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Abstract 

 

Objectives: To assess potential mechanisms of cortical superficial siderosis (cSS), a central 

MRI biomarker in cerebral amyloid angiopathy (CAA), we performed a collaborative meta-

analysis of APOE associations with cSS presence and severity. 

Methods: We pooled data from published studies reporting APOE genotypes and MRI 

assessment of cSS, in three distinct settings: (a) stroke clinic patients with symptomatic CAA 

(i.e. lobar intracerebral hemorrhage, transient focal neurological episodes) according to 

Boston criteria; (b) memory clinic patients; and (c) population-based studies. We compared 

cSS presence and severity (focal or disseminated vs. no cSS) in participants with e2+ or e 4+ 

genotype vs. the e3/e3 genotype, by calculating study-specific and random effects pooled, 

unadjusted ORs. 

Results: Thirteen studies fulfilled inclusion criteria: seven memory clinic cohorts (n=2587), 

five symptomatic CAA cohorts (n=402) and one population based study (n=1379). There was 

no significant overall association between APOE e4+ and cSS presence or severity. When 

stratified by clinical setting, APOE e4+ was associated with cSS in memory clinic (OR: 2.10; 

95%CI: 1.11-3.99), but not symptomatic CAA patients. The pooled OR showed significantly 

increased odds of having cSS for APOE e2+ genotypes (OR: 2.67, 95% CI 2.31-3.08), in both 

patient populations. This association was stronger for disseminated cSS in symptomatic CAA 

cohorts. In detailed subgroup analyses, APOE e2/e2 and APOE e2/e4 genotypes were most 

consistently and strongly associated with cSS presence and severity. 

Conclusion: CAA-related vasculopathic changes and fragility associated with APOE e2+ 

allele might have a biologically meaningful role in the pathophysiology and severity of  cSS. 

  



 4 

Introduction 

Cortical superficial siderosis (cSS) is detected as curvilinear hypointensities following the 

cortical surface on blood-sensitive T2*-weighted gradient-recalled echo (T2*-GRE) and 

susceptibility-weighted (SWI) MRI sequences.1 It is generally thought that cSS reflects deposits 

of blood-breakdown products in the outermost cortical layers from, often occult, convexal 

subarachnoid hemorrhage.1, 2 cSS is particularly common in advanced cerebral amyloid 

angiopathy (CAA) (prevalence 40-60%),1, 3, 4 a small vessel disease that results from amyloid-β 

deposition in cortical and leptomeningeal arterioles. In CAA patients, cSS seems to be 

consistently associated with increased risk of incident5 and recurrent6 lobar intracerebral 

hemorrhage (ICH), including early recurrence,7 as well as future dementia.8 cSS is hence now 

considered a third cardinal hemorrhagic signature of CAA,1, 9 alongside multiple strictly lobar 

cerebral microbleeds and lobar ICH. It is also included in the modified Boston criteria, as a 

specific MRI biomarker of the disease.2 

The emerging clinical relevance of cSS, either as direct contributor to CAA-related 

impairment or a biomarker of the disease’s presence, severity and course, raises questions 

about the mechanisms of this imaging lesion. However, data from neuropathological studies 

remain extremely limited. Understanding the underlying mechanisms and vascular pathology 

contributing to cSS could be facilitated by identifying associations with Apolipoprotein E 

(APOE) alleles. Associations between APOE e2 or e4 alleles with both lobar ICH risk and 

CAA presence and severity on neuropathology have been previously described. In fact, APOE 

genotype seem to be the single most important genetic determinant of CAA pathophysiology, 

identified to date.10, 11 The current hypothesis, albeit supported by limited data, is that APOE 

e4 enhances vascular amyloid-β deposition in a dose-dependent fashion,12 while APOE e2 

promotes, so-called, CAA-related vasculopathic changes (vessel cracking, detachment and 

delamination of the outermost layer of the tunica media and fibrinoid necrosis) which can lead 

to vessel rupture.13 It is hypothesized that cSS results from bleeding-prone leptomeningeal or 

superficial cortical arterioles that harbour advanced CAA and associated vasculopathic 

changes.1 

To gain further insights into potential mechanisms of cSS in CAA and small vessel 

disease, we performed a collaborative meta-analysis of all available published studies that 

provided APOE data according to cSS presence and severity. Since cSS appears to convey high 

risk of recurrent ICH, it might segregate with APOE genotypes that are associated with CAA-
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related vasculopathic changes. Hence, we specifically tested the hypothesis that cSS presence 

and severity is associated with APOE e2, a marker of CAA-related small vessel fragility. 

Methods 

Standard Protocol Approvals, Registrations, and Patient Consents 

The study was performed according to a predefined protocol (i.e. before collecting and 

analysing data) designed in house and finalised in January 2016. This report was prepared with 

reference to the PRISMA,14 the MOOSE15 guidelines and the Cochrane Handbook for 

Systematic Reviews of Interventions. 

