similar variation in prognostic value across risk strata
(PINTERACTION= 0.048).
CONCLUSIONS: The prognostic value of intratumoural CD8+ cell infiltration in stage II/III CRC varies across tumour and nodal risk
strata.

British Journal of Cancer (2019) 121:474–482; https://doi.org/10.1038/s41416-019-0540-4

BACKGROUND
Colorectal cancer (CRC) is a substantial cause of morbidity and
mortality worldwide. More than half of cases are diagnosed at
stage II/III, for which management is typically curative-intent
resection followed by adjuvant chemotherapy depending on
recurrence risk. Unfortunately, current risk stratification—based on
factors such as lymph node involvement, pT4 primary or absence
of DNA mismatch repair deficiency (MMR-D)1,2—is imprecise,
leading to considerable under- and over-treatment.3,4 Of the
efforts to improve this, perhaps the most promising involves the
quantification of the intratumoural T-cell infiltrate, high density of
which is associated with improved clinical outcome in CRC.5–12

Importantly, in several studies, this relationship has been shown to

persist after adjustment for MMR-D.9–15 However, these studies
have not adjusted for other potential confounders such as
chromosomal instability (CIN)—present in more than two thirds
of CRCs16 and associated with decreased T-cell infiltrate and poor
prognosis17,18—or POLE mutation, which correlates with
enhanced immunogenicity and excellent outcome.19 In most
cases, they have also not addressed the clinically important
question of whether the prognostic value of intratumoural T-cell
infiltrate in stage II/III CRC is uniform across pT/N stage-based risk
strata, or indeed by molecular factors such as KRAS and BRAF
mutation, and finally, they are limited by their use of non-trial,
observational series, which are well recognised to suffer a greater
risk of bias than meticulously curated clinical trial samples.20
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In this study, we sought to address these shortcomings by
pooled analysis of two large clinical trials and a validation cohort
of seven independent series.

METHODS
Patient selection for biomarker study
Details of the QUASAR2 and VICTOR trials have been reported
previously.21,22 Briefly, QUASAR2 was an open-label, randomised,
controlled trial investigating the addition of bevacizumab to
capecitabine in the adjuvant treatment of stage II/III CRC. The final
intention to treat population comprised 1941 patients of whom
1715 (88.3%) had colonic tumours and 226 (11.6%) had rectal
tumours. The VICTOR trial investigated the efficacy of rofecoxib (a
selective cyclooxygenase-2 [COX-2] inhibitor) following comple-
tion of standard therapy (surgery ± adjuvant chemotherapy) for
stage II–III CRC. The intention to treat analysis included 2434 cases
of whom 1592 (65.4%) had colonic tumours and 842 (34.6%) had
tumours of the rectum/rectosigmoid junction. Cases from the
QUASAR2 and VICTOR trials were identified for inclusion in this
biomarker study based on the availability of tumour tissue
microarrays (TMAs) and clinical outcome data. Cases treated with
preoperative radiotherapy were excluded. All tumours were either
stage II or III and had undergone confirmed R0 resection. Data on
molecular covariables were not mandated for study inclusion but
were available in most cases (see Statistical Analysis). Details of the
seven series which formed our pooled validation cohort have
either been previously published,23–27 or are freely available from
the NCBI Gene Expression Omnibus (GEO).28 These were all non-
experimental datasets, selected for their documentation of
primary tumour and nodal stage, CD8A expression and clinical
outcome.

Tumour molecular analysis and immunohistochemistry
Tissue microarrays were constructed using punches taken from
the centre of the tumour in formalin-fixed paraffin-embedded
blocks following identification by the study pathologists; the
tumour invasive margin was not sampled. Molecular analyses and
immunohistochemistry (IHC) for CD8 and CD3 were performed as
reported previously (See Supplementary Methods for full
details).16,19,21,29,30 Marker positive cells were quantified by
computerised analyses using ImmunoPath 1.3.9.0 (Room4, Crow-
borough, UK), and expressed as the proportion of CD8+ or CD3+

