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Abstract

Purpose—To determine the test-retest repeatability of Apparent Diffusion Coefficient (ADC) 

measurements across institutions and MRI vendors, plus investigate the effect of post-processing 

methodology on measurement precision.

Methods—Thirty malignant lung lesions >2cm in size (23 patients) were scanned on two 

occasions, using echo-planar-Diffusion-Weighted (DW)-MRI to derive whole-tumour ADC 

(b=100, 500 and 800smm-2). Scanning was performed at 4 institutions (3 MRI vendors). Whole-

tumour volumes-of-interest were copied from first visit onto second visit images and from one 

post-processing platform to an open-source platform, to assess ADC repeatability and cross-

platform reproducibility.

Results—Whole-tumour ADC values ranged from 0.66-1.94x10-3mm2s-1 (mean=1.14). Within-

patient coefficient-of-variation (wCV) was 7.1% (95% CI 5.7–9.6%), limits-of-agreement (LoA) 

-18.0 to 21.9%. Lesions >3cm had improved repeatability: wCV 3.9% (95% CI 2.9–5.9%); and 

LoA -10.2 to 11.4%. Variability for lesions <3cm was 2.46 times higher. ADC reproducibility 

across different post-processing platforms was excellent: Pearson’s R2 = 0.99; CoV 2.8% (95% CI 

2.3-3.4%); and LoA -7.4 to 8.0%).

Conclusion—A free-breathing DW-MRI protocol for imaging malignant lung tumours achieved 

satisfactory within-patient repeatability and was robust to changes in post-processing software, 

justifying its use in multi-centre trials. For response evaluation in individual patients, a change in 

ADC >21.9% will reflect treatment-related change.
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Introduction

Diffusion-weighted MRI derived Apparent Diffusion Coefficient (ADC) is emerging as a 

potentially valuable imaging biomarker for quantifying treatment response in a number of 

tumour types, including in lung cancers. It is being applied as an end point in an increasing 

number of clinical trials both outside (1–3) and within the lung (Table 1, (4, 5)). In order to 

utilize change in ADC as a response biomarker, uncertainty in its quantitation must be lower 

than the change following treatment, which in lung tumours ranges between 16-90% (Table 

1). Therefore in order to detect meaningful change with treatment, it is desirable that the 

uncertainty of the ADC measurement is <16%. This measurement uncertainty must include 

calculation of marker precision and bias estimation. The latter is carried out in test objects 

(6–8), while the former (defined as ‘the closeness of agreement between measured quantity 
values obtained by replicate’) is obtained through test-retest repeatability measurements 

under specified conditions. There are no reports of ADC measurement repeatability in lung 

cancers in a multi-centre setting, although inter and intra-observer coefficients of variation 

estimated from repeated measurements on the same data sets (reproducibility) have been 

estimated at 3.7-11.4% (depending on lesion size and location in the chest) (9, 10).

Methods of deriving ADC suffer from inconsistent methodology across different centres, 

both in data acquisition and analysis; a wide variety of lesion segmentation methodologies 

and software packages have been presented for ADC quantitation (Table 1 (11–20)). 

However, even when acquisition and analysis methods are standardised, uncertainty 

resulting from different scanner platforms and different post-processing algorithms between 

institutions, which is inherent in multicentre trials, is unknown. The EORTC/CRUK imaging 

biomarker validation roadmap stresses the huge importance of multicentre multivendor 

repeatability/reproducibility studies to ensure that imaging biomarkers can translate beyond 

single-centre use (21). The purpose of this study therefore was to determine the repeatability 
of ADC measurements acquired on a test-re-test basis using a common and generalizable 

free breathing DW-MRI protocol, across four university hospitals and 3 different MRI 

vendor platforms. It was performed under EORTC Innovative Medicines Initiative (IMI) 

QuIC-ConCePT project (Quantitative Imaging in Cancer: Connecting Cellular Processes 

with Therapy), for which the variation in ADC measurement precision was investigated as a 

function of lesion size, post-processing methodology and ADC summary statistic employed. 

The ultimate aim was to validate the use of ADC for treatment response assessment in lung 

cancer in a multi-centre setting (www.imi.europa.eu).

