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PURPOSE. Cone/cone-rod dystrophy is a large group of retinal disorders with both phonotypic
and genetic heterogeneity. The purpose of this study was to characterize the phenotype of
eight patients from seven families harboring POC1B mutations in a cohort of the Japan Eye
Genetics Consortium (JEGC).

METHODS. Whole-exome sequencing with targeted analyses identified homozygous or
compound heterozygous mutations of the POC1B gene in 7 of 548 families in the JEGC
database. Ophthalmologic examinations including the best-corrected visual acuity, perimetry,
fundus photography, fundus autofluorescence imaging, optical coherence tomography, and
full-field and multifocal electroretinography (ERGs) were performed.

RESULTS. There were four men and four women whose median age at the onset of symptoms
was 15.6 years (range, 6–23 years) and that at the time of examination was 40.3 years (range,
22–67 years). The best-corrected visual acuity ranged from �0.08 to 1.52 logMAR units. The
funduscopic appearance was normal in all the cases except in one case with faint mottling in
the fovea. Optical coherence tomography revealed an absence of the interdigitation zone and
blurred ellipsoid zone in the posterior pole, but the foveal structures were preserved in three
cases. The full-field photopic ERGs were reduced or extinguished with normal scotopic
responses. The central responses of the multifocal ERGs were preserved in two cases. The
diagnosis was either generalized cone dystrophy in five cases or cone dystrophy with foveal
sparing in three cases.

CONCLUSIONS. Generalized or peripheral cone dystrophy with normal funduscopic appearance
is the representative phenotype of POC1B-associated retinopathy in our cohort.

Keywords: POC1B, cone dystrophy, foveal sparing, normal funduscopic appearance,
peripheral cone dystrophy
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Cone/cone-rod dystrophy is the name given to a large
group of retinal disorders with genetically heterogeneous

origin and is characterized by progressive cone dysfunction
with or without rod dysfunction. The age of onset, degree of
cone/rod dysfunction, and funduscopic appearance are
diverse, partly because there are many genetic causes related
to this disorder. Representative genotypes related to this
disorder involve GUCY2D,1–4

GUCA1A,5–8
CRX,9,10

RIMS1,11

PROM1,12,13 and PRPH2
14,15 as autosomal dominant; AB-

CA4
16–19 and KCNV2

20–22 as autosomal recessive; and
RPGR

23,24 as X-linked recessive. It is notable that the clinical
features of cone/cone-rod dystrophy are also diverse among
the patients having mutations in the same gene or even
among patients in the same family. For example, the
funduscopic features vary from that of central retinal atrophy,
central chorioretinal atrophy, bull’s eye appearance, and
normal funduscopic appearance, depending on both the
genotypes and the individual.2,7,8,10,11,13,15,16,18,19,21–24

A normal funduscopic appearance is unusual but not a rare
feature of cone dystrophy (COD), and it has been reported in
many cases with various genotypes.10,21,22,24–28 Patients with
normal fundus are often misdiagnosed as having optic
neuropathy, amblyopia, or nonorganic visual disturbances
unless they undergo detailed examinations, including optical
coherence tomography (OCT) and electroretinography (ERG).
However, there is no report showing that a specific genotype is
strongly associated with this funduscopic feature. Thus, to
determine the specific genotypes related to normal fundu-
scopic appearance, we have searched for patients with COD
that have no apparent funduscopic abnormalities from the
genotype-phenotype database of Japan Eye Genetics Consor-
tium (JEGC), and eight cases had putative biallelic mutations in
the POC1B gene.

POC1B is expressed predominantly in the ciliary region of
photoreceptor cells and synapses of the outer plexiform layer
of the retina,29 and homozygous or compound heterozygous
mutations in the POC1B gene have been reported in cases with
COD or cone-rod dystrophy (CORD),27,29,30 Leber’s congenital
amaurosis (LCA) with syndromic ciliopathy,31 and peripheral
COD.28 The funduscopic appearance in these cases varied
from normal to peripheral abnormalities and small colobomas
with small diameter vessels. However, a detailed clinical and
genetic association caused by POC1B pathogenic variants has
not been published.

Thus, the purpose of this study was to characterize the
phenotypical characteristics of eight patients from seven
Japanese families harboring POC1B mutations in a cohort of
the JEGC.

Patients and Methods

The protocol of this study adhered to the tenets of the
Declaration of Helsinki and was approved by the Ethics
Committee of the participating institutions: National Institute
of Sensory Organs (NISO), National Hospital Organization,
Tokyo Medical Center; Nippon Medical School Chiba Hokusoh
Hospital; Nagoya University Graduate School of Medicine; The
Jikei University School of Medicine; Kindai University Faculty
of Medicine; Aichi Medical University; and Ideta Eye Hospital. A
signed informed consent was obtained from all patients.