cells in the total number of cell nuclei across all TMA cores for
each case. In addition to the analysis of TMA cores, a subset of 51
cases from the QUASAR2 trial also underwent similar analysis of
full face tissue sections to permit comparison between of
measurements between the two methods, and comparison of
marker densities between the tumour centre and its invasive
margin. In view of their similar characteristics,19 POLE-mutant and
MMR-D tumours were combined for all analyses. Molecular
analyses in the validation series have been previously
reported.23–26 Expression of CD8A, which encodes the CD8
receptor, was performed by either RNAseq23 or expression
arrays.24–26 Gene expression data were log2 transformed, if not
already done, and scaled to permit pooling of series.

Statistical analysis
Full details of the statistical methods used in this biomarker study
are provided in Supplementary Methods. Analyses were per-
formed and reported in accordance with the REMARK guide-
lines,31 and are detailed in Table S1. Survival curves were plotted
using the Kaplan–Meier method and compared by the log-rank
test. Our primary and secondary objectives were the association of
CD8+ density, analysed as a continuous variable, with time to CRC
recurrence (TTR) (defined as the time from randomisation to CRC
relapse, with censoring at last contact or death in case of no
recurrence), and overall survival (OS), respectively, in the pooled

QUASAR2 and VICTOR cohorts. Exploratory objectives were the
association of CD8+ cell density with clinical outcome after
dichotomisation, and according to tumour and nodal stage, and
other clinically relevant risk factors. These objectives were
evaluated by pooled univariable and multivariable Cox propor-
tional hazards models, stratified by trial. CD8+ cell density was
log2 transformed prior to inclusion in regression models (see
Supplementary Statistical Methods). Missing covariables data were
uncommon (maximum 11.6% missing data for any covariable) and
were imputed by multiple imputation by chained equations prior
to regression (see Statistical Methods for details). For the final
multivariable models, we prespecified the inclusion of variables of
clinical importance or known prognostic value and those that
demonstrated statistically significant association with CD8+ cell
density in our prior analysis. The remaining variables were
subjected to stepwise backward elimination to remove those
which did not contribute to model fit. Details of model diagnostics
are provided in the Supplementary Methods. Statistical tests were
two-sided, and hypothesis testing was performed at the 5%
significance level.

RESULTS
QUASAR2 and VICTOR trial patient details
The CONSORT diagram for this biomarker study is shown in Fig. 1,
and the baseline demographic characteristics and clinicopatholo-
gical and molecular variables of the QUASAR2 and VICTOR cases
analysed are presented in Table S2. The cases informative for
biomarker analyses were similar to the total trial populations in
respect of age, sex, disease stage, use of systemic therapy, disease
recurrence and death to the total in both cases (Table S3). Given
their similarity, we combined both studies for most subsequent
analyses.

T-cell infiltration in the QUASAR2 study
Analysis of intratumoural TMA cores (taken from the tumour
centre) from the QUASAR2 cohort revealed similar numbers of
infiltrating CD8+ and CD3+ cells per mm2 to those reported in
previous reports15 (Table S4), and a highly statistically significant
correlation between the densities (defined as the proportion of
positive cells to total cell nuclei) of both markers (Spearman rho
0.65; P= 2.2 × 10−16). Complementary analysis of whole tissue
sections in a subset of 51 cases revealed similar positive
correlations between estimates of CD8+ infiltrate in the tumour
centre with those from TMA cores (Spearman rho 0.64; P= 3.1 ×
10−5), and between CD8+ cell density in the tumour centre and
invasive margin (Spearman rho 0.73, P= 1.3 × 10−9). In light of
these findings, we proceeded to use the results obtained from
analysis of TMA cores to examine the association of CD8+ and
CD3+ cell density, alone and in combination, with time to CRC
recurrence (TTR) in this trial population, given the known
prognostic value of these markers in CRC.7,14 This revealed that
intratumoural CD8, but not CD3, was significantly associated with
TTR in univariable analysis, and in a model that included both
markers (Table S4). As the CD8-only model also had similar
discrimination ability and smaller Akaike information criterion (AIC
—an estimator of model quality, which balances goodness of fit
and parsimony), compared with the bivariate model (Table S5), we
focused our subsequent analyses on CD8 infiltrate alone.

