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Electron trajectory analysis was added to the test 
program from which the optical properties of lenses may 
be calculated including focal points and lengths. In 
another test case the properties of a particular microscope 
lens were computed and compared with experimental 
results. These are shown in Fig. (1). The solid lines were 
determined by computing the field for the given con­
figuration and then computing electron trajectories for 
a number of voltage parameter values. The experimental 
points (and the definition of the voltage parameter) 
were taken from Heise.13 The small but consistant dif­
ferences between the theoretical and experimental 
values are believed to be due to experimental error in the 
determination of the voltage parameter. 

COMPUTING NOTES 

Typical three-electrode lenses were easily defined by a 
total of 70 to 75 points along the three interfaces, re­
quiring the inversion of a matrix of that order in the 

13 Von F. Heise, "Bestimmung von Verzeichnung und Offnungs­
fehler elektrostatischer Linsen aus Hauptftachen und Brennpunkt­
Hilfsftachen." Optik 5, (1949). 

induction analysis. The complete program including the 
inversion, computation of a detailed voltage map, and 
the optical analysis required 0.155 h on the IBM 7090 
computer. Program time varies between the square and 
the cube of the number of defining points. 

The matrix is well conditioned; all elements are posi­
tive and the largest element in any column lies on the 
main diagonal. The largest loss of precision in the in­
version due to differencing error was four bits in the 
cases tested. 

Numerical integration was by third-order Gaussian 
coefficients14 except where a pole occurs in the integra­
tion interval; in that case it was assumed that the inte­
grand went to infinity as the log of distance. An eight 
parameter formula, taken from Hastings,15 estimates the 
elliptic integral to 7 decimal places. 

The program is written in the FORTRAN language 
and is available from the author. 

14 W. E. Milne, Numerical Calculus (Princeton University 
Press, Princeton, New Jersey, 1949), p. 285ff. 

16 C. Hastings, A pproximations for Digital Computers (Princeton 
University Press, Princeton, New Jersey, 1955), p. 171. 
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The effect of a Maxwellian distribution of emission velocities on the longitudinal current density variation 
in axially symmetric solid beams is investigated to the paraxial approximation. The effects of both longi­
tudinal and transverse initial emission velocities are included. The treatment permits variable magnetic 
fields and apertures which intercept some of the beam. Some particles may be turned back because all their 
energy is forced into the transverse motion; the reduction of the transmitted current density is evaluated. 
A simple illustrative example is given. 

INTRODUCTION 

SEVERAL authors have estimated the effects of 
thermal velocities in electron beams. In some cases 

the treatment has been very generaP·2 and only some 
special cases have been treated in detail. Others have 
considered electrostatic3-5 or electromagnetic6-8 paraxial 
beams without allowing for the effects of longitudinal 

1 P. A. Lindsay, Advan. Electron. 13, 181 (1961). 
2 J. R. Pierce, Theory and Design of Electron Beams (D. Van 

Nostrand Company, Inc., New York, 1954). 
3 C. C. Cutler and M. E. Hines, Proc. I.R.E. 43, 307 (1955). 
4 W. E. Danielson, J. L. Rosenfeld, and J. A. Saloom, Bell 

System Tech. J. 35, 375 (1956). 
5 P. T. Kirstein, IRE Trans. Electron. Devices 10, 69 (1963). 
6 E. Ash, Proceedings 4th International Conference on Microwave 

Tubes 1963 (to be published). 
1 G. Herman, J. App!. Phys. 29, 127 (1958). 
• Y. V. Troitski, Zh. Techn. Fiz. 30, 25 (1960) [English trans!.: 

Soviet Phys.-Tech. Phys. 5, 22 (1960)]. 

velocity spread. In this paper the work of Refs. 3-7 is 
extended by including the effects of longitudinal velocity 
spread, nonuniform cathode emission, and nonuniform 
magnetic fields, in one treatment. In practical cases, the 
transverse dimension of the beam is limited; therefore, 
the treatment allows the beam to be restricted by one 
or more round apertures. The approach of this paper 
relies heavily on the work in Refs. 5 and 7. The intro­
ductions of these two references could also well serve 
as introduction to this paper. 

In all the references on paraxial beams quoted, it is 
assumed that the electromagnetic fields in the finite 
temperature beam are the same, to first order, as those 
in the zero temperature case. If this is not so, higher­
order corrections are required. The higher-order correc­
tions are discussed in Refs. 4 and 5 for electrostatic 
beams, and can be applied in much the same way for 

 20 June 2024 13:59:04



3480 P. T. KIRSTEIN 

the beams of this paper. A more thorough and general 
treatment of higher-order corrections is given in Ref. 9. 

In a paraxial theory it is assumed that the forces due 
to space charge vary linearly with distance from the 
axis. This assumption is equivalent to one that the 
effect of transverse variation in charge density on the 
electric field are neglected. Since the space-charge term 
is itself usually a first-order term, variation in it may 
be considered second order. Thus it is not inconsistent 
to consider thermal effects in beams with nonuniform 
cathode emission to the paraxial approximation. 

The paraxial theory relates the transverse position 
and velocity, and hence transverse energy, of a particle 
at one plane z in terms of their initial values at the 
cathode; for solid axially symmetric beams, this reaction 
does not, to fIrSt order, depend on the initial longitudinal 
velocity. Moreover, the total kinetic energy of a particle 
at z is related to its energy at the cathode by the con­
servation of energy. From the difference of these two 
relations, a negative longitudinal energy may be re­
quired by a particle to reach a given plane with given 
transverse energy. This is physically impossible, and 
means the particle would have been turned back and 
cannot reach the plane z of interest. An aperture in the 
system would also intercept particles, and so impose 
additional restrictions on the range of permissible trans­
verse velocities of particles which reach the plane z at a 
specified distance from the axis. 

In Sec. 2, the transverse position, velocity, and total 
energy of a particle at a plane z is related to its values at 
the cathode in general terms. An axially symmetric 
current-densitv distribution is assumed at the cathode, 
having a half:Maxwellian velocity distribution. Based 
on Liouville's theorem, the longitudinal current density 
at z is related to that at the cathode by an integral 
over-all permissible velocities. The range of permissible 
velocities is discussed. In Sec. 3, the results of Sec. 2 are 
used to find the longitudinal current density on the 
axis for uniform cathode current density; while in Sec. 4 
the methods of Sec. 3 are applied to points off the axis. 
In Sec. 5, the extension to nonuniform cathode emission 
and to sheet and hollow beams with curvilinear ray 
axes is discussed. Finally, in Sec. 6, a simple illustrative 
example is given. In this example, a beam comes from 
an electrostatic cylindrical Pierce gun, passes through a 
defining aperture, and then drifts in a uniform magnetic 
field. For algebraic simplicity the uniform field is such 
that its cyclotron frequency is equal to the plasma 
frequency of the beam. 