Materials and Methods

Patients

This prospective, multicentre study was performed following local Ethics Review Board 

approval in Italy, the Netherlands and the UK. Across four university hospitals, patients with 

at least one lung tumour > 2 cm in size identified on CT and without contra-indication to 

MRI were invited to participate. Written informed consent was obtained for the 27 patients 

enrolled (15 men, 12 women, age range 41 – 86 years). Between May 2014 and September 

2015, 25 of the 27 patients were scanned on two occasions >1 hour and <1 week apart 

(median interval 4.29 hours). In 2 patients, the repeatability scans were inconsistent with the 
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imaging protocol for the study and their data was excluded from the analysis (Table 2). For 

these patients, the DW-imaging had been performed with insufficient signal averages (NSA 

< 4), providing lower signal-to-noise ratio than was obtained for the remaining patients. The 

remaining 23 patients underwent test-retest repeatability imaging according to the study 

protocol. Of these 23 patients, 15 patients had primary lung cancer (14 NSCLC and 1 small 

cell lung cancer (SCLC)), 8 had metastatic lung lesions (3 from colorectal carcinoma; 1 

from renal cell cancer; and 1 uterine leiomyosarcoma) and 3 had an undocumented primary 

site. 6 of the 23 patients were treatment naïve (5 of whom had lung cancer and 1 metastatic 

renal cell cancer). The other 17 had either received treatment >1 week prior to enrolment 

(chemotherapy or radiotherapy to lungs in 11 patients), or treatment status was not 

documented by the scanning site (6 patients). For the 11 in whom prior treatment had been 

documented, 6 received chemotherapy alone, 3 received a combination of chemotherapy and 

radiotherapy and 2 had received radiotherapy alone. The mean interval between end of 

treatment and baseline scan was 63 weeks, so that no on-going post-treatment effects were 

present. Analysis was possible for 30 lung lesions >2cm in size.

Quality Assurance

Quality assurance was carried out prior to scanning and then every 3 months, using a 

previously described temperature controlled sucrose phantom, to confirm ADC stability on 

the 1.5 T MR scanners at the four sites (22).

Image Data Acquisition

All imaging experiments were performed during free breathing, using phased-array body 

coils (2 anterior and 2 posterior elements) on the following platforms: GE Optima 1.5T (site 

A); Philips Achieva 1.5T (sites B and G); Siemens Avanto 1.5T (site E). DW-MR imaging 

comprised twice refocused spin-echo sequences with single-shot echo planar readout, using 

a short-tau inversion recovery (STIR) fat suppression technique, over a large field of view. 

5mm transverse slices with no slice gap were obtained through the whole lung, using 30-60 

slice scanning volumes per series of DW images. Each series of DW images was either 

performed four times, or once with NSA=4 (GE, and Philips). Images were acquired at three 

b-values (100, 500 and 800 s/mm2). DW sequence parameters included b values greater than 

100s/mm2, in order to reduce the effects of perfusion on the ADC estimate (Table 2).

Anatomical images of the whole chest were also obtained, using axial T1-weighted (T1-W) 

turbo spin-echo sequence and a three-dimensional (3D) T2-W turbo spin echo sequence with 

variable flip angle.

Image Data Analysis

Bright regions on the high-b value images that are iso- or hypo-intense to spinal cord on the 

ADC maps are features that have been shown to differentiate tumour from pleural fluid or 

pulmonary collapse and were used to delineate tumour (23) (Figure 1). With reference to the 

high b-value images and ADC maps (so as to differentiate tumour from adjacent atelectasis), 

tumour size (maximum lesion dimension) was evaluated on the anatomical T1W imaging 

using an electronic calliper (performed in OsiriX, Pixmeo, Geneva, Switzerland).
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Segmentation was performed on every slice on which tumor was present, to encompass the 

whole tumour cross section, by an experienced radiologist (AW) using both a region 

growing technique (where a user defined seed is grown and checked by the operator for 

registration, to include all nearest neighbour pixels that lie within the mean +/- a specified 

number of standard deviations of the original seed mean value - ADEPT, Institute of Cancer 

Research, UK) and a freehand drawing technique (OsiriX). Freehand segmentation in Osirix 

was performed with reference to the region growing boundaries defined in ADEPT, in order 

to define anatomically co-registered tumour regions on the two software packages (Figure 

2).

