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Solution to the Equations of Space-Charge Flow by the Method of the 
Separation of Variables* 

P. T. KIRSTEIN AND G. S. KINO 

Microwave Laboratory, W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California 
(Received May 27, 1958; revised manuscript received August 25, 1958) 

The equations for irrotational, electrostatic laminar space-charge flow (no thermal velocities or normal 
magnetic field at the cathode) are set up in terms of the action function. The resulting nonlinear partial 
differ~ntial equation is .first reduced, by the method of the separation of variables in cylindrical polar 
coordmates, to the solutIOn of a set of first-order, nonlinear, ordinary differential equations in one coordinate. 
It is shown that it is possible to predict axially symmetric, electrostatic, hollow beams from the inside of 
hollow cylin~rical cathodes with space-charge-limited emission which asymptote, theoretically, to other 
extremely thm cylinders-thou,€h thermal velocities would, in practice, limit such a convergence. The 
characteristics of a particular beam, and the electrode system to produce it are shown. 

The beams which result from the separation of variables in other coordinate systems are described. In 
spherical polar coordinates one obtains hollow axially symmetric beams from a conical cathode, which may 
asymptote to other cones; in a less familiar coordinate system, spiral coordinates, sheet beams from equi­
angular spiral cathodes result. 

Finally, it is shown how the method may be extended to include magnetic fields transverse to the cathode. 
Some new solutions to space-charge flow in crossed electric and magnetic fields from a space-charge-limited 
cathode are mentioned. 

I. INTRODUCTION 

T HERE has been much interest in recent years in 
the steady-state behavior of electron beams with 

high space-charge densities. The equations which must 
be satisfied for space-charge flow are complicated; no 
analytic solutions are known except under certain 
special conditions, namely, that the flow is irrotational 
and laminar. These conditions are satisfied in one very 
important physical system-that of electron guns with 
no magnetic field threading the cathode, in which 
thermal velocities are neglected. In this paper we will 
be concerned only with flow satisfying these conditions; 
we will have the boundary conditions pertaining to the 
problem of electron gun design continually in mind. 
Although it will be shown that some of the solutions to 
space-charge flow we obtain are valid even with mag­
netic fields present, we will deal mainly with the problem 
of electrostatic, space-charge flow. 

In the past, the best known of the solutions to the 
equations for space-charge flow, those by Langmuir 
et al.,!,2 have involved rectilinear trajectories. More 
recently, Meltzer and Walker4 have given some solu­
tions for which the trajectories are curvilinear. How­
ever, the published solutions have not been numerous; 
none, other than Langmuir's, have been useful for gun 
design. There has been no systematic attempt to give 
a wide class of space-charge-flow solutions with curvi­
linear trajectories and variable characteristics. In this 
paper we will develop a method which partially 

* The research reported in this document has been sponsored 
by the Air Force Cambridge Research Center, Air Research 
and Development Command, U. S. Air Force. 

1 I. Langmuir, Phys. Rev. 2, 450 (1913). 
• I. Langmuir and K. Blodgett, Phys. Rev. 22, 347 (1923); 

Phys. Rev. 24, 49 (1924). 

remedies this situation. We will present classes of 
solutions which are derivable from a real cathode. By 
the method of the separation of variables we will 
reduce the partial differential equations governing the 
space-charge flow to ordinary differential equations. 

The method of solution which will be used is appli­
cable in a large number of coordinate systems. However, 
we will use as our main illustrations the solution in 
cylindrical polar coordinates which yield a hollow beam 
emitted from a cylindrical cathode. We shall also describe 
a gun utilizing this flow and present some of its perti­
nent characteristics. This gun is presently being 
constructed. 

We will also sketch the characteristics of electro­
static beams which result from solutions in spherical 
polar coordinates and a less well-known coordinate 
system which we call equiangular spiral coordinates. 

Finally, we will discuss briefly how the methods 
outlined in this paper may be extended to yield solutions 
for space-charge flow when there is magnetic field 
present, but with the normal component of magnetic 
field at the cathode zero. 