2. THE GENERAL FORMALISM 

and the regions over which the appropriate integrals 
must be evaluated are discussed. 

The Transformation Laws for a Single Particle 

Let (x, y, x, if, z) represent the transverse position 
and the velocity components of an electron at a plane 
z, and (X, Y,X, Y,Z) the corresponding parameters of the 
same electron at a plane z=o. We assume the beam is a 
solid, paraxial, axially symmetric beam. This means: 

(1) The transverse position and transverse velocity 
components of that part of the beam which has signifi­
cant charge density is small. 

(2) The spread of longitudinal velocity, at a plane z, 
of particles in that part of the beam which has signifi­
cant charge density is small. 

(3) Over the transverse dimensions in which there is 
a significant charge density, the electric and magnetic 
fields vary linearly with distance from the axis and are 
axially symmetric. 

Under the above assumptions, it is shown in Appendix 
A, Eqs. (A13), (A16), (A17), and (A22) that one may 
define complex variables w, u, lV, U related to the 
position and velocity components of a particle by 

(2.3) 

where 1/ is the ratio of charge to mass, BoCz) is the axial 
magnetic field on the axis at the plane z, and CPo(z) is the 
electrostatic potential on the axis relative to the cathode. 
In Eqs. (2.1)-(2.3), the lower case letters refer to the 
values at the initial plane z=O. 

From Eqs. (A24) and (A28), the parameters w, u, i 
of an electron at the plane z are related to their value 
lV, U, Z at the initial plane by the laws 

I U+iWL(Z)wI2+iL <Po(z)+<P2(Z) Iw 12 

=Z2+IU+i1hlVI2. (2.5) 

Here M, S, M, 8 are real functions of z satisfying 
Eqs. (A20) and (A27), so that, from Eq. (A30), 

M8-MS= 1, (2.6) 
In this section general expressions are derived for the 

axial current density in solid, axially symmetric paraxial while 4>2 is given, from Eq. (A25), by 
beams assuming a Maxwellian distribution of emission, 4>2(Z) = tl1[po(z)+cp"(z)]. (2.7) 

9 P. A. Sturrock, Static and Dynamic Rlcctron Optics (Cambridge 
University Press, New York, 19$5). 

At a cathode po and cp"(z) both become infinite. How­
ever, the right-hand side of Eq. (2.7) is proportional to 
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the derivative with respect to r of the radial electric 
field. Now if the cathode is chosen as an equipotential 
at Z= 0, this term is zero, so that <1>0(0) and <1>2(0) are 
both zero. From now on we only consider the trans­
formation laws of Eqs. (2.4)-(2.6). The relation between 
the functions M, M, S, S, WL, ~h, <1>2, <1>0 and the electro­
magnetic fields are not considered. However, we might 
note that if no magnetic field threads the cathode, 
flL=O, while if there is no magnetic field at the plane 
z, WL=O. 

The Phase-Space Density Distribution 
at the Cathode 

The probability that a particle at a particular point 
(X,Y) of the cathode z=O, leaves the cathode with 
v~loc.ity ~omp~m~nts. in the. r~nges . (~, t +dX), 
(Y, Y +dY), (Z, Z+dZ) is P(X, Y,Z)dXdY dZ, where 
P has the form 

P(X,Y,Z)=2;"31l"-! exp[ _;"2(Y2+y2+Z2)], (2.8) 

and;" is given by 

A= [m/(2kT)]1, (2.9) 

where m is the mass of the electron, T the cathode tem­
perature, and k is Boltzman's constant. 

If the beam is axially symmetric, the total number of 
particles emitted from an area dXdY of cathode about 
the point X, Y may be expressed in the form N T(R)dXdY 
where R is the distance of (X,Y) from the axis. The 
function NTis related to the axial current density at the 
cathode. In terms of NT, the number density distribu­
tion of particles in (X,Y,X,Y,Z) phase space is N, where 

N(X,Y,X,Y,Z) = 2;"31l"-W T(R) 
Xexp[ _;"2(X2+Y2+Z2)]. (2.10) 

If the cathode current density is ic(R), then Nt is 
related to ic by the expression 

00 

i c(R)=e1'" ZdZ f f N(X,Y,X,Y,Z)dXdY. (2.11) 

X,y=- 00 

Substituting Eq. (2.11) into Eq. (2.10) we see that 

(2.12) 

Hence N becomes 

N(X,y,X,Y,Z) = 2;"4/(1l"e)ic(R) 
Xexp[ _~2(X2+Y2+Z2)]. (2.13) 

Now our transformation laws are written not in 
(x,y,z,x,y,z) space but in (w,z,u,z) space. In this space 
the density is N J, where J is the Jacobian of the trans­
formation from the (x,y,x,y) system to the (w,u) system. 
This Jacobian is unity, because the transformation of 
x+iy to w is a simple rotation, while that from (x+iy) 

to u is a simple rotation plus an added term independent 
of u. In order to determine the number density distribu­
tion of electrons omitted from the cathode 1 U 12 must 
be related to X2 and y2. From Eq. (2.2) we see that 

X2+ y2= 1 U +iflW 12• (2.14) 

Using Eq. (2.13) we now see that the number density 
of particles omitted from W with transverse velocity U 
and normal velocity Z is N(W,U,Z) where 

N (W, U,Z) = 2;.. 4( 1l"e )ic(R) 

Xexp-;"2(1 U+iflLWI2+Z2). (2.15) 

Equation (2.15) is required in later sections to derive 
expressions for the current density at planes other than 
the cathode. 