Participants

Eight affected patients from seven families who carried
multiple POC1B variants were studied. The 8 patients were
part of the 1035 cases (548 families) in the phenotype-
genotype database of the JEGC. The clinical data and results of
whole-exome sequencing were available for all the partici-

pants. There were 41 cases whose phenotype was ‘‘cone/cone-
rod dystrophy without apparent funduscopic abnormalities’’ in
the JEGC database, and all of the 8 cases were categorized with
this phenotype. The data of two families (families 3 and 6)
were partially reported by Kominami et al.27 and Ito et al.32

Clinical Examinations

Comprehensive ophthalmologic examinations were performed
on all patients and also on several unaffected family members
who were examined for cosegregation analyses (Fig. 1). The
clinical evaluations included measurements of the best-
corrected visual acuity (BCVA), color vision tests (Ishihara
color vision test and the Farnsworth Panel D-15 Color Vision
tests), visual field (Goldmann kinetic perimetry and Humphrey
Visual Field Analyzer; Carl Zeiss Meditec, Dublin, CA, USA),
fundus photography and funduscopy, fundus autofluorescence
(FAF) imaging (HRA 2; excitation light, 488 nm; barrier filter,
500 nm; Heidelberg Engineering, Heidelberg, Germany; and
200Tx; excitation light, 532 nm; barrier filter, 570–780 nm;
Optos, Dunfermline, United Kingdom), spectral domain optical
coherent tomographic (SD-OCT; Cirrus HDOCT, version 6.5-
11.0; Carl Zeiss Meditec; and Spectralis; Heidelberg Engineer-
ing), and electrophysiologic assessments.

Signal Intensity Profiling of FAF and SD-OCT
Images

Signal intensity profiling of the FAF images was performed with
a custom-made software (Gray scale profiling version 0.1;
modified based on MATLAB 3.0; The MathWorks, Inc., Natick,
MA, USA). The gray scales of the obtained FAF images were
calculated, and the three-dimensional color tomographic and
cross-sectional images based on the gray scales along a selected
line were generated. For this study, a horizontal line across the
fovea was manually selected to perform the signal intensity
profiling of the autofluorescence (AF) density across the fovea.
SD-OCT images were obtained, and cross-sectional images
based on the gray scales along a selected line were generated
according to a published method with custom-made software
(Longitudinal profiling version 0.1).33 The presence of high-
intensity lines shown as peaks in the cross-sectional images
were assessed for this study.

Electrophysiologic Assessments

For the electrophysiologic assessments, full-field electroretino-
grams (ERGs) were recorded under both scotopic and
photopic conditions in accordance with the protocol of the
International Society of Clinical Electrophysiology of Vision.34

ERGs were recorded with the LE4000 device (Tomey
Corporation, Aichi, Japan) or the UTAS device (LKC Technol-
ogies, Gaitherburg, MD, USA). Macular function was evaluated
by either multifocal ERGs (mfERGs; VERIS Science and VERIS
Clinic; EDI, San Mateo, CA, USA) or focal macular ERGs (ER-80;
Kowa Company, Tokyo, Japan).34 All of the clinical data and
images were uploaded into the JEGC databank at the NISO, and
data quality was confirmed by two of the authors (KF, KT).

Whole-Exome Sequencing and In Silico Molecular
Genetic Analysis

Whole-exome sequencing and targeted sequence analyses of
the 301 retinal disease-associated genes (including genes of
Retnet; https://sph.uth.edu/retnet/, in the public domain)
were done according to the published protocol of the NISO.35

Paired-end sequence library construction and exome capturing
were performed at a company (Macrogen, Kyoto, Japan/Gasan-
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dong, South Korea) by the Agilent Bravo automated liquid-
handling platform with SureSelect XT Human All Exon kit V3-5
þ UTRs kit (Agilent Technologies, Santa Clara, CA, USA).
Enriched libraries were sequenced with the Illumina HiSeq
2000/HiSeq 2500 sequencer (San Diego, CA, USA; read length,
2 3 101 bp). Exome pipeline analysis was performed with a
customized protocol developed for the Japanese population.35

In silico bioinformatic analyses were performed to predict
the pathogenicity of all of the identified POC1B variants. The
identified variants were filtered with allele frequency of less
than 1.0% of the Human Genetic Variation Database (http://
www.genome.med.kyoto-u.ac.jp/SnpDB/about.html, in the
public domain), and 2kJPN (https://ijgvd.megabank.tohoku.
ac.jp/download_2kjpn/, in the public domain), which is
specific for the Japanese population, and with a total
frequency of less than 1.0% of the gnomAD Browser
(http://gnomad.broadinstitute.org/, in the public domain).
All identified variants were analyzed using three software
prediction programs: PolyPhen2 (http://genetics.bwh.har
vard.edu/pph/index.html, in the public domain), SIFT (http://
sift.jcvi.org/, in the public domain), and mutation taster
(http://www.mutationtaster.org/, in the public domain).
Conservation in the positions of the identified variants was
evaluated with primate PhyloP and phastCons scores provid-
ed by University of California-Santa Cruz based on the human
genome 19 coordinates (http://genome.ucsc.edu/cgi-bin/
hgTrackUi?db¼hg19&g¼cons46way, in the public domain).

Direct Sequencing

The POC1B variants identified by exome sequencing and
targeted analysis were further confirmed by direct sequencing
of all family members. The identified regions were amplified by
polymerase chain reaction (PCR) using primers synthesized by

Greiner Bio-One (Tokyo, Japan). The PCR products were
purified (ExoSAP-IT; USB Corp., Cleveland, OH, USA) and were
used as the template for sequencing. Both strands were
sequenced by an automated sequencer (Bio Matrix Research,
Chiba, Japan).