II. EQUATIONS FOR SPACE-CHARGE FLOW 

When thermal velocities are neglected all electrons 
are emitted from the cathode with zero velocity. 
Hence, the potential If> is related to the velocity v of an 
electron by the equation 

(1) 

where 1/ is the ratio of charge to mass of an electron. 
Walker4 and Gabor> have shown that, in the absence 

of magnetic field, the flow from a cathode from which 
all the electrons are emitted with zero velocity is "B. Meltzer, Proc. Phys. Soc. (London) B62, 813 (1949); 

Electronics 29, 118 (1956) . 
• G. B. Walker, Proc. Phys. Soc. (London) B63, 1017 (1950). 5 D. Gabor, Proc. Inst. Radio. Engrs. 33, 792 (1945). 
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irrotational, i.e., 
VXv=O. 

in product form. Thus, the choice of possible coordinate 
(2) systems will be restricted. 

The velocity may, therefore, be derived from a scalar 
function W, called the action function, by the relation 

v=VW. (3) 

Equations (1) and (3) may then be combined to yield 
a single equation, the Hamilton-Jacobi equation, for 
the action function W, 

(4) 

Thus, the problem of determining the flow, when the 
space-charge fields are negligible, becomes the problem 
of determining the solution of the Hamilton-Jacobi 
equation, under the condition that the potential 
satisfies Laplace's equation 

N=O. (5) 

However, when the fields due to space-charge are of 
importance, as in space-charge-limited flow, it is 
necessary to solve the Hamilton-Jacobi equation with 
the additional conditions that Poisson's equation, 

N=-p/E, (6) 

and the equation of continuity, 

V' (pv)=O, (7) 
be satisfied. 

In the past, a number of solutions of the Hamilton­
Jacobi equation for electron flow have been given. 
Iwata,6 for instance, expressed W in the form 
W=W1(Ql)+W2(q2)+W3(q3), in the coordinate system 
(Ql,Q2,Q3), in order to find a number of possible space­
charge-free flows. Spangenberg7 made use of the action 
function in the form 

(8) 

in Cartesian coordinates, and derived Langmuir's 
solution for flow between parallel plates. Meltzer and 
WalkerA found other space-charge solutions by postu­
lating that either W or <I> be a function of one variable 
in the chosen coordinate system. 

We shall demonstrate in this paper that it is possible 
to obtain a far more general class of solutions of the 
equations for space-charge flow, namely, the Hamilton­
Jacobi equation, Poisson's equation, and the equation 
of continuity, by the consideration of the action 
function W in many orthogonal coordinate systems 
(Ql,Q2,Q3) in the form 

(9) 

The solutions derived here will be such that the 
potential <I>, the space-charge density p, and each 
component of currentjl,j2, andja may also be written 

6 G. Iwata, Progr. Theoret. Phys. (Kyoto) 15, 513 (1956). 
7 K. Spangenberg, Vacuum Tubes (McGraw-Hill Book Com­

pany, Inc., New York, 1948). 

III. SOLUTION OF THE SPACE-CHARGE EQUATIONS 
IN CYLINDRICAL POLAR COORDINATES 

(A) General Formulas and the Universal 
Trajectories for an Infinite Beam 

In this section we shall demonstrate the derivation 
of a circularly symmetric solution in the cylindrical 
polar coordinate system (r,O,z) by writing 

(10) 

It would be possible to consider W in the more general 
form W= W1(z)W2(r)W3(O) with little added complex­
ity. However, the (I-independent case has more practical 
interest. The method of solutions for the more general 
case has been described.8 

In order to carry through the separation of variables, 
it will be necessary to choose a comparatively simple 
function for one of the Wi,W 1, in such a way that not 
only is W in the form of Eq. (10), but also <I> has the 
form 

<I> = <I>1(z)<I>2(r). (11) 

The form of Eqs. (10) and (11) will henceforth be 
called "in product form." 

Substitution of a W of the form of Eq. (10) into 
Eqs. (1) and (4) yields 

1 
<I> = __ (W1

/2W22+ WI2W2/2) 
27] 

(12) 

where the prime (') denotes differentiation with respect 
to the argument. 

Equation (12) has the form of Eq. (11) if, and only 
if, at least one of (W//W1) or (W2' /W2) are constant. 
We will assume that 

W1'/W1=n, 
so that 

(13) 

We could also have tried the alternative choice 
W 2' /W 2= n. However in this coordinate system such a 
choice would cause the separation procedure to break 
down at a later stage. If WI has the form of Eq. (13), 
it can be shown that 

and 

W=enzW2(r), 

v=enz (nW2,0,W2/), 

(14) 

(15) 

(16) 

8 P. T. Kirstein, Technical Report No. 440, Microwave Labora­
tory, Stanford University, Stanford, California (1957). 
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IfrG. 1. Sketches of possible electron-flow patterns from a 
cylindrical cathode, arising from the separation of variables in 
cylindrical polar coordinates. 

where 
1 

<I>2= --(n2W 22+ W 2'2). (17) 
211 

The possible solutions of Eq. (17) may be divided 
into two classes: the zero-space-charge solutions, 
for which p=O; and the finite-space-charge solutions, 
for which p~O. These two cases will be considered 
separately. 