Whole-tumour segmentation was performed on the computed (or ‘virtual’) high b (=800 

smm-2) value images rather than the acquired b=800smm-2 images as the former provide 

higher SNR, in combination with good image quality and background suppression, while at 

the same time ensuring exact anatomical registration with the ADC images (24). 

Segmentation was performed for images obtained at the first patient visit (DWI-1), for all 

lesions that were: (a) >2cm in size and; (b) present on at least 3 consecutive slices. These 

regions were copied slice by slice onto anatomically co-registered tumour regions on images 

obtained at the second patient visit (DWI-2), so as to generate anatomically matched test-

retest ADC measurements.

ADC and computed DW-MR images were generated by applying a mono-exponential decay 

model to signal decay with increasing b-value (Levenberg-Marquardt algorithm) in both 

software packages (24). Measurements generated in OsiriX were used to calculate multi-

centre, cross vendor, within-patient ADC test-retest repeatability.

For those lesions in which image analysis was possible on the 2 different post-processing 

platforms (25 of 30 lesions), the reproducibility of the ADC measurement using 2 different 

software packages was evaluated.

Statistical Analysis

Statistical analysis was performed in Graph-pad Prism Version 6 (GraphPad Software Inc. 

CA, USA). Data used for comparison was tested for normality (d’Angostino Pearson) and 

log-transformed if non-normal. Normally distributed data were compared using a Student’s 

t-test.

Test-retest repeatability and measurement precision for whole tumour median ADC 

(ADCmed) was assessed with Bland-Altman plots, as well as by calculating Limits of 

Agreement (LoA), within subject Coefficient of Variation (wCV), and intra-class correlation 

(ICC). These parameters were calculated for ADC values measured for all lesions and 

separately for lesions 2- 3cm and lesions > 3cm. Differences in test-retest ADCmed 

measurement variability between scanning institutions (sites A, B, E and G) were assessed 

using one-way ANOVA. Variability for this purpose was defined by the difference in ADC 

value per lesion on test-retest scanning [(ADC-1) – (ADC-2)]. Differences in ADC 

measurement variability based on lesion size (<3cm versus >3cm) were assessed using the 

F-test (25). For the ADC values generated on the two post-processing platforms, differences 

between the absolute ADC values and test-retest ADC value variability were assessed for 
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significance using paired Student’s t-test. For this analysis, difference in ADC variability 

using each post-processing platform was calculated by considering: [(ADC-1) – 

(ADC-2)]ADEPT; compared with [(ADC-1) – (ADC-2)]OsiriX. Pearson’s correlation 

coefficient was also calculated for ADC estimates derived using the two post processing 

platforms and agreement of ADC values between the platforms was assessed using Bland-

Altman analysis and the concordance correlation coefficient (CCC) (8).

The influence of ADC summary statistic on repeatability used was assessed by calculating 

wCV, LoA, ICC and measurement variability [(ADC-1) – (ADC-2)] for whole tumour mean 

ADC values (ADCmean), as had previously been performed for ADCmed. ADCmean test-

retest variability was compared with corresponding ADCmed variability using the paired 

Student’s t-test. In addition, Pearson’s R2, concordance correlation coefficient and 

coefficient of variation (CoV) between paired ADCmean and ADCmed values were 

calculated. The absolute ADC values (ADCmed and ADCmean) were also compared for 

difference using the Student’s t-test with (Holm-Bonferroni corrected) level of significance 

set as p = 0.0125.

Results

ADC measurements of the test object from all scanners at all time-points fell within the 

expected range, indicating that quality assurance specifications for the study were met (22).