Study identification and selection criteria 

We sought all studies of adult humans published in any language that reported APOE genotype 

data and had cSS assessment on MRI, regardless of whether any association between the two 

was reported. We searched PubMed and Embase (from inception to January 2016 and updated 

in November 2017) using a combination of keyword search and MeSH terms, i.e. ("cortical 

superficial siderosis" OR "convexity siderosis" OR "convexal siderosis" OR "cortical 

hemosiderosis" OR siderosis OR hemosiderosis) AND (APOE OR "apolipoprotein E"). We 

also screened the references lists of all relevant studies and reviews identified, and searched 

Google Scholar for other studies citing potentially eligible relevant studies. We included 

relevant studies with >20 participants, including studies that recruited individuals from three 

distinct settings: (a) patients presenting to stroke clinics with symptomatic sporadic CAA (i.e. 

lobar intracerebral haemorrhage, transient focal neurological episodes) according to the 

validated classic Boston criteria (i.e. cSS was not part of CAA diagnosis); (b) memory clinic 

patients; and (c) participants from population-based studies. The rationale for including 

individuals from these different clinical settings was twofold. First, they represent the most 

likely clinical scenarios in which cSS in small vessel disease is detected on MRI (a and b) and 

are of potential clinical significance. Second, they capture the spectrum of cardinal CAA 

phenotypes:  relatively “pure” stroke presentations (including lobar intracerebral 

haemorrhage), cognitive impairment/dementia, or incidental findings in elderly healthy 

populations. 

We excluded case reports, small case series, and studies including hereditary/familial 

forms of CAA. Two authors independently selected eligible studies, resolving disagreements 
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by discussion. When two or more studies with overlapping cohorts existed, we included only 

the study providing the most data about the association and the largest number of participants. 

Data extraction 

Eligible studies were classified according to the primary clinical setting as (a) symptomatic 

CAA; (b) memory clinics; or (c) population-based. For each included study, we extracted 

information using standard proformas on publication year, country in which the study was 

conducted, study design, participant source and baseline demographic/clinical characteristics. 

For our planned meta-analyses, we extracted, or required from authors summary-level 

data on numbers of participants with each APOE genotype (i.e. e3e3, e2 e3, e3e4, e4e4, 

e2e2, e2e4) according to cSS presence and severity (focal or disseminated) where available. 

A structured data extraction form was created and completed as far as possible by entering 

data from the relevant publication(s) and/or circulated to authors and a collaborative group 

was established. We also extracted information on the MRI sequence characteristics used for 

cSS detection and the rating methods used for cSS classification. 

Quality and risk of bias assessment 

We assessed each study against a list of quality criteria we devised based on study size, cohort 

recruitment method (prospective vs. other), blinding of cSS ratings and APOE genotype data, 

quality of genotyping, blood-sensitive MRI sequence type used, criteria of cSS assessment and 

inter-rater agreement. These criteria were created using elements with reference to the 

STREGA (Strengthening the Reporting of Genetic Association Studies)16, MOOSE (Meta-

analysis of Observational Studies in Epidemiology)15 recommendations and consensus 

standards for cSS assessment and rating.1 

Statistical analysis and synthesis 

We performed meta-analyses using Stata 13.0 (StataCorp LP, Texas) and considered a p value 

of <0.05 to imply statistical significance. In our primary analyses, we calculated study-specific 

and random effects pooled, unadjusted ORs for cSS presence vs. absence among e4 allele 

carriers (e4+) versus the reference genotype e3e3 and among e2 carriers (e2+) versus the 

wild type e3e3. This comparison was selected, to avoid potential confounding by mixed effects 

of e2 and e4 in the comparison group. In secondary analyses, we compared cSS severity (focal 

vs. no cSS and disseminated vs. no cSS) in participants with an e2+ or e4+ genotype vs. the 

e3/e3 genotype. In analyses looking at cSS severity (i.e. focal or disseminated cSS) the 
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comparison groups included only patients without cSS. Meta-analyses were performed both 

separately by study setting/population, and overall. In all analyses we used a random effects 

model with DerSimonian-Laird weights,17 using odds ratios (OR) and their corresponding 95% 

CIs, with the inverse variance method for weighting. We assessed statistical heterogeneity 

using I-squared statistics and visually through inspection of the forest plot. Values of ≤25%, 

25% to 50%, and ≥50% were defined as low, moderate, and high degrees of heterogeneity, 

respectively. We explored publication bias with funnel plots. As a subanalysis, and to reveal 

potential dose-effect relationships, we have also explored the association between all different 

APOE genotypes (i.e. e2 e3, e3e4, e4e4, e2e2, e2e4 vs. e3e3) and cSS presence and severity 

in the whole population and across different clinical settings. To assess robustness of the 

methods, we repeated all the above analyses using the fixed effects method. 

Data availability statement 

All relevant data and methods are reported in the manuscript. No data available in public 

repositories. 

Results 

Characteristics and quality of included studies 

From 33 publications identified in our literature search, we identified 13 relevant studies 

fulfilling our inclusion criteria and pooled in meta-analyses (Figure 1). Study populations 

comprised seven memory clinic cohorts (n=2587), five symptomatic non-overlapping CAA 

cohorts (n=402) and one population based study including healthy people (n=1379) (Table 1). 

The memory clinic studies had different inclusion criteria and dementia prevalence (Table 1). 

The symptomatic CAA studies included two cohorts presenting with stroke syndromes other 

than ICH, one with pure CAA-ICH, and two with both CAA-ICH and CAA non-ICH 

presentations. Four out of these five CAA cohorts were derived from different studies 

completed at the same centre,4, 18-20 but included largely non-overlapping patient cohorts (i.e. 

different clinical settings/recruitment, clinical presentation, inclusion criteria, inception etc.). 