The Axial Current-Density Distribution 

We are now in a position to find the axial current 
density distribution. From Liouville's theorem, the 
phase space density n is preserved for an ensemble of 
particles in an electromagnetic field. Hence, if a particle 
at (x,y,z), with velocity components (x,y,z), comes from 
the point (X,Y) at the cathode with initial velocity 
components CX,Y,Z), the number density in phase space 
n(x,y,z,x,iJ,z) is equal to nCX,Y,O,X,Y,Z). In accordance 
with our notation, the phase-space density at the 
cathode is denoted by N(X,Y,X,Y,Z). Using the con­
servation of phase-space density and Eq. (2.13), the 
axial current density is i(x,y,z), where i is given by 

i(x,y,z) = f f f en(x,y,z,x,y,z)zdxdydz 

:i; y z 

= f f f eN(X,Y,X,y,Z)zdxdydz 

:i; y z 

:i; y z 

The regions of (x,y,z) space over which Eq. (2.16) 
must be integrated is defined by several boundaries. If 
the cathode is finite, or if there are apertures in the 
systems, then this imposes bounds on (x,y) at some 
plane Zo, possibly the cathode. From Eqs. (2.1)-(2.4), 
these bounds impose conditions on u, v and hence X, Yi 
these conditions do not, however, effect the permissible 
z. For a particle to arrive at (x,y,z), it must have, at all 
z between the cathode and the plane of interest, positive 
axial velocity z. From the energy balance equation, 
Eq. (2.5), this implies a condition on z of the form 

(2.17) 
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The exact expressions for Zmin is discussed later. If a 
constraint of the type of Eq. (2.17) is applied, Eq. (2.16) 

may be integrated, using the energy balance equation 
Eq. (2.5) 

i(x,y,z) = 2:4 IIic(R) J z exp[ ->-.2(x2+1?+ZLcf>o+I>2r2)]dxdYdz 

j',Y Z=Zmin 

= ~ IIi,.(R) exp[ ->-.2(X2+1?+Zllli"Lq,o+cf>2r2 )]dXdY. 

x,i; 

(2.18) 

In substituting for z in Eq. (2.16) we have used the 
connection between X, y and u, w, and replaced 1 W 12 by 
r2 the distance from the axis. The evaluation of Eq. 
(2.18), the choice of Zmin and the bounds of integration 
form the subject of this paper. 

In general it is best to put everything in terms of the 
independent variables (x,y) of the point of interest in 
the Z plane, (X,Y) the point on the cathode from which 
the particles came, and Z the initial axial velocity. The 
integration over x, y, Z must then be replaced by one 
over X, Y, Z using the Jacobian of the transformation 
developed in Appendix B. From Eqs. (2.4) and (2.6) 
we see that 

u= (8w- W)/ S, U = (w- MW)/ S. (2.19) 

Using Eqs. (2.1), (2.2), and (2.19), the relation between 

x, y, x, y, X, Y can be written 

x+iy=eiX(u+iwLW) 

= eiX[(8+iw LS)w- W]/ S 

= eiX[(8+iwLS)w- (X +iY)]/ S. (2.20) 

The transformation from (x,y,z) to (X,Y,Z) is seen from 
Eqs. (2.5) and (2.20) to have the form of Eq. (Bl) with 

ql=X, q2=y, q3=Z, Ql=X, Q2=Y, 
Q3=Z, C=eiX/S. (2.21) 

Hence the volume elements in the (x,y,z) and (X,Y,Z) 
systems are related, from Eq. (B6), by the expression 

dxdydz= Z / (S2z)dXdY dZ. (2.22) 

An alternative expression for i(x,y,z) is, therefore, from 
Eq. (2.16) 

2>-.4 II .. I" . i(x,y,z) = 7rS
2 

ic(R)exp[ ->-.2(X2+Y2)]dXdY e->-.2Z 2ZdZ 

X,Y t 

= :~: I lic(R)exp[ -(A/S)2Iw-(M-iQLS)WI2]dXdY J Ze->-.2Z2dZ. (2.23) 

X,Y t 

In Eq. (2.23) we have used Eqs. (2.2) and (2.19); (W,w) 
are related to (X,Y,x,y) by Eq. (2.1). 

The condition that Z, z>o may be written, instead 
of as Eq. (2.17), in the form 

(2.24) 

where Zmin and Zmin are related, from Eq. (2.5), by 

Zmin2= max[O, - X2- Y2+x2+y2+Zmin2 
-<I>O(Z)+cf>2(z)r2]' (2.25) 

Using this bound on Zroin, Eq. (2.23) becomes 

i(x,y,z)= ~: Ilic(R) 

X,Y 

Again the region of integration of X, Y and the form 
of Zlllin is discussed later. 

The transformation leading to Eq. (2.26) is only 
possible as long as S~O. If S=O, we are at a cathode 
image plane, and the integral becomes degenerate. We 
may use the fact that one definition of the Dirac delta 
function o(a) is 

Hence the limiting form of Eq. (2.23) is 

i( x,y ,z) = (1/ M2)ic(r / M)e->-'2,imin 2
• 

In Eq. (2.28) we have used the fact that 

(2.27) 

(2.28) 

Xexp->-.2[lw-(M-iQ LS)WI2+Zmin2]dXdY. Iw-(M-i~hS)WI 

(2.26) can be zero, as S -70, only if WM =w, so that R=r/ M. 
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The Region of Integration 

Physically there are several restraints on th~ range of 
the variables (x,ii,z) of Eq. (2.18) or (X,Y,Z) of Eq. 
(2.23). The restraints we consider may be put in three 
categories: (i) due to the finite nature of the cathode; 
(ii) due to an axially symmetric aperture in the system; 
and (iii) those imposed by energy considerations. 

The restraint of type (i) may be included in the choice 
of ic(R), the current density distribution at the cathode. 
However, it is often convenient to choose for ic(R) as 
simple a function as possible. When the cathode current 
density is constant, the integrals of Eqs. (2.18) and 
(2.26) may be evaluated explicitly in terms of known 
functions. For this reason it may be preferable to allow 
for a cathode of radius a by putting the restraint 

R<a. (2.29) 

This restraint is not discussed further, for the moment, 
since it is a special case of type (ii). If Xo, Yo, ro, xo, Uo 
etc. refer to the values of x, y, r, X, u etc. of a particle 
at Zo, and there exists a circular aperture radius ao at Zo, 
then this restraint may be written, from Eq. (2.1), 

(2.30) 

It is clear that Eq. (2.29) is a special case of Eq. (2.30). 
If the transformation from the plane Zo to Z is as 
Eq. (2.4) namely with M o, So, We, etc. replacing M, 
S, W, etc.: 

Equation (2.30) may be expressed in the form 

IMow-Soul :::;ao. 

(2.31) 

(1.32) 

Clearly if we are using (W,u) coordinates, and Eq. 
(2.31) denotes the matrix of transformation from (wo,uo) 
to (W,U) then Eq. (2.32) again holds with (W,U) re­
placing (w,u). Depending on the variation of M, M, S, S 
with z, there is a limitation of the form of Eq. (2.32) at 
each axial plan z. We usually assume, however, that the 
limitation at one particular plane Zo is the most stringent. 