CD8+ cell density in the combined QUASAR2 and VICTOR cohorts
Unadjusted analyses of the combined trials demonstrated that
CD8+ cell density was significantly associated with stage II versus
III disease, tumour right-sidedness, MMR-D or POLE mutation, lack
of chromosomal instability (CIN), BRAF mutation and absence of
disease recurrence and death, but not age, sex, pT stage or KRAS
mutation (Table S6). Similar associations were evident in the
individual trials with the exception of BRAF mutation and CIN
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status, which were not statistically significant in VICTOR perhaps
owing to its smaller size.

CD8+ cell density and clinical outcome in the pooled QUASAR2
and VICTOR cohorts
We next determined the relationship between tumour CD8+

density (analysed as a log2 transformed, continuous variable) and
CRC recurrence in the pooled trials. Increasing CD8+ density was
associated with significantly longer TTR in univariable analysis
(HR= 0.90 for each two-fold increase; 95% CI= 0.85–0.95, P=
1.7 × 10−4) (Table 1). While the prognostic factors MMR-D/POLE
mutation and CIN were also significantly associated with TTR in
univariable analyses, only CD8+ density remained prognostic in
multivariable analyses (HR= 0.92; 95% CI= 0.87–0.97, P= 3.6 ×
10−3) (Table 2, S7, Fig. 2a). Corresponding analysis of overall
survival (OS) revealed that CD8+ density, but not MMR-D/POLE
mutation or CIN, was associated with significantly reduced
mortality (multivariable-adjusted HR= 0·93; 95% CI= 0·87–0·99,
P= 0·024) (Table 1, Fig. 2b). For comparison with previous reports,
we divided cases into CD8+-high and CD8+-low categories at the
sample median, noting that this resulted in comparable propor-
tions to studies that have used a cut point defined by its
relationship with clinical outcome.8,13 Multivariable analysis of TTR
and OS confirmed better outcome for CD8+-high tumours (HR=
0.71, 95% CI= 0.59–0.87, P= 7.2 × 10−4, and HR= 0.71; 95% CI=
0.57–0.88, P= 1.6 × 10−3) (Fig. 2c, d). These effect sizes were
similar to those reported for a similar recent analysis of 600 cases
from the North Central Cancer Treatment Group (NCCTG) N1047
trial32

Prognostic value of intratumoural CD8+ cell density by tumour
and molecular risk strata
We next explored whether the prognostic value of CD8+ cell
infiltrate varied by clinically relevant clinicopathological and
molecular factors in our trial cohorts. CD8+ cell density was
significantly associated with recurrence irrespective of patient age