Overall, the pathogenicity prediction of all variants,
confirmed by direct sequencing, were classified based on the
American College of Medical Genetics (ACMG) standards and
guidelines.36

RESULTS

Whole-exome sequencing with targeted analysis identified
homozygous or compound heterozygous mutations of the
POC1B gene in 8 out of 1035 cases (7 of 548 families) in the
JEGC database (Fig. 1).

Demographics, Color Vision Defect, and Visual
Fields

The phenotypic findings are shown in Table 1 and 2. There
were four women and four men. The median age at the initial
examination was 40.3 years with a range of 22 to 67 years, and
the median age at the onset of symptoms was 15.6 years with a
range of 6 to 23 years. Seven out of eight patients complained
of photophobia (88%) as an initial symptom. The BCVA ranged
from �0.08 to 1.52 logMAR units. There were no systemic
abnormalities described in the reports of all patients.

The results of the Ishihara color vision tests were obtained
from 10 eyes of 5 patients (Table 1, 2). Eight eyes of four
patients (8/10, 80%) were deficient and the five eyes of three
patients could not read any plate including the 1st plate.
Therefore, these eyes could not be evaluated by Ishihara color

FIGURE 1. Pedigrees of seven Japanese families with POC1B-associated retinopathy. The solid squares (men) and circles (women) represent the
affected patients. Unaffected family members are represented by clear symbols. The slash symbol indicates deceased individuals. The generation
number is shown on the left. Patients enrolled in the study are marked by an arrow, and the clinically examined individuals are indicated by a cross.
Detected POC1B variants in the affected subjects are shown as follows: patient 1, c.[356C>T];[ 337G>C], p.[Thr119Ile]; [Asp113His]; patient 2,
c.[356C>T]; [337G>C], p.[Thr119Ile]; [Asp113His]; patient 3, c.[356C>T]; [1355G>A], p.[Thr119Ile]; [Arg452Gln; patient 4, c.[987C>A];
[1355G>A], p.[Tyr329Ter]; [Arg452Gln]; patient 5, c.[356C>T; 356C>T], p.[Thr119Ile; Thr119Ile]; patient 6, c.[356C>T(;)356C>T];
p.[Thr119Ile(;)Thr119Ile]; patient 7, c.[356C>T]; [1355G>A], p.[Thr119Ile]; [Arg452Gln]; and patient 8, c.[356C>T(;)356C>T], p.[Thr119I-
le(;)Thr119Ile].
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vision test (OD of patient 1 and OU of patients 4 and 6). Three
eyes of two patients could read only the 1st plate (OS of patient
1 and OU of patient 3). Two eyes of one patient were normal
and identified all plates correctly (2/10, 20%). Panel D-15 was
performed in seven patients (Table 1, 2; Supplementary Fig.

S4). The results of six patients (6/7, 85.7%) were classified as
fail. The results of patient 3, 4, 5, and 6 showed many
confusion lines between the deutan and tritan axes or along
the tritan axes. The results of patients 1 and 8 were fail with
two crossings. Two eyes of one patient passed the test (2/14,

TABLE 1. Summary of Clinical Findings 1

Family

No. Patient ID

Age,

y

Onset,

y

Chief Complaint LogMAR BCVA Color Vision

1st 2nd OD OS Ishihara Panel D-15

1 1-II:1 (Patient 1) 35 21 Reduced visual

acuity

Photophobia 0.05 0.15 Deficient (readable only

the 1st plate, OD;

unreadable including

the 1st plate, OS)

Fail

1 1-II:2 (Patient 2) 31 10 Photophobia Reduced visual

acuity

1 1 N/A N/A

2 2-II:1 (Patient 3) 47 22 Photophobia Reduced visual

acuity

0.7 0.7 Deficient (readable only

the 1st plate, OU)

Fail

3 3-II:3 (Patient 4) 22 6 Photophobia Reduced visual

acuity

0.7 0.5 Deficient (unreadable

including the 1st plate,

OU)

Fail

4 4-II:1 (Patient 5) 40 6 Photophobia Reduced visual

acuity

1 1 N/A Fail

5 5-II:2 (Patient 6) 67 20 Reduced visual

acuity

1.52 1.52 Deficient (unreadable

including the 1st plate,

OU)

Fail

6 6-II:1 (Patient 7) 34 23 Photophobia �0.08 �0.08 Normal Pass

7 7-II:1 (Patient 8) 46 17 Photophobia Color vision

abnormality

0.05 0.05 N/A Fail

ID, identification; OD, right eye; OS, left eye; OU, both eyes; N/A, not available.

