- 1 Title: Antibody responses elicited by immunization with BG505 trimer-immune
- 2 complexes
- 3
- 4 Running title: Immune complex immunization
- 5
- Johannes S. Gach<sup>\*</sup>, Kane J. V. Mara<sup>\*</sup>, Celia C. LaBranche<sup>†</sup>, Marit J. van Gils<sup>‡</sup>, Laura E.
- 7 McCoy<sup>§</sup>, P. J. Klasse<sup>1</sup>, David C. Montefiori<sup>†</sup>, Rogier W. Sanders<sup>‡, 1</sup>, John P. Moore<sup>1</sup>, and
- 8 Donald N. Forthal<sup>\*, ||</sup>

9

- <sup>\*</sup>Department of Medicine, University of California, Irvine, Irvine United States of America
- <sup>11</sup> <sup>†</sup>Department of Surgery, Duke University Medical Center, Durham, North Carolina,
- 12 United States of America
- 13 <sup>‡</sup>Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam,
- 14 1105AZ Amsterdam, The Netherlands
- <sup>15</sup> <sup>§</sup>Division of Infection and Immunity, University College London, London WC1E 6BT,
- 16 United Kingdom
- 17 <sup>¶</sup>Department of Microbiology and Immunology, Weill Cornell Medical College, New York,
- 18 New York, United States of America.
- 19 <sup>II</sup>Department of Molecular Biology and Biochemistry, University of California, Irvine,
- 20 Irvine, California, United States of America

21

- 22 Corresponding author:
- 23 Donald N. Forthal; dnfortha@uci.edu; Tel: 949-824-3366

# 24 Funding:

- 25 This study was partially supported by the National Institute of Allergy and Infectious
- 26 Diseases under awards R01 Al118581 (DNF), R01 Al36082 (JPM and PJK), P01
- 27 AI110657 (JPM, RWS, MJ van G and PJK), HHSN272201800004C (CL and DCM) and
- 28 CHAVI-ID UM1AI100663 (LEM).

2

Journal of Virology

## 29 ABSTRACT

30

31 Immune complex (IC) vaccines have been successfully used to increase immune 32 responses against various pathogens, including HIV-1. Additionally, IC vaccines can induce qualitatively different antibody responses with distinct antigenic specificities 33 34 compared to the same antigens used alone. Here we measured the HIV-1-specific 35 antibody response in female New Zealand White rabbits after immunization with ICs 36 made from BG505 SOSIP.664 trimers (BG505 trimers) and three different rabbit 37 monoclonal antibodies (mAbs) with varying neutralization profiles. Two of the mAbs were specific for a hole in the glycan shield of the BG505 trimer while the third, which 38 39 bound less avidly, was specific for determinants at the gp41/gp120 interface. We found 40 that immunizing with one of the glycan hole-specific ICs resulted in lower levels of 41 trimer-binding antibodies compared to vaccination with the uncomplexed trimer and that 42 ICs made using either of the glycan hole-specific mAbs resulted in lower rates of anti-43 trimer antibody decay. We conclude that ICs based on mAbs that bound to the 44 immunodominant glycan hole epitope likely diverted antibody responses, to some 45 extent, away from this site and to other regions of the trimer. However, this outcome 46 was not accompanied by a widening of the breadth or an increase in the potency of 47 neutralizing antibody responses compared with uncomplexed trimers. 48

#### 49 **IMPORTANCE**

- 50 Immunodominant epitopes may suppress immune responses to more desirable
- 51 determinants, such as those that elicit potentially protective neutralizing antibody

52 responses. To overcome this problem, we attempted to mask immunodominant glycan 53 holes by immunizing rabbits with immune complexes (ICs) consisting of the BG505 54 SOSIP.664 gp140 trimer and monoclonal antibodies that target the glycan holes. We 55 found that IC vaccination likely diverted antibody responses, to some extent, away from 56 glycan holes and toward other regions of the trimer. IC vaccination resulted in a slower 57 decay of HIV-1-specific antibodies than did immunization with uncomplexed trimer. We 58 did not observe a widening of the breadth or an increase in the potency of neutralizing 59 antibody responses compared to uncomplexed trimers. Our results suggest that 60 selective epitope dampening of BG505 trimers by ICs is rather ineffective. However, IC 61 vaccination may represent a novel means of increasing the duration of vaccine-induced

62 63

#### 64 INTRODUCTION

antibody responses.

65 A major goal of HIV-1 vaccine design is to elicit neutralizing antibody (NAb) 66 responses with activity against a broad array of virus strains. This task has proven to be 67 difficult and will likely require immunogens that expose or mimic vulnerable sites on the native HIV-1 trimer (40). Toward that end, the BG505 SOSIP.664 envelope glycoprotein 68 69 (Env) trimer has been used in multiple animal immunization studies (4, 9, 20-23, 30, 39, 70 44, 48). The BG505 Env glycoprotein lacks N-glycosylation sites at positions 241 and 71 289 (23, 30). The resulting holes in the glycan shield expose immunodominant targets 72 that elicit NAbs specific to the sequence-matched, i.e., autologous, BG505.T332N virus, 73 which lacks the same N-glycosylation sites (22, 23, 30). Antibodies against sites of 74 vulnerability associated with neutralization breadth, such as the CD4 binding site

| 75 | (CD4bs), V1/V2 loop region, V3/Asn332 glycan patch, gp120/gp41-interface, or the            |
|----|---------------------------------------------------------------------------------------------|
| 76 | membrane proximal external region have not yet been elicited consistently by                |
| 77 | immunizing with the BG505 SOSIP trimer or other recombinant Env proteins (52, 53).          |
| 78 | It has been proposed that suppressing immunodominant non-NAb or narrow-                     |
| 79 | specificity NAb epitopes may help drive the emergence of neutralization breadth (2, 6,      |
| 80 | 8, 55). One way to decrease the immunogenicity of immunodominant regions is via             |
| 81 | epitope masking (1, 11, 15, 34, 42, 43, 45). For example, adding N-glycosylation sites to   |
| 82 | the V3 region or the 241/289-glycan hole epitope of the BG505 trimer suppresses the         |
| 83 | immunogenicity of its non-NAb epitopes and, in some cases, diverts the Nab responses        |
| 84 | to neo-epitopes (15, 37, 38). Antibodies, by forming immune complexes (ICs) with            |
| 85 | antigens, can also be used to mask immunogenic epitopes (49, 54, 56). Antibody              |
| 86 | binding can also change antigen stability and thereby affect processing pathways (7,        |
| 87 | 50) and T-cell epitope presentation (19). ICs have also been shown to induce                |
| 88 | qualitatively different antibody responses with distinct antigenic specificities from those |
| 89 | elicited by antigens alone and can enhance immune responses against various viral           |
| 90 | pathogens including HIV-1 (5, 19, 26-28, 49). Guided by these observations, we              |
| 91 | immunized rabbits with ICs formed between the BG505 SOSIP.664 trimer and rabbit             |
| 92 | mAbs that targeted either a glycan hole at positions 241 and 289 or an epitope located      |
| 93 | at the gp120-gp41 interface around residue 611 (3).                                         |
|    |                                                                                             |

Downloaded from http://jvi.asm.org/ on August 14, 2019 at University College London

## 94 MATERIALS and METHODS

95

## 96 Reagents

97 BG505 SOSIP.664 trimers were expressed in CHO cells and purified as described

98 previously [4]. Rabbit mAbs 11A, 11B, and 12A were transiently expressed, affinity

99 purified and checked for purity and integrity as previously described [6]. Human mAbs

100 PGT145 and F105, as well as the HIV-1 MN Env (15-mer) V3 peptides

101 CTRPNYNKRKRIHIG, RKRIHIGPGRAFYTT, and HIGPGRAFYTTKNII were obtained

102 from the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH.

103

## 104 Rabbit Immunization

105 Immunizations and blood sampling were carried out under subcontract by Pacific

106 Immunology (Ramona, CA). Prior to immunization, the BG505 trimers (30 µg/rabbit)

107 were incubated with or without one of the rabbit mAbs (32 µg/rabbit) for 30 min at room

- 108 temperature at a molar ratio of 1:3 and then formulated in 75 Units of ISCOMATRIX™
- 109 adjuvant. The immunization mixture was injected intramuscularly into female New
- 110 Zealand White (NZW) rabbits (5 rabbits per group). The use of rabbit antibodies for
- 111 immune complex formulation avoids anti-immune globulin responses after rabbit
- immunization. The animals were immunized at weeks 0, 4, and 20 and bled at weeks 0,
- 113 6, 8, 12, 16, 22, and 26 as previously described (10, 47).

114

115 **Ethic statement** 

The NZW rabbits were housed, immunized and bled at Pacific Immunology, in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and in adherence to the Guide for the Care and Use of Laboratory Animals, National Research Council, 1996.

120

#### 121 ELISA for anti-trimer antibodies

122 96-well ELISA plates were coated overnight at 4°C with the gp120 C5-epitope-123 specific antibody D7324 (500 ng/well). Wells were then washed and blocked in 5% 124 blocking solution (5% non-fat dry milk in DPBS, containing 0.05% Tween) for 1 hour at 125 37°C (39). After washing and blocking, plates were further incubated with D7324-126 epitope tagged BG505 trimers (50 ng/well) for 2 hours at 37°C. Duplicates of serially 127 diluted (1:5 in 1% blocking buffer) rabbit serum samples (starting at a dilution of 1:20) or 128 of mAbs (starting at 5 µg/ml) were added and incubated for 1 hour at 37°C. Unbound 129 antibodies were washed away and trimer-specific antibodies were detected with a goat 130 anti-rabbit IgG conjugated with horseradish peroxidase (HRP) diluted in 1% blocking 131 solution. After 1 hour, plates were washed, developed with 3,3', 5,5'-132 tetramethylbenzidine (TMB) solution, and subsequently read at 450 nm with a Synergy 2 plate reader (BioTek). Half maximum effective concentrations (EC<sub>50</sub>) were determined 133 134 and calculated using GraphPad Prism 7.0 software after applying a nonlinear regression 135 curve fit on the antibody binding curves. 136

137 Immune complex conformation assay

Journal of Virology

138 ELISA plates were coated with 2 µg/mL (100 ng/well) of a goat anti rabbit Fc-specific 139 antibody and incubated overnight at 4°C. Plates were then washed and blocked with 5% 140 blocking solution. In the meantime 1 µg/mL of mAbs 11A, 11B, and 12A were mixed 141 with 1 µg/mL of BG505 trimers and incubated for 45 min at 37°C. After blocking, ELISA 142 plates were washed and incubated with the mAb/BG505 trimer mixture for 1 hour at 143 37°C. IC formation was tested with a serial dilution (1:3) of human mAbs PGT145 and 144 F105. Diluted antibodies were incubated for 1 hour at 37°C. Bound antibodies were 145 detected by a HRP labeled goat anti-human Fab-specific antibody. Plates were 146 developed as described above.

