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Abstract
Aims/hypothesis Type 2 diabetes, hyperglycaemia and insulin resistance are associated with cognitive impairment and dementia,
but causal inference studies using Mendelian randomisation do not confirm this. We hypothesised that early-life cognition and
social/educational advantage may confound the relationship.
Methods From the population-based British 1946 birth cohort, a maximum number of 1780 participants had metabolic variables
(type 2 diabetes, insulin resistance [HOMA2-IR] and HbA1c) assessed at age 60–64 years, and cognitive state (Addenbrooke’s
Cognitive Examination III [ACE-III]) and verbal memory assessed at age 69 years. Earlier-life measures included socioeconomic
position (SEP), cognition at age 8 years and educational attainment. Polygenic risk scores (PRSs) for type 2 diabetes were
calculated. We first used a PRS approach with multivariable linear regression to estimate associations between PRSs and
metabolic traits and later-life cognitive state. Second, using a path model approach, we estimated the interrelationships between
earlier-life measures, features of mid-life type 2 diabetes and cognitive state at age 69 years. All models were adjusted for sex.
Results The externally weighted PRS for type 2 diabetes was associated with mid-life metabolic traits (e.g. HOMA2-IR β = 0.08
[95% CI 0.02, 0.16]), but not with ACE-III (β = 0.04 [−0.02, 0.90]) or other cognitive outcomes. While there was an association
between HOMA2-IR and subsequent ACE-III (β = −0.09 [−0.15, −0.03]), path modelling showed no direct effect (β = −0.01
[−0.06, 0.03]) after accounting for the association between childhood SEP and education with HOMA2-IR. The same pattern was
observed for later-life verbal memory.
Conclusions/interpretation Associations between type 2 diabetes and mid-life metabolic traits with subsequent cognitive state do
not appear causal, and instead they may be explained by SEP in early life, childhood cognition and educational attainment.
Therefore, glucose-lowering medication may be unlikely to combat cognitive impairment in older age.
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Abbreviations
ACE-III Addenbrooke’s Cognitive Examination III
CFI Comparative fit index
GWAS Genome-wide association study
MRC Medical Research Council
NSHD National Survey of Health and Development

PRS Polygenic risk score
RMSEA Root mean square error of approximation
SEP Socioeconomic position

Introduction

Cross-sectional and longitudinal studies have demonstrated
associations between mid-life hyperglycaemia, insulin resis-
tance and type 2 diabetes and increased risk of cognitive im-
pairment, Alzheimer’s disease and all cause dementia [1–13].
Despite the major public health implications of this link, the
underlying pathways remain poorly understood [14].
However, genetic studies—more specifically, Mendelian
randomisation studies, which use genetic predictors of
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diabetes as unconfounded instruments to directly assess
causality—have reported null associations between the genet-
ic risk of type 2 diabetes and cognitive ability [15] and later-
life cognitive impairment [15, 16], and between the genetic
risk of type 2 diabetes, fasting glucose and insulin resistance
and all-cause dementia and Alzheimer’s disease [17, 18].
These compelling yet contradictory findings suggest that the
relationship between type 2 diabetes and its associated fea-
tures and later-life cognitive impairment may not be directly
causal, and that other pathways related to type 2 diabetes, or
processes occurring as a comorbidity or result of diabetes and
its dysmetabolic precursors, may be aetiologically important
in contributing to cognitive impairment/dementia risk.

The life course factors of childhood socioeconomic posi-
tion (SEP), childhood cognitive ability and educational attain-
ment are associated withmid-life type 2 diabetes risk [19] and,
in separate studies, later-life cognitive function [17, 20]. We
therefore hypothesise that the association between mid-life
type 2 diabetes, hyperglycaemia and insulin resistance and
later-life cognitive function in a prospective analysis may be
a consequence of these life course factors acting separately on
these outcomes and subsequently confounding the relation-
ship. To our knowledge, these genetic and life course relation-
ships have not yet been studied comprehensively together.

We therefore aimed, first, to examine the relationship between
mid-life type 2 diabetes, hyperglycaemia and insulin resistance,
and the polygenic risk scores (PRSs) for these traits, and later-life
cognitive state (Addenbrooke’s Cognitive Examination III

[ACE-III]) and memory. Second, we aimed to estimate the inde-
pendent effects of early-life factors on mid-life type 2 diabetes
features and later-life cognitive state by testing a path model
incorporating earlier-life factors (father’s social class, childhood
cognitive ability, educational attainment) to mid-life type 2 dia-
betes (and hyperglycaemia and insulin resistance) to later-life
cognitive state and memory.