(i) Zero-Space-Charge Solution, p= 0 

When p= 0, the potential <I> must satisfy Laplace's 
equation. Therefore, if <I> is written in the form of Eq. 
(16), the term <I>2(Y) must be of the form 

<I>2(Y) = AJo(2nr)+BYo(2nr), (18) 

where A and B are constants, and Jo and Yo are the 
Bessel function of zero order and first and second kind, 
respectively. Equation (17) may therefore be written 
in the form 

1 
--(n2W 22+Wl2)=AJo(2nr)+BYo(2nr). (19) 

211 

We may solve Eq. (19) to find W2, and hence W, 
and so determine the flow in the potential field 
<I>=e2M [AJo(2nr)+BYo(2nr)]. 

It is interesting to consider some of the features of 
this solution. We shall show, first, that all the trajec­
tories of the solution may be derived by a displacement 
in the z direction of one trajectory. From Eq. (15) the 
slope of any trajectory is given by 

drjdz= W 2'jnW •. 

Hence, since W 2 is a function only of r, the position of 
any electron is given by the expression 

(20) 

where Zo is a constant. Thus, Eq. (20) shows that the 
z displacement of an electron from its initial value is 
dependent only on r, so that all trajectories may be 
derived from a known one by displacement in the z 
direction. The particular trajectory with Zo= 0 will 
therefore be termed a "universal trajectory." 

We may now determine the form of the trajectories. 
If the electrons come from a real cathode, at zero 
potential, the cathode must be a cylinder since the 
condition that v be zero is equivalent to 

W 2=W2'=0, 

which occurs on certain cylinders arIsmg from the 
solution for r of Eq. (19), with the left-hand side put 
equal to zero. The possible types of trajectories obtained 
from this solution are shown in Fig. 1. 

In Fig. 1 solid lines represent electron trajectories. 
Two forms of trajectory result since dr/dz can be zero 
only if from Eq. (15), W2'=O. However, if W2'=O, 
dr j dz is zero for all z. If W 2' becomes zero, the flow 
pattern of Fig. 1 (a) results; otherwise, that of Fig. 1 (b). 

In the first case, the asymptotic solution for the 
electron beam would be an infinitely thin cylinder 
coaxial with the cathode. In the second case, the 
trajectories would pass through the axis, yielding a 
solution with crossing trajectories; this feature of the 
solution is caused by the nature of the coordinate 
system, but presents no anomaly when there is no space 
charge present. 

(ii) The Finite-Space-Charge Solution, p~O 

When p~O, the potential <I> must satisfy Poisson's 
equation and the equation of continuity, Eqs. (6) and 
(7). We shall show that it is still possible, in this case, 
to find an ordinary differential equation for W 2 which 
satisfies Eq. (17), and, hence, a flow pattern in the 
presence of space charge. 

By using Eq. (16), we may write Poisson's equation 
in the form 

P [1( d d<I>2) ] __ =e2nz - --1'- +4n2<f>2. 
E r dr dr 

(21) 
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We shall find it convenient to use the notation 

[ l(d dcJ>2) ]nW2j u(r) = - -r- +4n2cJ>2 --, 
r dr dr r 

[
1 d ( dcJ>2) ]W2'· 

r(r) = - - r- +4n2<1>2-. 
r dr dr r 

(22) 

Then, Eq. (7), the equation of continuity, may now 
be written in the form 

which becomes 
1 
-e3n{r'+3nuJ=0. 
r 

Since e3n·~o, the only solution to Eq. (23) is 

r'+3nu=0. 

(23) 

(24) 

Equation (24), with the defining equations, (22), is an 
ordinary differential equation for W 2• From its solution, 
under appropriate boundary conditions, we may find 
W 2 and so, from Eqs. (15), (16), and (21), the velocity, 
potential, and charge density at any point. 