TABLE 2. Summary of Clinical Findings 2

Patient ID Visual Field Fundus FAF OCT

Full-Field ERG

mfERG/FMERGCone Rod

1-II:1 (Patient 1) Paracentral scotoma,

OD Central

scotoma, OS (GP)

Normal N/A IZ loss, EZ blurring,

OU; foveal

sparing, OU

Severely reduced Normal Preserved central

response, OU

(mfERG)

1-II:2 (Patient 2) Central scotoma

within 30 degree

(GP)

Normal N/A IZ loss, EZ blurring,

OU

Severely reduced Normal Extinguished,

OU (mfERG)

2-II:1 (Patient 3) Central scotoma

within 30 degree

(GP/HFA)

Small faint

spot in

the fovea

Foveal hyper

AF, OD Normal,

OS

IZ loss, EZ blurring,

OU

Severely reduced Normal Extinguished,

OU (FMERG)

3-II:3 (Patient 4) Central scotoma

(GP)

Normal Foveal hyper

AF, OU

IZ loss, EZ blurring,

OU

Extinguished Normal N/A

4-II:1 (Patient 5) Central scotoma and

perioheral

constriction (GP)

Normal Normal, OU IZ loss, EZ blurring,

OU

Extinguished Normal N/A

5-II:2 (Patient 6) Central scotoma

(GP)

Normal Parafoveal

hyper AF,

OU

IZ loss, EZ loss, OU Extinguished Normal Extinguished,

OU (FMERG)

6-II:1 (Patient 7) Paracentral scotoma

within 20 degree

with preserved

central sensitivity

(GP/HFA)

Normal Normal, OU IZ loss, EZ blurring,

OU; foveal

sparing, OU

Severely reduced Normal Preserved central

response, OU

(mfERG)

7-II:1 (Patient 8) Paracentral scotoma

within 20 degree

with preserved

central sensitivity

(GP/HFA)

Normal Normal, OU IZ loss, EZ blurring,

OU; foveal

sparing, OU

Extinguished Normal Extinguished,

OU (mfERG)

FAF, fundus autofluorescence; FMERG, focal macular ERG; GP, Goldmann kinetic perimetry; HFA, Humphry static field analyzer; mfERG,
multifocal ERG.
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14%). The visual field examinations showed a central scotoma
in 11 eyes in 6 patients (11/16, 69%). Patient 3 had a central
scotoma by Humphrey Visual Field Analyzer. A paracentral
scotoma was found in five eyes of three patients (5/16, 31%).

Fundus and FAF Images

The findings of the funduscopic examinations were normal in
all of the eyes except in patient 2-II:1 who showed small and
faint retinal pigment epithelial (RPE) mottling in the fovea
bilaterally (14/16, 87.5%) (Fig. 2). FAF images were obtained
from 12 eyes of 6 patients and signal intensity profiling of gray
scales was performed on these 12 images. (Tables 1, 2; Fig. 3;

Supplementary Fig. S1). An area of high AF signal was observed

in three eyes (patient 3 and 4; 3/12, 25.0%; Table 1, 2; Fig. 3),

which was demonstrated as a peak of intensity at the foveola

by the gray scale analysis (Supplementary Fig. S1). A band of

high AF signal was found surrounding the fovea in two eyes

(patient 6; 2/12, 16.7%; Fig. 3). This was seen as a band of

slightly increased AF signaling between the fovea and the disc.

Although this was a qualitative analysis, the FAF images were

seen as hyper-AF in or around the fovea in five eyes of three

cases (5/12, 41.7%; Fig. 3, Supplementary Fig. S1). No

particular AF abnormalities were detected in seven eyes (7/

12, 58.3%; Fig. 3, Supplementary Fig. S1). We compared the

FIGURE 2. Fundus photographs of all POC1B-associated retinopathy patients. Fundus photographs of the right eyes of all patients with POC1B-
associated retinopathy. No marked abnormalities are present in all of the eyes except for patient 3 (2-II:1) who showed small and faint RPE mottling
in the fovea bilaterally
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feature of cross-sectional images of gray scale profiling
obtained from normal controls, CRX-retinopathy, and our
patients with pathogenic POC1B variants. The profile of the
eye with CRX-retinopathy showed a wider peak of hypore-
flectivity as confirmed by the FAF image (Supplementary Fig.
S1). However, our patients had a narrower peak of hypore-
flectivity similar to that of normal controls.

SD-OCT Images

Signal intensity profiling of the two hyperreflective lines
(ellipsoid zone [EZ] and interdigitation zone [IZ]) was
performed for the 16 SD-OCT images (Fig. 4; Supplementary
Fig. S2). The absence of the IZ and blurred EZ at the posterior
polar region was observed in all the eyes (16/16) (Fig. 4),
although the EZ of patient 1 and the EZ and IZ of patients 7 and
8 were relatively preserved in a narrow region of fovea as
foveal sparing (6/16, 37.5%; shown as asterisks in Fig. 4;
Supplementary Fig. S2). In patient 6, the EZ was completely
absent bilaterally in the fovea. RPE layer was preserved in all of
the eyes (16/16, 100%; Fig. 4; Supplementary Fig. S2).

Electrophysiologic Findings

The cone responses of the full-field ERGs were severely
reduced or extinguished in all the eyes (16/16, 100%; Table 1,
2; Fig. 5). The rod responses were normal in all eyes (16/16,

100%; Fig. 5). The mfERGs were preserved in the central fields
in four eyes of the two cases tested (4/12, 33%; Table 1, 2;
Supplementary Fig. S3), and the others were extinguished in
the macular region (8/12, 67%; Table 1, 2).