147

# 148 Peptide ELISA

149 HIV-1 MN V3 envelope peptides (15-mers) were coated at 500 ng per well (10 µg/mL) 150 and incubated over night at 4°C. After washing, wells were blocked in 5% blocking 151 solution for 1 hour at 37°C. Replicates of diluted rabbit sera at week 0 (preimmune 152 serum control) as well as week 22 (1:100 dilutions in 1% blocking buffer) were added 153 and incubated for 1 hour at 37°C. Unbound antibody was removed by washing and 154 bound antibodies were detected by a goat anti rabbit IgG HRP conjugate. After 1 hour 155 at 37°C, plates were washed and detected as described above. Fold increase in signal 156 intensity of week 22 serum compared to week 0 serum from the same animal was 157 calculated.

158

159 Neutralization assays

Accepted Manuscript Posted Online

| 162 | inactivated test samples were serially diluted 1:3 in duplicate and incubated with a pre-       |
|-----|-------------------------------------------------------------------------------------------------|
| 163 | titered dose of the respective pseudotyped HIV-1 virions for 1 hour at 37°C. Freshly            |
| 164 | trypsinized TZM-bl cells (10,000 cells per well) were then added to each well and               |
| 165 | incubated for 48 hours at 37°C in the presence of DEAE-dextran (15 $\mu$ g/mL).                 |
| 166 | Luminescence was measured using the Britelite luminescence reporter gene assay                  |
| 167 | system (PerkinElmer Life Sciences). A virus control (cells and virus) and a background          |
| 168 | control (cells only) were used to calculate neutralization titers ( $ID_{50}$ ), defined as the |
| 169 | dilution at which relative luminescence units (RLU) were reduced by 50% compared to             |
| 170 | that in the virus control wells after subtraction of background control RLUs. All stocks of     |
| 171 | HIV-1 Env-pseudotyped viruses for neutralization assays were prepared by transfection           |
| 172 | in 293T-cells and were titrated in TZM-bl cells, as previously described (31).                  |
| 173 |                                                                                                 |
| 174 | Epitope mapping assays                                                                          |
| 175 | Epitope mapping of selected rabbit serum samples was performed at Duke University               |
| 176 | Medical Center and Weill Cornell Medical College (WCMC). Mapping at Duke was                    |
| 177 | conducted using the following BG505 virus mutants provided by WCMC: N133A,                      |
| 178 | N142A, N280D, S241N, P291T, and S241N + P291T. Further mapping at Duke was                      |
|     |                                                                                                 |

Neutralization activity of the rabbit sera at week 22 was measured with Env-

pseudotyped viruses in TZM-bl cells as described previously (31). In brief, heat-

- carried out with the CH119.10 virus variants: N88A, N160A, V295N, N332A, N611A, 179
- 180 and N625A as well as the 25710-2.43 virus mutants: N88A, N160K, N332A, and
- 181 N625A. Human monoclonal antibodies VRC01, CH01-31, VRC34.01, PG16, and
- 182 PGT128 were used as controls. All mutants were prepared and titrated as previously

 $\leq$ 

183 described (31). Differences in serum mapping were considered real when the calculated 184 ID<sub>50</sub>'s of the parental strain and the respective mutant were at least 3-fold different. For 185 values that were below our limit of detection ( $ID_{50}$  <30), we used one-half the cut-off 186  $(ID_{50}=15)$  for calculations. Mapping at WCMC was performed using the BG505 virus 187 mutants 133aN + 136aA, N241 KI + N289 KI, N356 KI, and N465 KI. Relative ID<sub>50</sub> 188 (RID<sub>50</sub>) and relative extent of neutralization (REN) were calculated at WCMC as 189 described elsewhere (22). In brief, for RID<sub>50</sub>, the ID<sub>50</sub> against the mutant is divided by 190 the ID<sub>50</sub> against the parental strain; for REN, the effect on neutralization is expressed as 191 the extent of inhibition of mutant strains divided by that of the parental strain at a 1/50 192 dilution of serum.

193

# 194 Statistics

195 Kruskal-Wallis tests with Dunn's multiple comparison tests were used to analyze

196 differences in continuous variables between groups. Correlations were analyzed using

197 Spearman's rho. Statistical analyses were conducted using GraphPad Prism 8.0.

198

199

10

#### 200 RESULTS

# 201 IC immunization modifies titers of anti-trimer binding antibodies

202 Four groups of rabbits were immunized with uncomplexed BG505 SOSIP.664 203 trimers (group D) or ICs formed between the trimer and three different rabbit mAbs 204 (Table I). The ICs consisted of the trimer bound to mAb 11A (group A), mAb 11B (group 205 B), or mAb 12A (group C) (30). MAbs 11A and 11B bind to similar glycan hole-epitopes 206 that are both in the vicinity of residue S241 and have very similar binding affinities (4.6 x  $10^{-10}$  M and 4.5 x  $10^{-10}$  M, respectively; **Table I**) (30). 11A and 11B neutralize the 207 208 parental BG505.T332N virus with IC<sub>50</sub> titers of 0.17 and 0.11  $\mu$ g/mL, respectively (30). 209 MAb 12A binds to the gp41/gp120 interface close to the epitope for the PGT151 bNAb and has a lower binding affinity for the BG505 trimer (7.9 x 10<sup>-8</sup>), compared to mAbs 210 11A or 11B (Table I) (3). MAb 12A very weakly neutralizes the parental virus (IC<sub>50</sub> titer 211 212 of 100 µg/mL), but very potently neutralizes the same virus from which the N611 glycan 213 is removed (IC<sub>50</sub> titer of 1.06  $\mu$ g/mL) (30). 214 The BG505 trimer batch used for the immunization was confirmed to have an 215 appropriate antigenic conformation by demonstrating its binding to mAbs 11A, 11B, and 216 12A (Figure 1A) as well as the trimer-specific mAb PGT145 but not to the gp120 217 monomer-specific mAb F105 (Figure 1B). We found no allosteric changes induced 218 upon IC formation based on our antibody controls PGT145 and F105 (Figure 2). 219 Serum samples from all immunization groups at week 0, 22, and 26 were

assessed for anti-trimer binding, and the midpoint titers (i.e. EC<sub>50</sub> titers) were calculated
after applying a nonlinear regression fit to the antibody binding curves. Using serum

samples obtained two weeks after the last immunization (i.e., week 22), we observed a

Journal of Virology

| 223 | significant difference in median anti-trimer binding antibody titers between the individual |
|-----|---------------------------------------------------------------------------------------------|
| 224 | groups ( $p = 0.0056$ ). In pair-wise analyses, the difference was due to a lower median    |
| 225 | binding titer in group A (mAb 11A ICs) compared with the trimer-only immunogen group        |
| 226 | D ( $p = 0.002$ ; Figure 3A). By week 26 (six weeks after the last immunization), anti-     |
| 227 | trimer titers had declined in all four groups (Figure 3B). However, compared to group D     |
| 228 | the rate of BG505-specific antibody midpoint titer decline was significantly slower for     |
| 229 | groups A ( $p = 0.042$ ; Kruskal-Wallis with Dunn's multiple comparison test) and B ( $p =$ |
| 230 | 0.006) but not for group C ( $p = 1.0$ ). There was a trend toward a slower rate of decline |
| 231 | for group B compared to group C ( $p = 0.090$ ). Group A titers declined more slowly than   |
| 232 | group C as well, but the difference was not statistically significant after adjusting for   |
| 233 | multiple comparisons ( $p = 0.39$ ).                                                        |
|     |                                                                                             |

234

## 235 <u>Neutralizing antibody responses are generally lower with IC immunization</u>

236 To determine if IC vaccination had an impact on virus neutralization, sera were 237 tested against a panel of tier-1 (n = 5) and tier-2 (n = 19) HIV-1 isolates at Duke (Figure 238 Autologous NAb responses to the autologous BG505.T332N virus were significantly 239 lower in group A than in group D animals (p = 0.01; Figure 5A). Correspondingly, Nab 240 titers against the parental strain BG505 were also significantly lower in group A 241 compared to group D (p = 0.049); Figure 5A). As previously reported, there was a 242 strong correlation (r = 0.83; p < 0.0001) between BG505.T332N NAb responses 243 measured as ID<sub>50</sub> and BG505.T332N anti-trimer binding antibody titers measured as 244 EC<sub>50</sub> (Figure 5B) (14, 35).

12

 $\geq$ 

 $\leq$ 

245

| 246 | from at least 4 out of 5 of the animals in each group ( $ID_{50} > 20$ ). Consistent with the |
|-----|-----------------------------------------------------------------------------------------------|
| 247 | antibody binding data, group A animals responded with lower NAb titers against each of        |
| 248 | these strains compared to the control group D, although the differences were not always       |
| 249 | statistically significant: <i>p</i> -values = 0.4 for MN_3; 0.049 for SF162_LS; and 0.21 for  |
| 250 | MW965_26 (Figure 5C). In the case of MN_3, the NAb responses for both group A and             |
| 251 | group B were significantly lower than for group C ( $p = 0.01$ and 0.03, respectively). For   |
| 252 | MW965_26, the responses in group A were significantly lower than in group C ( $p =$           |
| 253 | 0.008) ( <b>Figure 5C</b> ).                                                                  |
| 254 | Overall, neutralization breadth and potency against heterologous tier-2 strains               |
| 255 | (n=17) in our virus panel were limited and did not differ between the groups except for       |
| 256 | NAb titers in group B, which were significantly higher than in group C, ( $p = 0.039$ )       |
| 257 | (Figure 5D).                                                                                  |
| 258 |                                                                                               |
| 259 | Epitope mapping reveals various neutralizing antibody determinants                            |
| 260 | The most frequently targeted autologous NAb epitope in BG505 SOSIP-trimer                     |
| 261 | immunized rabbits is a hole in the glycan shield created by the absence of the N241 and       |
| 262 | N289 glycans (22, 30, 47). To assess whether the same or a different epitope(s) was           |
| 263 | targeted in the IC-immunized rabbits, we used the same method, based on                       |
| 264 | BG505.T332N mutant viruses, to analyze all the sera from groups B, C, and D (Figure           |
| 265 | 6A). The group A sera were not tested since the NAb titers against the wild-type              |
| 266 | BG505.T332N virus were too low to be mapped with any precision (22). According to             |
| 267 | the Duke mapping data, the virus mutants with the N241-glycan and/or P291T                    |
|     |                                                                                               |