When the flow is space-charge-limited, the boundary 
conditions at r= ro, the cathode, for potential and 
potential gradient are 

V= cJ>= E= 0, at the cathode, (25) 

which becomes 

W 2= W 2'=cJ>2'=0, at r=ro. (26) 

The solution of Eq. (24) with these boundary conditions 
will then give a possible space-charge-limited flow. By 
varying the value of n, different flow patterns may be 
obtained; however in all cases the cathode is a cylinder. 
It should be noted that when n= 0, a solution of this 
equation reduces to that of Langmuir's for flow between 
coaxial cylinders. The two basic types of flow that may 
result are of the same form as those of Figs. 1 (a) and 
l(b), although the patterns for any given value of n 
will, of course, be different from the zero-space-charge 
case. But it should be noted that when there is space 
charge present, the beam must be terminated before 
it reaches the axis, since the solutions given would not 
be valid when electrons cross, as the equation of 
continuity is based on the assumption of laminar single­
valued flow. As before, the other trajectories may be 
obtained from one trajectory by a translation in the 
z direction. 

Numerical solution of the flow for different values of 
n which have been obtained on an IBM 650 computer 
are given in Fig. 2. If n> 1.55, it is seen that the flow 
pattern is substantially like that of Fig. 1 (a) j the beam 
would, theoretically, asymptote to an infinitesimally 
thin cylinder, though thermal velocities would, in 
practice, limit such a convergence. If n < 1.55, the beam 

erent n. 

a: 

<J) 

x « 

UJ 
o z 
~ 
<J) 

o 

__________ ...r.:":10 

DISTANCE ALONG AXIS Z 

would cross the axis, and therefore would have to be 
terminated before it reached the axis j otherwise the 
implicit assumption of single stream flow would be 
violated. Negative values of n merely give the positive 
n solution reflected in the plane z= O. 

We have stated earlier that different trajectories 
resulting from a solution for a particular value of n 
differ only by translation in the z direction. We have 
shown that the physical parameters of flow have the 
form 

v=en 'V2, 

cJ> = e2n'cJ>2, 

E= e2 nzE2, 

p= e2 nzp2, 

(27) 

where V2, cJ>2, E2, and P2 depend only on r and may be 
derived from Eqs. (15)-(17), (21), etc., for a W 2 

satisfying Eq. (24). Therefore, the value of the physical 
parameters of flow along one trajectory differ from those 
along another by a simple constant factor. 

(B) Finite Beam 

The solutions which were derived in the previous 
section are those for an infinite beam. In practice we 
require a finite beam. For such a beam, then, we may 
find the potentials and fields along the two enclosing 
surfaces, and design an electrode system, exterior to 
the beam, to give the correct values of potential and 
field at these surfaces. The difficulties which arise when 
this Pierce procedure is applied to gun design with 
curvilinear trajectories will be discussed in Sec. III (C). 

In order to design a finite beam in practice, it is 
necessary to know not only the way in which the differ­
ent parameters vary throughout the beam, but also 
how the current density varies across the cathode, and 
what the expected value of the total current would be. 
We will illustrate this calculation bv using the solution 
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FIG. 3. Beams for two different widths of cathode from a 
cylindrical cathode with n= 1.8. The numbers on the left refer to 
the microperveances of the heavily shaded narrow beams, termin­
ated along equipotentials, and those on the right refer to the 
wide beam. 

given in the first part of this paper to find the expression 
for the current density and total current emitted from 
a finite cylindrical cathode. From Eq. (27), we find 
that the current density at any point is of the form 

where 
(28) 

(29) 

At the cathode, r= const, it can be shown that the 
current density h is normal to the surface. Hence, we 
may find the current density at the cathode, r= ro, to 
be in the form 

(30) 

where jc is defined as the cathode current density. If 
the cathode is the region between z= Zl and z= Z2, then 
the total current in the beam is found from Eqs. (9) 
and (11) to be I, where 

I-I 
cathode area 

jeda= 211"ro f Z2 

e3n'jedz 
z, 

BEAM FORMING 

ELECTRODE 

e1 nz._ e1nz l 

=27rrojc~---
3n 

BEAM FORMING 

ELECTRODE 

A~sl _____ _ 

(31) 

FIG. 4. An electrode system to produce one of the beams of 
Fig. 2, the beam from a cylindrical cathode with n= 1.8, and 
cathode width 0.2 of the cathode radius. 