The clinical diagnosis was either generalized COD in 10
eyes of 5 cases or COD with foveal sparing (i.e., peripheral
COD, in 6 eyes of 3 cases).

POC1B Variants

Four possible pathogenic variants were identified: c.337G>C,
p.Asp113His; c.356C>T, p.Thr119Ile; c.987C>A, p.Tyr329Ter;
and c.1355G>A, p.Arg452Gln (Table 3, 4). Of these variants,
Tyr329Ter is a nonsense variant and the others are missense
variants. The minor allelic frequency of the four variants was
less than 0.2% in two Japanese-specific databases and less than
0.03% in all ethnicities in the gnomAD database (Table 3, 4).
The results of three prediction programs indicated that all
missense variants were deleterious, probably damaging, and
disease causing (Table 3, 4). Two missense variants, Asp113His
and Thr119Ile, were located within a WD40 domain, which is
critical for proper POC1B function (Fig. 6). A missense variant,
Arg452Gln, was located at the same position as a reported
pathogenic mutation, although the reported mutation was a
nonsense mutation (Fig. 6). The conservation score of all
missense variants was more than 3.0 in PhyloP, which is
relatively high, and mutated amino acids in these variants were
well conserved in the homologues of POC1B in other species
(Table 3, 4; Fig. 7).

Pedigree analyses of families with POC1B variants revealed
that these four variants were well cosegregated (Fig. 1). Direct
sequencing of the four variants detected by whole-exome
analysis was performed, and the variants were verified.
According to the American College of Medical Genetics
standards and guidelines, the POC1B variants were considered
to be pathogenic, likely pathogenic, or of uncertain signif-
icance (Tables 3–5).

DISCUSSION

The proteome of the centriole 1B gene (POC1B; OMIM
614784) is one of the two POC1 homologs that function
together as a highly conserved core centriole and basal body
component.37 The POC1B protein is localized to centrioles and
appear to play roles in centriole duplication and/or mainte-
nance and functions together with POC1A.38,39 The WD40
repeat domain containing the cartwheel protein Poc1 is
required for the structural maintenance of centrioles in
Tetrahymena thermophila.37 A knockdown of poc1b in
zebrafish causes ciliary defects and morphologic phenotypes
consistent with human ciliopathies.37 A morpholino oligomer
knockdown of poc1b translation in zebrafish resulted in a dose-
dependent small-eye phenotype, impaired optokinetic respons-
es, and decreased length of the photoreceptor outer seg-
ments.40 These findings suggested that poc1b is required for
the normal development and ciliogenesis of the retinal
photoreceptor sensory cilia.40

Homozygous or compound heterozygous mutations of the
POC1B gene in three Turkish patients and a Dutch subject with
COD and CORD were reported in 2014.29 The three mutations
were located in a highly conserved residue within the WD40
domain. This domain is associated with a wide variety of
functions, including adaptor/regulatory modules in signal
transduction, pre-mRNA processing, and cytoskeleton assem-
bly. WD40 typically contains a GH dipeptide, 11 to 24 residues
from its N terminus and a WD dipeptide at its C terminus of 40
residues long, hence the name WD40. Clinical and genetic

FIGURE 3. FAF images of six patients with POC1B-associated
retinopathy (patients 3–8). FAF images of the right eyes of six patients
with POC1B-associated retinopathy showing an area of high AF signal
in patients 3 and 4. A band of high AF signal surrounding the fovea was
found in patient 6. No particular AF abnormalities were noted in the
other three patients.
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findings of four affected subjects in a consanguineous Turkish
family with CORD were also reported by Durlu et al.30 in 2014.
The recurrent variant c.317G>C, p.Arg106Pro was identified
in an Iraqi patient with a severe syndromic retinal ciliopathy in
a consanguineous family.31

Thus far, only 11 patients from 6 families with biallelic
POC1B variants have been reported to have retinal abnormal-
ities except in the Japanese patients (Table 6).27–31,33 We have
presented eight Japanese patients from seven families.
According to previous reports, a wide variety of phenotypes
were observed: one case of LCA, seven cases of CORD, and
three cases of COD. The funduscopic appearance was normal
in the two Turkish cases and one Chinese case, whereas the
other eight cases were reported to have apparent funduscopic
abnormalities either in the peripheral retina or in the macular
area. On the other hand, all eight cases in the Japanese cohort
were diagnosed with COD with preserved rod function (Table
6), and funduscopic examination did not reveal any abnormal-

ities except one case with minimal RPE changes in the fovea
(Fig. 2).

The FAF images showed hyper-AF in or around the fovea in
five eyes of three cases (Table 1, 2; Fig. 4; Supplementary Fig.
S1). These FAF abnormalities, however, were much less severe
than in other macular dystrophies.2,7,10,11,13,15,17,21,23,24,41–43

Also, a hypo-AF, which indicates long-term RPE dysfunction,
was not observed in any of the eyes. By comparing the FAF of a
severe case with CRX-retinopathy that had severe photorecep-
tor and RPE degeneration at the macula, we would strongly
suggest that patients with POC1B-associated retinopathy had
never had severe hyporeflectivity, as found in patients with
CRX-retinopathy. This implies that the primary lesion of our
cases was the photoreceptors, and the RPE was not severely
damaged even in cases with a long disease course. In fact, SD-
OCT did not show any abnormalities in the RPE layer, although
a loss of the IZ and blurred EZ in the posterior pole were
detected in all patients.