We also looked at NAb titers against tier-1 strains that were neutralized by sera

268

269 five group B (1B, 3B, and 5B) and group C sera (2C, 3C, and 5C) as well as by four of 270 the five group D sera (2D, 3D, 4D, and 5D) (Figure 6A). In contrast, the NAbs in sera 271 2B, 4B, 1C, 4C and 1D did not target the N241/N289-glycan hole. This analysis suggests that, in most cases, immunization with ICs containing glycan-hole specific mAb 11B or gp120-gp41 interface-specific mAb 12A did not divert the NAb response away from the glycan hole that is predominantly targeted in the trimer-only group D. We conducted further mapping studies (WCMC) to characterize the NAb responses of samples 4B, 4C, 5C, and 1D against a previously described immunodominant C3/465 epitope (22). Based on partial resistance of the N142A.6 mutant, the response in serum 4B targeted the V1 loop, a rare but not unprecedented response to BG505 SOSIP trimers (Figure 6A) (22). The use of the 133aN + 136aA virus mutants at WCMC confirmed that the 4B serum neutralizing activity was directed against a V1 epitope (Figure 6B) (22). For serum 5C, the NAbs were directed against the C3/465 epitope. Of note is that the neutralization potency of serum from animal 5C 283 and the CD4bs-specific mAb VRC01 were highly affected by the N280D mutation 284 (Figure 6A). NAbs in sera 4C and 1D recognized the C3/465 epitope, albeit, to a lesser 285 extent than serum 5C (Figure 6B). 286 Serum from animal 2B, which had modest activity against the heterologous tier-2 287 virus, HIV-1<sub>CH119,10</sub> (Figure 4) and which did not target the N241/N289-glycan hole on 288 the BG505.T332N virus (**Figure 6A**), was further evaluated at Duke using a panel of 289 HIV-1<sub>CH119.10</sub> variants that can be differentiated by binding to bNAbs VRC34.01

substitution knocked in were predominantly resistant to neutralization by three of the

290 (gp120/gp41 interface), PG16 (V2 glycan), and PGT128 (V3 glycan) (Figure 7A).

14

| 291 | Serum 1D, which neutralized the heterologous tier 2 virus, $HIV-1_{a25710_{-2_{-43}}}$ (Figure 4), |
|-----|----------------------------------------------------------------------------------------------------|
| 292 | was studied in an analogous way via mutants of that virus (Figure 7B). None of the                 |
| 293 | HIV-1 <sub>CH119.10</sub> mutants was significantly resistant to serum 2B, implying that the NAbs  |
| 294 | present did not target the gp120/gp41 interface, the V2 glycan or the V3 glycan                    |
| 295 | epitopes; overall the Nab activity present in this serum could not be mapped to a known            |
| 296 | epitope. In contrast, reduction of neutralization in serum 1D by the N160K mutation was            |
| 297 | consistent with targeting of gp120/gp41 (VCR34.01-like). Targeting of V2 glycan (PG16-             |
| 298 | like activity) is also suggested by the lack of a >3-fold reduction in activity with the           |
| 299 | N160K mutation; however, the <3 fold-reduction in the 1D serum associated with the                 |
| 300 | N88A mutation makes V2 glycan targeting unclear.                                                   |
|     |                                                                                                    |

301

302 <u>Vaccination with ICs made with glycan-hole specific antibodies results in lower serum</u>
 303 anti-V3 antibody responses.

HIV-1 tier 1 viruses are highly sensitive to anti-V3 Abs (18). To test whether or not V3specific Ab was made to the V3 crown, we analyzed the immune sera of all groups against a set of HIV-1<sub>MN</sub> V3 peptides. Sera in groups A and B revealed lower binding signals (>2-fold) compared to sera in groups A and B (Figure 8A). The HIV-1<sub>MN</sub> V3specific binding signals correlated with the HIV-1<sub>MN\_3</sub> neutralization titers (r = 0.45; p =0.049; Figure 8B) suggesting the presence of neutralizing antibodies against the V3 crown.

 $\geq$ 

#### 311 DISCUSSION

312 In this study, we assessed the immunogenicity in rabbits of ICs composed of 313 BG505 SOSIP.664 trimers and rabbit mAbs directed against N241/N289 glycan hole or 314 gp120-gp41-interface epitopes. The ICs formed using the 11A mAb (glycan hole 315 epitope) induced lower titers of anti-trimer binding antibodies, compared with ICs made 316 with the other mAbs (including 11B to a similar epitope) or with the uncomplexed BG505 317 SOSIP trimer. Furthermore, immunizing with ICs based on either of the two glycan hole 318 mAbs resulted in 2-3 fold lower rates of binding-antibody decay compared to the 319 uncomplexed control group.

There was no increase in the potency or breadth of the NAb responses induced by ICs compared with the uncomplexed trimer. However, the formation of ICs using mAbs to the glycan hole epitope may have diverted the antibody responses, in some cases, away from that immunodominant autologous NAb epitope and to other regions of the BG505 virus.

325 Previous immunization studies with HIV-1 Env-based IC vaccines generally 326 resulted in increased Env-specific antibody binding titers and tier-1 NAbs titers 327 compared to uncomplexed vaccines (18, 19, 26, 27). However, the increase of Env-328 specific antibody responses was mostly attributed to allosteric effects between gp120 329 and CD4bs-specific antibodies that stabilized the V3 loop for better recognition and also 330 rendered the gp120 protein more resistant to proteolytic degradation (18). Here, we observed the opposite, with lower median BG505.T332N trimer-specific antibody titers 331 332 as well as lower autologous NAb titers against HIV-1<sub>BG505,T332N</sub> in all three IC groups 333 compared to the uncomplexed trimer group at week 22. We assume that direct masking 334 or shielding of immunodominant determinants by antibody may account for the lower

Downloaded from http://jvi.asm.org/ on August 14, 2019 at University College London

335 overall anti-trimer binding antibody responses we observed. This is in accordance with a 336 recent study finding that immunization with ICs consisting of HIV-1JR-FL gp120 and the 337 C2-specific mAb 1006-30D (which binds to epitopes that overlap mAb 11A and 11B 338 epitopes) resulted in overall lower antibody binding titers against gp120, the V1/V2 loop, 339 and the V3 loop, as well as lower NAb titers against the tier-1 isolate HIV-1<sub>SE162</sub>, 340 compared to the uncomplexed gp120 control (18, 33).

341 Immunization with ICs containing mAb 11A resulted in notably less antibody 342 binding and neutralization potency compared to the uncomplexed trimer. This outcome 343 was not seen with ICs based on mAb 11B, despite binding to a similar glycan-hole 344 epitope (30). The difference in neutralizing activity may relate to the fact that both mAbs 345 vary slightly in their epitope binding properties. MAb 11B binds closer to the Env apex 346 than does mAb 11A, which binds closer to the viral membrane. In addition, mAb 11A, 347 but not 11B, binds to the BG505 SOSIP.664 trimer with a S241N mutation, suggesting 348 more binding flexibility. In addition, compared to mAb 11B, MAb 11A has a 1.8-fold faster  $k_{on}$  rate (8.5 x 10<sup>4</sup> M/s vs. 4.6 x 10<sup>4</sup> M/s) and a 1.8-fold faster  $k_{off}$  rate (3.8 x 10<sup>-5</sup> 349 1/s vs. 2.1 x 10<sup>-5</sup> 1/s; Table 1). These different epitope binding properties might affect 350 351 binding of other nAbs through steric hindrance. Indeed, competition assays with mAbs 352 11A and 11B against a panel of human gp120-gp41 interface mAbs revealed 353 interference by mAb 11A, whereas mAb 11B had no effect (30). Finally, all of these 354 differences could affect the antigenicity, stability, and half-life of ICs and thus the 355 production of nAbs after rabbit immunization.

356 One of the primary goals of this study was to divert the immune response away 357 from an immunodominant glycan-hole at positions 241 and 289 by forming ICs with the Downloaded from http://jvi.asm.org/ on August 14, 2019 at University College London

358

| 359 | that blocking undesired epitopes on BG505 trimers lowered tier-1 NAb responses, using          |
|-----|------------------------------------------------------------------------------------------------|
| 360 | a different strategy (37), we found only two animals in group B, compared with one each        |
| 361 | in groups C and D, that had NAb responses against epitopes other than the glycan hole.         |
| 362 | Unfortunately, group A sera could not be evaluated thoroughly for glycan-hole-specific         |
| 363 | NAb responses, as NAb titers against the autologous HIV-1 isolate BG505.T332N were             |
| 364 | too low. Thus, blocking of glycan-hole reactivity by mAb 11B cannot be considered very         |
| 365 | effective. Nevertheless, mAb 11B might be considered an inferior blocker of the glycan         |
| 366 | hole than mAb 11A, based on the fact that mAb 11B cannot bind the BG505 trimer in              |
| 367 | the presence of a glycan at N241 (30). The fact that the gp120-gp41 interface-specific         |
| 368 | mAb 12A was ineffective at blocking immunodominant glycan hole-specific epitopes is            |
| 369 | possibly due to its notably lower affinity for BG505 trimers and the minimal effect that       |
| 370 | the absence of an N241 glycan has on 12A binding to BG505 trimers (30).                        |
| 371 | Most of the NAb responses were mapped to epitopes in the glycan hole.                          |
| 372 | However, sera from some animals were of particular interest. In the case of animal 2B,         |
| 373 | we were not able to map the neutralizing activity to any known epitope. This serum had         |
| 374 | low-level cross-neutralizing activity, with $ID_{50}$ titers >20 against 10 of 17 heterologous |
| 375 | tier 2 HIV-1 strains. Animal 5C revealed potential activity directed against the CD4bs,        |
| 376 | since the BG505.T332N virus mutant N280D was markedly resistant to neutralization.             |
| 377 | However, the NAb activity in serum 5C was also likely directed against the C3/465              |
| 378 | epitope cluster, given the 4-fold reduction in activity with the N241 KI + N289 KI mutant      |
| 379 | and an even stronger reduction with the N465-KI mutant. We believe that, overall, the          |
| 380 | polyclonal neutralizing activity of serum 5C was mainly associated with the C3/465             |
|     |                                                                                                |

glycan-hole specific mAbs 11A and 11B. Although it has been demonstrated previously

 $\leq$ 

Accepted Manuscript Posted Online

Journal of Virology

Σ

epitope cluster with the possible indirect effects of the N282D mutation. We observed
that deleting the N-glycosylation site from position N133 rendered the BG505.T332N
virus 5 fold more sensitive to NAbs in the sera of animals 2B and 4B. It has been shown
recently that the removal of specific N-glycosylation sites can have significant effects on
viral infectivity and antibody-mediated neutralization (51). For example, a mutation in V1
at position N133 (N133Q) increased the sensitivity of the virus (HIV-1<sub>CRF07\_BC Env, FE</sub>) to a
V3-specific antibody (3869) by 5 fold (51).