Methods

Participants

The Medical Research Council (MRC) National Survey of
Health and Development (NSHD, also known as the British
1946 birth cohort) recruited a representative sample of 5362
men and women born in England, Scotland and Wales in
1 week inMarch 1946 [21]. It is the oldest British birth cohort
with repeated data collected since birth. The most recent data
collection, the 24th, was conducted between 2014 and 2015,
when participants were aged 68–69 years [22]. At age
69 years, following a postal questionnaire at age 68 years,
participants still alive and with a known current address in
mainland Britain (n = 2698) were invited to have a home visit;
2149 (80%) completed a visit. More detailed information and
a flow diagram about the follow-up rates and attrition of
participants at the latest stage of recruitment is given in Kuh
et al (2016) [22] and electronic supplementary material (ESM)
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Fig. 1. For the most recent data collection, we obtained ethical
approval from Queen Square Research Ethics Committee
(REC) (14/LO/1073) and Scotland A REC (14/SS/1009).
All participants gave written informed consent.

Cognitive outcomes

The ACE-III, a test of cognitive state [23], was used as a
primary outcome measure at age 69 years. The ACE-III is
divided into five domains: attention and orientation (scored
0–18); verbal fluency (0–14); memory (0–26); language (0–
26); and visuospatial function (0–16). Thus, the maximum
total score is 100. A customised version of the ACE-III was
administered by iPad using ACEMobile (www.acemobile.
org, version 1, accessed 1 January 2015); where this was not
possible, a paper version was used. All offline scoring was
undertaken by trained personnel. Of the 2149 participants
with a home visit at age 69 years, 32 refused or were unable
to undertake the ACE-III. Of the remaining 2117, 35
undertook it but did not complete it and data from 353
participants were corrupt through equipment failure. Thus,
complete ACE-III data were available for 1729 participants,
80% of those who received home visit (ESMFig. 1). For those
interviewed at age 69 years, there were no statistical differ-
ences in variables included in this analysis for those with and
without missing ACE-III data (data not shown).

Verbal memory was tested at age 69 years using a 15 item
word-learning task; each word was shown for 2 s. When all
words were shown, the study member was asked to write
down as many words as possible. This was performed over
three identical trials, and the total number of words correctly
recalled was summed (maximum score = 45).

Type 2 diabetes, HbA1c and insulin resistance

Known type 2 diabetes status was based on self-reports of
doctor-diagnosed type 2 diabetes or use of oral glucose-
lowering medication up to age 60–64 years. Previous work
in the NSHD shows good validity of self-reported diabetes
compared with general practitioner notes [24]. Medication
use was recorded at ages 36, 43, 53 and 60–64 years and
coded to the British National Formulary [25]. For this analy-
sis, those with known type 1 diabetes were excluded (n = 6).

HbA1c wasmeasured in blood taken at age 60–64 years and
69 years by ion exchange HPLC on a Tosoh analyser (Tosoh
Bioscience, Tessenderlo, Belgium). A fasting blood sample
was collected at age 60–64 years. Samples were analysed for
glucose (measured by enzymatic assay using hexokinase
coupled to glucose 6-phosphate dehydrogenase, using a
Siemens Dimension Xpand analyser, Siemens Medical
Solutions, Erlangen, Germany) and insulin (measured by
fluoroimmunoassay using a PerkinElmer AutoDELFIA

analyser, PerkinElmer, Waltham, MA, USA). HOMA2-IR
was calculated [26].

PRSs of traits

Blood samples from participants at age 53 years were geno-
typed using MetaboChip, a custom Illumina iSelectarray (San
Diego, CA, USA) that includes ~200,000 SNPs and covers the
loci identified by genome-wide association studies (GWASs)
in cardiometabolic diseases, including rare variants identified
by the 1000 Genomes Project [27]. Quality control analysis of
genotyped samples has been previously reported [28].

Three PRSs were calculated. A type 2 diabetes PRS has
previously been derived for NSHD study members [29]. In
brief, a genetic risk score was computed using the published
coefficients for 65 SNPs identified by a prior GWAS for type 2
diabetes [30, 31]. We additionally derived a PRS for insulin
resistance using 17 previously demonstrated genome-wide
significant SNPs [32] and for hyperglycaemia using ten pre-
viously demonstrated SNPs [32] using PRSice [33]. This cal-
culates the sum of the number of risk alleles (unweighted
score) carried by each person, and weights it based on previ-
ously published coefficients (weighted score). As is standard
practice, SNPs with a minor allele frequency <0.01 were
excluded.