(<70 vs. ≥70 years), sex, tumour sidedness, KRAS and BRAF
mutation, and while the correlation was not statistically significant
in MMR-D/POLE-mutant or CIN-low subgroups, the hazard ratios
were similar to those in MMR-P/POLE-wild-type and CIN-high
subgroups, respectively. In contrast, corresponding univariable
and confirmatory multivariable analysis suggested this association
(between CD8+ cell infiltrate and TTR) differed between pT1-3 vs.
pT4 tumours (multivariable-adjusted HR= 0.96, 95% CI=
0.89–1.04, P= 0.35 vs. HR= 0.87, 95% CI= 0.80–0.95, P= 1.9 ×
10−3), and to a lesser extent, between node negative and node
positive tumours (HR= 0.94, 95% CI= 0.84–1.06, P= 0.31; and
HR= 0.91, 95% CI= 0.85–0.97, P= 5.0 × 10−3, respectively). As pT4
primary and node positivity portended similarly reduced TTR in
multivariable analysis (Table 1), and pT4,N0 and pT1-3,N1/2
tumours had very similar outcome in the pooled trials (Fig. S1A),
we grouped tumours into low (pT1-3, N0), intermediate (pT4, N0
or pT1-3, N1 or N2) and high (pT4, N2) risk groups and examined
the correlation of CD8+ cell density with TTR across these strata.
This suggested an apparent variation in its association, from
essentially absent in low-risk cases (HR= 1.03, 95% CI= 0.87–1.21,
P= 0.75), to modest in intermediate-risk cases (HR= 0.92, 95%
CI= 0.86–1.00, P= 0.046) and strong in high-risk cases (HR= 0.87,
95% CI= 0.79–0.97, P= 9.4 × 10−3), although formal testing for an
interaction was not statistically significant (PINTERACTION= 0.090)
(Table 2, Fig. 3a). The apparent discordance translated into even
greater variation between strata in the absolute risk of recurrence
of tumours with sparse and dense CD8+ cell infiltrate. For
example, in the low-risk group, 3 year recurrence-free probabilities
for tumours with CD8+ cell density at the 25th and 75th centiles
were similar at 90.2% (95% CI 87.8–92.7%) and 90.1% (95% CI
87.7–92.71%), respectively, while the corresponding proportions in
the high-risk group were 58.3% (95% CI= 52.8–64.4%) and 68.6%
(95% CI= 63.1–74.6%) (Table 2, Fig. S2). The variation between risk
strata was also evident, albeit less obvious, when tumours were
classified into CD8+ high and low groups based on the sample
median, as defined above (Fig. 3b, Table S8). Analysis of overall

Original trial populations:
• QUASAR2: 1952 cases
• VICTOR: 2434 cases

Tumour TMAs available:
• QUASAR2: 1144 cases
• VICTOR: 764 cases

Complete cores with ≥1000
cell nuclei: 
• QUASAR2: 1137 cases
• VICTOR: 704 cases

No pre-op RT:
• QUASAR2: 1137 cases
• VICTOR: 667 cases
• Total: 1804 cases

Cases not available for TMA
• QUASAR2: 808 cases
• VICTOR: 1670 cases

Incomplete TMA cores following
immunostaining or <1000 cell nuclei/core
• QUASAR2: 7 cases
• VICTOR: 60 cases

Received pre-op RT
• QUASAR2: 0 cases
• VICTOR: 37 cases

Fig. 1 CONSORT diagram for biomarker-evaluable patients. TMA, tissue microarray; Pre-op RT, pre-operative radiotherapy
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survival revealed a similar tendency to differences in outcome by
CD8+ cell density between strata (PINTERACTION= 0.056), (Table 2).

External validation of results
As the analysis across risk strata was not prespecified, we sought
to validate our findings in an independent cohort. Although no

publicly available datasets have quantified CD8 infiltrate by IHC,
we identified five series with gene expression data including CD8A
(which encodes the CD8 alpha chain) in addition to The Cancer
Genome Atlas (TCGA) series and a further set of 264 tumours with
CD8A expression data. In total, our validation set included
1375 stage II/III tumours with details of tumour and nodal staging,

Table 1. Univariable and multivariable analyses of time to colorectal cancer recurrence and overall survival in pooled VICTOR and QUASAR2 trial
population

No. TTR events OS events Univariable analysis Multivariable analysis

Time to recurrence Overall survival Time to recurrence Overall survival

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (continuous) 1804 435 350 1.01
(1.00–1.02)

0.10 1.03
(1.02–1.04)

6.2 ×
10–6

1.00
(0.99–1.01)

0.43 1.02
(1.01–1.04

1.0 ×
10−4

Sex

Male 1083 281 222 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

Female 721 154 128 0.83
(0.68–1.01)

0.063 0.89
(0.72–1.11)

0.31 0.83
(0.68–1.02)

0.075 0.89
(0.71–1.11)

0.30

Location

Left 972 167 172 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

Right 730 167 158 1.08
(0.93–1.31)

0.45 0.77
(0.62–0.96)

0.019 1.05
(0.85–1.31)

0.63 0.83
(0.65–1.06)

0.13

Stage

II 708 115 91 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

III 1096 320 259 1.89
(1.52–2.40)

6.4 ×
10−9

1.85
(1.45–2.35)