The third type of restraint requires that 

i~O, io~O, (2.33) 

where io is the value of i at the plane zo. Using Eq. (2.5) 
with ""Lo, <Poo, <P20, etc., denoting the values of WL, <Po, <P2 
at Zo, etc., we see that energy balance requires that at 
each plane Zo 

I u+iwLw I 2+i2-<po+<P2Iwl 2 

= luo+iwLOWo I 2+ZoL<I>oo+P20Iwol 2. (2.34) 

For the particle to arrive at all at z, it is necessary that 
for all Zo in the interval O:::;zo:::;z, z~O so that Eq. (2.34) 

gives 

Z2~Zmin.O= luo+iwLowolL I U+iWLW I 2 

- <POO+<PO+<P20 I Wo 12-<P2! W 12
• (2.35) 

For each Zo there exists a Zmin,O which depends on u, W 

as given by Eq. (2.35). For each w, u it is possible to 
define a Zmin by 

Zmin = nlax(zmin,O). (2.36) .. 

The Zmin of Eq. (2.36) is the one which should be used 
in Eqs. (2.18) or (2.26). However, we usually assume 
that if a particle left the cathode with positive axial 
velocity and reaches the plane z with positive axial 
velocity, then it has positive io at all intermediate planes 
Zo. This condition is equivalent to putting 

zmin2 =max[O, I U+iwLWI2_lu+iwLwI2 
+<Po-<p2Iwl 2]. (2.37) 

Both Eqs. (2.35) and (2.37) can be put in terms of only 
(w,u) by using the relations between (w,u) and (wo,uo) 
or (W,U) of Eqs. (2.31) or (2.4). , 

It may be noted that the convenient bounds of inte­
gration are not on (x,ii) or (X,Y) but on u or W. We 
may change coordinates from an integral over (x,ii) to 
one over the u plane by using Eqs. (2.2), (Bl) and (B6) 
with q=(i+iy), Q=u, C=eix, D=ieiXwLw, E=O, 
qa=Qa, so that 

dXdy= duxduy (2.38) 

and an integral over the u plane is identical to one over 
the (x,ii) plane. Also, an integral over the (X,Y) plane 
is identical to one over the W plane. Hence, using 
Eqs. (2.2) and (2.38), Eq. (2.18) may be written 

i(X'Y'Z)=~ j jic(R) 
Xexp{ -A2[1 tt+iWLW 12+zminLipo+<P2Iw 12]}duxdu y • 

(2.39) 

It is unnecessary to rewrite Eq. (2.26), since a restriction 
on W is automatically one on (X,Y). 

It now remains only to integrate Eqs. (2.26) and 
(2.39) under the restrictions of the form of Eqs. (2.32) 
and (2.35) or (2.37). 

3. THE CURRENT DENSITY ON THE AXIS FOR 
UNIFORM CATHODE CURRENT DENSITY 

If the current density at the cathode is uniform, it is 
possible to evaluate the integrals of Sec. 2 explicitly 
under certain assumptions. In this section we restrict 
ourselves to evaluating the current density on the axis; 
the algebra is much simpler for this case, and yet the 
essential ideas are well illustrated. In this case we may 
put w= 0, i= i(O,O,z) in the equation of Sec. 2, and take 
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ic outside the integral sign of Eq. (2.39), to obtain 

i(O,O'Z)=ic~ ! ! exp[ _t,.2( I UI2+Zmin L <I>O)]duxduy. 

(3.1) 

If we further assume that the field is such that if a 
particle leaves the cathode and reaches z with positive 
axial velocity, it will never have zero axial velocity 
between these two planes, then Eq. (2.37) is satisfied 
and gives 

Zmin2 =max{0, (M2+QL2SL 1) I UI2+<I>o}. (3.2) 

Equation (3.2) is derived from Eq. (2.37) by using 
Eq. (3.1) and putting w=o. 

If in addition there is an aperture ao at a plane Zo 
with matrix of transformation as given by Eq. (2.31), 
then on the axis the possible range of u is given, from 
Eq. (2.32) by 

(3.3) 

Equation (3.1) must, therefore, be integrated over 
the u specified by Eq. (3.3) with the Zmin of Eq. (3.2). 
Writing 

u= lu[eir (3.4) 

Eq. (3.1) may be immediately integrated over 'Y to give 

i(0,0,Z)=ict,.2!2Iul exp[ _t,.2([U[2+ZminL <I>o)]d[u[. 

lui (3.5) 

There are now several cases, as (MZ+QLZS Z-1) 5 ° 
and ao/ISoI5<1>o/(M2+QLzS 2_1); the first condition 
determines whether the beam is highly convergent for 
the given magnetic field, the second the relation between 
the aperture size, the energy and the convergence. 

Clearly one important parameter IS M2+QL2S 2; 
writing for brevity 

(3.6) 

we may deduce from Eq. (3.2) that 

if a>1, or if a<1 and [u[2<<I>o/(1-a2), } 
Zmin2= <l>o+(aL 1) 1 u 12 

if a<1 and lu[2><I>o/(1-a2), Zmin=O. 
(3.7) 

Combining Eqs. (3.7) and (3.3), Eq. (3.5) can be inte­
grated to give 

if a>1, or if a<1 and a02/S02<<I>o/(1-a2), 
i(O,O,z)/ic= [1-exp( - t,.2a02a2/S02)]/a2. (3.8) 

If a<1 and a02/S02><I>o/(1-a2), 

i(O,O,z)/ic= {1- (1-a2) exp[ - t,.2<1>ua2/(1-a2)]} /a2 

-exp[ -t,.2(a02/SoL <I>o)]. (3.9) 

In deriving Eqs. (3.8) and (3.9) we have assumed <1>0 
positive, which is the case of most practical interest. 

Under the conditions of Eq. (3.8), it is seen that 
energy considerations do not affect the axial current. It 
is not possible to obtain infinite axial current density 
by compressing the beam-i.e., letting a -> 0. Under 
such conditions Eqs. (3.8) and (3.9) give 

if a02/S02<<I>o, a->O, i(0,0,z)/i c ->t,.2a02/S02, (3.10) 

if a02/ S02> <1>0, a -> 0, i(O,O,z)/ic-> 1 +t,.2<1>o 
-exp[ -t,.2(a02/SoL <I>o)]. (3.11) 

The expression of Eq. (3.11), with ao -> 00, is that 
derived by Pierce2 from more elementary considerations 
for the maximum current density at a point. It is easy 
to derive an expression for maximum beam which can 
arrive within a cone of half-angle (3, neglecting energy 
restrictions. For this it is only necessary to repeat the 
integration for Zmin = I u I tan{3. This expression has also 
been derived by Pierce, but is probably of less im­
portance than the results of Eqs. (3.10) and (3.11) which 
give the maximum current density at an anode plane if 
there is an aperture ao placed at an arbitrary position 
between the cathode and anode planes. 