The other characteristics are similarly derivable. The 
details of their derivation have been given.8 

The finite beam which may be derived from the 
universal trajectories of Fig. 2 for one particular value 
of n, n= 1.8, is shown in Fig. 3 for two cathode widths. 
Here solid lines represent trajectories and dotted lines 
equipotentials. From Fig. 2, it can be seen that the 
asymptotic form of this beam, for large z, would be an 
infinitely thin cylinder of radius 0.17 of the cathode 
radius-though thermal velocities would, in practice, 
limit its convergence. The curves of Fig. 3 are not 
extended far enough to show the asymptotic form of 
the trajectories. This characteristic of these beams may 
not be as useful as would appear at first sight; from 
Eqs. (27) and (28) it is seen that the perveance density 
K is given by 

P21 v21 P2 
K=--a:-. 

<l>2! <1>2 
(32) 

If the beam is traveling almost parallel to the Z axis, as 
occurs for large z, it follows from Eq. (32) that K will 

TABLE I. The variation of the physical parameters of flow along 
the inside of a beam from a cylindrical cathode with m= 1.8. 

n =1.8 

Radius 
in em 

2 
1.6 
1.2 
0.8 
0.6 
0.4 

Cathode width 
and axial 

distance across 
beam: 4 mm 

Axial 

Cathode 
radius: 
2 em 

Total 
current: 
2.18 amp 

Variation of 
potential. fields. 

and charge-density 
across beam for 

same R: 2.05 

Charge 
Radial Longitudinal density 

position Potential. field. E.. field E,. p. in 10-' 
incm 4>. in kv in kv cm-1 in kv cm-1 coulomb/m' 

0 0 0 0 "" 0.0432 0.736 2.42 - 1.32 1.91 
0.179 2.19 2.84 - 3.94 1.60 
0.436 4.72 1.28 - 8.50 1.94 
0.641 6.83 - 2.03 -12.30 2.60 
0.985 10.98 -14.04 -19.80 5.44 

be almost constant. Hence, the total perveance will be 
inversely proportional to the area convergence. 

In Table I we show how the physical parameters of 
flow vary along the inside of the beam of Fig. 3 for 
specified values of cathode radius and voltage. The 
characteristics of the two finite beams of Fig. 3 depend 
on where the beams are terminated. The figures on the 
left of Fig. 3 show the perveance of the heavily shaded 
beam, while those on the right refer to that of the 
whole beam. The beam is assumed terminated along an 
equipotential. The derivation of these figures for 
perveance have been given.8 The current-density vari­
ation across the cathode for the narrow beam is 1.7, 
while that of the wide beam is 2.9. 

(C) Electrode Design and an Electron Gun 

Even though we have presented solutions for the 
physical parameters of the flow which satisfy all the 
relevant equations in the beam, it is still necessary to 
design electrodes to produce the required voltage and 
field distributions at the edge of the beam. We may 
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(d) 

assume, as in the usual Pierce9 procedure, that if con­
ditions are correct at the beam edges, they will also be 
correct throughout the beam. 

In the normal Pierce procedure, the electrode may 
be designed by putting a dielectric into an electrolytic 
tank to simulate an electron beam. In the guns that 
have been designed in the past on the basis of an 
analytic solution, the trajectories are rectilinear, and, 
hence, the normal electric field is zero at the beam edge. 
The dielectric analogue is therefore satisfactory. In the 
curvilinear beams of this paper, the component of 
electric field normal to the beam edge is no longer zero, 
and so a dielectric slab is no longer an adequate analogue 
for the beam. 

The problem of electrode design, in this case, has not 
been satisfactorily solved; however, various suggestions 
have been proposed. In one, according to Picquendar,l° 
the field is divided up into two parts-that due to 
space charge and that due to applied field, the space­
charge contribution being subtracted out analytically 
and numerically. This method has been described. 8 An 
electrode system to produce the beam from the cylindri­
cal cathode of Fig. 2 has been designed by us in the 
electrolytic tank using Picquendar's method, and is 
shown in Fig. 4. 

A gridded gun based on the electrode system of Fig. 4 
has been built and will shortly be tested. 

IV. SPACE-CHARGE FLOW SOLUTIONS IN 
OTHER COORDINATE SYSTEMS 

(A) Spherical Polar Coordinates 

The separation of variables for motion with axial 
symmetry is equally possible in spherical polar co­
ordinates. In this case, the analog of Eq. (10) is 

(33) 

With a W of this form, it can be shown, in the same 
way as in the previous section, that the functional form 
which allows the separability of variables is 

(34) 

This solution, when the boundary conditions of Eq. 
(25) are applied, leads to motion from a conical cathode, 
fJ=fJo, of the type shown in Fig. 5. Owing to an am­
biguity of sign, flow may occur both outwards, as in 
Figs. s(b) and s(c), and inwards, as in Figs. Sea) 
and Sed). 

