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Abstract
Epilepsy is a diverse brain disorder, and the pathophysiology of its various forms and comorbidities is largely unknown. A
recent machine learning method enables us to estimate an individual’s “brain-age” from MRI; this brain-age prediction is
expected as a novel individual biomarker of neuropsychiatric disorders. The aims of this study were to estimate the brain-age
for various categories of epilepsy and to evaluate clinical discrimination by brain-age for (1) the effect of psychosis on
temporal lobe epilepsy (TLE), (2) psychogenic nonepileptic seizures (PNESs) from MRI-negative epilepsies, and (3)
progressive myoclonic epilepsy (PME) from juvenile myoclonic epilepsy (JME). In total, 1196 T1-weighted MRI scans
from healthy controls (HCs) were used to build a brain-age prediction model with support vector regression. Using the
model, we calculated the brain-predicted age difference (brain-PAD: predicted age—chronological age) of the HCs and 318
patients with epilepsy. We compared the brain-PAD values based on the research questions. As a result, all categories of
patients except for extra-temporal lobe focal epilepsy showed a significant increase in brain-PAD. TLE with hippocampal
sclerosis presented a significantly higher brain-PAD than several other categories. The mean brain-PAD in TLE with inter-
ictal psychosis was 10.9 years, which was significantly higher than TLE without psychosis (5.3 years). PNES showed
a comparable mean brain-PAD (10.6 years) to that of epilepsy patients. PME had a higher brain-PAD than JME (22.0 vs.
9.3 years). In conclusion, neuroimaging-based brain-age prediction can provide novel insight into or clinical usefulness
for the diverse symptoms of epilepsy.

Introduction

Epilepsy is a common but quite diverse brain disorder [1].
Attempts at clinical classification of the disease are con-
tinuing, considering the many types of seizures, electro-
encephalogram (EEG) findings, structural abnormalities,
and genetics [2]. In addition, although epileptic seizure is
the main symptom of epilepsy, various forms of comor-
bidities often eventually occur in patients with epilepsy [3].
In particular, psychiatric and behavioral problems, includ-
ing psychogenic nonepileptic seizures (PNESs), are one of
the significant aspects of the condition [4]. However, the
pathophysiology of these diverse forms of epilepsy and its
related disorders is still unclear and needs to be elucidated
for better clinical treatments.

On the other hand, machine learning in brain images has
recently become expected to be used as a potential
individual-level biomarker in many neuropsychiatric dis-
orders [5]. There are already useful applications for auto-
matic categorization of epilepsy neuroimaging [6]. In
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addition, more recent advances in machine learning have
allowed us to predict the age of an individual’s brain image
using regression models [7]. This “neuroimaging-based
brain-age prediction” has been applied to several psychiatric
disorders and Alzheimer’s disease [7, 8]. As for epilepsy,
Pardoe et al. reported a significant 4.5-year increase in brain
age compared with chronological age in refractory focal
epilepsy [9]. We considered that the brain-age prediction
could provide useful information on other forms of epi-
lepsy. Thus, the initial aim of this study was to estimate
brain age in various categories of epilepsy in accordance
with the following three clinical research questions.

First is the effect of psychosis in epilepsy. Psychosis,
which is an important comorbidity of epilepsy, is found in
around 10‒20% of patients with temporal lobe epilepsy
(TLE), which is higher than in the general population [10].
On the other hand, many other TLE patients do not develop
psychosis, and no plausible explanation has yet been pro-
posed for these different phenotypes. According to recent
studies of brain age in schizophrenia [8, 11], patients with
schizophrenia show a 3- to 5-year higher brain age com-
pared with chronological age, and this gap accelerates
around the onset of psychosis. Thus, we hypothesized that
brain age could also be a novel biomarker in psychosis of
epilepsy and possibly show higher values than in non-
psychotic patients.