It is possible to derive many physical properties of 
Eqs. (3.8)-(3.11), but we only stress that the 
principal parameter governing the current density is 
not M, the paraxial magnification of the beam, but 
(Mz+QL2S), i.e., a. Thus unless the beam is very stiff, 
i.e., unit transverse velocity produces little deviation 
from the axis so that S is small, and there is little 
magnetic field threading cathode so that Q L is small, it 
may not help much to reduce the magnification. 

If there are several apertures ai at Zi with transfer 
matrix element M i , '';i etc. then ao/So in Eqs. (3.8)­
(3.11) must be defined by 

ao/So=min(ai/Si). (3.12) 

Clearly a finite cathode of radius a is considered by 
considering an aperture of radius a at the cathode plane 
z=O. 

4. CURRENT DENSITY OFF THE AXIS FOR 
UNIFORM CATHODE CURRENT DENSITY 

The results of the previous section are extended to 
give the longitudinal current density off the axis in the 
presence of an aperture and the energy restrictions of 
Sec. 3. Again a uniform current density at the cathode 
is assumed. 

The energy balance condition, Eq. (2.37) can be 
written, using Eq. (2.4), 

zmin2=max{0, [(-M+iQLS)W+(M-iQLS)u[ 2 
-lu+iwLw[2+<I>o-<I>z[W[2} 

=max{O, a21 U-{31W 12_1 u+iwLwl2 
+<1>0-<1>21 W 12}, (4.1) 

where a is given by Eq. (3.6) and 

(4.2) 
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If we have an aperture ao at a plane Zo as in Eq. (2.30), 
the possible range of u is given by Eq. (2.32), namely, 

I u-(Mo/80)w I :;'ao/80• (4.3) 

Now over one range of u Eq. (2.39) must be integrated 
with Zmin=O; over another Zmin is given by the second 
term of Eq. (4.1). In order to perform the integration, 
it is necessary to determine the boundary curve where 
Zmin changes from one value to the other. This occurs 
where 

0:21 u-!31wI2-1 u+iwLw 12+<I>o-<I>2Iw!2=0, 

which may be written 

lu-C1WI =b1, (4.4) 

It is to be noted that if w=O as in Sec. 3, Eq. (4.4) gives 
the circle lui 2=<1>0/(1-0:2) as the dividing curve. If bl2, 

as defined by Eq. (4.5), is negative, then Zmin=O for all 
u, if 0:<1, and Zmin is the second term of Eq. (4.1) for 
all u if 0:> 1. The region over which Eq. (2.39) must be 
integrated is bounded by Eq. (4.3) which may be written 

lu-C2wl :;'b2, C2=Mo/80, b2=ao/8o. (4.6) 

Substituting the appropriate Zmin and boundaries, one 
may obtain different values of i(x,y,z) depending on the 
relative values of bl , b2• For example, if the aperture is 
large and the beam sufficiently near the axis so that 

b1
2>0, b2 >b1+ICt-C2 1, a<1, (4.7) 

then Eq. (2.39) gives 

;\2 
+- exp[ _X2( -<I>o+<I>2IwI 2)] 

1r 

IU-C2WI=bZ 

X f f exp[ -(X2Iu+i~hwI2)Jduxduy. (4.8) 

IU-C1WI=Ol 

Now the integrals of Eq. (4.8) are ofthe type of Eq. (C3) 
with a scale change, and are to be integrated over the 
region of Eq. (ClO). Hence, using the results of 
Eqs. (C9)-(CI3), 

i(x,y,z)jic= (l/a2)[I-J(.:11,Xo:b1)] 

+exp[ - X 2( - <1>0+ 1 w 12<1>2) ] 
x [I(.:12,Ab1)-J(.:1g,Ab2)], (4.9) 

where 

.:11= IC1-!31IaXlwl, .:12= ICl+iQLIXlwl, 
.:13= ICz+iQLIXlwl. (4.10) 

And J(.:1,b) is the function defined in Eq. (C3) and 
shown in Figs. 2 and 3. 

If the energy is so high that 

b1
2>O, b1>b2+IC1-C2 1, a<1 or b1

2 <O, a>l, (4.11) 

then it is easily seen that Zmin is always given by the 
second term of Eq. (4.1) and 

i(x,y,z)/ic= (l/a2)[I- I(.:13a,Abza)]. (4.12) 

By using Eq. (C8) it is easy to see that on the axis, 
where Iwl =0 and, therefore, .:11 =.:12=.:13=0, the i/ic of 
Eqs. (4.9) and (4.12) reduce to those of Eqs. (3.8) and 
(3.9). It should be noted that the current density only 
takes the comparatively simple forms of Eqs. (4.9) and 
(4.12) when Eqs. (4.7) or (4.11) are satisfied. This 
implies the circles lu-G\wl =b1 and I U-C2wl =b2 do 
not intersect. 

In Refs. 3-5 expressions have been given for the 
current density variation neglecting the effect of longi­
tudinal velocities. The results obtained may be shown 
to be the limiting case of this section when <1>0 becomes 
large, so that Eq. (4.11) is satisfied. The current density 
is then exactly that of Eq. (4.12). In Refs. 3-5 there was 
no magnetic field, so that the comparison must be made 
with WL=QL=O. In these references there was a finite 
cathode and no aperture hence, So, ao, Zo refer to the 
cathode plane. 

If the relative magnitudes of 1 wi, <Po, and Uo are 
such that neither Eq. (4.7) nor Eq. (4.11) is satisfied, it 
is still possible to evaluate the integrals concerned, but 
the results are rather more complicated. This situation 
would arise if for a particular point in the beam the 
curve defining the dividing line between Zmin = ° and 
Zrnin=O, i.e., Eq. (4.4), passes outside the permissible 
range of u, i.e., Eq. (4.6). In that case it is no longer 
possible to take the second integral of Eq. (C6) from 
Eq. (C7), hence the extra complication. 