In the motion of Fig. 5, the electrons are either 
asymptotic to another cone and may travel either 

9 J. R. Pierce, Theory and Design of Electron Beams (D. Van 
Nostrand Company, Inc., Princeton, New Jersey. 1954). 

10 Picquendar, Cahen, and Lapostolle, "Space-charge effects in 
electron guns," translated by M. W. Muller, Technical Memoran­
dum TMO-24, Varian Associates, Palo Alto, California. 

FIG. 5. Sketches of possible electron-flow patterns from a 
conical cathode, arising from the separation of variables in 
spherical polar coordinates. 

 01 M
ay 2024 14:56:44



1764 P. T. KIRSTEIN AND G. S. KINO 

(/) 

X 
<I 

~ 
o 
II: ... 

," 
~--

~ -' [80 ' 67.5" 

180'9~0f-~ ~90'6~0 
\ '\ ~. 

\ \'\ :'\ 
\1\\ 

\ 
/90=75\ r-t-

~l' j 
34- ,,' / / I ~ '~O ~, e/ ) , , :t~' '" -' --

~~ ' _, ,-- ",.4" 
':- --- -- - 't--
DISTANCE ALONG AXIS 

FIG. 6. Universal trajectories for beams from a conical 
cathode for m= -1 and different cone angles 80. 

towards or away from the apex of the cone, as in Figs. 
S ( a) and S (b), or else cut the axis, in which case the 
beam would have to be terminated before the axis, as 
in Figs. S(c) and Sed). 

The motion of Figs. S(b) and S(c) correspond to 
positive m, while that of Figs. Sea) and Sed) to negative 
m. The Cone angle, 00 can be greater than 'Tr12, but a 
solution for Ol='Tr-OO and ml= -m is merely a reflec­
tion, in the plane 0= 'Tr12, of the solution for 00 and m. 

The derivation of the equations resulting from the 
action function of Eq. (34) has been given. 8 However, 
the procedure shown in Sec. III must again be followed. 
We now have a two-parameter family of universal 
trajectories-with m and the cathode cone angle 00 as 
independent parameters. It should be noted, in particu­
lar, that if the cathode cone angle 00 is made to tend to 
zero in such a way that the product mOo is kept constant, 
the solutions tend to those of Sec. III, with mOo pro­
portional to the n of that section. 

Some calculated universal trajectories for different 
values of the parameters m and 00 are shown in Figs. 6, 
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FIG. 7. Universal trajectories for beams from a conical 
cathode for m=3 and different cone angles 80. 

7, and 8. It may be seen from these curves that hollow 
beams with widely varying trajectories may be designed. 
It may be seen that for a given value of m, the beam 
trajectories are substantially independent of (00-0), by 
tilting the curves of Figs. 6 and 7 until the initial 
points are coincident. The final angle of the universal 
trajectory can be varied by varying 00 for each m, or m 
for each 00• This flexibility may allow a design to 
partially counterbalance the defocusing effect of an 
anode hole. 

In Sec. III, finite beams were derived from the 
universal trajectories by displacement in the z direction. 
In the beams of Sec. IV (A), finite beams would be 
derived from the universal curves by magnification. 
Examples of two such finite beams for different cathode 
widths are shown in Figs. 9 and 10. These curves show 
how the area converges along the beam; the dotted 
lines in these figures denote equipotentials. The tra­
jectories of the beam of Fig. 9 tend to follow equi­
potentials, since high transverse fields are needed to 
turn it through such large angles. The trajectories in 
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FIG. 8. Universal trajectories for beams from a conical 
cathode for a cone angle 80 of 60°, and different m. 

the beam of Fig. 10, however, tend to follow the field 
lines more closely. 

The characteristic of finite beams in this coordinate 
system may be derived in much the same way as those 
of Sec. III. Again the details of the derivation have 
been given. 8 As before the characteristics of the finite 
beams are a function of the distance along the beam at 
which the anode is placed. The microperveances of the 
heavily shaded narrow beams of Figs. 9 and 10, assumed 
terminated along equipotentials, are shown to the left 
of the beam; those of the wide beams on the right. The 
current-density variations across the cathode for the 
narrow beams are 1.8, while those for the wide beams 
are 3. Just as with the beams of Sec. III, it has been 
shown8 that for the beams from a conical cathode the 
perveance density remains substantially constant along 
the rapidly convergent section of the beam, therefore, 
the value of perveance density provides a convenient 
figure of merit for such beams, since it is proportional 
to the product of area convergence and perveance. It 
can be seens that for a current density variation of 
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about 1.8 across the cathode the figure of merit for 
these beams would be approximately 14, 120, and 6, 
respectively. These figures are consistent, since the 
cylindrical beam of Fig. 3 turns through an angle 
intermediate between that of Figs. 9 and 10. Moreover, 
it is to be expected that the beam of Fig. 9 should have 
the best characteristics, because, as was stated earlier, 
it most closely follows the equipotential lines. 