Second, we aimed to investigate the differences
between PNES and epilepsy with no lesion on visual
assessment of MRI (i.e., magnetic resonance imaging
(MRI)-negative epilepsy). PNES is defined as episodes
resembling epileptic seizures but caused by psychogenic
mechanisms [12]. Because PNES does not have epileptic
physiology, patients with PNES should be treated differ-
ently from patients with epilepsy. Nevertheless, the diag-
nosis of PNES is sometimes difficult, especially with
limited access to video-EEG monitoring as the gold-
standard diagnosis of PNES confirming ictal semiology
and EEG findings [12]. Actually, PNES is recognized as a
diagnostic and therapeutic problem in many countries [13].
We considered that an MRI-based biomarker that could
identify significant differences between PNES and epi-
lepsy, particularly in visually normal MRI cases, would be
helpful for clinicians and patients. Moreover, the results
may shed additional light on the pathophysiology of
PNES, although PNES is heterogeneous and cannot be
explained by any single mechanism [14].

Third, we addressed the differences between progressive
myoclonic epilepsy (PME) and juvenile myoclonic epilepsy
(JME). PME is a group of neurodegenerative disorders
characterized by myoclonic seizures and progressive neu-
rological impairment, including ataxia or intellectual dete-
rioration [15]. Because PME is often difficult to clinically
distinguish from JME at the early stage, which is a more

common and basically nonprogressive group with much
better prognosis, some attempts have been made to
demonstrate specific differences between PME and JME
[16]. As with the second aim, we also applied brain-age
prediction to this differentiation.

Materials and Methods

Healthy controls

To build and estimate the brain-age model, we recruited
1196 MRI scans at our center from healthy controls (HCs)
with no history of neurological or psychiatric diseases and
no use of medication affecting the central nervous system.
No possible structural anomalies or abnormalities affecting
the analysis were visually found in the controls on MRI.
The 1196 HCs were aged between 20 and 89 years (mean ±
SD: 55.4 ± 15.3 years) and comprised 426 men and 770
women. The mean ages and proportions of sex were dif-
ferent between each group of patients, but the HC database
contained sufficient samples of each age and sex. Because
epilepsy can affect individuals of all ages, we decided to
include all available samples to establish a reliable brain-
age model.

Patients

Of the 437 adult (i.e., ≥20-year-old) patients with epilepsy
or PNES recruited at our institute between November 2013
and December 2017, we enrolled 318 patients in the brain
age analyses based on the following examinations and
criteria.

All of the patients underwent careful clinical diagnosis
by board-certified clinical epileptologists based on seizure
semiology and conventional scalp EEG and conventional
3.0-T MRI inspection by experienced neuroradiologists.
More detailed inclusion criteria and specific examinations
performed for each category of epilepsy are described in
Table 1.

The initial categorization of epilepsy at this stage was as
follows: (1) TLE with no visible lesion (i.e., visually nor-
mal) on MRI (TLE-NL), (2) TLE with hippocampal
sclerosis (TLE-HS), (3) extra-temporal lobe focal epilepsy
(Ext-FE), (4) idiopathic generalized epilepsy (IGE), (5)
PME or symptomatic generalized epilepsy (PME/SGE), and
(6) PNES without any epileptic seizures (PNES).

The secondary categorization included psychosis vs.
nonpsychosis in TLE, PNES vs. MRI-negative epilepsies,
and JME vs. PME. The composition of MRI-negative
epilepsies is shown in Supplementary Table 1. JME was
diagnosed based on the presence of myoclonic seizures in
addition to the criteria for IGE listed in Table 1.
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The following exclusion criteria were applied to all
patients: (1) a significant medical history of acute ence-
phalitis, meningitis, severe head trauma, ischemic ence-
phalopathy, or brain surgery; and (2) suspicious
epileptogenic lesions (e.g., tumor, vascular malformation,
and destructive lesion) on MRI other than unilateral HS or
focal cortical dysplasia (FCD).

In total, 119 of the initial 437 patients were not enrolled,
including 43 with focal epileptogenic lesions other than HS
or FCD, 37 who were not classified into any specific cate-
gories, 11 with a history of encephalitis, 8 with severe head
trauma, and 20 with other reasons (e.g., postneurosurgery
and poor imaging quality).

All participants gave written informed consent. The
study was approved by the Institutional Review Board at the
National Center of Neurology and Psychiatry Hospital.