In detail (see footnote in Table 1), one of these four single centre cohorts,4 an advanced 

research MRI study of CAA-related ICH patients have included around 10% of overlapping 

patients with a separate consecutive clinical ICH cohort,19 from which CAA-related lobar ICH 

were included in our analysis, based on our best estimates. This latter clinical CAA cohort19 

might have slightly overlapped (~10%) with a pathology-based cohort of CAA patients.20 Mean 
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age was between 63-75 years and about half of all participants were male. Most studies were 

conducted in predominantly white populations in centres from Europe, USA or Australia, 

while two studies were conducted on Asia. The distribution of the ethnicity of participants in 

each study was not available. 

There was variation in overall study quality (Table 2), including sample size and 

retrospective vs. prospective designs. The genotyping quality was generally good when 

assessed against current reporting standards. Studies varied in the type of blood-sensitive 

sequences used for cSS detection (e.g. T2*-GRE vs. SWI), as well as MRI field strength, with 

all cohorts on symptomatic CAA patient populations using 1.5 T MRI, while memory clinic 

studies were performed at 3T MRI. The methods of cSS assessment were reliable and largely 

in line with current consensus recommendations in the field.1 For details on quality assessment 

and individual scores of included studies in the meta-analysis, see Table 2. 

Pooled prevalence and severity of cSS in included studies 

The pooled prevalence of cSS presence was 2% (95%CI: 2%-3%, I2: 59%, p=0.02) in memory 

clinic patients, 47% (95%CI: 38%-56%, I2: 66%, p=0.02) in symptomatic CAA patients and 1% 

(95%CI: 1%-2%) in the single population-based study included in our analysis. The overall 

pooled prevalence of focal cSS in memory clinic vs. symptomatic CAA patients was 1% (95%CI: 

1%-2%, I2: 48%, p=0.07) and 17% (95%CI: 13%-22%, I2: 24%, p=0.26) respectively. The overall 

pooled prevalence of disseminated cSS was 1% (95%CI: 0%-1%, I2: 9%, p=0.36) vs. 28% (95%CI: 

20%-36%, I2: 60%, p=0.04) in memory clinic vs. symptomatic CAA cohorts respectively. In all 

comparisons, the prevalence of cSS (presence and severity) was higher in symptomatic CAA 

vs. memory clinic patients (p<0.0001). Among patients with any cSS, the prevalence of focal 

cSS was 67% (95%CI: 55%-79%, I2: 17%, p=0.30) in memory clinic patients and 37% (95%CI: 

26%-49%, I2: 60%, p=0.04) in symptomatic CAA cases (p<0.001 between the two groups). 

Meta-analyses: APOE e4 and e2 and cSS presence and severity 

The results of the main analyses of the association between APOE e4 and e2 with cSS 

presence are summarised in Figure 2. Compared to participants with an APOE e3/e3 

genotype, pooled overall results showed no increased odds of cSS presence in participants 

with APOE e4+ genotype (Figure 2A). When stratified by clinical subgroups, APOE e4+ 

genotype was associated with cSS presence in memory clinic patients, but not symptomatic 

CAA patients (Figure 2A). The pooled OR showed increased odds of having cSS for APOE 

e2+ genotypes (OR 2.67, 95%CI: 2.31-3.08) with no statistical heterogeneity between study 
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results (Figure 2B). This association was strong in both memory clinic and symptomatic CAA 

cohorts (Figure 2B). 

All clinical studies provided relevant data for meta-analyses of APOE genotypes and cSS 

severity (focal or disseminated). These data were not available to pool in the single population-

based study which reported on APOE and cSS. Overall, pooled results showed that, compared 

to patients with an e3/e3 genotype, those with an e4 + genotype did not have increased odds 

of having either focal or disseminated cSS (Figure 3A). Memory clinic patients showed only a 

non-significant trend for an association with APOE e4 + genotype and cSS burden (Figure 3A). 

Overall, patients with APOE e2+ genotype had increased odds for an association with 

disseminated, but not focal, cSS (Figure 3B). When stratified by clinical setting, focal cSS was 

associated with APOE e2+ genotype in memory clinic patients, and showed a strong trend 

with disseminated cSS in this population (Figure 3B). In symptomatic CAA cohorts, only 

disseminated cSS was associated with APOE e2+ genotype. There was no evidence of 

publication bias and statistical heterogeneity was low to moderate across analyses (data 

provided in each forest plot) 

Subgroup meta-analyses: different APOE genotypes and cSS presence and 

severity 

The detailed results of subanalyses exploring the association between all different APOE 

genotypes (vs. e3/e3) and cSS presence and burden are summarised in Table 3. In the overall 

analysis of all the cohorts together, the most consistent associations with higher effect sizes 

were seen with APOE e2/e2 and APOE e2/e4 genotypes (Table 3). The associations were 

different when stratified by the clinical setting. In memory clinic cohorts, cSS presence and 

severity was also associated with APOE e4/e4, while the stronger link was with the APOE 

e2/e4 genotype (Table 3). Among symptomatic CAA cohorts, only APOE e2/e3 and APOE 

e2/e4 were associated with disseminated cSS (Table 3). Of note, the APOE e4/e4 genotype 

was associated with marginally lower odds of having disseminated cSS in symptomatic CAA 

patients (OR: 0.24; 95%CI: 0.06-0.92, p=0.038, see Table 3). The statistical heterogeneity for 

these subanalyses ranged from low, to moderate and high (Table 3). 