388 Finally, we observed a 2-3 fold slower rate of antibody decay in rabbits 389 immunized with ICs. Additional sampling at longer time intervals will be necessary to 390 confirm this finding in future studies. To our knowledge, a decrease in antibody decay 391 has not been previously ascribed to the use of IC immunogens. Although we have gone 392 no further to investigate the mechanisms of this delay in antibody decay, it is plausibly 393 associated with the recognition of ICs by Fcy receptors expressed on the surface of 394 antigen presenting cells; the ICs may thus be processed differently or at a different rate 395 (depot-effect) than the uncomplexed antigen (12, 17, 29, 36, 41). For example, Fcy 396 receptor-mediated antigen processing could impact B cell activation and differentiation 397 (13, 46) or germinal center memory B cells (24, 32, 57) and secondary antibody 398 responses (16). In addition, the formation of immune complexes in the presence of 399 complement factors could lead to a more efficient deposition of antigen on follicular 400 dendritic cells (25).

401

# 402 ACKNOWLEDGEMENTS

- 403
- 404 The authors thank Thomas Ketas and Albert Cupo for their excellent technical support
- 405 and Dennis Burton for providing mAbs 11A, 11B, and 12A as well as for his support of
- 406 LEM through CHAVI-ID.

408

Accepted Manuscript Posted Online

| 409 | 1.  | Ahmed, F. K., B. E. Clark, D. R. Burton, and R. Pantophlet. 2012. An engineered        |
|-----|-----|----------------------------------------------------------------------------------------|
| 410 |     | mutant of HIV-1 gp120 formulated with adjuvant Quil A promotes elicitation of          |
| 411 |     | antibody responses overlapping the CD4-binding site. Vaccine 30:922-930.               |
| 412 | 2.  | Angeletti, D., J. S. Gibbs, M. Angel, I. Kosik, H. D. Hickman, G. M. Frank, S. R.      |
| 413 |     | Das, A. K. Wheatley, M. Prabhakaran, D. J. Leggat, A. B. McDermott, and J. W.          |
| 414 |     | Yewdell. 2017. Defining B cell immunodominance to viruses. Nature immunology           |
| 415 |     | 18:456-463.                                                                            |
| 416 | 3.  | Bianchi, M., H. L. Turner, B. Nogal, C. A. Cottrell, D. Oven, M. Pauthner, R.          |
| 417 |     | Bastidas, R. Nedellec, L. E. McCov, I. A. Wilson, D. R. Burton, A. B. Ward, and L.     |
| 418 |     | Hangartner, 2018. Electron-Microscopy-Based Epitope Mapping Defines                    |
| 419 |     | Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope            |
| 420 |     | Trimer Immunization. Immunity 49:288-300 e288.                                         |
| 421 | 4.  | Capucci, S., E. G. Wee, T. Schiffner, C. C. LaBranche, N. Borthwick, A. Cupo, J.       |
| 422 |     | Dodd, H. Dean, O. Sattentau, D. Montefiori, P. J. Klasse, R. W. Sanders, J. P.         |
| 423 |     | Moore, and T. Hanke, 2017. HIV-1-neutralizing antibody induced by simian               |
| 424 |     | adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PloS         |
| 425 |     | one 12:e0181886.                                                                       |
| 426 | 5.  | Chen, Y., R. Wilson, S. O'Dell, J. Guenaga, Y. Feng, K. Tran, C. I. Chiang, H. E.      |
| 427 |     | Arendt, J. DeStefano, J. R. Mascola, R. T. Wyatt, and Y. Li. 2016. An HIV-1 Env-       |
| 428 |     | Antibody Complex Focuses Antibody Responses to Conserved Neutralizing                  |
| 429 |     | Epitopes. Journal of immunology 197:3982-3998.                                         |
| 430 | 6.  | Cheng, C., M. Pancera, A. Bossert, S. D. Schmidt, R. E. Chen, X. Chen, A. Druz, S.     |
| 431 |     | Narpala, N. A. Doria-Rose, A. B. McDermott, P. D. Kwong, and J. R. Mascola. 2015.      |
| 432 |     | Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a                  |
| 433 |     | Quaternary-Structure-Specific Antibody. Journal of virology 90:2740-2755.              |
| 434 | 7.  | Chien, P. C., Jr., S. Cohen, M. Tuen, J. Arthos, P. D. Chen, S. Patel, and C. E. Hioe. |
| 435 |     | 2004. Human immunodeficiency virus type 1 evades T-helper responses by                 |
| 436 |     | exploiting antibodies that suppress antigen processing. Journal of virology 78:7645-   |
| 437 |     | 7652.                                                                                  |
| 438 | 8.  | Dale, G. A., J. R. Shartouny, and J. Jacob. 2017. Quantifying the shifting landscape   |
| 439 |     | of B cell immunodominance. Nature immunology 18:367-368.                               |
| 440 | 9.  | de Taeye, S. W., A. T. de la Pena, A. Vecchione, E. Scutigliani, K. Sliepen, J. A.     |
| 441 |     | Burger, P. van der Woude, A. Schorcht, E. E. Schermer, M. J. van Gils, C. C.           |
| 442 |     | LaBranche, D. C. Montefiori, I. A. Wilson, J. P. Moore, A. B. Ward, and R. W.          |
| 443 |     | Sanders. 2018. Stabilization of the gp120 V3 loop through hydrophobic interactions     |
| 444 |     | reduces the immunodominant V3-directed non-neutralizing response to HIV-1              |
| 445 |     | envelope trimers. The Journal of biological chemistry 293:1688-1701.                   |
| 446 | 10. | de Taeye, S. W., G. Ozorowski, A. Torrents de la Pena, M. Guttman, J. P. Julien, T.    |
| 447 |     | L. van den Kerkhof, J. A. Burger, L. K. Pritchard, P. Pugach, A. Yasmeen, J.           |
| 448 |     | Crampton, J. Hu, I. Bontjer, J. L. Torres, H. Arendt, J. DeStefano, W. C. Koff, H.     |
| 449 |     | Schuitemaker, D. Eggink, B. Berkhout, H. Dean, C. LaBranche, S. Crotty, M.             |
| 450 |     | Crispin, D. C. Montefiori, P. J. Klasse, K. K. Lee, J. P. Moore, I. A. Wilson, A. B.   |

Journal of Virology

Journal of Virology

21

| 451 |     | Ward, and R. W. Sanders. 2015. Immunogenicity of Stabilized HIV-1 Envelope              |
|-----|-----|-----------------------------------------------------------------------------------------|
| 452 |     | Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell 163:1702-1715.         |
| 453 | 11. | Duan, H., X. Chen, J. C. Bovington, C. Cheng, Y. Zhang, A. J. Jafari, T. Stephens,      |
| 454 |     | Y. Tsybovsky, O. Kalyuzhniy, P. Zhao, S. Menis, M. C. Nason, E. Normandin, M.           |
| 455 |     | Mukhamedova, B. J. DeKosky, L. Wells, W. R. Schief, M. Tian, F. W. Alt, P. D.           |
| 456 |     | Kwong, and J. R. Mascola. 2018. Glycan Masking Focuses Immune Responses to the          |
| 457 |     | HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor                |
| 458 |     | Antibodies. Immunity 49:301-311 e305.                                                   |
| 459 | 12. | E Haddad, E. 2016. A Message from the Immune System: A Vaccine Technology in            |
| 460 |     | Needs of Exploration! International Journal of Vaccines & Vaccination 2.                |
| 461 | 13. | Fridman, W. H. 1993. Regulation of B-cell activation and antigen presentation by Fc     |
| 462 |     | receptors. Current opinion in immunology 5:355-360.                                     |
| 463 | 14. | Gach, J. S., A. Gorlani, E. Y. Dotsey, J. C. Becerra, C. T. Anderson, B. Berzins, P. L. |
| 464 |     | Felgner, D. N. Forthal, S. G. Deeks, T. J. Wilkin, J. P. Casazza, R. A. Koup, C.        |
| 465 |     | Katlama, B. Autran, R. L. Murphy, and C. J. Achenbach. 2016. HIV-1-Specific             |
| 466 |     | Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5             |
| 467 |     | Boost HIV Vaccine in HIV-Infected Subjects, PloS one 11:e0160341.                       |
| 468 | 15. | Garrity, R. R., G. Rimmelzwaan, A. Minassian, W. P. Tsai, G. Lin, J. J. de Jong, J.     |
| 469 |     | Goudsmit, and P. L. Nara. 1997. Refocusing neutralizing antibody response by            |
| 470 |     | targeted dampening of an immunodominant epitope. Journal of immunology                  |
| 471 |     | 159:279-289.                                                                            |
| 472 | 16. | Goins, C. L., C. P. Chappell, R. Shashidharamurthy, P. Selvaraj, and J. Jacob. 2010.    |
| 473 |     | Immune complex-mediated enhancement of secondary antibody responses. Journal            |
| 474 |     | of immunology 184:6293-6298.                                                            |
| 475 | 17. | Gosselin, E. J., K. Wardwell, D. R. Gosselin, N. Alter, J. L. Fisher, and P. M. Guyre.  |
| 476 |     | 1992. Enhanced antigen presentation using human Fc gamma receptor                       |
| 477 |     | (monocyte/macrophage)-specific immunogens. Journal of immunology 149:3477-              |
| 478 |     | 3481.                                                                                   |
| 479 | 18. | Hioe, C. E., R. Kumar, C. Upadhyay, M. Jan, A. Fox, V. Itri, K. K. Peachman, M.         |
| 480 |     | Rao, L. Liu, N. C. Lo, M. Tuen, X. Jiang, X. P. Kong, and S. Zolla-Pazner. 2018.        |
| 481 |     | Modulation of Antibody Responses to the V1V2 and V3 Regions of HIV-1 Envelope           |
| 482 |     | by Immune Complex Vaccines. Frontiers in immunology 9:2441.                             |
| 483 | 19. | Hioe, C. E., M. L. Visciano, R. Kumar, J. Liu, E. A. Mack, R. E. Simon, D. N. Levy,     |
| 484 |     | and M. Tuen. 2009. The use of immune complex vaccines to enhance antibody               |
| 485 |     | responses against neutralizing epitopes on HIV-1 envelope gp120. Vaccine 28:352-        |
| 486 |     | 360.                                                                                    |
| 487 | 20. | Hu, J. K., J. C. Crampton, A. Cupo, T. Ketas, M. J. van Gils, K. Sliepen, S. W. de      |
| 488 |     | Taeye, D. Sok, G. Ozorowski, I. Deresa, R. Stanfield, A. B. Ward, D. R. Burton, P. J.   |
| 489 |     | Klasse, R. W. Sanders, J. P. Moore, and S. Crotty. 2015. Murine Antibody                |
| 490 |     | <b>Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in</b>     |
| 491 |     | Specificity. Journal of virology 89:10383-10398.                                        |
| 492 | 21. | Huang, J., B. H. Kang, M. Pancera, J. H. Lee, T. Tong, Y. Feng, H. Imamichi, I. S.      |
| 493 |     | Georgiev, G. Y. Chuang, A. Druz, N. A. Doria-Rose, L. Laub, K. Sliepen, M. J. van       |
| 494 |     | Gils, A. T. de la Pena, R. Derking, P. J. Klasse, S. A. Migueles, R. T. Bailer, M.      |
| 495 |     | Alam, P. Pugach, B. F. Haynes, R. T. Wyatt, R. W. Sanders, J. M. Binley, A. B.          |
| 496 |     | Ward, J. R. Mascola, P. D. Kwong, and M. Connors. 2014. Broad and potent HIV-1          |
|     |     |                                                                                         |