As yet no electrode systems have been designed for 
use with beams from conical cathodes. 

(B) Solutions in Equiangular Spiral Coordinates 

We have described, so far, the space-charge-flow 
solutions which may be derived for cylindrical polar 
and spherical polar coordinate systems. These are the 
only three-dimensional coordinate systems in which we 
have been able to derive such solutions. However, it is 
also possible to apply the same type of analysis to two 
dimensional flow to obtain solutions in Cartesian co­
ordinates in which W is of the form 

W=e"""W2(y) (35) 

and to obtain solutions in circular coordinates in which 

FIG. 9. Beams for 
two different widths of 
cathode from a conical 
cathode with cone angle 
00 of 67.5° and m=-1. 
The numbers on the 
left refer to the micro­
perveances of the 
heavily shaded narrow 
beams, terminated along 
equipotentials, and those 
on the right refer to the 
wide beam. 
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W is either of the form 

W=rmW 2(O) 
or 

(36) 

(37) 

Both of these coordinate systems are, however, 
special cases of a more general system which we have 
called "equiangular spiral coordinates." In this system 
the coordinate lines are formed by two sets of orthogonal 
equiangular spirals 

re(bl/b2)9= const= exp{ [(b1
2+b22)/b2]q2} , (38) 

and 
re-(b2/bl)9= const= exp{[ (b12+b22)/bl]ql}, (39) 

where rand 0 are the usual polar coordinates. Equations 
(38) and (39) may also be rewritten in the form 

and 
(40) 

(41) 
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FIG. 10. Beams for two different widths of cathode from a 
conical cathode, with cone angle (Jo of 37.5° and m=3. The 
numbers on the left refer to the microperveances of the heavily 
shaded narrow beams, terminated along equipotentials, and those 
on the right refer to the wide beam. 

where ql and q2 are the equiangular spiral coordinates. 
The system is illustrated in Fig. 11. 

It should be noted that the equiangular coordinate 
system reduces to a cylindrical polar coordinate system 
if b1=0, as may be seen from Eqs. (40) and (41). It may 
also be shown that the system reduces to a Cartesian 
coordinate system when b1 = b2= 0, for then the two 
sets of orthogonal spirals become orthogonal sets of 
straight lines. 

The determination of the flow in equiangular spiral 
coordinates is carried out in a similar manner to the 
solution for cylindrical polar coordinates in Sec. III. 
As before, we write W in the form 

(42) 

We may then use the expression for V in equiangular 
spiral coordinates given elsewhere8 to write the 
Hamilton-Jacobi equation, Eq. (4), in the form 

1 [Wlf2 W2f2] 
cf>= _-W12W2

2e-2(blQrH'2Q2) --+-- , 
211 W12 Wl 

(43) 

where the prime, as usual, denotes differentiation with 
respect to the argument. For cf>, in Eq. (43), to have 
the product form 

(44) 

it is necessary, as before, to put either W 1=exp(mql), 
or W2=exp(mq2). 

-:~:~\~ 
-+f(l:,'<~') 

\ , 
\ , 
\ ......... ,_ .... -
\ -- -- --q,'CONSTANT 

- - - - q2' CONSTANT 

FIG. 11. Sketches of the coordinate lines in 
equiangular-spiral coordinates. 
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We may, without loss of generality, use 

(45) 

If WI is of the form given in Eq. (45), it is then 
possible to derive space-charge-:flow solutions in the 
same manner as was shown for cylindrical polar 
coordinates. 

As before we may derive a zero space-charge solution 
in which the potential cP may be shown from Laplace's 
equation, to be of the form 

cp=Ae2mq, sin2(m-b l ) (q2-qO), (46) 

where qo and A are arbitrary constants and the cathode 
is the equiangular spiral q2= qo. 