Psychosis evaluation

We assessed the existence of inter-ictal psychosis (IIP) only
in patients with TLE. Because TLE has the highest pre-
valence of psychosis, this investigation of psychosis was
originally planned for TLE patients. The presence or history
of IIP was diagnosed based on the Diagnostic and Statistical
Manual of Mental Disorders, 4th edition criteria [17]. Of the
227 patients with TLE, 21 were diagnosed with IIP; the
others had no psychotic episodes.

MRI acquisition

The three-dimensional (3D) sagittal T1-weighted images of
the HCs were obtained from two different protocols on 3.0-
T MRI scanners: 798 individuals underwent Protocol 1 and
the other 398 individuals underwent Protocol 2. On the
other hand, all of the patients underwent Protocol 1.

Protocol 1: 3.0-T MR system (Philips Medical Systems,
Best, The Netherlands) with the following protocol: repe-
tition time (TR)/echo time (TE), 7.18 ms/3.46 ms; flip angle,
10°; number of excitations (NEX), 1; 0.68 × 0.68 mm2 in
plane resolution; 0.6-mm effective slice thickness with no
gap; 300 slices; matrix, 384 × 384; field of view (FOV),
26.1 × 26.1 cm.

Protocol 2: 3.0-T MR system (Verio, Siemens, Erlangen,
Germany) with the following protocol: TR/TE, 1800 ms/
2.25 ms; flip angle, 9°; NEX, 1; 0.87 × 0.78 mm2 in plane
resolution; 0.8-mm effective slice thickness with no gap;
224 slices; matrix, 320 × 280; FOV, 25 × 25 cm.

Neuroimaging processing

The pipeline of processing is described in Supplementary
Fig. 1. Using SPM12 (Wellcome Trust Centre for Neuroi-
maging, London, UK; www.fl.ion.ucl.ac.uk/spm/), all 3D

T1-weighted images were bias-corrected and segmented
into gray matter (GM), white matter (WM), and cere-
brospinal fluid components. The GM and WM components
were used. To ensure the accuracy of the image segmen-
tation, all segmented GM and WM images were visually
inspected. We then used SPM DARTEL [18] to conduct a
nonlinear registration to a custom template on the basis of a
training dataset (i.e., healthy individuals, [N= 1196]). The
imaged GM and WM were then registered to MNI space,
modulated to retain tissue volume information, and
smoothed with a 4-mm Gaussian kernel [19, 20]. As per the
pipeline proposed in [21], the spatially normalized GM and
WM images were resampled into 8 mm isotropic spatial
resolution. For each individual, the voxel intensities
extracted from smoothed GM and WM images were con-
catenated to build a whole-brain estimating age and con-
sidered as raw features for the regression model.

Regression model and validation

To explore the brain age in various forms of epilepsy, we
used a standard nu-support vector regression (nu-SVR)
model conducted in LIBSVM (http://www.csie.ntu.edu.tw/
~cjlin/libsvm/) toolbox with linear kernel and default set of
parameters (i.e., in the LIBSVM: C= 1, v= 0.5). SVR has
previously shown a robust performance in estimating brain
age from T1-weighted MRI images [22]. Following [21], a
principal component analysis was used to reduce the
probability of overfitting and overcome the curse of
dimensionality. The number of principal components was
set at 100 per individual.

Consequently, for the regression model, the chron-
ological age was considered the dependent variable and the
principal components derived from the concatenated GM
and WM voxel intensities were considered the independent
variables. To assess the ability of the proposed regression
model, we conducted a tenfold cross validation on the
training set (i.e., healthy individuals), with onefold in each
iteration considered as the test and the remaining folds
considered the training set. The model accuracy was mea-
sured via the mean absolute error, root mean squared error,
and the correlation between the chronological age and
estimated age through tenfold cross validation. Thereafter,
the final regression model was built using the entire training
set (i.e., healthy individuals [N= 1196]) and then applied to
epilepsy patients (N= 318) to estimate the brain ages.

Group comparisons and correlations of the brain-
predicted age difference

Based on the age predicted by the MRI-based SVR model,
we calculated each participant’s brain-predicted age differ-
ence (brain-PAD: predicted age—chronological age). First,

D. Sone et al.
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we compared the mean brain-PAD among the six initial
categories of patients and the HCs. In addition, correlations
of the brain-PAD with disease duration or onset age were
investigated in each initial category. For the three clinical
differentiations, we evaluated the relevant two groups
by comparing the mean brain-PAD and performing
receiver operating characteristic (ROC) curve and area
under the curve (AUC) analyses. However, we refrained
from using inferential statistics for the comparison between
JME and PME because of the small sample sizes of the
two groups.