Discussion 

The current meta-analysis provides a comprehensive assessment on cSS,1 CAA,21 and their 

association with APOE genotype. Drawing data from >4000 participants of relevant studies 
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and different clinical setting, our main results indicated that cSS, especially disseminated cSS, 

is most strongly associated with APOE e2+ genotype. This overall association was consistent 

and did not vary significantly according to clinical setting. We found that APOE e4+ genotype 

was overall not associated with cSS presence or burden. However, APOE e4+ genotype 

results varied depending on the clinical setting, with memory clinic patients (but not 

symptomatic ICH patients) showing an association with cSS, albeit weaker compared to APOE 

e2+ genotype based on the unadjusted pooled ORs (2.10 versus 3.28 respectively). In the 

detailed subanalyses looking at individual APOE genotypes and cSS burden, the most 

consistent associations with higher effect sizes were seen with the e2/e2 and e2/e4 genotypes. 

Although it can be challenging to infer specific pathophysiological mechanisms from 

genetic associations, the most straightforward and parsimonious explanation for our results 

is that cSS is indeed a strong and specific MRI biomarker for more advanced or active CAA. 

These results confirm our prespecified hypothesis, are consistent with prior observations in 

the field, with what is presumed to be the effect of APOE e2 vs. e4 on underlying CAA-

related vasculopathic changes, and with the emerging clinical relevance of cSS as an 

independent risk factor for future symptomatic ICH. APOE genotype is the single most 

important genetic determinant in CAA pathophysiology.10, 11 APOE e4 appears to enhance 

vascular amyloid-β deposition in a dose-dependent fashion,12 while APOE e2 promotes 

vasculopathic changes (vessel cracking, vessel-within-vessel appearance and fibrinoid necrosis) 

which can lead to vessel rupture.13 A previous meta-analysis investigating APOE associations 

with cerebral microbleeds found that strictly lobar microbleeds (a putative marker of CAA 

presence) was related to APOE e4 + allele (OR: 1.35, 95%CI: 1.10–1.66, p=0.005), but not 

APOE e2.22 This result was consistent for any cerebral microbleeds presence in a more recent 

comprehensive meta-analysis.23 The dissociation of the relationship between APOE genotype 

and cerebral microbleeds vs. cSS has implications for discerning potential mechanisms. APOE 

e4 might predispose to the particular kind of CAA-related vessel thickening postulated to 

lead to microscopic intraparenchymal hemorrhage (e.g. strictly lobar cerebral microbleeds).24 

In contrast, APOE e2 might promote the most severe stages or aggressive phenotype of CAA 

pathology that precede rupture, especially in leptomeningeal vessels, hence contributing to 

MRI-visible superficial CAA-related bleeds (aka cSS) in multiple spatially separated foci.4, 20 A 

recent neuropathological study used a detailed grading system for assessing CAA in 

parenchymal and leptomeningeal vessels separately.25 In a sample of Alzheimer’s disease and 

non-demented elderly control brains, APOE e2 was a much stronger risk factor for CAA 
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development, especially in leptomeningeal vessels, compared to APOE e4 (OR: 10.93; 95%CI: 

4.33-27.57 vs. 1.69; 0.92-3.10, respectively).25 Fittingly, an inverse relationship has been 

observed between greater lobar cerebral microbleed counts and cSS in advanced CAA, 

suggesting the possibility of differing CAA phenotypes that are driven in part by APOE 

genotype, and marked by the predominance of either cSS or CMBs MRI patterns.4,22 

These inferences would also be in line with several clinical observations in the field. 

APOE e2 is already known to be associated with CAA-related ICH, perhaps causally,26 also 

predisposing to larger volumes of CAA-related bleeding.27 cSS is independently associated 

with future ICH risk in CAA, both recurrent6, 28 and first lobar ICH.5 In fact, clinical cohorts 

which incorporated and investigated both cSS and strictly lobar microbleeds in relation to 

future ICH, demonstrated that cSS, but not microbleeds, is the strongest independent risk 

factor for CAA-ICH.5, 6, 28 Also, there is preliminary evidence that APOE e4 may be associated 

with CAA type 1 (where CAA is found in cortical capillaries) and APOE e2 with CAA type 2 

(where cerebrovascular amyloid is primarily deposited in leptomeningeal and cortical vessels 

sparing cortical capillaries).29 A recent neuropathological study which validated a detailed CAA 

grading system showed that all individuals with the APOE e2/e2 genotype had CAA-type 2, 

while the APOE e4/e4 genotype was associated with CAA type 1 (OR 8.0; 95% CI 2.8-23.3).25 

Finally, though the exact pathophysiological mechanisms underlying cSS remain debatable,1 

MRI-detected cSS seems to reflect repeated episodes of superficial bleeding from CAA-laden 

bleeding-prone leptomeningeal vessels.1 Thus cSS may be a strong marker of not only more 

severe CAA, but CAA with more fragile, rupture-prone vessels, thereby, heralding a risk of 

subsequent ICH.6, 30 APOE e2 driven vascular injury in CAA, in combination with other risk 

factors, could influence pathways providing initiation sites for cSS and hence future lobar ICH 

risk. 

Our study benefited from thorough ascertainment of the totality of evidence to date on 

the topic, within the two clinical settings in which CAA is most commonly considered. The 

first setting consists of patients diagnosed in stroke clinics with relatively advanced 

symptomatic CAA, while memory clinic patients and healthy elderly are heterogeneous 

participants who mostly do not have advanced CAA (instead, mild to moderate CAA 

commonly accompanies Alzheimer’s neurodegenerative pathology in memory clinic patients). 