Earlier-life variables (covariables)

Childhood cognitive function Childhood cognitive function at
age 8 years was represented as the sum of four tests of verbal
and non-verbal ability devised by the National Foundation for
Educational Research [34].

Childhood SEP Childhood SEP was represented by the occu-
pation of the father when study members were aged 11 years;
if missing at 11 years, occupation was substituted by the fa-
ther’s occupation class at ages 4 or 15 years. SEP was coded
according to the UK Registrar General into six categories
(professional, managerial, intermediate, skilled manual,
semi-skilled manual and unskilled). For consistency with the
other variables, these were coded so that higher values
corresponded to higher positions.

Educational attainment The highest educational attainment or
training qualification achieved by 26 years was classified ac-
cording to the Burnham scale [35] and grouped into the fol-
lowing: no qualification; below ordinary secondary qualifica-
tions (e.g. vocational qualifications); ordinary level qualifica-
tions (‘O’ levels or their training equivalents); advanced level
qualifications (‘A’ levels or their equivalents); or higher edu-
cation (degree or equivalent).
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Statistical analysis

Individuals were included in the analysis if they had: at least
one measure of earlier-life factors (childhood SEP, childhood
cognition, education); at least one measure of type 2 diabetes,
insulin resistance or hyperglycaemia at age 60–64 years; and
at least one measure of cognitive function (ACE-III or verbal
memory) at age 69 years.

PRS regression models Using logistic and linear regression
models, we first performed a sensitivity check to see whether
the PRS for type 2 diabetes was associated with type 2 diabe-
tes, hyperglycaemia and insulin resistance measures in our
sample aged 60–64 years. We then investigated the associa-
tion between genetic risk of type 2 diabetes, insulin resistance
and hyperglycaemia with later-life cognition (ACE-III score at
age 69 years) and memory (verbal memory at age 69 years)
using linear regression models further adjusted for sex.

Earlier-life factors, mid-life diabetes and later-life cognitive
stateWe used path analysis to assess the association between
mid-life type 2 diabetes and later-life cognitive state and to
assess the relative contributions of earlier life course factors to
mid-life type 2 diabetes and to later-life cognitive state. Path
analysis is a technique often used in life course epidemiology
[36]. It is an extension of regression models, whereby the
models would be similar if we were to use simple path model-
ling of the independent variable on the dependent variable
(e.g. type 2 diabetes on ACE-III), yet path analysis can further
estimate more complex relationships [37]. It enables the ex-
amination of multiple associations simultaneously; in this
case, it has been used to estimate regression equations for
simultaneous multiple paths between: (1) mid-life type 2 dia-
betes and cognitive state; (2) earlier-life variables; (3) earlier-
life variables and mid-life type 2 diabetes; and (4) earlier-life
variables and cognitive state. Path analysis can additionally
decompose the total effect of an exposure on an outcome into
direct effects (effect of exposure on outcome not mediated
through other measures) and indirect effects (effect mediated
through other measured risk factors) [20, 36, 38].

This approach is particularly suitable for our research
question given that: the earlier-life-course factors are
closely related; the use of longitudinal data enables exam-
ination of the temporal relationship between variables; and
the model is derived from a coherent a priori evidence base
[38]. As we are particularly interested in quantifying and
estimating the individual coefficients for each path to both
mid-life type 2 diabetes and cognitive state, this approach
enabled us to distinguish between paths of individual
early-life factors to mid-life type 2 diabetes and to later-
life cognitive state accordingly. Particular hypotheses in-
clude: (1) strong paths from earlier-life factors to later-life
cognitive state, and to mid-life type 2 diabetes; and (2) the

effects of earlier-life factors on cognitive state are mediated
through mid-life type 2 diabetes.

Estimating the model All statistical analyses were conducted
using STATA 14.1 (StataCorp, College Station, TX, USA);
path modelling was conducted using the ‘sem’ and ‘glm’
package (StataCorp). All models were adjusted for sex and,
in line with previous studies, estimated using full information
maximum likelihood, which allows for missing data and is
preferable to estimation based on complete data.