Statistics

Statistical analyses were performed by SPSS software,
version 23.0 (SPSS Japan, Tokyo). The mean brain-PAD
was compared via analysis of covariance (ANCOVA) with
age and sex as covariates. Because onset age or disease
duration in each group did not show a normal distribution,
the correlations of the brain-PAD with these parameters
were analyzed by a nonparametric method (i.e., Spearman’s
rank correlation coefficient) with Bonferroni correction
for multiple comparisons. The ROC curves were non-
parametrically analyzed according to whether the AUC was
significantly higher than 0.5 (i.e., random) to differentiate
the two relevant clinical categories. Other clinical para-
meters than brain-PAD were compared by an unpaired t test
for continuous variables and a Pearson’s χ2 test for binary
parameters. A p value < 0.05 was deemed significant.

This study included various types of analysis, and then
not all analyses had the sample sizes validated. However, in

the comparisons among initial categories, psychosis vs.
nonpsychosis, and PNES vs. MRI-negative epilepsies, the
total sample sizes were demonstrated to achieve 80% power
to detect differences with 0.25 effect sizes based on
G*Power 3.1.9.4 [23].

Results

Clinical demographics

The clinical demographics are presented in Table 2. Each
group showed differing distributions of age, sex, and dis-
ease onset/duration. Most patients had refractory seizures
except those in the IGE group.

Brain-age prediction model in HCs

Figure 1 contains each individual’s predicted age and
chronological age. The SVR brain-age prediction model
showed a mean absolute error of 5.28 years in HCs, and the
predicted age in HCs was highly correlated with their
chronological age (r= 0.90). The mean (±SD) brain-PAD
in HCs was 0.13 (±6.7) years.

Because there are different age and sex distributions
between the two MRI scanners (Supplementary Fig. 2a), we
investigated the scanner effect for brain-PAD. Conse-
quently, as in Supplementary Fig. 2b, the two scanners
showed a similar pattern for brain-PAD among their HCs
with no significant difference in the mean value (p= 0.299,
unpaired t test).

Table 2 Clinical demographics
and brain-PAD results in the
initial categorization of patients

TLE-NL
(N= 164)

TLE-HS
(N= 63)

Ext-FE
(N= 45)

IGE
(N= 30)

SGE/PME
(N= 5)

PNES
(N= 11)

Age (y)

Mean ± SD 45.8 ± 16.6 43.3 ± 13.7 35.9 ± 12.0 28.9 ± 7.7 31.4 ± 9.8 31.5 ± 8.6

Sex (N)

Male:female 81:83 25:38 27:18 8:22 3:2 3:8

Disease duration (y)

Mean onset age ± SD 30.8 ± 20.8 14.4 ± 10.9 13.3 ± 10.5 15.6 ± 6.1 10.6 ± 8.7 23.6 ± 11.1

Mean duration ± SD 15.0 ± 13.9 29.0 ± 13.5 22.6 ± 12.6 13.3 ± 9.3 20.8 ± 15.7 7.8 ± 7.3

Drug-resistance (N, %)

Patients with
refractory SZ

149 (91%) 61 (97%) 43 (96%) 6 (20%) 5 (100%) 11 (100%)

Brain-age estimation (y)

Mean brain-PAD ± SD 4.7 ± 7.9 8.8 ± 7.3 5.6 ± 7.5 8.9 ± 6.3 21.2 ± 10.0 10.6 ± 5.6

Estimated marginal
mean ± SE

3.3 ± 0.5 6.9 ± 0.8 2.1 ± 0.9 3.8 ± 1.1 16.7 ± 2.7 6.1 ± 1.8

TLE-NL temporal lobe epilepsy with visually normal MRI, TLE-HS temporal lobe epilepsy with
hippocampal sclerosis, Ext-FE extra-temporal lobe focal epilepsy, IGE idiopathic generalized epilepsy,
SGE/PME symptomatic generalized epilepsy or progressive myoclonic epilepsy, PNES psychogenic
nonepileptic seizures, SZ seizures, brain-PAD brain-predicted age difference, SE standard error

Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond



Brain-PAD in the six categories of patients

As per the initial aim of this study, we evaluated the
brain-PAD of the initial categorizations of patients. All
six categories of patients showed a higher mean brain-
PAD compared with HCs, and the differences were sta-
tistically significant for five of the groups, with the
exception of Ext-FE (p= 0.149) (Table 2 and Fig. 1).
The PME/SGE group had the highest brain-PAD and the
TLE-HS group showed a significantly higher mean brain-
PAD than the TLE-NL group. The brain-PAD values
corrected for age and sex (i.e., estimated marginal means
by ANCOVA) are also shown in Table 2 and Supple-
mentary Fig. 3a.

In addition, the onset age in TLE-NL was negatively
correlated with the brain-PAD (Spearman’s rs=−0.436, p
< 0.001, Supplementary Fig. 3b). All other correlations
were insignificant.

Psychosis vs. nonpsychosis in TLE

The clinical demographics and brain-PAD comparison
results are shown in Table 3 and Fig. 2. The TLE with
psychosis group showed a significantly higher brain-PAD
than the TLE without psychosis group (p < 0.001,
ANCOVA). Because TLE with HS has higher brain-PAD,
we added the existence of HS as covariate post hoc, but the
significance remained (p= 0.005). There is no significant
interaction for brain-PAD between the existence of HS and
psychosis (p= 0.898). The detailed demographics of these
categorizations are presented in Supplementary Table 2.
The AUC was 0.694 for differentiating psychotic from
nonpsychotic patients in TLE.

PNES vs. MRI-negative epilepsies

This section compared 11 patients with PNES and 236
patients with MRI-negative epilepsies, including 164 TLE-
NL, 37 MRI-negative cases from the Ext-FE group, 30 IGE,
and 5 PME/SGE. The mean brain-PAD was not sig-
nificantly different between PNES and MRI-negative epi-
lepsies by ANCOVA comparison, although the PNES
group had higher brain-PAD values (Table 3 and Fig. 2).
On the other hand, the ROC curve of differentiation by the
raw brain-PAD values showed an AUC of 0.700.

JME vs. PME

We enrolled nine JME patients and four PME patients from
the IGE and PME/SGE categories, respectively. The mean
brain-PAD was higher in PME than in JME (Table 3 and
Fig. 2).

Discussion

In this study, we performed neuroimaging-based brain-age
prediction for various forms of epilepsy. The brain age in
HCs was consistent across MRI scanners, which might sug-
gest that the algorithm for brain age can provide a good
biomarker beyond scanner differences. As the initial result, all
categories of patients showed significantly increased brain-
age values, with only Ext-FE showing a statistical trend level
value. In the six categories, SGE/PME, which is the most
severe phenotype, showed the highest brain-PAD, and TLE-
HS, which is accompanied by distinct brain morphological
changes, had higher values than other epilepsy syndromes.

Fig. 1 a The scatter plots and linear fits of the individual predicted
brain and chronological ages in each group. b The box plot of brain-
PAD in each group. *p < 0.05, **p < 0.01, ***p < 0.001, †HCs showed
significantly lower brain-PAD than TLE-NL (p < 0.001), TLE-HS (p <

0.001), IGE (p < 0.01), SGE/PME (p < 0.001), and PNES (p < 0.01),
but the difference was not significant for Ext-FE (p= 0.134). The
p values are corrected by ANCOVA. The width of the boxes is
weighted by the logarithm of the number of subjects in each group
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A previous brain-age study of epilepsy showed a 4.5-
year increase in brain-PAD in 94 patients with refractory
epilepsy [9]; this previous study consisted of various focus
locations and partly included HS and FCD. This value
would be consistent with our results in TLE with normal
MRI or extra-temporal epilepsy groups (Table 2). Although
they also reported no significant effect of HS on brain-PAD
in their 12 patients with TLE and HS, our study, involving
a higher number of samples (N= 63), suggested the
significant effect of HS on the increased brain age.