Evaluable lesions ranged in size from 21 to 94mm (Table 3). Median ADC (ADCmed) values 

for whole tumour were in the range 0.66 to 1.94 x10-3mm2/s (mean = 1.14 x10-3mm2/s, sd = 

0.33 x10-3mm2/s). Equivalent mean tumour ADC (ADCmean) values were in the range 0.64 

to 1.97 x 10-3mm2/s (mean = 1.16 x10-3mm2/s, sd 0.31 x10-3mm2/s). The highest value of 

ADC was recorded for patient 4, in whom artefact from a subcutaneous metallic foreign 

body distal to but at the same level as the treatment naive right upper lobe NSCLC is likely 

to have influenced diffusion weighted signal decay.

Averaged ADCmed values and the repeatability of whole lesion analysis from the two 

imaging time-points are summarized in Table 3. Within patient ADCmed coefficient of 

variation (wCV) for all lesions was: 7.1% (95% CI 5.7 – 9.6%); limits of agreement (LoA) 

were -18.0 to 21.9%; and ICC was 0.94 (95% CI 0.88 to 0.97). The equivalent repeatability 

results using ADCmean were very similar: wCV for all lesions was 7.0% (95% CI 5.6 to 

9.3%); LoA -17.5 to 21.3%; ICC 0.95 (95% CI 0.89 to 0.97). In line with this, there was no 

significant difference in ADC measurement variability for ADCmean compared with 

ADCmed (p=0.41). A strong correlation was observed between ADCmed with ADCmean, 

where: Pearson’s R2 = 0.98; CoV 3.0 % (95% CI 2.6 – 3.7%); LoA -6.3 to 10.9%; and 

concordance correlation coefficient (CCC) 0.99 (95% CI 0.980 to 0.992). Despite this, 

absolute ADCmed values were significantly different from ADCmean (p=0.007), although the 

magnitude of this difference was small (mean ADCmed = 1.14, range = 0.66 to 1.94 

x10-3mm2/s, whereas mean ADCmean =1.16, range = 0.64 to 1.97 x 10-3mm2/s). 

Nonetheless, these results reflect a systematic shift toward higher values for ADCmean 

compared with ADCmed.
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Considering the effect of lesion size, ADCmed repeatability for lesions > 3cm (n=16) is 

summarised by: wCV of 3.9% (95% CI 2.9 – 5.9%); LoA -10.2 to 11.4%; and ICC 0.98 

(95% CI 0.95 to 0.99). In comparison, ADCmed measurement variability for lesions <3 cm 

(n=14) was c. 2.5 times higher, with: wCV of 9.6% (95% CI 7.0 – 15.2%); LoA -23.3 to 

30.5%; and ICC 0.92 (95% CI 0.77 to 0.97). This difference in ADC measurement 

variability for lesions >3cm compared with lesions < 3cm reached statistical significance 

[F(15,13) = 0.13, p = 0.0002]. Bland Altman plots in Figure 3 (a-c) summarise these data. 

Comparing lesions >3cm with lesions <3cm, no significant difference was observed between 

these groups in terms of either the interval between scans (Mann-Whitney p=0.24) or prior 

treatment status (Fischer exact test p = 0.17). From the one-way ANOVA, the scanning 

institution had no significant effect on test-retest ADCmed measurement variability [F(3,26) 

= 0.87, p = 0.47)], a result that is confirmed by the overlapping 95% confidence intervals for 

wCV (Table 3, Figure 3 (d)). Similarly, there was no significant difference in absolute 

ADCmed values between primary and metastatic lesions (p = 0.58), nor between treatment 

naïve and previously treated patients (p =0.74).

ADC reproducibility using two different post-processing software packages was possible for 

DW-MRI performed at sites A, B and E. For 5 lesions scanned at site G, due to storing and 

transfer of the image data in a ‘JPEG lossless’ format, in which grey-scale bit-depth of the 

DICOM files is compressed, quantitative analysis was not possible on ADEPT (IDL). For 

the remaining 25 lesions, agreement (measured on a per-lesion basis) between ADCmed 

values generated on two different post-processing platforms was excellent, with: Pearson’s 

R2 = 0.99; CoV 2.8% (95% CI 2.3 – 3.4%); LoA -7.4 to 8.0%; and concordance correlation 

coefficient (CCC) 0.99 (95% CI 0.989 to 0.996) (Table 4). This is demonstrated graphically 

in the correlation, Bland Altman and box-plots in Figure 4. In addition, for the two different 

post-processing platforms, no significant differences were seen in terms of either the 

absolute ADCmed values generated (p = 0.13) or for test-retest ADCmed variability (p= 0.73).