This fact explains the much higher proportion of cSS in the symptomatic CAA group and 

might partly account for the different relationship with APOE e4. We note the higher 
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frequency of APOE e4 in patients from memory clinics, at least in part, due to the relationship 

between this genotype and its well-known predisposition to Alzheimer’s disease (instead, 

APOE e2 variant confers reduced risk for Alzheimer’s disease and thus has lower frequency 

in memory clinics).31 Similar to Alzheimer’s disease, as noted above, histopathological studies 

in CAA indicate that APOE e4 has an equivalent role in CAA by promoting vascular amyloid-

β deposition; APOE e2 however, has a different effect - it increases vessel wall damage caused 

by cerebrovascular amyloid deposition. In other words, the hypothesis is that APOE e4 

increases the likelihood of having CAA among memory clinic patients (identified clinically by 

the presence of cSS). Among symptomatic CAA patients with already advanced (or enriched 

in) underlying cerebrovascular amyloid deposition, it doesn’t increase the likelihood of cSS – 

in this group, APOE e2 comes into play (especially in a dose-depended and synergistic fashion 

with APOE e4 gene). 

Our findings in the subanalyses of detailed APOE genotypes and associations with cSS 

presence and burden, probably account for the prevalence and differential effects of e4 and 

e2 in Alzheimer’s disease and CAA. However, these subanalyses need to be interpreted with 

caution, under the prism of the following additional considerations. The relatively small sample 

size contributing to each subanalysis (e.g. according to clinical setting, focal or disseminated 

cSS etc.) and rarity of certain alleles and genotypes, resulted in wide 95% confidence intervals. 

Due to the increased number of subanalyses, we run the risk of multiple comparisons. Hence, 

they should be considered hypothesis-generating, highlighting possible trends, effect sizes and 

potential mechanistic pathways to be explored in further studies on cSS. It is important to 

again point out that the associations between cSS presence/burden and specific APOE 

genotypes, require, to some extent, different interpretation in memory clinic vs. symptomatic 

CAA cohorts. In memory clinic patients, APOE genotype-cSS associations are driven by the 

presence of substantial underlying CAA pathology that is denoted by cSS. In other words, cSS 

in memory clinic cohorts, identifies patients with advanced CAA (i.e. beyond the mild CAA, 

often a common “innocent bystander” in this setting) - the known risk factor of originally 

developing cerebrovascular amyloid-β accumulation is APOE e4 and e2. Symptomatic CAA 

cohorts, are by definition enriched with cerebrovascular amyloid-β pathology and hence 

APOE-cSS associations are driven/indicating more specific (or predominant) 

pathophysiological mechanisms at play, especially within the most severe cases of cSS (i.e. 

disseminated cSS). It is possible that the APOE e2/e4 genotype may represent double hit for 

the superficial vessels, promoting not only amyloid deposition but also vessel wall cracking in 
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the most vulnerable arterioles in CAA. In the setting of advanced cerebrovascular amyloid-β 

pathology, it is not surprising that only this ‘double hit’ genotype of APOEe2/APOEe4 shows 

a strong link with disseminated cSS. These hypotheses require external validation and direct 

support from experimental studies. Future studies should also investigate the effect of APOE 

genotypes on cSS progression and interactions with future CAA-related ICH risk. 

Some limitations of our study need to be acknowledged. The design of included studies, 

case selection, and MRI parameters for cSS detection were variable. Patients from 

symptomatic CAA cohorts underwent brain MRI at I.5T, while other cohorts at 3T. While 

the consisted MRI field strength within clinical setting sub-groups is reassuring, in the overall 

analyses, the difference could influence the sensitivity for cSS detection and rating. In the same 

vein, blood-sensitive sequences used for cSS detection were also variable across studies, 

including both T2*-GRE and SWI. Though the variable MRI parameters is a potentially 

important limitation for this sort of meta-analysis, no data exist on how sensitivity for cSS 

classification is affected by different MRI sequences. Considering that cSS represents a much 

higher volume of blood-breakdown products (i.e. hemosiderin) compared for example to 

cerebral microbleeds, the differences in MRI sensitivity might not be very pronounced. None 

of the included studies fulfilled all our methodologic quality indicators. There is likely a number 

of studies that could not be included in the current meta-analysis simply because they did not 

report on either APOE or cSS, reflecting the fact that cSS is a relatively new addition in the 

spectrum of CAA MRI markers. This raises the issue of potential confounding and selection 

bias, which is hard to address. It should be emphasised that, despite including all available data 

from relevant publications, the overall sample size for certain subgroup meta-analyses was 

relatively small. This limits the precision of the pooled results, especially in combination with 

the low prevalence of cSS in the memory clinic studies. In a memory clinic setting, one should 

recognise the known relative rarity of APOE e2 genotypes and the confounding effect of the 

presence of dementia and Alzheimer’s type pathology. While CAA and Alzheimer’s disease 

are linked in the context of cognitive impairment populations, their precise relationship 

remains poorly understood.32 This and other considerations could partly explain the weak 

association observed between cSS presence and APOE e4 in the memory clinic cohorts. For 

example, both CAA and neurodegenerative pathology contribute to cognitive impairment in 

the elderly33 and APOE e4 is a well-known risk factor for both cerebrovascular and 

parenchymal amyloid accumulation. Nevertheless, quite reassuringly, the association with 

APOE e2 and cSS was consistently detected in memory clinic patients and with stronger effect 
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size than the APOE e4 association. Lastly, our meta-analysis was performed at a group level, 

which means that generated pooled estimates are not adjusted for any confounders that might 

influence the association between APOE status and cSS, including age, sex and other MRI 

markers of small vessel disease. It is thus possible that reported associations are overstated. 