The previous study also reported a significantly nega-
tive correlation of brain-PAD with onset age and no
significant association with duration of disease [9]. We

also found the same correlation in the TLE-NL group
(Supplementary Fig. 3b). This association between an
increased brain-PAD and an earlier onset of epilepsy
could suggest that the brain structural brain-age prediction
may reflect the vulnerability to seizure generation or
initial brain insult rather than disease progression.
However, based on our results in each category, these
correlations could depend on the type of epilepsy. In
TLE-NL, conventional volumetry found no significant
abnormality [24], despite the abnormal cortical thickness
[25] and WM integrity [26]. Our voxel-based brain-age
prediction may provide novel insights into structural
neuroimaging in this group.

Fig. 2 The comparisons of the brain-PAD and discrimination of each
clinical categorization. a TLE without psychosis (TLE-Non-P) vs.

TLE with psychosis (TLE-P), b PNES vs. all MRI-negative epilepsies
(MRI(−) Epi), and c JME vs. PME

Table 3 Clinical demographics and brain-PAD results for each comparison

Psychosis vs. nonpsychosis in TLE PNES vs. MRI-negative epilepsies JME vs. PME

TLE-Non-P
(N= 206)

TLE-P
(N= 21)

p PNES
(N= 11)

MRI(−) Epi
(N= 236)

p JME
(N= 9)

PME
(N= 4)

p

Age (y)

Mean ± SD 45.1 ± 16.3 45.0 ± 11.2 0.976 31.5 ± 8.6 41.6 ± 16.3 0.003 24.1 ± 4.6 29.5 ± 10.2 0.202

Sex (N)

Male:female 98:108 8:13 0.407 3:8 114:122 0.172 1:8 2:2 0.125

Disease duration (y)

Mean onset age ± SD 27.6 ± 20.2 12.3 ± 9.8 <0.001 23.6 ± 11.1 25.9 ± 19.5 0.537 15.1 ± 3.5 11.3 ± 9.9 0.500

Mean duration ± SD 17.4 ± 14.7 32.7 ± 11.5 <0.001 7.8 ± 7.3 15.7 ± 13.2 0.005 9.0 ± 5.3 18.3 ± 16.8 0.355

Drug-resistance (N)

Patients with
refractory SZ

190 20 0.618 11 195 0.130 2 4 0.009

Other

Patients with HS (N) 50 13 <0.001 NA NA NA NA NA NA

Onset age of
psychosis (y)

NA 27.2 ± 13.1 NA NA NA NA NA NA NA

Brain-age estimation (y)

Mean brain-PAD ± SD 5.3 ± 7.7 10.9 ± 7.8 <0.001 10.6 ± 5.6 5.8 ± 8.1 0.386 9.3 ± 6.6 22.0 ± 11.3 NA

brain-PAD brain-predicted age difference, TLE-Non-P temporal lobe epilepsy without psychosis, TLE-P temporal lobe epilepsy with psychosis, SZ
seizures, MRI(−) Epi MRI-negative epilepsies, HS hippocampal sclerosis

Comparisons of the mean brain-PAD were analyzed by ANCOVA. All other p values were generated by an unpaired t test or Pearson’s χ2 test

Statistical comparison of the mean brain-PAD between JME and PME was not performed in consideration of the small sample size
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In addition, we evaluated the effect of psychosis on TLE.
The mean brain-PAD in TLE with psychosis was 10.9
years, which was significantly higher than that in TLE
without psychosis (5.3 years). Considering the reported 5.5-
year increase in brain-PAD in schizophrenia [8], our result
should be concordant with the comorbidity of psychosis and
TLE. It might also suggest that the mechanism underlying
the increased brain age in TLE would be different from that
in psychosis. In fact, there is no solid agreement in brain
volumetry in psychosis of epilepsy due to partly conflicting
results of past studies [27] and there has recently been an
attempt to detect network abnormalities beyond mere
morphology [28]. Considering the importance of early
detection and intervention for psychosis [29], more specific
and individual-level biomarkers are desirable. The brain-age
prediction was suggested as a potential biomarker of vul-
nerability to psychosis development [8] or accelerated
neuromaturation [11]. Although a longitudinal survey is
needed, we speculate that brain-age prediction could be a
candidate biomarker of psychosis in epilepsy.