5. NONUNIFORM CATHODE CURRENT DENSITY 
AND OTHER EXTENSIONS OF THE METHOD 

If the current density is still axially symmetric, but 
not uniform, it is no longer possible to take ic outside 
the integral sign in Eq. (2.39)-unless we are at a 
cathode image plane so that S = O. If this is not the case, 
it is more convenient to use W, w as independent co­
ordinates, and integrate Eq. (2.26). In this case Eq. 
(2.25) can be written 

Zmin2=max[O, -iw+(iQLS-M)WI2 
+ 1 (8+iwLS)w- WI2_<I>O+<I>2Iwj2J, (5.11) 

and if Mo, So, etc. is the matrix from the cathode to the 
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REGION' REGION 2 REGION 3 ---- ---:--10 Z,- ----
"'---= ~Z,~~' Z, 

FIG. 1. Schematic of a 
pencil beam through a de­

IS fining aperture. 

aperture an at 20, the aperture can be expressed by 

IMoW-SoUI <ao, 

which can be written 

I (MoS-SoM)W -Sowl <aoS. (5.2) 

It is now possible to carry out exactly the same pro­
cedure as in the preceding section. Again the curve 
separating the two values of Zmin can be written in 
the form 

while the boundary over which W may range is given 
by Eq. (5.2) and is, therefore, of the same form. Equa­
tion (2.26) may now be evaluated in exactly the same 
way as Eq. (2.39) of the last section. The only difference 
which now occurs is that instead of the simple I(/:",b) 
functions of the last section one is now required to 
integrate 

~ I lic(i Wi) exp-a2
[ W -Ewj 2dWxdW

y. 

An example of this technique when the "aperture" was 
the finite size of the cathode has been given in Ref. s. In 
this case Mo= 1, So= 1 and Eq. (5.2) is simply the 
obvious IWI <ao. We do not, however, go through the 
algebra required for nonuniform cathode emission. 

It is to be noted that the methods of this paper can 
equally well be applied to axially symmetric beams with 
curvilinear ray axes. In these cases the differential 
equations for the matrix elements must be slightly 
varied from Eq. (A20), and the transformation law of 
Eq .. (A29) must be replaced by that of Eq. (A31) where 
~=Z. For sheet beams the ~W /R term need only be 
replaced by ~W. These changes of transformation do 
somewhat complicate the algebra, and no example is 
given in this paper. • 

6. A SIMPLE EXAMPLE 

As an illustration of the method, let us consider 
thermal effects in a pencil beam which starts as a 
parallel flow beam from an infinite planar cathode. After 
length Zo it has reached a potential cf>oo, and then passes 
through an aperture a. This aperture is also a magnetic 
shield, and immediately after the aperture the beam 
comes into an axial magnetic field B such that the 
cyclotron frequency is just equal to the plasma fre­
quency of the beam, and in which there is no electric 

field. Assuming the cathode has temperature T and the 
beam is emitted with uniform current density at the 
cathode, we investigate the longitudinal current density 
variation across the beam at anode plane distant Z1 from 
the aperture. The physical situation is sketched in 
Fig. l. 

Clearly the first important problem is to evaluate the 
matrix elements M, M, S, Sand Mo, Mo, So, So of the 
transformations from the cathode to the anode and 
from the aperture to the anode. For this purpose we 
divide the cathode anode region into 3 parts; the first 
is from the cathode to the aperture, the second passing 
through the aperture, the third is the drift region 
beyond. In all three regions w must satisfy Eq. (A20) 
so that 

However, if Ai is the transfer matrix, 

(6.2) 

for the ith region, it is easily seen from the definitions 
of the elements that the transfer matrix from after the 
aperture to z, is A a, while that from the cathode to z, 
is AaA2A1. 

In the first region, because the beam is electrostatic 
and obeys the Child-Langmuir equations from a space­
charge-limited cathode, 

O::=;z::=;zo, ~lL=WL=O, cf>o=cf>oo(z/zo)l, 
Po= - ~o( 4/9) (cf>00/Z02) (z/zo)-i (6.3) 

so that 

O::=;Z::=;Zo, WL=O, <1>00= 27)cf>00, 
<1>0= <1>00 (z/zo) t, <1>2=0. (6.4) 

There is a sharp discontinuity in cf>o' in crossing the 
aperture. On one side it is tCz/zo)!(cf>oo/zo) on the other 
zero. Therefore, in region 2 we may say that the change 
in <1>0', /:,,<1>0', is given by 

(6.5) 

In the drift region there is no electric field or change in 
Po so that, using Eq. (A4), 

zO::=;Z::=;ZO+Z1, <1>0=<1>00, <1>2= -t(<I>oO/Z02). (6.6) 

Now in this region the applied magnetic field is just 
sufficient to counteract the space-charge spreading 
force. Hence, using Eq. (A18) 

Using the <1>2 and WL of Eq. (6.4) in Eq. (6.1) it is seen 
that 

O::=;Z::=;ZO, dw/dz= (u/Zo) (zo/zN(3wLO), du/dz=O, (6.8) 
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which may be integrated to give 

OSZSZo, (:)= G (z/zo~l/WLO)(:). (6.9) 

where W, U are the values of (w,u) at z=O. 
As one crosses region 2, the plane of the aperture, 

Eq. (6.1) can be integrated, using Eqs. (6.5), (6.7), and 
(A4) to give a change in w, u of ~w, ~u in crossing the 
aperture of 

(6.10) 

Hence, if WI, Ul are the values of (w,u) before the 
aperture, and W2, U2 the values after then the transfor­
mation across the aperture is given by 

(6.11) 

Finally, in the third region Eqs. (6.6) and (6.7) are 
satisfied so that 

ZOSZSZl+ZO, dw/dz= (u/zo)/(3w LO), 
du/dz=O, (6.12) 

which may be integrated to give 

ZOSZSZO+Zl(W 3
) = (1 (Z-Zo)/(3ZoWLO»)(W2) 

Us 0 1 U2 

where W2, U2 are the values of w, u at the plane Zo. We 
are now in a position to find the transfer matrices from 
the aperture to the plane (ZO+Zl) and from the cathode 
to the plane (ZO+Zl)' From the definition of these 
matrices, Eqs. (2.31) and (A28), and from Eqs. (6.9), 
(6.11), and (6.13) it is seen that 

(6.14) 

and 

C ~)=G (Zl/zo)~(3WLO»)l:o ~)G 1/;LO) 

__ (1 + (zl/zo)/3 (3+2Zt!zo)/(3wLO»). 
(6.15) 

WLO 2 

Only because we chose such a simple example is it 
possible to evaluate the matrices analytically. It is to be 
noted that all the component matrices which make up 
the right hand side of Eqs. (6.14) and (6.15) have unit 
determinant, i.e., satisfy Eq. (A29). 