 $\leq$ 

Journal of Virology

| <ul> <li>515:138-142.</li> <li>Klasse, P. J., T. J. Ketas, C. A. Cottrell, G. Ozorowski, G. Debnath, D. Camara, E. Francomano, P. Pugach, R. P. Ringe, C. C. LaBranche, M. J. van Gils, C. A. Bricault, D. H. Barouch, S. Crotty, G. Silvestri, S. Kasturi, B. Pulendran, I. A. Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018.</li> <li>Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P. Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T. Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens 12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine. Journal of AlDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex vaccine. Journal of AlDS &amp; clinical research S8.</li> <li>Moctoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulu, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cott</li></ul>                                                                                                                     | 497 |     | neutralization by a human antibody that binds the gp41-gp120 interface. Nature       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------------------------------------------------------------------|
| <ol> <li>Klasse, P. J., T. J. Ketas, C. A. Cottrell, G. Ozorowski, G. Debnath, D. Camara, E. Francomano, P. Pugach, R. P. Ringe, C. C. LaBranche, M. J. van Gils, C. A. Bricault, D. H. Barouch, S. Crotty, G. Silvestri, S. Kasturi, B. Pulendran, I. A. Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018. Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P. Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T. Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens 12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing Epitope of HIV: Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex vbinding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of ex</li></ol>                                                                                                             | 498 |     | 515:138-142.                                                                         |
| <ul> <li>Francomano, P. Pugach, R. P. Ringe, C. C. LaBranche, M. J. van Gils, C. A.</li> <li>Bricault, D. H. Barouch, S. Crotty, G. Silvestri, S. Kasturi, B. Pulendran, I. A.</li> <li>Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018.</li> <li>Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505</li> <li>SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P.</li> <li>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.</li> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope</li> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens</li> <li>Li2e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells</li> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.</li> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine Journal of AIDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex vaccines. Vaccine Journal of AIDS &amp; clinical research S0.</li> <li>MeCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.</li> <li>W. Kulp, M. S. Macauley, D. Sok, M. Pau</li></ul>                                                                                                                                                         | 499 | 22. | Klasse, P. J., T. J. Ketas, C. A. Cottrell, G. Ozorowski, G. Debnath, D. Camara, E.  |
| <ul> <li>Bricault, D. H. Barouch, S. Crotty, G. Silvestri, S. Kasturi, B. Pulendran, I. A.</li> <li>Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018.</li> <li>Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505</li> <li>SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P.</li> <li>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.</li> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope</li> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens</li> <li>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells</li> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving</li> <li>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex</li> <li>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.</li> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3</li> <li>epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research 58.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of experimental medicine 211:1637-1655.</li> <li>McCoy, I. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macaul</li></ul>                                                                                                                                                                 | 500 |     | Francomano, P. Pugach, R. P. Ringe, C. C. LaBranche, M. J. van Gils, C. A.           |
| <ul> <li>Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018.</li> <li>Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505</li> <li>SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P.</li> <li>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.</li> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope</li> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens</li> <li>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells</li> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-</li> <li>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving</li> <li>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex</li> <li>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.</li> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3</li> <li>epitope of HIV 1-1 by immune complex vaccines. Vaccine. Justral 5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing</li> <li>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;</li> <li>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged</li> <li>antigen presentation by immune complex vaccines. Vaccine. Journal of AIDS &amp;</li> <li>Clinical research S8.</li> <li>Mcotoy, L. E., M. J. van Gils, G. Ozorowski, T.</li></ul>                                                                                                                                                                                 | 501 |     | Bricault, D. H. Barouch, S. Crotty, G. Silvestri, S. Kasturi, B. Pulendran, I. A.    |
| <ul> <li>Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505</li> <li>SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P.</li> <li>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.</li> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope</li> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens</li> <li>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells</li> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving</li> <li>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex</li> <li>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.</li> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3</li> <li>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing</li> <li>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of experimental medicine 2111:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macauley, D. Sok,</li></ul>                                                                                                                                                                 | 502 |     | Wilson, D. C. Montefiori, R. W. Sanders, A. B. Ward, and J. P. Moore. 2018.          |
| <ul> <li>SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.</li> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P. Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T. Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens 12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of experimental medicine 211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L. Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R. Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing HV neutralization via landing enperimental medicine 211:1637-1655.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene assay. Methods in mole</li></ul>                                                                             | 503 |     | Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505    |
| <ol> <li>Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P.<br/>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.<br/>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.<br/>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope<br/>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLOS pathogens<br/>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells<br/>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex vaccine. Benrey, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters</li></ol>                                     | 504 |     | SOSIP trimers in rabbits and macaques. PLoS pathogens 14:e1006913.                   |
| <ul> <li>Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.</li> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope</li> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens</li> <li>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells</li> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving</li> <li>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.</li> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CDB T cells. The Journal of experimental medicine 211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L. Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R. Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2</li></ul>                                                                                                                                             | 505 | 23. | Klasse, P. J., C. C. LaBranche, T. J. Ketas, G. Ozorowski, A. Cupo, P. Pugach, R. P. |
| <ul> <li>Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.</li> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope<br/>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens<br/>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells<br/>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cern</li></ul>                                                 | 506 |     | Ringe, M. Golabek, M. J. van Gils, M. Guttman, K. K. Lee, I. A. Wilson, S. T.        |
| <ul> <li>Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope<br/>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens<br/>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells<br/>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cel</li></ul>                                         | 507 |     | Butera, A. B. Ward, D. C. Montefiori, R. W. Sanders, and J. P. Moore. 2016.          |
| <ul> <li>Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens<br/>12:e1005864.</li> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells<br/>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S.</li></ul>  | 508 |     | Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope              |
| <ol> <li>12:e1005864.</li> <li>24. Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>25. Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Frontiers in immunology 7:225.</li> <li>26. Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29:9064-9074.</li> <li>27. Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>28. Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of experimental medicine 211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L. Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R. Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene assay. Methods in molecular biology 485:395-405.</li> <li>32. Nię, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the repertoire of antigen-reactive B cells in the germinal centers. European journal of immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H.</li></ol>                                                                                                                         | 509 |     | Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS pathogens                |
| <ol> <li>Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells<br/>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsuch, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zo</li></ol>                                         | 510 |     | 12:e1005864.                                                                         |
| <ul> <li>with preformed antigen-antibody complexes. Immunology 34:643-652.</li> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>M. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions o</li></ul> | 511 | 24. | Klaus, G. G. 1978. The generation of memory cells. II. Generation of B memory cells  |
| <ol> <li>Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-<br/>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-710</li></ol>                                 | 512 |     | with preformed antigen-antibody complexes. Immunology 34:643-652.                    |
| <ul> <li>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Cell Antigenome. Frontiers in immunology 7:225.</li> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                            | 513 | 25. | Kranich, J., and N. J. Krautler. 2016. How Follicular Dendritic Cells Shape the B-   |
| <ol> <li>Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving<br/>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ol>                                                                                                                                                                              | 514 |     | Cell Antigenome. Frontiers in immunology 7:225.                                      |
| <ul> <li>immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex<br/>formation. Vaccine 29:9064-9074.</li> <li>27. Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>28. Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertorie of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                            | 515 | 26. | Kumar, R., M. Tuen, H. Li, D. B. Tse, and C. E. Hioe. 2011. Improving                |
| <ul> <li>formation. Vaccine 29:9064-9074.</li> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                        | 516 |     | immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex          |
| <ol> <li>Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.<br/>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3<br/>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertorie of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                  | 517 |     | formation. Vaccine 29:9064-9074.                                                     |
| <ul> <li>Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3</li> <li>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing</li> <li>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;</li> <li>clinical research S8.</li> <li>29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged</li> <li>antigen presentation by immune complex-binding dendritic cells programs the</li> <li>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine</li> <li>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.</li> <li>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.</li> <li>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.</li> <li>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target</li> <li>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene</li> <li>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the</li> <li>repertoire of antigen-reactive B cells in the germinal centers. European journal of</li> <li>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | 518 | 27. | Kumar, R., M. Tuen, J. Liu, A. Nadas, R. Pan, X. Kong, and C. E. Hioe. 2013.         |
| <ul> <li>epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.</li> <li>Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 519 |     | Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3  |
| <ol> <li>28. Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing<br/>Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp;<br/>clinical research S8.</li> <li>29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520 |     | epitopes of HIV-1 by immune complex vaccines. Vaccine 31:5413-5421.                  |
| <ul> <li>522 Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &amp; clinical research S8.</li> <li>524 29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. The Journal of experimental medicine 211:1637-1655.</li> <li>528 30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D. W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L. Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R. Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the repertoire of antigen-reactive B cells in the germinal centers. European journal of immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S. Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary human immunodeficiency virus type 1 virions of group M. Journal of virology 74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 521 | 28. | Kumar, R., M. L. Visciano, H. Li, and C. Hioe. 2012. Targeting a Neutralizing        |
| <ul> <li>clinical research S8.</li> <li>29. Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 522 |     | Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. Journal of AIDS &           |
| <ol> <li>Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged<br/>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 523 |     | clinical research S8.                                                                |
| <ul> <li>antigen presentation by immune complex-binding dendritic cells programs the<br/>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 524 | 29. | Leon, B., A. Ballesteros-Tato, T. D. Randall, and F. E. Lund. 2014. Prolonged        |
| <ul> <li>proliferative capacity of memory CD8 T cells. The Journal of experimental medicine<br/>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 525 |     | antigen presentation by immune complex-binding dendritic cells programs the          |
| <ul> <li>211:1637-1655.</li> <li>30. McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.<br/>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.<br/>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.<br/>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 526 |     | proliferative capacity of memory CD8 T cells. The Journal of experimental medicine   |
| <ol> <li>McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.</li> <li>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.</li> <li>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.</li> <li>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target</li> <li>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene</li> <li>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the</li> <li>repertoire of antigen-reactive B cells in the germinal centers. European journal of</li> <li>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 527 |     | 211:1637-1655.                                                                       |
| <ul> <li>W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.</li> <li>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.</li> <li>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target</li> <li>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene</li> <li>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the</li> <li>repertoire of antigen-reactive B cells in the germinal centers. European journal of</li> <li>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 528 | 30. | McCoy, L. E., M. J. van Gils, G. Ozorowski, T. Messmer, B. Briney, J. E. Voss, D.    |
| <ul> <li>Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.</li> <li>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target</li> <li>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene</li> <li>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the</li> <li>repertoire of antigen-reactive B cells in the germinal centers. European journal of</li> <li>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 529 |     | W. Kulp, M. S. Macauley, D. Sok, M. Pauthner, S. Menis, C. A. Cottrell, J. L.        |
| <ul> <li>Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target<br/>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 530 |     | Torres, J. Hsueh, W. R. Schief, I. A. Wilson, A. B. Ward, R. W. Sanders, and D. R.   |
| <ul> <li>of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.</li> <li>31. Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>32. Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 531 |     | Burton. 2016. Holes in the Glycan Shield of the Native HIV Envelope Are a Target     |
| <ul> <li>Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene<br/>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 532 |     | of Trimer-Elicited Neutralizing Antibodies. Cell reports 16:2327-2338.               |
| <ul> <li>assay. Methods in molecular biology 485:395-405.</li> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 533 | 31. | Montefiori, D. C. 2009. Measuring HIV neutralization in a luciferase reporter gene   |
| <ol> <li>Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the<br/>repertoire of antigen-reactive B cells in the germinal centers. European journal of<br/>immunology 27:3517-3525.</li> <li>Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.<br/>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary<br/>human immunodeficiency virus type 1 virions of group M. Journal of virology<br/>74:7096-7107.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 534 |     | assay. Methods in molecular biology 485:395-405.                                     |
| <ul> <li>repertoire of antigen-reactive B cells in the germinal centers. European journal of</li> <li>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 535 | 32. | Nie, X., S. Basu, and J. Cerny. 1997. Immunization with immune complex alters the    |
| <ul> <li>immunology 27:3517-3525.</li> <li>33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 536 |     | repertoire of antigen-reactive B cells in the germinal centers. European journal of  |
| <ul> <li>538 33. Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.</li> <li>539 Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary</li> <li>540 human immunodeficiency virus type 1 virions of group M. Journal of virology</li> <li>541 74:7096-7107.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 537 |     | immunology 27:3517-3525.                                                             |
| 539Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary540human immunodeficiency virus type 1 virions of group M. Journal of virology54174:7096-7107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 538 | 33. | Nyambi, P. N., H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S.      |
| 540human immunodeficiency virus type 1 virions of group M. Journal of virology54174:7096-7107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 539 |     | Zolla-Pazner. 2000. Conserved and exposed epitopes on intact, native, primary        |
| 541 <b>74:7096-7107.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 540 |     | human immunodeficiency virus type 1 virions of group M. Journal of virology          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 541 |     | 74:7096-7107.                                                                        |