In addition, we focused on other types of epilepsy and
PNES. Even the IGE patients with mostly controlled sei-
zures showed higher values of the brain-PAD. Probably, the
brain-PAD increase cannot simply be explained by refrac-
tory seizures and that, particularly in IGE, it might reflect
the frontal lobe or thalamic dysfunction [30, 31]. Surpris-
ingly, PNES patients with no electrophysiological seizures
also showed a significantly increased brain-PAD, which
was comparable with or even higher than that in MRI-
negative epilepsies. A recent neuroimaging review sug-
gested functional and structural alterations, particularly
related to emotion processing and cognitive–executive
control, as a neurobiological mechanism in PNES [32]. This
unstable cognitive–emotional–attention system could be
associated with increased aging of the brain in PNES. The
pathophysiology of PNES is still unclear, and our study
may provide further information on it.

Furthermore, we also demonstrated a much greater
increase in brain-PAD in PME compared with JME. This
differentiation is still a clinical problem [16], and our results
appear to agree with the differences between the two dis-
eases, given the severe phenotype of PME [15]. However,
the sample size in this comparison was small and patients
with PME had a certain level of disease duration. Therefore,
the current results cannot yield clear evidence on the utility
of the brain age for differentiating myoclonic epilepsy in the
early stages, although we believe that we have preliminarily
shown its potential usefulness.

Moreover, we should discuss the underlying mechanisms
of the altered brain age in epilepsy. Given that epilepsy is
characterized by abnormal excessive neuronal activity (i.e.,
seizures) [1], recurrent electric damage may accelerate the
brain aging in epilepsy. This scenario could be more

applicable to our SGE/PME group, which represents the
most severe category with extremely refractory, often daily,
seizures, and intellectual deterioration. However, even the
drug-responsive group (i.e., IGE) showed a certain level of
increase in brain age. One potential explanation would be
underlying predispositions in epilepsy, which might have
affected patients’ aging process throughout life including
neurodevelopment. Another possible factor is inter-ictal
epileptic discharges, which can be seen even in seizure-free
cases, given the recent evidence of association with cogni-
tive impairment [33]. In addition, recent evidence is
revealing the progressive GM loss or abnormal tau
deposition in epilepsy [34, 35]. Thus, our observation of
increased brain aging is also consistent with a potentially
neurodegenerative pathophysiology in epilepsy.

For clinical settings, brain age seems generally sensitive
to the presence of epilepsy, but the within-group variability
of brain-PAD is high. In addition, multiple nonepileptic
conditions show an increased brain age [36]. Considering
that the usefulness of brain age has been reported mostly for
psychiatric disorders and cognitive impairment, brain age
may have clinical potential for neurocognitive changes or
psychiatric comorbidities in epilepsy. Furthermore, it is
known that increased brain age predicts mortality risk [37].
Given that epilepsy is associated with an increased risk of
sudden death [38], possibly related to specific brain struc-
tures essential for cardiorespiratory recovery [39], future
application of brain age might be beneficial to identify
patients at high risk of sudden death.

This study has several limitations. First, each group of
patients had differing age/sex distributions, sample sizes, and
diagnosis criteria, although we partly corrected for these
differences using statistical methods. We should carefully
interpret the current results, particularly those obtained in
groups with a small sample size. Another limitation is the lack
of psychiatric or psychological information other than psy-
chosis, such as depression or intellectual disability. Given the
high prevalence of intellectual disability in PNES [12], further
investigations with neurocognitive data would be desirable,
especially for PNES. Additionally, the cross-sectional design
cannot answer questions about causal relationships or pre-
dictability in early stages. In particular, the usefulness for the
differentiation of myoclonic epilepsy in the early stages is still
unclear, considering the stage of our PME cohort. To address
these limitations, further longitudinal validations with more
detailed clinical information are needed.

In conclusion, we found increased brain-PAD in most
types of epilepsy, with SGE/PME and TLE with HS
showing particularly high values. In addition, TLE with
psychosis presents a significant increase in brain-PAD
compared with nonpsychotic TLE. Thus, brain-age predic-
tion can provide a novel insight into or clinical usefulness
for the diverse symptoms of epilepsy.
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