Discussion

This study demonstrates a wCV of < 10% for ADC (both median and mean values) in 

malignant lung lesions across multiple institutions, using a whole lung DW-MRI protocol 

during free breathing and different post-processing software packages. It is the first study to 

confirm multi-centre within-patient test-retest repeatability in malignant lung lesions and 

indicates that within a clinical trial, a measured ADC change of >22% is an acceptable 

threshold for indicating response, as it would be above the 95% limits of agreement for test-

retest scanning (LoA = -18.0 to 21.9%). This change is a little greater than the change 

recorded following treatment in some single centre reports in the literature (Table 1). 

Nevertheless, the similarity of the absolute ADC values between data in these reports and 

our cohort endorses our ADC repeatability measurement and justifies its use in future 

multicentre clinical trials (6). However, due to the wide range of individual ADC test-retest 

variability, generalisability of our findings to assess response of individual patients in the 

clinical setting would require justification. Our data nonetheless demonstrates acceptable 

cohort wCV, for the purpose of measuring treatment-related change in a clinical trial. 

Furthermore, ADC is a very promising biomarker that will allow quantitative interrogation 

of tumour microstructure and cell membrane integrity (http://qibawiki.rsna.org/index.php), 
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potentially reflecting treatment-induced changes early during therapy, where size based 

measurements are non-informative because they do not reflect changes in tumour biology 

(26).

The choice of ADC summary statistic significantly altered absolute ADC values: ADCmed 

was significant different from ADCmean, despite strong correlation between the two values. 

This is likely due to the bimodal ADC distribution within mixed necrotic/solid tumours. This 

difference highlights the importance of consistent methodology within and between trials 

before absolute ADC measurements can be compared, so as to mitigate against risks (27). 

Repeatability was equivalent for both metrics, indicating that choice of either metric is 

acceptable. The effect of lesion size on ADC repeatability for lung tumours is in line with 

prior reports on reproducibility (9). Significantly better repeatability was seen for lesions 

>3cm than smaller lesions. This reflects the greater effect of respiratory motion on smaller 

lesions. When respiratory excursion in the z-axis is greater than half of tumour size, volume 

averaging between normal lung and tumour occurs for all locations within tumour. It is 

interesting to note that for lesions <3cm in size, half of this dimension was similar to the 

mean diaphragm excursion expected during quiet respiration, reported in prior studies to lie 

between 1.4 to 1.7 cm (9, 28). This effect of lesion size is also likely to have accounted for 

differences in wCV observed between institutions in our study - Site E had greater mean 

lesion size than site A and tendency to a lower wCV, although this latter difference did not 

reach statistical significance. Use of motion compensation protocols when assessing small 

lesions may well be warranted in the future in a single centre setting. Any measures 

employed should take into account the dependence of respiratory motion upon tumour 

location in the chest (29).

Perfusion related ADC bias was minimised by using b=100s/mm2 as the lowest b-value (30, 

31) with the upper b-values dictated by previously observed ADC values in lung tumours 

((32, 33), Table 1). The b=500s/mm2 acquisition ensured that ADC values from 

predominantly mucinous/necrotic tumours (high ADC) were accurately represented, as in 

these tumours signal at b=800s/mm2 has a significant noise contribution. The satisfactory 

ADC measurement repeatability in lung tumours has enabled roll-out into a European 

multicentre trial assessing NSCLC treatment response to neo-adjuvant chemotherapy 

[EORTC 1217 https://clinicaltrials.gov/show/NCT02273271].

The free breathing protocol used in his study is easily implemented in multicentre trials and 

both generalizable across centres and suitable for the lung cancer patient group, in whom 

breath-hold capacity is limited. Ease of implementation was strong factor in devising the 

protocol and it could be further refined if proposed for single centre use. For example, 

motion compensation measures could be applied at the expense of scan duration in the 

single centre setting (9), where image quality may be improved by reducing the effect of 

respiratory motion. One limitation of our data is that lesions < 2cm were not included in the 

analysis. Future evaluation of smaller lesions would be best achieved after applying a 

successful respiratory compensation protocol.