FIGURE 4. SD-OCT images of all POC1B-associated retinopathy patients. SD-OCT images of the right eyes of all patients with POC1B-associated
retinopathy are shown. The absence of the IZ and blurred EZ at the wide posterior pole region in all the eyes can be seen, although the EZ of patient
1 and both the EZ and IZ of patients 7 and 8 were relatively preserved in a narrow region of the fovea as foveal sparing (shown as asterisks). In
patient 6 (5-II:2), the EZ was complete absent bilaterally in the macular region. The RPE layer is preserved in all of the eyes.
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FIGURE 5. Full-field ERGs of eight POC1B-associated retinopathy patients. Full-field ERGs recorded from patients and normal control are shown.
The dark-adapted 0.01 (DA 0.01), dark-adapted 3.0 (DA 3.0), dark-adapted 10.0 (DA 10.0), light-adapted 3.0 (LA 3.0), and light-adapted 3.0 flicker (LA
3.0, 30 Hz Flicker) ERGs are shown. The results show extinguished or severe reduction of the cone responses in all patients, although the rod
responses are well-preserved.

TABLE 3. Results of In Silico Genetic Analysis of Four Pathogenic POC1B* Variants 1

Variant

ID HGVS.c HGVS.p

Position

(GRCh 38) HGVD, % 2kJPN, %

GnomAD Allele Frequency, %

East

Asian

South

Asian

European

(non-Finish) Latino African Total

1 c.337G>C p.Asp113His 12:89492051 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 c.356C>T p.Thr119Ile 12;89492032 0.1652 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0004

3 c.987C>A p.Tyr329Ter 12:89466815 0.0000 0.0244 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 c.1355G>A p.Arg452Gln 12:89421235 0.0000 0.0489 0.0058 0.0067 0.0000 0.0000 0.0207 0.0028

Identified criteria and overall verdict was determined according to the American College of Medical Genetics and Genomics (ACMG) guideline.
In silico bioinformatic analyses were performed with three allele frequency databases, three software prediction programs, and conservation scores:
HGVD (http://www.genome.med.kyoto-u.ac.jp/SnpDB/about.html, in the public domain), 2kJPN (https://ijgvd.megabank.tohoku.ac.jp/down
load_2kjpn/, in the public domain), gnomAD Browser (http://gnomad.broadinstitute.org/, in the public domain), PolyPhen2 (http://genetics.bwh.
harvard.edu/pph/index.html, in the public domain), SIFT (http://sift.jcvi.org/, in the public domain), and mutation taster (http://www.muta
tiontaster.org/, in the public domain); primate PhyloP scores and phastCons scores provided by University of California-Santa Cruz (http://genome.
ucsc.edu/cgi-bin/hgTrackUi?db¼hg19&g¼cons46way, in the public domain).

* Reference: ENST00000313546, NM_172240, GRCh38.p7.

TABLE 4. Results of In Silico Genetic Analysis of Four Pathogenic POC1B* Variants 2

Variant

ID

Prediction

Conservation

Score

dbSNP ID

ACMG Classification

SIFT Polyphen2 HDIV Mutation Taster PhyloP

Phast

Cons Identified Criteria Verdict

1 Deleterious Probably damaging Disease causing 6.13 1.00 ND PM2 PM3 PP1 PP3 Likely

pathogenic

2 Deleterious Probably damaging Disease causing 6.08 1.00 rs1225701102 PM2 PM3 PP1 PP3 Likely

pathogenic

3 NA NA NA 3.44 1.00 ND PVS1 PM2 PP3 Pathogenic

4 Deleterious Probably damaging Disease causing 4.68 1.00 rs200082142 PM2 PM3 PP3 Uncertain

significance

PVS, pathogenic very strong (null variant in a gene where loss of function is a known mechanism of disease); PM2, pathogenic moderate 2 (absent
from controls); PM 3, pathogenic moderate 3 (for recessive disorders, detected in trans with a pathogenic variant); PP1, pathogenic supporting 1
(cosegregation with disease in multiple affected family members); PP3, pathogenic moderate 3 (multiple lines of computational evidence support a
deleterious effect on the gene or gene product); HGVD, Human Genetic Variation Database; ACMG, American College of Medical Genetics and Genomics.

* Reference: ENST00000313546, NM_172240, GRCh38.p7.
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FIGURE 6. Schematic representation of POC1B gene and mutations. The schematic structure of POC1B gene are shown. The encoded protein
contains seven WD repetitive domains, which are located between amino acids 16 and 307 (highlighted in gray). The detailed locations of the seven
WD domains are 16–55, 58–99, 101–139, 142–181, 183–223, 226–265, and 268–307 (UniProtKB - Q8TC44 [POC1B_HUMAN]; https://www.
uniprot.org/uniprot/Q8TC44, in the public domain). Exon-intron structure and exon numbers are shown under the scheme. Variants in this study
and previous reports are shown at the top and the variants identified in this study are shown in bold.