First, a simple path analysis (similar to a linear regression
model adjusted for sex) was used to test associations between
mid-life type 2 diabetes, hyperglycaemia and insulin resis-
tance at age 60–64 years and later-life cognitive state at age
69 years (ACE-III score [Fig. 1a]) and verbal memory [Fig.
2a]. To reduce the number of further multiple comparison
tests, the feature (HbA1c or HOMA2-IR) with the strongest
association and significance with ACE-III scores was includ-
ed in further statistical modelling. Coefficients were
standardised based on available data.

Second, path modelling incorporating all variables of inter-
est, in the pattern laid out in Fig. 1b, were used to estimate
interrelationships between earlier-life covariables (childhood
cognition, childhood SEP and education), mid-life type 2 di-
abetes and its features, and later-life cognitive state (Figs 1b
and 2b). The numerical values refer to standardised regression
weights whereby all paths were mutually adjusted and further
adjusted for sex.

In line with existing studies [38], root mean square error of
approximation (RMSEA) and comparative fit index (CFI) es-
timates were used to assess the fit of the model to the data.
RMSEA<0.05 and CFI close to one indicates a close fit to the
data. Assuming that normally distributed latent variables un-
derlie responses on an ordinal scale [20], estimates are pre-
sented as standardised coefficients for observed continuous
and ordinal variables (Figs 1, 2).

Sensitivity analyses

To explore whether the pattern of our results was affected
by type 2 diabetes-related medication, we used two ap-
proaches. First, for those on diabetes medication, we re-
placed measured HbA1c and HOMA2-IR scores with the
maximum value within the cohort (used for all analyses
where they are outcomes and predictors). Second, we re-
ran the initial multivariable regression analyses using an
additional covariate indicator for people on diabetes med-
ication (n = 128) (ESM Fig. 4). Multivariable regression
analyses were additionally re-run excluding participants
with potentially clinically significant cognitive impair-
ment (81 study members [5%] fell below the clinically
validated ACE-III <82 threshold) and adjusting for dura-
tion of diabetes (ESM Figs 5, 6).
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Results

Participant characteristics are shown in Table 1. The maxi-
mum sample numbers for outcomes using the ACE-III and
memory test were n = 1494 and n = 1780, respectively.

Associations with PRSs

A higher PRS for type 2 diabetes was strongly and significant-
ly associated with a higher likelihood of having known type 2
diabetes by age 60–64 years (OR 1.08, 95%CI 1.03, 1.11) and

a

b

HOMA2-IR, age 60

WLT, age 69

HbA
1c

, age 60 Diabetes, age 60

-0.12 (-0.17, -0.06) -0.08 (-0.13, -0.03)-0.07 (-0.12, -0.01)

HOMA2-IR, age 60

WLT, age 69

Childhood SEP

Childhood cognition

Educational attainment

0.36 (0.40, 0.32)

0.47 (0.42, 0.51)

0.26 (0.22, 0.30)

0.02 (-0.07, 0.10)

-0.06 (-0.13, 0.02)

0.27 (0.22, 0.32)

0.24 (0.18, 0.29)

0.04 (-0.01, 0.09)

-0.05 (-0.11, 0.01)

-0.15 (-0.21, -0.06)

Fig. 2 (a) Simple path model for
the association of mid-life HbA1c,
HOMA2-IR and type 2 diabetes
with later-life verbal memory
(assessed using a word-learning
task [WLT]), adjusted for sex.
HOMA2-IR showed the strongest
association and was selected for
further modelling. (b) Path model
for the WLT in relation to
childhood SEP, childhood
cognition and educational
attainment, together with mid-life
HOMA2-IR. All path β
coefficients are standardised and
are mutually adjusted and
additionally adjusted for sex.
Dashed lines represent non-
significant paths at the 5% level
(p > 0.05); n = 1379

a

b

HOMA2-IR, age 60

ACE-III, age 69

HbA
1c,age 60 Diabetes, age 60

-0.09 (-0.15, -0.03)-0.04 (-0.09, 0.01) -0.05 (-0.10, -0.01)

HOMA2-IR, age 60

ACE-III, age 69

Childhood SEP

Childhood cognition

Educational attainment

0.36 (0.32, 0.41)

0.47 (0.42, 0.51)

0.25 (0.20, 0.30)

0.03 (-0.04, 0.09)

-0.07 (-0.14, -0.01)

0.34 (0.30, 0.40)

0.22 (0.16, 0.28)