The effect of gradient non-linearity on ADC accuracy and reproducibility has been 

highlighted as area of concern for clinical trials and poor inter-scanner reproducibility has 
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been cited as reducing the diagnostic value of ADC (34). In light of this, each patient 

included in this study had examinations performed on the same scanner with identical 

acquisition parameters at each visit. However, even when using the same scanner, changing 

tumour position within the B0 field and relative to the DWI scanning volume can distort 

tumour ADC estimates, due to non-linearity of both the spatial encoding and diffusion 

encoding gradients (34). Inconsistent patient position is likely to have a negative impact on 

repeatability, a factor that was minimised in our study by consistent patient and scanning 

volume positioning by dedicated research technologists.

It is interesting to note that no significant difference was observed between ADC values for 

treatment naïve compared with patients that had received treatment. Lesion segmentation in 

our study included necrotic areas of tumour for some patients, potentially leading to bias in 

the ADC measured, while for patient 4 (treatment naïve), metallic artefact at the same slice 

position as tumour caused encoding and diffusion gradient distortion. However, the small 

difference in ADC between the two imaging time-points for this patient (1.34%) indicates 

that any artefact induced alteration of ADC did not have an adverse effect on repeatability.

Our data demonstrate the robustness of mono-exponential log linear ADC fitting. Prior 

reports have shown that post-processing of quantitative MRI parameters can have a profound 

impact measurement uncertainty, especially with dynamic contrast enhancement (35–37). In 

our analysis of ADC, the fact that the two software packages did not utilize perfectly 

matched regions of interest at each location within tumour (because we were unable to 

export regions of interest from one package to the next), demonstrated the robustness of 

ADC measurement in the chest. The region growing segmentation methodology is a 

technique previously shown to produce acceptable intra- and inter-observer reproducibility 

(9) and our analysis illustrates that cognitive registration of regions matched between 

software packages on the b=800 smm-2 images suffices. To be clinically meaningful, the 

measurement needs to be repeatable across multiple observers, software platforms and 

imaging platforms (2, 38). This study adds to existing data by confirming the validity of 

post-processing on a widely available, open-source DICOM browser such as Osirix. The 

data from this study provides the first step in demonstrating the viability of ADC for the 

purpose of treatment response evaluation in lung cancer and justifies its application to future 

clinical trials.

Conclusion

We have demonstrated satisfactory test-retest repeatability and reproducibility of ADC 

measurements in lung tumours, using an easily implemented free breathing DW-MRI 

protocol across multiple institutions. These results justify the more widespread interrogation 

of ADC as a potential biomarker in phase II and III clinical trials, where its role in 

predicting outcomes following therapy now requires evaluation (39). If proposed for more 

widespread use, ADC also provides a robust measurement that is not unduly influenced by 

different post processing software packages, showing very close agreement and satisfactory 

reproducibility between our in house analysis software and open-source DICOM browser 

based Osirix. Further interrogation of the methodology, including with motion compensation 
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and high resolution single lesion coverage would be essential before applying ADC 

quantitation to individual patients in the clinical setting.
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Key Points

1. In lung cancer, free-breathing DWI-MRI produces acceptable images with 

evaluable ADC measurement.

2. ADC repeatability coefficient-of-variation is 7.1% for lung tumours >2cm.

3. ADC repeatability coefficient-of-variation is 3.9% for lung tumours >3cm.

4. ADC measurement precision is unaffected by the post-processing software 

used.

5. In multicentre trials, 22% increase in ADC indicates positive treatment 

response.
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Figure 1. 
Comparison of anatomical T2w (4 (a)) and DW-MRI (4 (b) and (c)) images for a left upper 

lobe tumour

(a): Coronal anatomical T2-SPACE image through a left hilar mass, causing distal left lower 

lobe collapse. Primary tumour is not differentiated from adjacent collapse.