Now that the matrix elements have been found, the 
current density distribution at the plane (ZO+Zl) may 
be found by directly applying the formulation of Sec. 4. 

Using Eqs. (3.6) and (4.2), and remembering, from 
Eq. (6.3) that QL=O, it is seen that 

a= 1+(Zl+ZO)/3, f31=wLo/a, (6.16) 

so that from Eqs. (4.5), (4.6), (4.10), (n.7), and (6.14) 

C2 =0, C1=(a+i)wLo/(a2-1), b2=ao, 

~3=O. (6.17) 

In this case a> 1, hence if we are sufficiently near the 
axis for b2 to be negative which implies, from Eqs. (6.7) 
and (6.17) 

(6.18) 

then from Eq. (4.10) and (4.12) the current density at 
radius r, i(r,z)/ic is given by 

i(r,z)/ic= (l/a2)[1- I(O,Aaoa)] 
=1(/ex2)[1_e-J..2ao2a2]. (6.19) 

In Eq. (6.19) ex is given by Eq. (6.16) and}, by Eq. (2.9). 
This example was not supposed to be intrinsically 

interesting, it was merely to illustrate the method. In 
general the~matrix elements must be found by integrat­
ing an equation such as Eq. (A20) numerically. How­
ever, once the matrix elements have been found, the 
application of the formulae of Sec. 4 to a simple case is 
not difficult. 

APPENDIX A. THE MATRIX FORMULATION FOR 
THE TRANSFORMATION OF TRANSVERSE 

COORDINATES 

In this appendix the equations of motion for an axially 
symmetric solid beam are derived to the paraxial ap­
proximation. It is shown that transverse position and 
velocity at one axial plane are related to those at another 
by a 2X2 matrix with complex coefficients. By suitable 
choice of variables, this matrix is shown to have unit 
determinant. 

Inside a steady beam, Poisson's equation is 

E= - 'Vc/J, V2c/J= - p/ EO, (Al) 

where E is the electric field, c/J is the electrostatic po­
tential, p the space-charge density, and Eo the dielectric 
constant. To the paraxial approximation, the effect of 
transverse variations in p on c/J may be neglected. To 
this approximation, for axially.symmetric solid beams, 
Eq. (AI) can be shown to give, for small r, 

c/J""'c/Jo(z)-:ir2[c/JOI/(z)+po(z)/€o], (A2) 

where c/Jo, Po are the potential and charge density on the 
axis, and prime" I " denotes d/ dz. 

If c/J is given by Eq. (A2), the electric field (Ex,Ey,Ez) 
has the form, from Eq. (AI), 

E= (2Xc/J2, 2yc/J2, -c/Jo'), 

where c/J2 denotes the expression 

(A3) 

(A4) 
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In the same way, if we ignore the self-magnetic field 
of the beam, then the magnetic equations are 

fore, it is first convenient to make the transformation 

w= (x+iy)e- i\ (A16) 

(AS) where X is the rotation through the Larmor angle 

where B is the magnetic field and if; the magnetic scalar 
potential. Again for small r in an axially symmetric 
solid beam Eq. (AS) has the solution 

(A17) 

if;=1/;o(z)-lr2if;o"(z), (A6) In terms of these variables, Eq. (A1S) becomes 

so that the magnetic field (Bx,By,B z) is given by W+(<I>2+WL2)W=0. (A18) 

B= [ -t XBo'(z), -bBo'(z), Bo(z)], (A7) 

where Bo is the longitudinal magnetic field on the axis 
if;o'. While it is possible to add a constant azimuthal 
field Be, with extra components (- Boy/r, Box/r, 0), 
this field cannot exist without a central conductor, and 
is, therefore, ignored. 

If E and B are given by Eqs. (A3) and (A7), we are 
in a position to solve Lorentz's equation 

dv/dt= -1)[E+(v x B)], (A8) 

where v is the velocity of the particle, and 1) is lel/m. 
A first integral of Eq. (A8) gives the energy equation 

v2 - 21)t/>= const. (A9) 

Substitution of the expressions 

<I>o(z) = 21)t/>o, <I>2(Z) = 21)t/>2 (AlO) 

and of Eq. (A2) into Eq. (A9) yields the energy balance 
equation in the form 

(All) 

The transverse equations of motion may be written, 
using the expressions for E, B, of Eqs. (A3) and (A7) 
in Eq. (AS), 

i= -1)(2X<P2+yBo+tiBo'y), 

jj= -1)(2Yt/>2- xBo-tiBo'x). 

We may now define the Larmor frequency WL by 

(A12) 

(A13) 

If we prefer z as the independent variable, we may use 
the relation 

d/dt = z(d/dz) = <I>o"(d/dz) (A19) 

to first order, to obtain from Eq. (Al8) the relation 

dw/dz=<I>o-!u, du/dz=-(<I>2+U!L2)<I>o-!w, (A20) 

where u is the transverse velocity 'IV in the rotated 
coordinate system. 

It is to be noted that Eq. (A18) is linear in w­
whether or not there is magnetic flux threading the 
cathode (i.e., WL~O at z=O). The paraxial equations 
which may be derived to give the beam boundary are 
nonlinear (in fact have a singularity as w ~ 0); the 
equations given here are quite different, however. They 
are the equations for the motion of particles inside the 
beam. However, the equations assume we know <I>2 
which is related, via Eqs. (A4) and (AlO), to the space­
charge density. If the total current in the beam is I, 
and the beam radius a(z), in the zero-temperature 
approximation, then the space-charge density po(z) is 
given by 

(A2l) 

Hence in order to set up Eqs. (A18) and (A20), it is 
first necessary to solve the paraxial equation for the 
beam edge (d. Ref. 10). 