0.07 (0.02, 0.13)

-0.01 (-0.06, 0.03)

-0.16 (-0.23, -0.08)

Fig. 1 (a) Simple path model for
the association of mid-life HbA1c,
HOMA2-IR and type 2 diabetes
with later-life cognitive state
(assessed using ACE-III),
adjusted for sex. HOMA2-IR
showed the strongest association
and was selected for further
modelling. (b) Path model for
ACE-III in relation to childhood
SEP, childhood cognition and
educational attainment, together
with mid-life HOMA2-IR. All
path β coefficients are
standardised and are mutually
adjusted and additionally adjusted
for sex. Dashed lines represent
non-significant paths at the 5%
level (p > 0.05); n = 1379
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higher HOMA2-IR and HbA1c levels at age 60–64 years
(Table 2). There was little evidence that higher PRSs for type
2 diabetes, insulin resistance or hyperglycaemia were associ-
ated with lower ACE-III scores at age 69 years or lower verbal

memory; the direction of regression coefficients suggested
that higher risk scores were associated with lower cognitive
state, though associations were weak and not significant at the
5% level (Table 2).

Table 1 Characteristics of study
participants Characteristic Mean (SD)a, all Participants available

n %

Sex (male), % 48 1803 100

Higher childhood SEP, % 47 1737 96

Higher educational attainment, % 40 1759 98

Child cognition SD, age 8 years 0.13 (0.8) 1628 90

Known T2DM by age 69 years, n (%) 169 (10) 1701 94

HbA1c at age 69 years

% 5.8 (0.6) 1486 82

mmol/mol 40 (6.6) 1486 82

Ever on diabetes medication, n (%) 128 (7.3) 1803 100

Smoking status (never/ex/current), % 30, 61, 8 1782 99

Characteristics at age 69 years

WHR

Men 0.96 (0.07) 856 47

Women 0.87 (0.07) 936 52

BMI, kg/m2 28.0 (5.1) 1789 99

BP, mmHg

Systolic 132 (16) 1793 99

Diastolic 73 (10) 1793 99

Heart rate, bpm 68.8 (10.9) 1794 100

Total cholesterol, mmol/l 5.2 (1.2) 1521 84

HDL-cholesterol, mmol/l 1.5 (0.4) 1515 84

LDL-cholesterol, mmol/l 2.9 (0.9) 1499 83

Triacylglycerols, median (IQR), mmol/l 1.5 (1.1–2) 1521 84

Alcohol (≥×4/week), n (%) 507 (30) 1789 99

Clinical history, any incidence, n (%)

Stroke 69 (4) 1797 100

Angina 113 (7) 1797 100

Heart attack 65 (4) 1797 100

Heart failure 42 (3) 1797 100

Prior cardiac event 218 (13) 1797 100

APOE-ε4b (absent, hetero-, homozygous), % (71, 25, 3) 1582 88

Mid-life T2DM measures at age 60–64 years

Known T2DM, n (%) 101 (7) 1799 100

HbA1c

% 5.8 (0.7) 1671 93

mmol/mol 40 (7.7) 1671 93

HOMA2-IR 0.9 (0.6) 1379 76

Later-life cognitive measures, age 69 years

ACE-III (max score = 100) 91.5 (5.9) 1494 83

Verbal memory score (max score = 45) 22.3 (6.1) 1780 99

aUnless otherwise stated
b Encodes apolipoprotein E (ε4 allele)

IQR, interquartile range; T2DM, type 2 diabetes mellitus
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Path modelling

Figure 1 a shows simple path models between mid-life diabetes
and its features and the ACE-III scores, adjusting for sex (similar
to linear regressionmodels adjusted for sex). Higher HOMA2-IR
and known type 2 diabetes status at age 60–64 years were sig-
nificantly associated with lower ACE-III scores (Fig. 1a).
HOMA2-IR was the type 2 diabetes feature with the strongest
coefficient with lower ACE-III scores (β =−0.09, 95%CI −0.15,
−0.03) and lower verbal memory (β = −0.12, 95% CI −0.17,
−0.06). HOMA2-IR was therefore subsequently selected for fur-
ther modelling.