5.6 ×
10−7

1.96
(1.57–2.44)

1.34 ×
10−9

2.03
(1.59–2.60)

1.3 ×
10−8

Primary tumour

pT1-3 1239 248 186 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

pT4 552 191 158 1.96
(1.61–2.37)

1.0 ×
10−11

2.12
(1.70–2.61)

1.1 ×
10−11

2.14
(1.76–2.60)

3.0 ×
10−14

2.20
(1.77–2.74)

1.3 ×
10−12

BRAF mutation

Wild-type 1412 325 250 1.0 (ref )

Mutant 194 55 52 1.33
(1.00–1.78)

0.048 1.68
(1.25–2.27)

6.5 ×
10−4

1.59 (1.18
- 2.17)

2.7 ×
10−3

1.55
(1.12–2.16)

8.0 ×
10−3

MMR & POLE status

MMR-P & POLE
wild-type

1412 357 272 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

MMR-D or
POLE-mutant

230 40 42 0.68
(0.49–0.94)

0.022 1.00
(0.73–1.39)

0.98 0.72
(0.50–1.05)

0.090 0.96
(0.65–1.41)

0.85

Chromosomal instability

CIN low 550 110 88 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

CIN high 1049 278 214 1.37
(1.10–1.71)

0.0051 1.27
(0.99–1.62)

0.063 1.17
(0.93–1.49)

0.18 1.21
(0.94–1.58)

0.14

Bevacizumab treatment

No 1222 279 223 1.0 (ref ) – 1.0 (ref) – 1.0 (ref ) – 1.0 (ref) –

Yes 582 156 127 1.31
(1.03–1.67)

0.027 1.25
(0.96–1.63)

0.095 1.28
(1.00–1.62)

0.047 1.23
(0.95–1.60)

0.12

CD8+ cell density
(continuous, log2
transformed)

1804 435 350 0.90
(0.85–0.95)

1.7 ×
10−4

0.91
(0.86–0.98)

3.2 ×
10−3

0.92
(0.87–0.97)

3.6 ×
10−3

0.93
(0.87–0.99)

0.024

Univariable hazard ratios are derived from complete case analyses. Multivariable-adjusted hazard ratios are adjusted for all other covariables listed, and
represent estimates derived from ‘final’ Cox models following stepwise backward elimination of candidate variables that did not contribute to model fit using
the likelihood ratio test (NB: forced entry variables and variables significantly associated with CD8+ cell density were not subjected to variable selection).
Results from ‘full’ Cox models including all candidate predictors (age, sex, tumour location, disease stage, primary tumour stage, BRAF mutation, KRAS
mutation, MMR-D/POLE mutation, CIN, adjuvant chemotherapy, adjuvant bevacizumab and adjuvant rofecoxib), both before and after the addition of CD8+

cell density are provided in Table S5. The addition of CD8+ cell density to the model containing all other covariables was associated with an improvement in
model fit in both the ‘final’ Cox model above (Akaike Information Criterion [AIC]= 5634.0 vs. AIC 5640.6; Likelihood ratio test for comparison of nested models:
P= 3.6 × 10−3), and the initial, ‘full’ Cox model (Table S3). TTR time to colorectal cancer recurrence, OS overall survival, HR hazard ratio, 95% CI 95% confidence
interval, pT pathological tumour (T) stage, MMR DNA mismatch repair, MMR-P mismatch repair proficient, MMR-D mismatch repair deficient, POLE-mutant
pathogenic POLE exonuclease domain mutation
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MMR and CIN status and clinical outcome data (Fig. S1B). In
keeping with previous studies, tumour CD8A expression was
significantly associated with TTR in multivariable analysis (HR for
each 2-fold increase= 0.86, 95% CI= 0.76–0.97, P= 0.018). Inter-
estingly, and concordant with our previous results, the strength of
this association varied between low, intermediate and high-risk
pT/N strata (HR= 0.99, 95% CI= 0.81–1.24, P= 1.0 vs. HR= 0.83,
95% CI= 0.69–0.99, P= 0.034 vs. HR= 0.77, 95% CI= 0.51–1.16,
P= 0.21, respectively; PINTERACTION= 0.048) (Fig. 3c, d, Tables S9,
S10).