FIGURE 7. Alignment of POC1B family proteins. The result of Weblogo analysis derived from amino acid sequences of POC1B from seven species
reported in the NCBI database are shown: Homo sapiens, Mus musculus, Xenopus tropicalis, Bos taurus, Macaca mulatta, Canis lupus

familiaris, and Callithrix jacchus. Amino acid residues of D113, T119, and R452 in humans are indicated. Well-conserved residues are shown in
larger letters (WebLogo; https://weblogo.berkeley.edu/logo.cgi in the public domain).
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It is notable that foveal sparing (i.e., preserved foveal EZ and
IZ) was observed in six eyes of three cases (Fig. 4;
Supplementary Fig. S2). All of the eyes with foveal sparing
had good BCVA between �0.08 and 0.15 logMAR units (Table
1, 2). Among them, four eyes of two cases had preserved
mfERGs in the central region (Supplementary Fig. S3).

A foveal sparing was also reported in a Chinese patient with
the POC1B mutation and was diagnosed with peripheral
COD.28 Peripheral COD was first reported in three Japanese
cases of cone dysfunction with preserved macular responses in
the ERGs by Kondo et al.44 These cases had normal
funduscopic appearance in both the macula and peripheral
retina. The pedigree of one family suggested an autosomal
recessive inheritance; however, the causative gene has not
been definitively determined. In our six eyes with preserved
foveal structures in the OCT images, two eyes did not have
preserved central responses in the mfERGs (patient 8; Table 1,
2; Supplementary Fig. S3), although the BVCA was 0.05
logMAR units bilaterally. This may be because the preserved
foveal region was too small to evoke normal ERGs, and we
suggest that the etiology of our three cases was similar to that
reported by Kondo et al.44

A sparing of the fovea is commonly observed in different
types of macular diseases, such as in ABCA4- and PRPH2-
associated retinopathies,17,18,43,45–48 mitochondrial retinal dys-
trophy,49 macular dystrophy with CRB1 mutation,50 and age-
related macular degeneration.51–54 The explanations for the
physiologic and anatomic sparing of the fovea have been
presented in many publications.55–63 However, foveal sparing
in these macular diseases is usually accompanied by RPE
atrophy around the fovea, and the border between the atrophic
region and normal fovea is distinct. The foveal sparing in our
cases did not show any funduscopic changes because the RPE
layer was normally preserved whether the photoreceptor layer
is damaged or not (Fig. 2). Thus, the pathologic mechanism for
the foveal sparing may differ between the cases with POC1B

mutations and other macular dystrophies.17,18,43,45–54 Although
the numbers of the eyes with foveal sparing are limited, further
investigations to determine whether there is a significant
association between the genotype and RPE findings (i.e., the
presence or absence of RPE atrophy) in a large cohort with
foveal sparing could determine the mechanism of the foveal
sparing.

The question then arises on whether the cases with foveal
sparing represent an early stage that will progress to a more
advanced stage with foveal abnormalities. The BCVA of the left
eye of patient 1 deteriorated from 0.15 logMAR units to 0.4
logMAR units after 4 years of follow-up, and the OCT images
with the reflectivity profiles also showed that the foveal
sparing disappeared during the course; the EZ became blurred
and the IZ disappeared at the fovea (Fig. 8, asterisks). The
reflectance intensity of the IZ relative to the RPE was 0.82 at 35
years and 0.63 at 39 years. The reflectance intensity of the EZ
relative to the RPE was 0.86 at 35 years and 0.77 at 39 years.
These findings indicate that the reflectance of both IZ and EZ
relative to the RPE were decreased during a follow-up period of
4 years. The changes in the SD-OCT images indicated that
foveal sparing is observed during the natural course of the
disease process in our cases with POC1B mutations and may
progress to foveal dysfunction with reduced BCVA with
increasing time. Because not all the patients had been followed
for a long period of time, we cannot conclude whether the
central foveal sparing observed in our patients could be an
initial phase of the disorder or a subtype of the phenotypes in
the POC1B-associated retinopathy. Long-term observations
should be able to confirm the natural course of these cases.

The SD-OCT findings of our cases were similar to those of
occult macular dystrophy with the RP1L1 mutation, Miyake’s
disease, in that both EZ blurring and IZ loss were observed in
the affected region without RPE atrophy.34,64,65 Because both
POC1B and RP1L1 are located at the retinal photoreceptor
sensory cilia, there is a possibility that the loss of IZ and
blurred EZ with preserved RPE are diagnostic markers for
retinal ciliopathies. There are, however, other ciliopathies
affecting the retina, such as RPGR-,66–68

RPGRIP1-,69–71

RP1-
72–74 and CEP290-associated retinopathies,75,76 which

commonly lead to an apparent RPE degeneration. The
mechanism of why RPE atrophy is less distinct in POC1B-
and RP1L1-associated retinopathy is not clear.