Σ

| 542 | 34.  | Pantophlet, R., I. A. Wilson, and D. R. Burton. 2003. Hyperglycosylated mutants of    |
|-----|------|---------------------------------------------------------------------------------------|
| 543 |      | human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens           |
| 544 |      | for HIV vaccine design. Journal of virology 77:5889-5901.                             |
| 545 | 35.  | Pauthner, M., C. Havenar-Daughton, D. Sok, J. P. Nkolola, R. Bastidas, A. V.          |
| 546 |      | Boopathy, D. G. Carnathan, A. Chandrashekar, K. M. Cirelli, C. A. Cottrell, A. M.     |
| 547 |      | Eroshkin, J. Guenaga, K. Kaushik, D. W. Kulp, J. Liu, L. E. McCov, A. L. Oom, G.      |
| 548 |      | Ozorowski, K. W. Post, S. K. Sharma, J. M. Steichen, S. W. de Taeve, T. Tokatlian,    |
| 549 |      | A. Torrents de la Pena, S. T. Butera, C. C. LaBranche, D. C. Montefiori, G.           |
| 550 |      | Silvestri, I. A. Wilson, D. J. Irvine, R. W. Sanders, W. R. Schief, A. B. Ward, R. T. |
| 551 |      | Wyatt, D. H. Barouch, S. Crotty, and D. R. Burton, 2017. Elicitation of Robust Tier   |
| 552 |      | 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope                |
| 553 |      | Trimer Immunization Using Optimized Approaches. Immunity 46:1073-1088 e1076.          |
| 554 | 36.  | Platzer, B., M. Stout, and E. Fiebiger, 2014, Antigen cross-presentation of immune    |
| 555 | 0.01 | complexes. Frontiers in immunology 5:140.                                             |
| 556 | 37.  | Ringe, R. P., G. Ozorowski, K. Rantalainen, W. B. Struwe, K. Matthews, J. L.          |
| 557 | •••• | Torres, A. Yasmeen, C. A. Cottrell, T. J. Ketas, C. C. LaBranche, D. C. Montefiori,   |
| 558 |      | A. Cupo, M. Crispin, I. A. Wilson, A. B. Ward, R. W. Sanders, P. J. Klasse, and J.    |
| 559 |      | P. Moore, 2017. Reducing V3 Antigenicity and Immunogenicity on Soluble. Native-       |
| 560 |      | Like HIV-1 Env SOSIP Trimers, Journal of virology 91.                                 |
| 561 | 38.  | Ringe, R. P., P. Pugach, C. A. Cottrell, C. C. LaBranche, G. E. Seabright, T. J.      |
| 562 | 000  | Ketas, G. Ozorowski, S. Kumar, A. Schorcht, M. J. van Gils, M. Crispin, D. C.         |
| 563 |      | Montefiori, J. A. Wilson, A. B. Ward, R. W. Sanders, P. J. Klasse, and J. P. Moore.   |
| 564 |      | 2018. Closing and opening holes in the glycan shield of HIV-1 envelope glycoprotein   |
| 565 |      | SOSIP trimers can redirect the neutralizing antibody response to the newly            |
| 566 |      | unmasked epitopes. Journal of virology.                                               |
| 567 | 39.  | Sanders, R. W., R. Derking, A. Cuno, J. P. Julien, A. Vasmeen, N. de Val, H. J. Kim,  |
| 568 | 071  | C. Blattner, A. T. de la Pena, J. Korzun, M. Golabek, K. de Los Reves, T. J. Ketas,   |
| 569 |      | M. J. van Gils, C. R. King, I. A. Wilson, A. B. Ward, P. J. Klasse, and J. P. Moore,  |
| 570 |      | 2013. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664            |
| 571 |      | gn140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing  |
| 572 |      | antibodies. PLoS pathogens 9:e1003618.                                                |
| 573 | 40.  | Sanders, R. W., and J. P. Moore, 2017. Native-like Env trimers as a platform for      |
| 574 | 101  | HIV-1 vaccine design. Immunological reviews 275:161-182.                              |
| 575 | 41.  | Schuurhuis, D. H., A. Ioan-Facsinay, B. Nagelkerken, J. J. van Schin, C. Sedlik, C.   |
| 576 |      | J. Melief, J. S. Verbeek, and F. Ossendorp, 2002. Antigen-antibody immune             |
| 577 |      | complexes empower dendritic cells to efficiently prime specific CD8+ CTL              |
| 578 |      | responses in vivo. Journal of immunology 168:2240-2246.                               |
| 579 | 42.  | Selvaraiah, S., B. Puffer, R. Pantophlet, M. Law, R. W. Doms, and D. R. Burton.       |
| 580 |      | 2005. Comparing antigenicity and immunogenicity of engineered gp120. Journal of       |
| 581 |      | virology 79:12148-12163.                                                              |
| 582 | 43.  | Selvarajah, S., B. A. Puffer, F. H. Lee, P. Zhu, Y. Li, R. Wyatt, K. H. Roux, R. W.   |
| 583 |      | Doms, and D. R. Burton. 2008. Focused dampening of antibody response to the           |
| 584 |      | immunodominant variable loops by engineered soluble gn140. AIDS research and          |
| 585 |      | human retroviruses 24:301-314.                                                        |
| 586 | 44.  | Sliepen, K., G. Ozorowski, J. A. Burger, T. van Montfort, M. Stunnenberg, C.          |
| 587 |      | LaBranche, D. C. Montefiori, J. P. Moore, A. B. Ward, and R. W. Sanders. 2015.        |
|     |      |                                                                                       |
|     |      |                                                                                       |