It could be argued that our unadjusted group-level meta-analysis is exploratory, providing a 

rough indication of likely effect sizes across populations for the APOE-cSS link, setting the 

scene for a more detailed individual-patient level meta-analysis. We are hoping to pursue this 

in the future in a large collaborative study. 

Most of the symptomatic CAA cohorts suitable for meta-analysis came from a single 

centre. We acknowledge the potential for some overlap among these cohorts – while we do 

not have all the detailed data on overlapping patients, based on the different clinical 

setting/recruitment, clinical presentation, inclusion criteria, inception points etc., this overlap 

is minimal and ranges between 5-10%, as summarised in Table 1 footnote. Any potential 

overlap between these cohorts is random and unlikely to have affected our main results. 

However, due to this limitation, our findings will benefit from further validation and updated 

meta-analyses. The plausible suggestion of different APOE influences on the severity and type 

of amyloid deposition in the vessel wall and advanced vasculopathic changes suggested in the 

interpretation of our current findings, are based on limited data.34 In particular, further studies 

on the proposed differential effects of e4 and e2 alleles will be valuable. However, it is 

reasonable to provide an informed discussion based on these biological hypotheses and 

assumptions, in an effort to start building a pathophysiology model of cSS that could explain 

both clinical and research findings and help develop hypothesis-driven studies in the field. 

Finally, the vascular damage pathways leading to cSS must be only partly influenced by APOE 

e2 as evidenced by the fact that a number of cSS cases are also found within the APOE e3/e3 

genotype. 

Notwithstanding these caveats, our results provide useful data to partly settle the 

question in favor of a link between APOE e2+ genotype and cSS in CAA. The pathophysiologic 

implication is that APOE e2 influences the risk of cSS through promoting the most severe 

stages of CAA pathology that are associated with rupture. These results are also in line with 

cSS being a strong hemorrhagic MRI signature in CAA and the likely “smoking gun” of bleeding 

risk. Future research efforts on the topic require methodologically robust, large studies 

adhering to current reporting standards,1, 35 and collaborative data pooling efforts. Based on 
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the totality of current evidence, our study suggests a biologically meaningful association 

between the APOE e2 + genotype and severe cSS in patients with CAA, probably as a result 

of the role of e2 in the severity of vasculopathy in CAA-affected leptomeningeal and very 

superficial cortical vessels. The exact pathophysiological mechanisms that underlie these 

associations should be investigated, as they might define targets for therapeutic interventions 

in CAA. 
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Tables 

Table 1. Basic characteristics and methodological aspects of included studies. 

Study 
Country 

(period) 

Setting-Participants 

source 

Study 

size* 

Mean 

age 

Male 

(%) 

Dementia 

(%) 

MRI 

sequence 

Field 

strength 

ET 

(ms) 

ST 

(mm) 
cSS rating 

CAA cohorts 

†Charidimou et al. 

201718 
USA 

Probable CAA without ICH – 

stroke clinic 
62 75 57% 10% T2*-GRE 1.5T 50 5 

2 trained raters 

by consensus 

†Charidimou 201619 USA Clinical CAA-ICH 197 74 49% ? T2*-GRE 1.5T 50 5 
1 trained rater 

(k=) 

†Charidimou 201520 USA Pathologically-proven CAA 53 73 45% ? T2*-GRE/SWI 1.5T - - 1 trained rater 

†Shomanesh 20144 USA CAA research cohort 79 71 70% 10% T2*-GRE/SWI 1.5T 25 5 
1 trained rater 

(k=0.79) 

Martínez-Lizana et 

al. 201536 
Spain 

Convenience biomarkers 

cohort of CAA patients with 

and without cSAH 

25 79 52% 28% T2*-GRE 1.5T - - Not reported 

Memory clinic/non-symptomatic CAA cohorts 

Shams 201637 Sweden 
Consecutive memory clinic 
series 

520 63 47% 35% T2*-GRE/SWI 3T - - 
2 trained raters 
by consensus 

†Charidimou 201638 USA 
Consecutive memory clinic 
series 

68 73 44% 43% T2*-GRE 3T 
20-
25.7 

5 1 trained rater 

Na 201539 Korea 
Memory clinic patients with 

PET/MRI/CSF analysis 
232 72 42% ? T2*-GRE 3T   

2 trained raters 

(k=0.92) 

Zonneveld 201440 
Netherlands 
(2010-2012) 

Memory clinic–based 
Amsterdam Dementia Cohort 

610 66 56% 41% SWI 3T - - 
1-2 trained 
raters (k=0.81) 

Yates 201441 Australia 

Melbourne Neuroimaging 
Cohort of the Australian 

Imaging, Biomarkers and 

Lifestyle Study of Ageing 

174 74 40% 23% SWI 3T - - 
2 trained raters 

(k~0.8) 
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Kantarci 201342 
ADNI 

(2010-2012) 

Alzheimer’s Disease 

Neuroimaging Initiative 

(ADNI) 

451 73 55% 8% T2*-GRE 3T - - Trained raters 

Singapore cohort Singapore Memory clinics in two centres 458 ~70 51% 34% SWI 3T 20 1 Trained raters 