Again, as before, we may derive the solutions for 
space-charge-limited flow in terms of a nonlinear 
differential equation in q2, with the boundary conditions 

(47) 

at the cathode q2= qo which is an equiangular spiral. 
Thus in a spiral metric of arbitrary pitch (that is, 

arbitrary b2/b1) it is possible to find solutions for W 
and, hence, the flow for arbitrary m. A correct choice 
of the two arbitrary parameters allows the design of 
highly convergent sheet beams. The form of such a 
beam is shown in Fig. 12. As before, the trajectories 
from the cathode may either asymptote to a single 
curve, in this case another equiangular spiral, or 
continue out to infinity, or all pass through the origin 
without asymptoting to any single curve. What the 
behavior will be in a given case depends on the choice 
of m and b2/bl. 

As in Sees. III and IV (A), for each m and bl/b2, it is 
possible to derive the :flow pattern from the universal 
trajectory by a displacement in the qi direction. Some 
universal trajectories for one particular ratio of b1/b2, 

unity, are shown in Fig. 13. The solutions were termin­
ated where they were for economy of machine time. 

(a) (b) 

(e) (d) 

FIG. 12. Some sketches of possible electron-flow patterns from 
a spiral cathode, arising from the separation of variables in spiral 
coordinates. 

A derived beam for m= 1, b1/b2= 1 is shown in Fig. 14. 
The choice of two parameters m, bI, and b2 allows a 
very wide range of possible beam trajectories. Some of 
these have very interesting properties. For instance, 
the trajectories with m=O are the equiangular spirals 
ql=const. For some of these solutions the potential 
passes through a maximum along the trajectory; hence 
if an electrode system is designed for use with a finite 
beam derived from this solution, electrodes which are 
at a potential greater than this maximum value will 
not intersect the beam, so that the problem of allowing 
for a hole in the anode is eliminated. 

It may easily be shown that if bi = b2= 0, W assumes 
the Cartesian form of Eq. (35). Similarly, if b1=O, 
W assumes the cylindrical polar form of Eq. (37), 
and if b2= 0, W assumes the cylindrical polar form 
of Eq. (36). 

NORMALIZED DISTANCE 

IN 

-1.0 

FIG. 13. Universal trajectories for beams from an equiangular 
spiral cathode for a spiral metric K = 1, and different m. 

Four special cases of these results have been pre­
viously reported in the literature. These are 

(a) b1=0, b2=0, and m=O. 

This is Langmuir's1 solution for rectilinear motion 
between parallel planes. 

(b) b1=O, b2= 1, and m=O. 

This is Langmuir's and Blodgett's solution' of recti­
linear flow from a circular cathode. 

(c) bI= 1, b2=0, and m=O. 

This is Meltzer's3 solution in which the electrons 
move in circular trajectories. 
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This is Walker's4 solution for flow between inclined 
planes. 

V. SOLUTIONS IN THE PRESENCE OF A 
MAGNETIC FIELD 

If the magnetic field at the cathode is parallel to the 
cathode, it is possible to generalize the solutions which 
have been discussed by writing the velocity in the form 

(48) 

where A is the magnetic vector potential and W the 
scalar action function. 

In order to obtain space-charge-flow solutions, 
however, the magnetic field must have a variation 
which allows the new form of the solution to be separ­
able. It is possible to obtain the variation of magnetic 
field which is required in all the coordinate systems 
that have been described in the preceding part of this 
paper, so that it is possible to design guns in which 
there is magnetic field present. But, so far, none of 
these new magnetic field solutions have been evaluated 
numerically. 

It should be noted, also, that there are special cases 
of importance where the magnetic field is constant. 
Thus, in Cartesian coordinates, the constant magnetic 
field solution reduces to that of Slater,u But in spiral 
coordinates there is also a constant magnetic field 
solution with W of the form 

(49) 

When b2= 0, this solution reduces to one for w.hich the 
cathode is a plane, but which is different from that of 
Slater. For zero space charge the solution is the one 

11 J. C. Slater, Microwave Electronics (D. Van Nostrand Com­
pany, Inc., Princeton, New Jersey, 1954), pp. 333-336. 
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FIG. 14. Beams for two different widths of cathode, from an equi­
angular spiral cathode with m = 1, and spiral metric K = 1. 

described by Poritsky,12 and so may be regarded as a 
generalization of Poritsky's solution which takes space 
charge into account. 

These magnetic field solutions are being investigated 
further, and it is hoped to publish a second paper in 
the near future which will discuss them in more detail. 
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