(b): Corresponding b=800 image which, like the ADC map delineates tumour boundaries 

more clearly than on the anatomic T2W images (4a)

(c): Corresponding ADC on which tumour has higher restricted diffusion compared with 

distal atelectasis, demonstrating tumour boundaries clearly.

(d): Colour overlay of the b800 DW images onto the Coronal T2W images, acquired in 

expiration with a respiratory trigger from the dome of the diaphragm. Images are matched 

for slice location in the z-direction. Co-registration of the free breath b800 images with the 

end expiratory SPACE images is an interesting observation.
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Figure 2. 
Comparative ROIs generated using axial images in two different post-processing packages:

(a): ROI generated using axial images in ADEPT (b800 image)

(b): ROI generated using axial images in ADEPT (ADC image)

(c): ROI generated using axial images in Osirix (b800 image)

(d): ROI generated using axial images in Osirix (ADC image)
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Figure 3. 
(a): Bland Altman plot of test-retest repeatability for all lesions

(b): Bland Altman plot of test-retest repeatability for lesions >3cm

(c): Bland Altman plots of test-retest repeatability for lesions <3cm

(d): Box plot of ADCmed (x10-3mm2/s) measurement variability by site (sites A, B, E and 

G)
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Figure 4. 
(a): Scatterplot of ADCmed values (x10-3mm2s-1) obtained for whole lesion segmentation on 

ADEPT (IDL based) and Osirix (c-DWI) post-processing software packages

(b): Bland Altman plot of ADCmed values obtained for whole lesion segmentation on 

ADEPT (IDL based) and Osirix (c-DWI) post-processing software packages

(c): Boxplot confirming no significant difference in test-retest ADCmed value variability for 

measurements generated by analysis on ADEPT (IDL based) and Osirix (c-DWI) software
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Table 1
ADC parameters and tumour segmentation methodologies used within the literature to 
date.

Author, year Patient group ADC metric measured % ADC increase with 
treatment

Reischauer 2014 (11) 9 patients, 13 lesions, 
NSCLC ADC 1 week after 
chemotherapy start

Mean ADC from freehand whole tumour 
segmentation performed on ADC maps

16.2% ADC increase for 
RECIST responders

Yu 2014 (12) 25 patients, NSCLC ADC 
after 1 cycle chemotherapy

Mean ADC from freehand segmentation of 
single central largest tumour slice performed on 
ADC maps

90% ADC increase for 
RECIST responders

Tsuchida 2013 (13) 28 patients, NSCLC ADC 
after 1 cycle chemotherapy

Mean ADC from freehand segmentation of 
single central largest tumour slice on b=800 
images

21.5% cutoff for ΔADC 
differentiated RECIST 
responders from non-
responders

Yabuuchi 2011 (14) 28 patients, NSCLC ADC 
after 1 cycle chemotherapy

Mean ADC within 3 representative regions of 
interest on ADC maps

‘Good ADC increase’ (mean 
ΔADC = 35.9%) had longer 
PFS and OS than ‘poor ADC 
increase’

Sun 2011 (15) 21 patients, NSCLC ADC 1 
week after chemotherapy

‘Average’ ADC from freehand segmentation of 
single central largest tumour slice on ADC maps

36% ADC increase for 
RECIST responders

Okuma 2009 (16) 17 patients. Lung tumour 
ADC 3 days after 
radiofrequency ablation 
(RFA)

‘Average’ ADC from setting an ROI in tumour 
on the single central largest tumour slice on ADC 
maps

29.6% ADC increase following 
RFA (higher increase for those 
that showed later local control)

Chang 2012 (17) 7 patients, NSCLC ADC mid- 
chemo-radiotherapy

‘Average’ ADC from 100mm2 ROI placed 
central largest tumour slice on ADC maps

67.7% ADC increase for 
RECIST responders

Ohno 2012 (18) 64 patients, NSCLC ADC pre 
chemo-radiotherapy

Mean ADC from circular ROIs placed on every 
tumour slice on the b=0 and b=1000 images

No ADC change measured 
(baseline value only)