Population-based cohorts 

Pichler at al. 201743 
USA (2011-
2016) 

Mayo Clinic Study of Aging 1412 62-78 53% <9% T2*-GRE 3T 20 3.3 Trained raters 

* number of eligible participants genotyped and assessed for cSS; R: retrospective study; P: prospective study; ?:unknown 

† Cohorts originating from a single centre (Massachusetts General Hospital-MGH). We note minimal sample overlap among these included studies and cohorts 
originating from MGH. Most of these different cohort are completely independent (i.e. different clinical setting/recruitment, clinical presentation, inclusion criteria, 

inception etc.). However, there is a possibility of ~5-10% (or lower) overlap between 3 of the MGH cohorts (Ref. 4, 19 and 20). Please note that it is not possible to 

definitely identify potentially overlapping patients among the two cohorts and exclude them, due to different coding and anonymization of the patient data and 
samples.  

In detail:  

-Ref. 4: MGH ICH/CAA cohort since 1995 – this is a research, advanced MR imaging CAA-ICH cohort. None of the patients are included in cohorts corresponding 

to Ref. 20, 18 or 35. Around 10% of the patients might be overlapping with Ref. 18. 
-Ref. 20: MGH 1997-2012 – this is a neuropathology-based cohort of CAA patients, irrespective of clinical presentation, with available tissue. Around 5% or less of 

the patients might be overlapping with Ref. 19. 

-Ref. 18: MGH stroke and memory 1994-2015 – this is a “probable CAA” cohort according to the modified Boston criteria of patients presenting without ICH, in 
stroke clinics or specialty CAA clinics at our group. There is no overlap with Ref. 4, 19, or 20. 

-Ref. 19: MGH ICH cases – this is an consecutive clinical ICH cohort, from which CAA-related lobar ICH were included in our analysis. The cohort might be 

overlapping by 10% with Ref. 4 and Ref. 20 cohorts.  
-Ref. 35: MGH memory clinic 2007-2010 – a generic, unselected memory clinic patient cohort (without ICH or stroke-like syndromes), not overlapping with any of 

the other MGH cohorts cited in our paper. 

  



 21 

Table 2. Summary of key quality indicators of pooled studies. 

Study Reference 

Study size 
Design  
(R-0, P-1) 

Blinding 
(MRI to 

genotype) 

cSS 
criteria 
clearly 

defined 

cSS inter-
observer 

agreement 

T2*-GRE (0) vs. 
SWI (1) 

Genotyping 
reporting 

Total score 
(0-8) 

≤100 
101-

200 
>200 

Charidimou et al. 
201718 

✓    0 ✓  ✓  ✓  0 1 4 

Charidimou 201619  ✓   0 ✓  ✓  X 0 1 4 

Charidimou 201520 ✓    0 ✓  ✓  X 0 1 3 

Shomanesh 20144 ✓    1 ✓  ✓  X 0 1 4 

Martínez-Lizana et 

al. 201536 
✓    0 ✓  ✓  X 0 1 3 

Shams 201637   ✓  0 ✓  ✓  ✓  0 1 6 

Charidimou 201638 ✓    0 ✓  ✓  X 0 1 3 

Na 201539   ✓  1 ✓  ✓  ✓  0 1 7 

Zonneveld 201440   ✓  1 ✓  ✓  ✓  1 1 8 

Yates 201441  ✓   1 ✓  ✓  ✓  1 1 7 

Kantarci 201342   ✓  0 ✓  ✓  X 0 0 4 

Singapore cohort   ✓  1 ✓  ✓  X 1 1 7 
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Pichler at al. 201743   ✓  1 ✓  ✓  x 0 1 6 

 

Scoring system: For each key quality indicator listed, each study got 1 point if fulfilled. For the design “Design” criterion, studies got 1 point if 

they were prospective (P-1) and 0 points if retrospective (R-0). For blood-sensitive MRI sequences, accounting for the different sensitivities in 

detecting and assessing cSS, studies got 1 point if they used susceptibility-weighted imaging (SWI-1) and 0 points if they used T2*-weighted 

gradient-recalled echo (T2*-GRE-0). For study sizes, studies got 0-2 points depending on the number of included patients, i.e. ≤100, 101-200 

or >200 patients, respectively. The total score was calculated by adding all the points for each individual key quality indicator, thus ranging 

from 0 (lowest quality) to 8 (highest quality). 
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Table 3. Detailed meta-analyses results for the association between different APOE 

genotypes (vs. e3/e3) and cSS presence and burden. For the analyses including focal cSS and 

disseminated cSS, the comparison groups included only patients without cSS. 