Figure 1 b shows life course path models representing asso-
ciations between all covariables (childhood cognition, childhood
SEP and education) and HOMA2-IR and later-life cognitive
state. The numerical values refer to standardised regression
weights whereby all paths are mutually adjusted and further ad-
justed for sex. Figure 2 and ESM Fig. 2, respectively, show path
models replacing: (1) later-life cognitive state with later-life
memory; and (2) HOMA2-IR with mid-life type 2 diabetes.
Goodness-of-fit statistics indicated that all models were satisfac-
tory (all models: RMSEA= 0.01, CFI = 1.0).

Path modelling revealed that when earlier covariables were
mutually adjusted, the path fromHOMA2-IR to theACE-III was
significantly attenuated (unadjusted β = −0.09, 95% CI −0.15,
−0.03; adjusted β = −0.01, 95% CI −0.06, 0.03) (Fig. 1).

Paths from covariables to mid-life HOMA2-IR showmutual-
ly independent and significant paths from educational attainment
(β = −0.16, 95% CI −0.23, −0.08) and childhood SEP (β =
−0.07, 95%CI −0.14, −0.01) to HOMA2-IR at age 60–64 years,
with the former path stronger than the latter (Fig. 1b). Paths from
covariables to later-life cognitive state show direct mutually in-
dependent and significant paths from childhood SEP, childhood

cognition and educational attainment to ACE-III scores at age
69 years (β= 0.07, 0.34 and 0.22, respectively), with the stron-
gest path shown by childhood cognition.

Similarly, when verbal memory was the later-life cognitive
outcome, the path from HOMA2-IR to memory was significant-
ly attenuated when covariables were modelled (unadjusted β =
−0.12, 95% CI −0.17, −0.06; adjusted β= −0.05, 95% CI −0.11,
0.01) (Fig. 2). The paths revealed a similar pattern, with educa-
tion the strongest path coefficient to HOMA2-IR and childhood
cognition the strongest path to later-life memory.

The pattern of findings was similar when type 2 diabetes was
the intermediate mid-life diabetes feature (ESM Figs 2 and 3).
The pattern of findings were similar but attenuated slightly when
modelswere estimated adding in a covariate for those on diabetes
medication up to age 69 years (ESM Fig. 4). Notably, when the
analysis was additionally adjusted for diabetes medication use,
the path from educational attainment to HOMA2-IR was largely
attenuated (from β= −0.16 in the original model to β= 0.06 in
the adjusted model) and became non-significant; the strongest
path to HOMA2-IR in this model was childhood SEP (ESM
Fig. 4). The pattern of findings for HOMA2-IRwas similar when
analyses were re-run excluding those with ACE-III scores <82
and adjusting for duration of diabetes (ESM Figs 5 and 6,
respectively).

Discussion

Main findings

Our results show that the relationship between mid-life type 2
diabetes, insulin resistance and poorer later-life cognitive func-
tion or memory are likely to be confounded by the effects of

Table 2 Regression analyses between PRSs for type 2 diabetes/insulin resistance/hyperglycaemia with later-life cognitive outcomes

PRS exposure Unweighted PRS Externally weighted PRS

β/ORa p 95% CI β/ORa p 95% CI

Type 2 diabetes PRS predictor

Known T2DM at age 60–64 yearsa 1.08 <0.001 1.03, 1.11 1.45 <0.01 1.10, 1.84

HOMA2-IR at age 60–64 years 0.11 <0.001 0.01, 0.16 0.08 0.01 0.02, 0.16

HbA1c at age 60–64 years 0.12 <0.001 0.02, 0.17 0.14 <0.001 0.11, 0.28

ACE-III at age 69 years 0.02 0.39 −0.03, 0.08 0.04 0.15 −0.02, 0.90
Verbal memory at age 69 years −0.01 0.72 −0.07, 0.05 0.001 0.96 −0.38, 0.36

Insulin resistance PRS predictor

ACE-III at age 69 years 0.04 0.25 −0.07, 0.09 0.03 0.12 −0.04, 0.56
Verbal memory at age 69 years −0.01 0.83 −0.08, 0.09 −0.01 0.81 −0.39, 0.24

Hyperglycaemia PRS predictor

ACE-III at age 69 years 0.02 0.42 −0.04, 0.05 0.03 0.24 −0.07, 0.41
Verbal memory at age 69 years −0.001 0.79 −0.13, 0.12 −0.01 0.81 −0.51, 0.19

a Estimates are β coefficients from linear regression models for continuous outcomes (all outcomes except T2DM), and ORs from logistic regression
models for dichotomous outcomes (T2DM). T2DM, type 2 diabetes mellitus
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earlier-life factors, in particular childhood advantage, associating
with glycaemic status on one hand and late-life cognitive state on
the other. Although it has previously been demonstrated that
earlier-life influences, such as education, increase the risk of type
2 diabetes [8] and lower cognitive state and dementia [6], very
few studies have investigated these shared influences in combi-
nation and how these relate to an association between type 2
diabetes and later-life cognitive state [14].