Σ

588 Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves 589 their immunogenicity. Retrovirology 12:82. 590 45. Sliepen, K., T. van Montfort, M. Melchers, G. Isik, and R. W. Sanders. 2015. 591 Immunosilencing a highly immunogenic protein trimerization domain. The Journal 592 of biological chemistry 290:7436-7442. 593 Soderberg, L. S. 1983. Antigen-antibody complex binding and cell interaction in 46. 594 stimulating normal rabbit lymphocytes. Proceedings of the Society for Experimental 595 Biology and Medicine. Society for Experimental Biology and Medicine 174:229-238. 596 47. Torrents de la Pena, A., S. W. de Taeye, K. Sliepen, C. C. LaBranche, J. A. Burger, 597 E. E. Schermer, D. C. Montefiori, J. P. Moore, P. J. Klasse, and R. W. Sanders. 598 2018. Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and 599 C, Given Individually, Sequentially, or in Combination. Journal of virology 92. 600 48. Torrents de la Pena, A., J. P. Julien, S. W. de Taeye, F. Garces, M. Guttman, G. 601 Ozorowski, L. K. Pritchard, A. J. Behrens, E. P. Go, J. A. Burger, E. E. Schermer, 602 K. Sliepen, T. J. Ketas, P. Pugach, A. Yasmeen, C. A. Cottrell, J. L. Torres, C. D. 603 Vavourakis, M. J. van Gils, C. LaBranche, D. C. Montefiori, H. Desaire, M. Crispin, 604 P. J. Klasse, K. K. Lee, J. P. Moore, A. B. Ward, I. A. Wilson, and R. W. Sanders. 605 2017. Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by 606 Hyperstabilization. Cell reports 20:1805-1817. 49. Tsouchnikas, G., J. Zlatkovic, J. Jarmer, J. Strauss, O. Vratskikh, M. Kundi, K. 607 608 Stiasny, and F. X. Heinz. 2015. Immunization with Immune Complexes Modulates 609 the Fine Specificity of Antibody Responses to a Flavivirus Antigen. Journal of virology 89:7970-7978. 610 50. Tuen, M., M. L. Visciano, P. C. Chien, Jr., S. Cohen, P. D. Chen, J. Robinson, Y. He, 611 612 A. Pinter, M. K. Gorny, and C. E. Hioe. 2005. Characterization of antibodies that 613 inhibit HIV gp120 antigen processing and presentation. European journal of 614 immunology 35:2541-2551. Wang, W., J. Nie, C. Prochnow, C. Truong, Z. Jia, S. Wang, X. S. Chen, and Y. 615 51. 616 Wang. 2013. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology 10:14. 617 Ward, A. B., and I. A. Wilson. 2017. The HIV-1 envelope glycoprotein structure: 618 52. 619 nailing down a moving target. Immunological reviews 275:21-32. 620 53. West, A. P., Jr., L. Scharf, J. F. Scheid, F. Klein, P. J. Bjorkman, and M. C. 621 Nussenzweig. 2014. Structural insights on the role of antibodies in HIV-1 vaccine 622 and therapy. Cell 156:633-648. 54. 623 Williams, J. G., K. B. Tomer, C. E. Hioe, S. Zolla-Pazner, and P. J. Norris. 2006. 624 The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as 625 determined by limited proteolysis, chemical modification, and mass spectrometry. Journal of the American Society for Mass Spectrometry 17:1560-1569. 626 Woodruff, M. C., E. H. Kim, W. Luo, and B. Pulendran. 2018. B Cell Competition 627 55. 628 for Restricted T Cell Help Suppresses Rare-Epitope Responses. Cell reports 25:321-629 327 e323. 630 56. Zarnitsyna, V. I., A. H. Ellebedy, C. Davis, J. Jacob, R. Ahmed, and R. Antia. 2015. Masking of antigenic epitopes by antibodies shapes the humoral immune response 631 to influenza. Philosophical transactions of the Royal Society of London. Series B, 632 633 **Biological sciences 370.** 

25

Journal of Virology

| 634<br>635<br>636<br>637<br>638 | 57. | Zheng, B., K. Switzer, E. Marinova, D. Wansley, and S. Han. 2007. Correction of age-associated deficiency in germinal center response by immunization with immune complexes. Clinical immunology 124:131-137. |
|---------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

639

Journal of Virology

Σ

Journal of Virology

# 640 FIGURE LEGENDS

- 641
- 642

Figure 1. Binding of mAbs 11A, 11B, and 12A to BG505 SOSIP.664 trimers. (A)
MAb binding to trimers immobilized with D7324 antibody was measured by ELISA. (B)
BG505 SOSIP.664 trimer binds to the quaternary, configuration-dependent human mAb
PGT145 but not to the human mAb F105, which is directed against a non-NAb epitope
associated with the CD4bs. MAbs were tested in duplicate. Curve fitting was performed
with GraphPad Prism 8.0 software.

- 649
- **Figure 2. Trimer-mAb immune complex formation does not impact mAb PGT145**
- 651 or mAb F105 binding. Antigenicity of immune complexes captured by polyclonal anti-
- 652 rabbit antibody was determined by binding with the conformation-dependent mAb
- 653 PGT145 or the conformation-independent mAb F105. MAbs were tested in duplicate.
- 654 Curve fitting was performed with GraphPad Prism 8.0 software.
- 655

Figure 3. IC immunization may decrease anti-trimer binding antibody responses
and the rate of antibody decay. (A) Antibody binding to the BG505 SOSIP.664 trimer
of individual sera from animals in each group was measured by ELISA at week 22. (B)
Binding responses at weeks 22 and 26 are plotted. Thick lines represent the median
rate of decay. Median decay rates are as follows: -0.05 (Group A), -0.04 (Group B), -0.1
(Group C), and -0.15 (Group D). *P*-values were calculated using Kruskal-Wallis with
Dunn's multiple comparison tests.

| 669 | Figure 5. IC immunization affects some NAb responses. (A) Autologous                |
|-----|-------------------------------------------------------------------------------------|
| 670 | neutralization potency against BG505_T332N and BG505 is reduced in sera from group  |
| 671 | A animals. (B) Neutralizing antibody responses correlate with ELISA binding titers. |

Binding (EC<sub>50</sub>) and neutralization results ( $ID_{50}$ ) were analyzed by Spearman correlation. 672

Figure 4. IC immunization does not alter the breadth of NAb responses. Data

represent serum ID<sub>50</sub> titers measured from week-22 sera using Env-pseudotyped

neutralization: ID<sub>50</sub> <40 (white); ID<sub>50</sub> 40-100 (yellow); ID<sub>50</sub> 100-1000 (orange); ID<sub>50</sub>

viruses and TZM-bl target cells. Boxes are color coded according to the magnitude of

>1000 (red). SVA-MLV was used as a negative control virus, and mAb CH01 served as

673 (C) For certain tier-1 HIV-1 strains, neutralizing activity is decreased by IC

674 immunization. Results are shown for the three HIV-1 strains (indicated above each

675 graph) that were neutralized at an  $ID_{50}$  titer > 20 by four out of five animals. (D)

676 Neutralizing activity against tier-2 strains is limited and does not differ between

677 vaccination groups except for group B versus group C (see also Figure 4). For data

678 analysis, ID<sub>50</sub> titers <20 and >43740 were considered to equal 20 and 43740,

679 respectively. P-values were determined by the Kruskal-Wallis test followed by Dunn's

680 multiple comparisons test.

#### 681 Figure 6. Antibody responses to IC immunogens and uncomplexed trimers are

682 predominantly directed against epitopes in the glycan hole. (A) BG505.T332N virus

- 683 variants were used to map neutralizing determinants in all sera except those in group A,
- 684 for which the NAb titers were too low. Determinants involved in neutralizing responses
- 685 are color coded and are identified by an at least 3-fold reduction in NAb titer against

<u>Journ</u>al of Virology

686

687 detection limit ( $ID_{50}$  <30), one-half of the cut-off ( $ID_{50}$  =15) was used for calculations. 688 Mapping was conducted at Duke. (B) Further mapping was performed at WCMC using 689 BG505 virus mutants with sequence changes affecting V1 (133aN+136aA), CD4bs 690 (N356 KI), and a newly identified glycan epitope (N465 KI). RID<sub>50</sub> (relative ID<sub>50</sub>) refers to the ID<sub>50</sub> against mutant)/ID<sub>50</sub> against the parental BG505 strain. REN (relative extent of 691 692 neutralization) is the ratio of the extent of neutralization of the mutant compared with the 693 parental strain using IgG corresponding to a 1/50 dilution of serum. 694 Figure 7. Mapping of neutralizing determinants in sera 2B and 1D. (A) Antibody 695 mapping of serum from animal 2B at week 0 and week 22 was performed with variants 696 derived from HIV-1<sub>CH119,10</sub>. (B) Serum from animal 1D was tested against a panel of

variants containing mutations in relevant epitopes. For values that were below the

 $^{697}$  variants derived from HIV-1  $_{25710-2.43}$ . The human mAbs VRC34.01, PG16, and PGT128  $^{698}$  were used as controls. ID<sub>50</sub> values are reported for serum samples and IC<sub>50</sub> values for  $^{699}$  the control mAbs. Serum samples were tested in duplicate.

700 Figure 8. IC immunization resulted in variable binding to HIV-1 MN V3 peptides,

which correlated with neutralizing activity against HIV-1<sub>MN\_3</sub>. (A) Sera of all groups
 were tested in by ELISA for binding against three overlapping V3 peptides. All samples

703 were tested in duplicate. (B) HIV-1<sub>MN\_3</sub> neutralization correlates with HIV-1 MN V3

704 peptide binding as analyzed by Spearman correlation.