 APOE 

genotype 
e4/e3 e4/e4 e2/e3 e2/e2 e2/e4 

O
V

E
R

A
L

L
 

cSS presence      

OR (95%CI) 
0.87 (0.41-1.83) 

p=0.712 

1.27 (0.49-3.28) 

p=0.617 

2 (1.20-3.32) 

p=0.008 

3.41 (1.13-10.3) 

p=0.029 

3.96 (1.85-8.51) 

p<0.0001 

Heterogeneity 52.5%, p=0.017 63.2%, p=0.002 0%, p=0.804 0%, p=0.530 8.5%; p=0.362 

Focal cSS      

OR (95%CI) 
0.85 (0.40-1.82) 

p=0.683 

1.53 (0.67-3.50) 

p=0.312 

1.56 (0.78-3.12) 

p=0.213 

6.01 (1.53-23.59) 

p=0.010 

3.85 (1.52-9.78) 

p=0.005 

Heterogeneity 31.4%; p=0.140 36%; p=0.102 0%; p=0.563 4.4%; p=0.388 9.7%; p=0.351 

Disseminated cSS 11 10 9 7 9 

OR (95%CI) 
0.93 (0.46-1.87) 

p=0.839 

0.96 (0.28-3.28) 

p=0.951 

2.64 (1.38-5.06) 

p=0.003 

5.29 (1.60-17.55) 

p=0.006 

5.61 (2.45-12.84) 

p<0.0001 

Heterogeneity 13.4%; p=0.316 53.5%; p=0.022 0%; p=0.696 0%; p=0.639 0.8%; p=0.427 

M
E

M
O

R
Y

 C
L

IN
IC

 C
O

H
O

R
T

S
 

cSS presence      

OR (95%CI) 
1.60 (0.60-4.23) 

p=0.347 

4.63 (2.14-10.02) 

p<0.0001 

3.41 (1.45-8.01) 

P=0.005 

11.72 (2.33-58.8) 

P=0.003 

7.12 (2.25-22.56) 

P=0.001 

Heterogeneity 35.1%; p=0.161 0%; p=0.848 0%; p=0.906 0%; p=0.834 0%; p=0.617 

Focal cSS      

OR (95%CI) 
1.49 (0.61-3.66) 

p=0.383 

4.79 (1.99-11.52) 

P<0.0001 

2.92 (1.05-8.12) 

P=0.40 

17.37 (3.34-172.1) 

P=0.001 

7.35 (2.25-24.0) 

P=0.001 

Heterogeneity 0%; p=0.466 0%; p=0.981 0%; p=0.986 0%; p=0.934 0%; p=0.939 

Disseminated cSS      

OR (95%CI) 
2.17 (0.70-6.74) 

p=0.179 

5.32 (1.53-18.53) 

P=0.009 

5.04 (1.24-20.42) 

P=0.023 

18.09 (2.67-122.5) 

P=0.003 

10.21 (1.65-63.26) 

P=0.013 

Heterogeneity 0%; p=0.679 05; p=0.716 0%; (p=0.570) 0%; p=0.706 21.1%; p=0.283 

S
Y

M
P

T
O

M
A

T
IC

 C
A

A
 C

O
H

O
R

T
S

 cSS presence      

OR (95%CI) 
0.47 (0.17-1.32) 

p=0.151 

0.32 (0.13-0.77) 

P=0.11 

1.49 (0.79-2.81) 

P=0.213 

1.15 (0.25-5.23) 

P=0.857 

2.94 (0.93-9.34) 

P=0.067 

Heterogeneity 56.5%; p=0.056 20.5%; p=0.284 0%; p=0.646 0%; p=0.802 26.1%; p=0.247 

Focal cSS      

OR (95%CI) 
0.51 (0.15-1.68) 
p=0.268 

0.41 (0.16-1.04) 
P=0.060 

0.83 (0.24-2.87) 
P=0.767 

0.77 (0.08-7.60) 
P=0.825 

2.13 (0.30-15.24) 
P=0.451 

Heterogeneity 46.5%; p=0.113 0%; p=0.759 32.6%; p=0.204 0%; p=0.738 52.6%; p=0.096 

Disseminated cSS      

OR (95%CI) 
0.57 (0.23-1.42) 
p=0.224 

0.24 (0.06-0.92) 
P=0.038 

2.22 (1.38-5.06) 
P=0.033 

2.39 (0.51-11.12) 
P=0.268 

4.56 (1.76-11.84) 
P=0.002 

Heterogeneity 24.1%; p=0.261 33.4%; p=0.199 0%; p=0.643 0%; p=0.639 0%; p=0.460 

Heterogeneity (I2, p-value)  
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Figures 

 

 

Figure 1. Flow chart of study identification and selection. 
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Figure 2. Forest plots of the association between cSS presence and (A) APOE e4+ vs APOE 

e3/e3 genotype, and (B) APOE e2+ vs APOE e3/e3 genotype. Meta-analyses were performed 
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using a random effects model. Studies are displayed in order of publication date. The squares 

represent study-specific odds ratios (ORs), with their size proportional to their statistical 

weight. Diamonds represent pooled ORs, and their 95% CI, stratified by clinical setting and 

overall. 
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Figure 3. (A) Subanalyses summary results of the effect of APOE e4+ vs APOE e3/e3 

genotype on the presence of focal and disseminated cSS, according to clinical setting and 
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100

16.86

79.34

3.80

Focal cSS

5/12175/264

38/2111

0/773

33/121

55/558

4/210

46/84

cSS severity increased with ε2+ allelecSS severity decreased with ε2+ allele

cSS Severity / Clinical Setting OR (95% CI) Weight (%)

1.1 10

cSS/ε2+ cSS/ε3ε3

B. Association between ε2+ vs. ε3/ε3 genotypes and cSS severity
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overall. (B) Subanalyses summary results of the effect of APOE e2+ vs APOE e3/e3 genotype 

on the presence of focal and disseminated cSS, according to clinical setting and overall. The 

comparison groups included only patients without cSS. The columns on the right of the forest 

plots denote the number of participants included in each analysis. Diamonds represent the 

overall pooled ORs, and their 95% CI for each comparison. Study-specific OR are not shown. 
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