Regier 2012 (19) 41 patients, NSCLC ADC pre 
radiotherapy

Mean and minimum ADC values from polygonal 
ROIs encompassing whole tumour on ADC maps

No ADC change measured 
(baseline value only)

Bernardin 2014 (9) 8 patients (2 NSCLC, 2 
SCLC, 4 metastatic lung 
lesions)

Mean and median ADC from segmentation of 
the central 3 slices of tumour

No ADC change measured 
(ADC inter-and intra-observer 
reproducibility)

Weiss 2016 (20) 10 patients, NSCLC ADC pre 
chemo-radiotherapy

Mean ADC from whole tumour and metastatic 
lymph node segmentation on b=1000smm-2 

images

19-26% relative ADC increase 
from baseline
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Table 2
DW-Imaging parameters (SS-EPI = single shot echo planar imaging)

Sequence SS-EPI Orientation Axial (whole lung)

Acq. matrix 128 x 112 (87.5%) No signal averages 1, repeated 4x

FOV read (mm) 380 Frequency bandwidth (Hz per pixel) 1400 – 1800

FOV phase (mm) 273mm PE direction AP

Pixel size (mm) 3 x 3 Acceleration factor 2

Slice gap (mm) 0 Fat suppression STIR (TI : 180 ms)

Slice thickness (mm) 5 b-values / s mm-2 100, 500, 800

TR (ms) ≥ 8000 Parallel imaging Yes

TE (ms) 72 Diffusion gradient mode Trace (Gradient over-plus)
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Table 3

Within patient repeatability of duplicate ADCmed (x10-3mm2/s) on test-retest scanning of 

pulmonary masses, for ADC measurement on Osirix.

Lesion
Overall mean of 

ADCmed 

(x10-3mm2s-1) (± sd)

wCV of ADCmed (%) (95% CI) [95% 
LoA (%)]

ADCmed ICC (95% CI)
Mean lesion 

diameter (cm) 
(± sd)

All lesions (n=30), 
whole tumour 
segmentation

1.14 (0.33) 7.1 (5.7 – 9.6)
[-18.0 to 21.9]

0.94 (0.88 to 0.97) 4.5 (2.4)

Site A
(10 lesions)

1.08 (0.35) 9.5 (6.6 - 16.7)
[-23.0 to 29.9]

0.93 (0.75 to 0.98) 3.3 (1.7)

Site B
(2 lesions)

1.44 (0.11) 4.1 (2.1 -26.1)
[-10.7 to 12.0]

0.97 (-0.80 to 1.00 2.6 (0.3)

Site E
(13 lesions)

1.19 (0.34) 4.8 (3.5 – 7.8)
[-12.5 to 14.3]

0.95 (0.86 to 0.99) 5.5 (2.5)

Site G
(5 lesions)

1.01 (0.25) 7.8 (4.8 - 19.2)
[-19.4 to 24]

0.90 (0.32 to 0.99) 4.9 (2.6)

Lesions > 3cm 1.17 (0.30) 3.9 (2.9 – 5.9)
[-10.2 to 11.4]

0.98 (0.95 to 0.99) 6.2 (2.0)

Lesions < 3cm 1.10 (0.37) 9.6 (7.0 – 15.2)
[-23.3 to 30.5]

0.92 (0.77 to 0.97) 2.5 (0.3)
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Table 4

Reproducibility of duplicate pulmonary mass ADCmed (x10-3mm2s-1) values generated on 

different post-processing platforms (IDL based ADEPT and Osirix) (CCC= concordance 
correlation coefficient)

Lesion Overall mean of 
ADCmed (x10-3mm2s-1) 

(± sd)

CoV of ADCmed (%) (95% CI 
of CoV) [95% LoA]

CCC for ADCmed on 
ADEPT vs Osirix (95% 

CI)

Mean lesion 
diameter (cm) 

(± sd)

n=25 lesions, 
segmentation performed 

on ADEPT

1.17 (0.36) 2.8 (2.3 – 3.4)
[-7.4 to 8.0]

0.99 (0.989 to 0.996) 4.5 (2.4)

n=25 lesions, 
segmentation performed 

on Osirix

1.16 (0.34)
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