705











Z



Z

|                 | Group A<br>Animal ID |      |     |     | Group B<br>Animal ID |     |      |      | Group C<br>Animal ID |      |     |     |      |      | Group D<br>Animal II | Group D<br>Animal ID |     |      |      |      |     |      |        |
|-----------------|----------------------|------|-----|-----|----------------------|-----|------|------|----------------------|------|-----|-----|------|------|----------------------|----------------------|-----|------|------|------|-----|------|--------|
| Virus           | Clade                | Tier | 1A  | 2A  | 3A                   | 4A  | 5A   | 1B   | 2B                   | 3B   | 4B  | 5B  | 1C   | 2C   | 3C                   | 4C                   | 5C  | 1D   | 2D   | 3D   | 4D  | 5D   | CH01   |
| MN_3            | В                    | 1A   | 276 | 782 | 51                   | 153 | 81   | 747  | 78                   | 481  | 143 | 524 |      |      |                      |                      | 835 | 292  | 205  | 907  | 887 | 780  | 0.41   |
| SF162_LS        | В                    | 1A   | 212 | 378 | <20                  | 104 | 26   | 605  | 125                  | 854  | 671 | 326 | 1767 | 319  | 1448                 | 425                  | 502 | 160  | 586  | 822  | 625 |      | 0.19   |
| MW965_26        | С                    | 1A   | 763 | 278 | 232                  | 543 | 1634 | 2087 | 419                  | 1818 |     |     |      | 3414 | 3517                 |                      |     | 1079 | 1184 | 1029 |     | 4125 | 1.22   |
| Q23_17          | A                    | 1B   | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | 39   | 34   | <20  | <20 | <20  | < 0.01 |
| BaL.26          | В                    | 1B   | <20 | <20 | <20                  | <20 | <20  | 36   | <20                  | 32   | 34  | <20 | 79   | <20  | 73                   | 27                   | 29  | <20  | 29   | 36   | 37  | 50   | 0.06   |
| BG505           | Α                    | 2    | 33  | 26  | 24                   | 41  | 59   | 87   | 319                  | 84   |     | 48  | 35   | <20  | 55                   | 300                  | 359 | 585  | 69   | 97   | 108 | 80   | 0.02   |
| BG505_T332N     | Α                    | 2    | 35  | <20 | 25                   | 37  | 46   | 103  | 204                  | 83   |     | 47  | 41   | 57   | 73                   | 267                  | 178 | 522  | 88   | 126  | 185 | 76   | < 0.01 |
| Q259_d217       | Α                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 12.9   |
| Q769_d22        | Α                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.07   |
| Q842_d12        | Α                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | 21                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | 22   | <20  | <20  | <20 | <20  | < 0.01 |
| a398_F1_F6_20   | Α                    | 2    | 33  | 31  | 28                   | 45  | 31   | 35   | 61                   | 29   | <20 | 21  | 38   | <20  | 27                   | <20                  | 24  | 145  | 68   | <20  | <20 | 26   | 0.09   |
| a246_F3_C10_2   | AC                   | 2    | <20 | <20 | 25                   | 25  | <20  | 25   | 39                   | 22   | <20 | <20 | <20  | <20  | <20                  | 20                   | <20 | <20  | <20  | <20  | <20 | <20  | 0.08   |
| CNE8            | AE                   | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.2    |
| CNE55           | AE                   | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | 37                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.07   |
| YU2             | В                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.08   |
| SC422661_8      | В                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | 21                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.37   |
| JRFL            | В                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | < 0.01 |
| X2278_C2_B6     | В                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | 41                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | 21   | 0.08   |
| BJOX002000_03_2 | BC                   | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 1.82   |
| CH119_10        | BC                   | 2    | 25  | 26  | 27                   | 26  | 24   | 26   | 60                   | 26   | 22  | 28  | 24   | <20  | 22                   | 20                   | 25  | 22   | <20  | 26   | 22  | <20  | 1.34   |
| Ce1176_A3       | С                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.06   |
| Ce703010217_B6  | С                    | 2    | 23  | 23  | 21                   | 25  | 23   | <20  | 31                   | 20   | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.05   |
| a25710_2_43     | С                    | 2    | 22  | <20 | 27                   | 24  | <20  | 26   | 36                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | 20  | 223  | 39   | <20  | 20  | 50   | 0.42   |
| X1632_S2_B10    | G                    | 2    | <20 | <20 | <20                  | <20 | <20  | <20  | 23                   | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | <20  | <20 | <20  | 0.07   |
| SVA-MLV         |                      |      | <20 | <20 | <20                  | <20 | <20  | <20  | <20                  | <20  | <20 | <20 | <20  | <20  | <20                  | <20                  | <20 | <20  | <20  | 21   | <20 | <20  | >25    |

Σ















 $\overline{\leq}$ 

|             | ID <sub>50</sub> |      |         |       |     |         |     |     |     |         | IC <sub>50</sub> ( | µg/ml) |     |     |     |        |         |
|-------------|------------------|------|---------|-------|-----|---------|-----|-----|-----|---------|--------------------|--------|-----|-----|-----|--------|---------|
|             |                  |      | Group B |       |     | Group C |     |     |     | Group D |                    |        |     |     |     |        |         |
|             | 1B               | 2B   | 3B      | 4B    | 5B  | 1C      | 2C  | 3C  | 4C  | 5C      | 1D                 | 2D     | 3D  | 4D  | 5D  | VRC01  | CH01-31 |
| BG505.T332N | 103              | 204  | 83      | 11933 | 47  | 41      | 57  | 73  | 267 | 178     | 522                | 88     | 126 | 185 | 76  | nd     | nd      |
| N133A.3     | 87               | 1060 | 51      | 56267 | 61  | 50      | 54  | 78  | 275 | 76      | 677                | 84     | 125 | 70  | 129 | 0.04   | 0.01    |
| N142A.6     | 86               | 85   | 78      | 568   | 66  | 47      | 46  | 58  | 130 | 86      | 601                | 81     | 92  | 111 | 113 | 0.07   | 0.03    |
| N280D       | 64               | 253  | 38      | 12262 | 50  | 60      | 77  | 60  | 237 | <30     | 419                | 64     | 86  | 34  | 72  | >16.67 | 0.24    |
| S241N       | <30              | 183  | 34      | 8427  | <30 | 38      | <30 | 37  | 177 | 74      | 367                | 41     | 66  | 50  | 40  | 0.06   | 0.03    |
| P291T       | <30              | 209  | <30     | 17232 | 31  | 34      | <30 | <30 | 90  | 59      | 342                | 30     | 35  | <30 | <30 | 0.09   | 0.04    |
| S241N/P291T | <30              | 170  | <30     | 9383  | <30 | <30     | <30 | <30 | 93  | 42      | 285                | <30    | <30 | <30 | <30 | 0.07   | 0.03    |

glycan hole V1 glycan CD4bs not mapped

В

Journal of Virology

|        | BG505 Parental   | 133aN + 136aA     | N241 KI + N289 KI | N356 KI | N465 KI           |
|--------|------------------|-------------------|-------------------|---------|-------------------|
| Sample | ID <sub>50</sub> | RID <sub>50</sub> | RID <sub>50</sub> | RID 50  | RID <sub>50</sub> |
| 4B     | 3074             | <0.01             | 0.85              | 1.23    | 0.58              |
|        |                  |                   |                   |         |                   |
|        | EN               | REN               | REN               | REN     | REN               |
| 4B     | 100              | 0.38              | 1.00              | 1.00    | 1.00              |
| 4C     | 65               | 0.88              | 0.84              | 0.91    | 0.59              |
| 5C     | 67               | 0.88              | 0.79              | -0.09   | -0.29             |
| 1D     | 81               | 1.07              | 1.03              | 0.81    | 0.27              |

| RID 50 | RID 50 Mutant/Parental |           | RID <sub>50</sub> ≥0.25, ≤0.5 | RID <sub>50</sub> >0.5, ≤2.0 |
|--------|------------------------|-----------|-------------------------------|------------------------------|
|        |                        |           |                               |                              |
| REN    | Mutant/Parental        | REN <0.25 | REN ≥0.25, ≤0.75              | REN >0.75, ≤0.75             |

 $\leq$ 

Α

|                       | ID50 (ug/ml) in TZM-bl cells <sup>1</sup>                           |          |          |          |          |                |                |  |  |  |
|-----------------------|---------------------------------------------------------------------|----------|----------|----------|----------|----------------|----------------|--|--|--|
|                       | CH119.10 CH119.10.N88A CH119.10.N160A CH119.10.V295N CH119.10.N332A |          |          |          |          | CH119.10.N611A | CH119.10.N625A |  |  |  |
|                       | CRF07_BC                                                            | CRF07_BC | CRF07_BC | CRF07_BC | CRF07_BC | CRF07_BC       | CRF07_BC       |  |  |  |
|                       | Tier 1A                                                             | Tier 2         | Tier 2         |  |  |  |
| 2B (week 0)           | <30                                                                 | <30      | <30      | 31       | <30      | <30            | <30            |  |  |  |
| 2B (week 22)          | 84                                                                  | 64       | 66       | 81       | 81       | 75             | 63             |  |  |  |
| VRC34.01 (gp120-gp41) | 0.07                                                                | >25      | 0.06     | 0.06     | 0.07     | <0.01          | 0.07           |  |  |  |
| PG16 (V2 glycan)      | 0.53                                                                | 1.01     | >10      | 0.87     | 0.21     | 0.66           | 1.02           |  |  |  |
| PGT128 (V3 glycan)    | 0.03                                                                | 0.02     | 0.02     | 0.03     | 7.32     | 0.02           | 0.04           |  |  |  |
|                       |                                                                     |          |          |          |          |                |                |  |  |  |

В

Journal of Virology

|                       | ID50 (ug/ml) in TZM-bl cells <sup>1</sup> |                                                                               |         |         |         |  |  |  |  |  |
|-----------------------|-------------------------------------------|-------------------------------------------------------------------------------|---------|---------|---------|--|--|--|--|--|
|                       | 25710-2.43                                | 25710-2.43 25710-2.43.N88A 25710-2.43.N160K 25710-2.43.N332A 25710-2.43.N625A |         |         |         |  |  |  |  |  |
|                       | Clade C                                   | Clade C                                                                       | Clade C | Clade C | Clade C |  |  |  |  |  |
|                       | Tier 1A                                   | Tier 2                                                                        | Tier 2  | Tier 2  | Tier 2  |  |  |  |  |  |
| 1D (week 0)           | <30                                       | <30                                                                           | <30     | <30     | <30     |  |  |  |  |  |
| 1D (week 22)          | 114                                       | 65                                                                            | 43      | 115     | 94      |  |  |  |  |  |
| VRC34.01 (gp120-gp41) | 2.77                                      | >16.66                                                                        | >16.66  | 0.35    | 1.39    |  |  |  |  |  |
| PG16 (V2 glycan)      | 0.02                                      | 0.02                                                                          | >6.66   | 0.02    | 0.02    |  |  |  |  |  |
| PGT128 (V3 glycan)    | 0.03                                      | 0.02                                                                          | 0.03    | >6.66   | 0.02    |  |  |  |  |  |

Σ



Z

| Group<br>(n = 5<br>animals<br>/group) | Antibody | Specificity                          | Kd (M)                  | Kon (1/Ms)            | Koff (1/s)             |
|---------------------------------------|----------|--------------------------------------|-------------------------|-----------------------|------------------------|
| A                                     | 11A      | Glycan hole; C2; centered at S241    | 4.6 x 10 <sup>-10</sup> | 8.5 x 10 <sup>4</sup> | 3.8 x 10 <sup>-5</sup> |
| В                                     | 11B      | Glycan hole; C2; centered<br>at S241 | 4.5 x 10 <sup>-10</sup> | 4.6 x 10 <sup>4</sup> | 2.1 x 10 <sup>-5</sup> |
| С                                     | 12A      | Overlap with mAb PGT151 determinants | 7.9 x 10 <sup>-8</sup>  | 5.6 x 10 <sup>3</sup> | 4.5 x 10 <sup>-4</sup> |
| D                                     | None     |                                      |                         |                       |                        |

Table 1. Vaccination groups and monoclonal antibodies used to make SOSIP-immune complexes\*

\*Animals received SOSIP.664 gp140 trimers as an immune complex (groups A, B and C) or SOSIP trimer alone (group D). Details on antibody specificities are available in references [10] and [34].