Normal rod function and preserved RPE structures, which
are associated with normal funduscopic appearances, are
characteristic features in both the Japanese and Chinese cases
with POC1B-associated retinopathy. On the other hand, the
reports of non-Asians identified funduscopic abnormalities in 8
of 10 cases (Table 6).29–31,41 The phenotypic differences
among the different cohorts may arise from either variations in
ethnicity or the existence of recurrent R106P variants, which

TABLE 5. Pathogenicity Evaluation of POC1B Variants and ACMG Classification in Each Patient

Family

No. Patient ID Inheritance Sex Age, y Clinical Diagnosis Consanguinity HGVS.p

ACMG

Classification

1 1-II:1 (Patient 1) AR F 38 COD with foveal sparing D113H Likely pathogenic

T119I Likely pathogenic

1 1-II:2 (Patient 2) AR F 34 COD D113H Likely pathogenic

T119I Likely pathogenic

2 2-II:1 (Patient 3) AR M 47 COD T119I Likely pathogenic

R452Q Uncertain significance

3 3-II:3 (Patient 4) AR M 22 COD Y329X Pathogenic

R452Q Uncertain significance

4 4-II:1 (Patient 5) AR F 40 COD þ T119I Likely pathogenic

T119I Likely pathogenic

5 5-II:2 (Patient 6) AR F 67 COD þ T119I Likely pathogenic

T119I Likely pathogenic

6 6-II:1 (Patient 7) AR M 34 COD with foveal sparing T119I Likely pathogenic

R452Q Uncertain significance

7 7-II:1 (Patient 8) AR M 46 COD with foveal sparing þ T119I Likely pathogenic

T119I Likely pathogenic

AR, autosomal recessive.
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were not found in the Japanese or Chinese patients. However,
it should be noted that the funduscopic appearances and FAF
images of the POC1B-associated retinopathy in non-Asian
populations were much less severe than those in COD and
CORD caused by mutations of other genes.30,41 A relatively
preserved RPE function, which leads to normal funduscopic
appearance, may be a common feature of POC1B-associated
retinopathy in individuals of Asian ethnicities.

Of the 41 cases in the JEGC database registered as cone/
cone-rod dystrophy without apparent funduscopic abnormal-
ities, 8 cases with POC1B-associated retinopathy were identi-
fied, while there were no cases with POC1B-associated
retinopathy in 161 patients with ‘‘macular dystrophy/cone
rod dystrophy with apparent funduscopic changes’’ in the
JEGC cohort. This fact implies that POC1B-associated retinop-
athy is a major subset of cases with cone/cone-rod dystrophy.

Our study has a number of limitations. Our data were
obtained from the JEGC database for inherited retinal
degeneration from all over Japan. The data from patients from
multiple institutions were uploaded into the database. Howev-
er, the examination devices used at the different institutions
could have been different. Therefore, detailed quantitative
analysis could not be made. More detailed quantitative analyses
are needed to resolve this limitation.

The results of Ishihara color vision test showed that five
eyes of three patients (patient 1, 4, and 6) could not read any
plate including the 1st plate. The results of Panel D-15 of these
eyes were fail with two crossings or many confusion lines
mainly between the deutan and tritan axes. It is unusual that
patients with a BCVA better than 1.0 logMAR units could not
identify the 1st plate of the Ishihara color vision test. To
address these color vision deficiencies, another detailed color
vision assessment such as 100-Hue tests would be needed. The
results of Ishihara and Panel D-15 tests of patients 3 and 5
could be considered as behavior of severe red-green deficiency
or achromatopsia. There are reports of congenital achroma-
topsia, which shows similar pattern such as cone dysfunction
in the ERG, loss of IZ in the OCT, and D-15 abnormality with
confusion lines between deutan and tritan.77,78 The course of
our cases was progressive and was not like that of congenital
achromatopsia. However, the relationship between the results
of color vision tests and OCT images could not be revealed. In
addition, we could not rule out the complications of congenital
red-green color deficiency based on the results of color vision
tests in this study.

We performed whole-exome sequencing with targeted
analysis that could have missed the disorder-causing variants
in genes outside of target (301 retinal disease-associated genes)
and structural variants including large deletions in the target
region. More comprehensive gene screening and analysis by
methods such as whole-genome sequencing could help to
determine the genetic aberrations of our cohort. We have
examined patients with pathogenic POC1B variants in a
relatively large Japanese cohort, but it is important to note
that we have examined only eight patients. The cross-sectional
nature of our study did not allow us to draw conclusions
regarding the phenotype-genotype correlation of POC1B

retinopathy. Although several cases had clear onset with
notable visual impairment and progression and an evidence
of morphologic changes, which suggests the progression of
POC1B-associated retinopathy, the features and rate of
progression were not determined. To address these issues,
systematic longitudinal studies incorporating detailed ophthal-
mologic assessments in large cohort are needed, and they
should help determine the mechanisms involved in the
development of POC1B-associated retinopathy.

In conclusion, the results indicate that a generalized or
peripheral COD with normal funduscopic appearance is theT
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representative phenotype of POC1B retinopathy in the
Japanese. The characteristic morphologic changes in the
photoreceptor layers are similar to those of occult macular
dystrophy with the RP1L1 mutation, which is also one of the
retinal ciliopathies and might be a distinctive phenotypic
feature to differentiate POC1B-associated retinopathy from the
other COD or CORD.
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