The energy balance equation, Eq. (All) involved 
the square of the velocity v. It is important to relate 
this quantity to u. From Eqs. (A16), (Al7), (Al9), and 
(A20) we see that if the velocity is (x,y,z) then 

then the time derivative of WL, WL, is given by (x+iy) = (d/ dt)(we iX ) = (U+iwLw)e iX • 

(Al4) Hence we may deduce that v2 is given by 

(A22) 

To this order of approximation, since WL only appears in 
the product (WLY), WL may be considered as constant for 
all particles. By some algebra, Eq. (Al2) can be written 
in the form: 

(i+ijj) = (-<I>2+iwL)(x+iy)+2iwL(X+iY). (A1S) 

Equation (A1S) has been derived previously by other 
authors, e.g., Herrman. Since the equation is linear in 
(x+iy) and its derivatives, a linear transformation 
could be derived relating the (x+iy), (x+iy) at one 
time, and, therefore, plane, with those at another. How­
ever, the solutions of Eq. (A1S) are complex, and, there-

(A23) 

N ow I w I is simply the distance r from the axis; hence 
the energy balance equation, Eq. (All), may be written 
in the form 

I U+iWLW 12+iL <I>0(z)+<I>21 W 12= const. (A24) 

The solutions of Eq. (A20) are real if the initial values 
of w, u are real. It is easily verified that if W2, Ul and 
W2, U2 are any two solutions of Eq. (A20), then 

d(WIU2-W2Ul)/ dz= O. (A25) 

10 P. T. Kirstein, J. Electron. Control 8, 207 (1960). 
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Let us choose w=M(z), v=1I1(z), and w=5(z), v=S(z) 
as the solutions of Eq. (A20) satisfying 

M(O) = 1, 111(0)=0, 5(0)=0, S(O) = 1. (A26) 

Then it is seen that M(z) is the magnification of the 
beam, being the change in distance from the axis of a 
particle starting at unit distance from the axis with zero 
transverse velocity; 5(z) is the st~ffness of the beam, 
being the distance from the axis reached by a particle 
starting on the axis with unit transverse velocity. It is 
to be noted that M, 5, 111, S do not, to this order of 
approximation, depend on Z, the longitudinal velocity 
at the cathode. 

If now a particle has initial position and velocity 
components such that 

w(O) = W, u(O) = U, (A27) 

then these coordinates transform so that at any other 
plane, 

transformations 

q=ql+iq2, Q=Q1+iQ2, 
q=CQ+D, q32=Qa2+E, (Bl) 

where C, D are independent of Q1, Q2, Q3 and E is 
independent of Qa. Now the volume element dq1dq2dqa 
in the qi system is related to that in the Qi system 
dQ1dQ2dQa by the expression 

(B2) 

where J is the Jacobian of the transformation, and is 
given by the determinant 

aq1/ aQ1 aq1/ aQ2 aq1/ aQa 
J = aq2/ aQ1 aq2/ aQ2 aq2/ aQa . (B3) 

aqa/ aQ1 aqa/ aQ2 aqa/ aQa 

Now from Eq. (Bl) we have the expressions 

(B4) 

(A28) and 

From Eqs. (A2S) and (A26), we see that the matrix in 
Eq. (A29) has unit determinant 

MS-1I15 = 1. (A29) 

Because the ray axis of the paraxial system is straight 
(in this case it is the z axis), the change in transverse 
position due to small change in initial longitudinal 
velocity ~ would be of the order ~W, ~U, and so could 
be neglected to this order of approximation. By identical 
arguments it can be shown that, for hollow beams with 
a curvilinear ray axis, the transformation laws have 
the form 

(A30) 

where w, W, U, U, e are as above, R is the instantaneous 
radius of the ray axis, and ~, A depend only on z 
through the electromagnetic fields. For hollow beams 
with a straight ray axis, ~, A are zero, though M, 111, 5, 
S, are related to the fields through slightly different 
formulae. 

For sheet beams with no variation in the y direction, 
the eW / R term becomes eW, but formulae similar to 
Eq. (A30) arise. Again if the ray axis is straight, ~, A 
are zero. 

APPENDIX B. CHANGE OF COORDINATES AND 
THE JACOBIAN 

In the body of the paper we often wish to transform 

(aqi/ aQ1)aq2/ aQ2- (aqi/ aQ2)aq2/ aQ1 
= laq/aQI2= ICI2. (BS) 

Hence the Jacobian has the value QaICi2/qa, and Eq. 
(B2) becomes 

dq1dq2dqa = Qal C! 2/ qadQ IdQ2dQ a· (B6) 

This result is required in the text. Note that the trans­
formation is impossible if the Jacobian vanishes, i.e., 
I Ci is zero. 

APPENDIX C. A SPECIAL INTEGRAL 

We consider a function p which may take complex 
values, such that 

Ip-CI "2b, (Cl) 

where C is complex so that 

(C2) 

and r, ,,/, b are real. An integral which occurs frequently 
in this paper is 

where px, Pu may range over all values defined by 
Eq. (Cl), and ~ is defined by 

variables from an orthogonal coordinate system(ql,q2,qa) Substituting 
to one (Q1,Q2,Qa) where these are related by the 

(C4) 

(CS) 
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o d.5 "'0 1.5 --x- 2D 
/::" 

FIG. 2. Plot of [1- I (6,b) Jib' vs 6 for b ~ 1. 

into Eq. (Cl) and (C3) it is seen that 

I(A,b) 

=~foo QdQ ('I' exp-IQ+Aei (o-q)1 2dq 
7r b ) 0 

If"" 12'-=- QdQ exp-[Q2+A2+2QA cos(o-q)Jdq 
7r b 0 

= i"" 2Q exp-[Q2+A2JIo(2QA)dQ. (C6) 

I 
i1.0 

~'I 
~, 

.01 

::;1 
~, 

I 

=b.~ b·1 

FIG. 3. Plot of 1- I (6,b) vs 61b for b?- 1. 

In Eq. (C6) 10 is the modified Bessel function of order 
zero, and we have used the relation 

1 12'-Io(x)=-- exp(x cosO)dO. 
27r 0 

(0) 

I(A,b) is plotted versus A, b in Figs. 2 and 3. When A is 
zero, i.e., C=D, Eq. (C6) takes the very simple form 

while if b ~ 0 it may be shown that 

[1-I(A,b)]/b2 

= fob (2/b2)Qe-(Q'+f,2)Io(2QA)dQ~e-f,2. (C9) 

Finally if b= I'X), 

(ClO) 

If the integral of exp- (p- D)2 is required in the region 
between the nonintersective circles 

where the circle with suffix 2 completely surrounds that 
with suffix 1, then it is clear from Eq. (C6) that the 
integral is 

1 
1=-

7r II 
!P-C,! <b, 
P-Cl >bl 

where AI, Az are given by 

When the circles intersect, Eq. (C12) is more com­
plicated. It is still possible to eliminate one of the 
integrals, but, for simplicity, we do not consider this 
case in this paper. The conditions for nonintersection 
are that 

(C14) 

and Eq. (C14) is only valid if this condition is 
satisfied. 
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