Using a PRS approach and, separately, a path model approach,
we confirm and extend previous findings [15–18] of a limited
direct association between type 2 diabetes, hyperglycaemia and
insulin resistance and later-life cognitive function.Within the same
dataset, however, conventional regression analysis shows a strong
association between mid-life type 2 diabetes and poor cognitive
state. These discordant findings highlight the confounded nature of
the observed association and the importance of considering life
course influences. While the null association between metabolic
PRS and later cognitive state could additionally be explained by
the use of a weak genetic instrument and lack of power, and
limitations of path analyses include assumptions about latent var-
iables, directionality and unmeasured confounders, using these
differential approaches to address the same underlying
question—so called triangulation—helps to consolidate our find-
ings [39]. Path analysis cannot prove causality, but it can be used to
test models and disprove a model that postulates causal relation-
ships among variables. Taking into account the strengths and lim-
itations of both approaches, it is striking that both analyses suggest
the samemessage: that there is no causal association betweenmid-
life hyperglycaemia and later-life cognitive function at age
69 years.

In contrast to the null direct association between insulin re-
sistance and subsequent cognitive function, we found that mid-
life insulin resistance is associated with educational attainment
and, independently, with childhood SEP. Mechanisms may in-
clude the adoption of healthier behaviours and, in particular,
avoidance of obesity [40]. Further, we found that childhood
cognition has a strong and independent effect on both older-
age cognitive status and memory, with effect sizes equal to or
stronger than those for education. A previous large-scale study
associated genetic instruments for educational attainment and
cognitive function separately with mid-life cognition: strong as-
sociations were observed for each of these with verbal-numeric
reasoning, but not memory [16].

Other pathways related to type 2 diabetes or processes occur-
ring as a complication of diabetes and its dysmetabolic precur-
sors, such as small vessel disease and mixed vascular and neuro-
degeneration pathologies, may be aetiologically important in
contributing to cognitive impairment/dementia risk [41].

Strengths and limitations

The major strengths of this study include the unique resource
of the NSHD cohort, with: direct measurement of life course

factors, including the rarely available item childhood cogni-
tion, in a population-representative sample; and repeated col-
lection of data on older-age cognitive state and glycaemic
traits. In addition, we have sought to triangulate our results,
taking into account the strengths and limitations of differential
methods of PRS and path analysis.

Limitations include the relatively small sample size,
precluding a formal Mendelian randomisation analysis,
and differential loss to follow-up of those who were socio-
economically disadvantaged, which may result in an un-
derestimation of the strength of associations between mea-
sures of childhood advantage and cognitive outcomes. In
addition, there are relatively few people with diabetes, and
HbA1c, HOMA2-IR and cognitive state are mostly in a
healthy range in this cohort at this age; subsequently, as-
sociations observed are expected to be weaker than they
would be in more unhealthy ranges. We cannot wholly rule
out reverse causality, i.e. that cognitive impairment may
result in worse diabetes management. However, we also
explored associations across the spectrum of insulin resis-
tance and hyperglycaemia, where such a bias is less likely
to be a problem. In addition, our path model analyses as-
sumed that a normally distributed latent variable underlies
responses of the ordinal scales used in the analyses (SEP
and educational attainment) [20]. Comparisons between
path estimates should be considered with this in mind.

Overall, our findings indicate that while mid-life type 2
diabetes and insulin resistance are associated with poorer
later-life cognitive state, this association is, in part if not in
full, confounded by earlier factors and is not consistent
with a direct causal pathway of type 2 diabetes features
per se to later-life lower cognitive state. Importantly, we
also show that early-life measures of advantage, specifical-
ly education and cognition, appear to have independent
effects on both older-age metabolic disease and cognitive
state. These findings have important implications for de-
veloping interventions to reduce the risk of cognitive im-
pairment. Despite efforts, and some promising findings
[42], glucose-lowering agents are unlikely to be beneficial.
Mechanisms accounting for the dual positive effects of
prior advantage on mid-life insulin resistance and later-
life cognitive state are not well understood and require
further investigation.
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