DISCUSSION
In this analysis of 1804 stage II/III CRCs from two clinical trials with
external validation, we have shown that while the association of
intratumoural CD8+ cell density with recurrence is independent of
MMR-D, POLE mutation and CIN, it appears to vary by primary
tumour and nodal status, from absent or minimal in pT3,N0
disease, to strong in pT4,N1/N2 disease. This variation could not
easily be explained by fewer events in the low-risk groups, as the
hazard ratios in these approximated unities in both the primary
and the validation cohorts. Our study both strengthens the
evidence for the prognostic value of tumour CD8+ infiltrate in
CRC, and suggests that the clinical implementation of this novel
marker will require careful consideration. Indeed, among stage
pT3, N0 tumours—where MMR status often guides decisions on
adjuvant chemotherapy1—we found no evidence that CD8+ cell
density was independently prognostic, suggesting that further
work is required to identify immune biomarkers of clinical value in
this subgroup. In contrast, patients with pT4,N1/2, cancers with
low sparse intratumoural CD8+ infiltrate had dismal prognosis,
raising the possibility of trials testing intensified or novel adjuvant
therapies in this subgroup. Importantly, the prognostic value of
CD8+ cell density did not vary by other clinically relevant factors,
including sidedness, MMR-D, KRAS and BRAF mutation, suggesting
that it may complement these in risk stratification.
Arguably the best-known test for evaluation of the anti-tumour

immune response is the “Immunoscore”, developed by Galon
et al.15,33 While the immune markers and cut points used to define
categories have evolved during its development, it currently
classifies tumours based on CD8+ and CD3+ cell density in the
tumour centre and its invasive margin. The strength of correlation
between these markers, and the superior prognostication
provided by CD8+ density in our preliminary analysis caused us
to focus on this marker alone. Though the different methodolo-
gies preclude direct comparison, it is notable that our dichot-
omised analysis revealed a hazard ratio for recurrence of stage III
disease broadly similar to that recently reported for Immunoscore
in cases from the NCCTG N0147 trial.32 However, avoiding
classification of continuous variables has several potential
advantages in this setting, as may provide more refined
prognostication, and avoids the pitfall of assigning substantially
different prognoses to tumours with marker values falling
narrowly either side of a cut point.34 Interestingly, the variation
in the prognostic value of tumour CD8 infiltrate by tumour risk
strata was much less obvious when analysed as a dichotomiaed
variable.
Our study has limitations. For logistical reasons, our analysis

used tumour cores rather than whole sections, and focusesd
predominantly on CD8+cells, as these were more strongly
prognostic than CD3+cells in our initial analysis. It will therefore
be important to determine the impact of evaluation of a larger
area, including the tumour invasive margin, as well as the impact
of adding additional immune markers, including and beyond CD3,
on prognostication; particularly given the recent results reported
for Immunoscore in this setting.15 Emerging multispectral plat-
forms are of particular relevance to the latter, though these are
not yet ready for clinical implementation. Other priorities will be toTa
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define the value of intraepithelial and intrastromal CD8+ cell
density, which our software did not discriminate between, and the
impact of intratumoural heterogeneity on prognosis. Finally,
because most patients in these trials were treated with adjuvant
cytotoxic chemotherapy, though not oxaliplatin, we were not able
to determine whether intratumoural CD8+ density predicts
recurrence risk in the absence of such treatment, or under
oxaliplatin-based therapy.

In summary, in our large study with independent validation, we
have confirmed that intratumoural CD8+ cell density is indepen-
dent prognostic factor in stage II/III CRC, and shown that this
association appears to vary by tumour and nodal risk strata.
Confirmation of this finding, and defining the underlying mechan-
isms, will be important questions for future studies, as will be the
investigation of whether CD8+ density as can be used to identify
patients who could benefit from adjuvant immunotherapy.
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